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Abstract

The endemicity of infectious diseases is investigated from a deterministic viewpoint. Sus-
tained oscillation of infectives is often due to seasonal effects which may be related to
climatic changes. For example the transmission of the measles virus by droplets is en-
hanced in cooler, more humid seasons. In many countries the onset of cooler, more humid
weather coincides with the increased aggregation of people and the seasonal effect can be
exacerbated. In this paper we consider non-autonomous compartmental epidemiological
models and demonstrate that the critical community size phenomenon may be associated
with the seasonal variation in the disease propagation. This approach is applicable to
both the prevaccination phenomenon of critical community size and the current goal of
worldwide elimination of measles by vaccination.

1. Introduction

For some years it was observed that measles has intriguing behaviour. Notably, in
an unvaccinated community of larger than half a million people measles persists
endemically, exhibiting recurrent outbreaks (epidemics) with regular periods, while
in a community of less than a quarter of a million people measles vanishes completely
after a few regular outbreaks [3, 4]. For example, in small island communities such
as Iceland the occasional epidemics that occurred were triggered by travellers and the
virus vanished from the island between epidemics [2].

The empirical data has been reviewed by Anderson and May [2, pp. 81-86], who
distinguish between epidemic fadeout and endemic fadeout. Epidemic fadeout occurs
when a small number of infectives is introduced into a totally susceptible population.
Regardless of the population size the infectives increase rapidly then decline to zero.
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Influenza and the common cold exhibit this type of behaviour, completely vanishing
from a population each year after an epidemic. Endemic fadeout occurs for populations
of less than a critical size (prior to mass vaccination it was a quarter to half a million
people for measles) and irrespective of the number of susceptibles present. Anderson
and May [1] demonstrated that endemic fade-out can be produced by stochastic
models which, however, generally overestimate the critical community size. Keeling
and Grenfell [10] obtain improved estimates with an age-structured stochastic model
constructed to fit prevaccination data in England and Wales.

In this paper we develop a deterministic explanation of the measles critical com-
munity size phenomenon. Elimination by vaccination has been achieved for smallpox
and is imminent for the polio virus. Worldwide elimination of measles is also a goal
of the World Health Organisation. A deterministic model which is applicable to the
prevaccination problem of critical community size should also be applicable to the
problem of global elimination in the vaccination era.

Numerous deterministic epidemiological models have been developed for infec-
tious diseases which have asymptotically stable equilibria and consequently exhibit
damped oscillation towards an equilibrium. This stability of deterministic models is
in striking contradiction to observations which demonstrate that if an infection persists
in a population endemically then it maintains self-sustained oscillations [2, 3, 4, 6].
Fundamental to a deterministic explanation of the critical size phenomenon is a mech-
anism for the reversal of the stability of the equilibria in these deterministic models
for infectious diseases. Further it is desirable that this mechanism should be directly
applicable to measles, the infectious disease which most readily demonstrates the
critical community size phenomenon.

Measles is spread by droplets. The virus remains viable outside the host and inside
the droplet for longer when the droplet maintains its integrity for longer (for example
in cooler, more humid seasons). In many but not all countries the onset of cooler, more
humid weather coincides with the increased aggregation of people and the seasonal
effect can be exacerbated. This provides a biological basis for incorporating seasonal
variation of the basic reproductive rate into the model. We obtain seasonal models
which exhibit sustained oscillations of infectives.

Our deterministic investigation also explores the possibility of other explanations
in an autonomous system with a constant reproductive rate. For instance an alternative
mechanism for the critical size phenomenon is the presence of a limit cycle usually
associated with a Hopf bifurcation (or with its discrete-time analogue, a Neimark-
Sacker bifurcation) in the infectives -susceptibles phase space. Assume that a measles
endemicity model has a fixed point which is asymptotically stable as the population
size N tends to infinity. Further assume that as the population decreases to some
critical value of N a supercritical bifurcation occurs and a stable limit cycle appears
while the fixed point becomes unstable. As the population decreases further the stable
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limit cycle expands until at some value of N it crosses the infected population level
with one infective. Thus the disease cannot persist with less than one infective and
there is a critical community size phenomenon.

In Section 3 we explore the possibility of such a bifurcation for a general class of
autonomous models and in particular a negative binomial model for nonhomogeneous
mixing. We find that spatial models incorporating heterogeneity do not reverse the
stability of the equilibrium. A geometrical approach demonstrates that a reversal
arises most naturally by relaxing the condition for an autonomous system.

2. The basic difference equation models

In this paper we will consider discrete-time epidemiological models. Discrete-time
models are not new for mathematical epidemiology — difference equations have been
used by Soper [14], Bartlett [3], Hoppensteadt [8, 9] and others. The main advantage
of discrete-time compared with continuous-time models is their natural time scaling.
The natural time scale for epidemiological processes is a parasite generation. By the
term "parasite generation" we mean the average time interval which commences when
a susceptible is exposed to an infective dose, includes the period during which the host
passes infection and ends when the host is fully recovered or dead. The choice of a
parasite generation as a time interval has the important consequence that all infected
recover after a definite period of time. Whereas for continuous-time models, unless
we use integro-differential equations or time delay, we postulate that "continuous
recovery" from the infected to the recovered class is at a constant rate. This is rarely
realistic while discrete time with a parasite generation as a time interval allows a
natural interpretation of all the model parameters.

We consider an SIR compartmental model which has been reported previously
in [5]. We assume a human population of size N partitioned into susceptible S,
infected / and recovered R compartments. We assume that recovery implies life-long
immunity, that is, no return from the recovered compartment into the susceptibles
compartment is possible. The number of susceptibles and infectives in the tth parasite
generation are denoted by 5,, /, and R, respectively. By the basic reproductive rate
Ro we mean the average number of people (susceptible, infected or recovered) that an
infective comes into infective contact with.

The population is assumed to be homogeneously mixing and its size is constant.
We assume that all hosts live to age L then die ("Type I mortality" in ecologists'
terminology [2, p. 62]). We further assume that there are k parasite generations each
year and that to keep the population size constant the number of births in a parasite
generation c = N/kL = bN {b = 1/kL). All births are into the susceptibles'
compartment; all deaths are from the recovered compartment. Measles has about 24
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parasite generations per year [2] and we will use it = 24 year"1 from here onwards.
The principle of mass action takes into account that an infective comes into infective

contact with and might infect Ro people, some of whom may be already infected or
recovered. The equations for mass action are

5, ( Z 1 )

S,+\ = S, - fioA— + c.

The constant population size assumption permits us to disregard the third equation,

for the recovered compartment R.
The system has a fixed point I = c,S = N/Ro- For endemic persistence of measles

the long term average of the susceptibles is taken to be N/Ro.
If Ro < 4kL (the case Ro > 4kL is biologically infeasible) the usual linear analysis

at the fixed point yields a matrix with eigenvalues which satisfy \X\ = 1. Graphically
the orbits in the phase space are closed loops corresponding to invariant sets. These
closed orbits are structurally unstable but they give a description of average behaviour
and a reasonable prediction for inter-epidemic periods. The phenomenon of critical
community size will be demonstrated by adding two refinements to the mass action
model.

The first refinement is motivated by the observation that in the mass action model
one susceptible may be infected by more than one infective. Assuming that infective
contacts are Poisson distributed we come to a system of equations introduced in [5],

/,+, =S,-S, exp(-/?0/,/AO,

Sl+, = 5,exp(-flo/,/AO + c.

The term exp(—R0I,/N) is the zeroth term in a Poisson distribution with mean \x =
RQI,/N and represents the probability that a susceptible in the fth generation escapes
infection. It is shown in [5] that the system has an attracting fixed point and orbits
gently spiral in to the fixed point.

The second refinement stems from the observation that measles propagation varies
with season. This variation may be captured assuming that Ro is not a constant but a
periodic function with a one-year, or k generation, period. Our results do not depend
on a particular formula for Ro but we shall leave a discussion of this aspect until
Section 4.
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3. Nonhomogeneous mixing

The mass action principle assumes homogeneous mixing. We now examine the
impact of spatial heterogeneity whether due to demographic, social or geographi-
cal factors. Let x be a random variable having a a Poisson distribution fxq e~M /q\
(q = 0, 1, 2 , . . . ) , which is the probability that a susceptible has q infective contacts.
Inhomogeneity can be captured with a probability density function for /x,

P(H) = -^V"- 1 e-"\ \i > 0,
y(m)

where m, a > 0 are parameters. The probability that x takes the value q is

Q(k)= /
Jo

= r
/o <7! Y(m)

This is the negative binomial distribution which has mean m/a and variance
m(\ + a) /a2 (see [13]). The parameter a can be eliminated by taking the mean
to be the average number of contacts per susceptible so that m/a = Rol,/N. Then
the probability of escaping infection is

which leads to the equations

'+ 'I \ mN I
„ (3-D

5,+, = c + 5,

The negative binomial distribution has been used to describe variation in the envi-
ronment, diversity leading to a qualitative change in the behaviour of a model. The
classical example is the stabilisation of the Nicholson-Bailey equations for a host-
parasitoid system [7]. In that example it is the stabilisation itself which is important
rather than the bifurcation which is not a Neimark-Sacker bifurcation (the Neimark-
Sacker bifurcation is equivalent to a Hopf bifurcation for discrete-time systems leading
to the appearance of a closed invariant curve surrounding a fixed point [11]).

With the particular system (3.1) as an example, we consider a general model of
infection

Il+i=fU,,S,,N),

Sl+l = Sl-fU,,SltN) + c,
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where the function / (/, S, N) represents reproduction of the infection and depends
on TV as a parameter. We investigate the possibility of a supercritical Neimark-Sacker
bifurcation and assume the natural conditions

,AO=/(/,0,tf)=0, /(/ , S,/V)>0, (3.3)

for all I, S, N > 0. We assume also that, for all a > 0, lims_>oo/ (a, 5, N) = Roa.
The system (3.2) has an unique fixed point (/, 5) given by the equations

f = c, f(I,S,N) = c. (3.4)

The linear approximation of the system (3.2) near the fixed point is

9 / (7 ,5 , ) , , df(I,S)c
't+\ — "•' lt ~T *J/i

d/(/,i)

97

The characteristic equation of the system (3.5) is k2 — 8k + x = 0 , where

ol

The system (3.5) has a pair of complex conjugate eigenvalues k, k with \k\ = 1 when
- 2 < (5(A0 <2andr(iV) = 1.

A Neimark-Sacker bifurcation occurs in the system (3.2) when as the parameter N
varies the two complex eigenvalues of the linearised system (3.5) cross the unit circle
| A. | = 1. If the eigenvalues cross from the inside to the outside it is a supercritical
bifurcation and a stable fixed point bifurcates to a stable closed orbit, otherwise it is a
subcritical bifurcation [11].

THEOREM 3.1. If there is a supercritical Neimark-Sacker bifurcation of the system
(3.2) then there is an open interval J such that for each N e J there exists IQ e (0, / )
such that d2f (Io, 5, N)/dl2 > 0.

PROOF. If a Neimark-Sacker bifurcation occurs then there is an open interval J
such that for N e J

* ™ (3.6,
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Since/ (0, 5, N) = 0 and/ (7, S, N) = c for all N, see (3.3) and (3.4), by applying
the mean value theorem we obtain the existence of a point 1\ e (0, 7) such that

dfVuS.N) =f(f,S,N)-f(0,S,N) _c

9/ / - 0 c

Now using this result and (3.6) and by applying the mean value theorem to the function
g{l) = 3/ (/, 5, N)/dI we obtain /0 e (/,, 7) such that

32/(/0, S,N) = dg(I0) ̂  g(/)-g(/,) = df(I, S,N)/dI-df(Iu S,N)/dl
dl2 dl / - / , ~ / - / , > '

The theorem is proven.

This theorem can now be applied to the system (3.1) for which

\ -(m+2)

j < 0 for all /, S > 0.

We are able to conclude that nonhomogeneous mixing does not lead to a Neimark-
Sacker bifurcation of the system. Indeed the theorem indicates that it is more appro-
priate to consider a non-autonomous system and seasonal variation since it is difficult
to imagine a biological reason for 3 2 / / 3 / 2 > 0 in an autonomous system, while a
condition 3 2 / / 3 / 2 < 0 may arise as a consequence of saturation effects. In fact it
is easy to see that for discrete-time models the latter condition must hold to avoid a
possibility of multiple infection of one susceptible.

4. The seasonal reproductive rate and critical community size phenomenon

In this section we assume that the infective contacts are Poisson distributed and
consider (2.2). We assume also that the reproductive rate RQ is a periodic function of
parasite generation with a one-year period. Here we take

D / N fl4 + 4 ( r - l ) / l l for 1 < t < 12,

| l 8 4 ( 1 3 ) / l l f o r l 3 < r < 2 4 .

The numerical average of /?o is 16, which is the reproductive rate for measles [2]. It
is remarkable that our results do not depend on this particular formula which is taken
as an example only. The average host's life span L is taken to be 60 years which fits
pre-vaccination data.

To investigate endemic persistence and endemic fade-out we fix the initial values
h and S\ and vary the population size M. The simulations are indicative of a trend of
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2.4

Susceptibles

FIGURE 1. Inward spiralling. Here N = 3.6 million, S, = /V/16 = 225,000 and /, = 16.

1.6 24 2.8

Susceptibles x10

FIGURE 2. Outward spiralling. Here N = 400, 000, Si = N/\6 = 25, 000 and /, = 16.
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spiralling in for N > 500, 000 and spiralling out for N < 400, 000. Figures 1 and 2
clearly indicate the //-dependence. We have chosen these two particular diagrams
since they have no points of self-intersection. We have used a log10 scale for /, which
shows clearly the orbits' behaviour. The orbit in Figure 1 spirals inwards similar
to the behaviour exhibited with constant Ro. Figure 2 has been obtained by taking
N = 400, 000 and 5i = N/16 = 25, 000. The orbit now spirals out.

Table 1 demonstrates the minimal number of infectives /„„„ for different populations
for endemically persisting measles. The data was obtained by running the model for
10 years (240 parasite generations) for each population N with initial values of
1\ = 16 and S\ = N/16. In the table we ignored transient behaviour in the first
few generations of the simulation. The table clearly indicates that for this model a
population of 0.2 million is below the critical community size and a population of
0.4 million is at the edge of it.

TABLE 1.

N (million)

0.2
0.4
0.6
0.8
1.0
2.0
3.6

0.50
1.00
1.64
2.04
2.52
5.00
11.6

The seasonal R0(t) of the form used here has induced spiralling in of orbits for
N > 500, 000 and spiralling out for N < 400, 000. The question now arises, how
dependent is this phenomenon on the particular form of the periodic function Ro(t)l
The model was extensively tested for a variety of different periodic functions including
non-symmetric functions. Surprisingly we found that the average value of Ro was
not as important as the magnitude of its variation, /?o(Omax — ̂ oMmin- Periodic
functions with magnitudes of variation of three to four including non-symmetric
functions produced the same type of TV-dependence as the abovementioned function.
A magnitude of variation of two or less gave spiralling in, while a magnitude of six
gave spiralling out for all considered N and for all considered periodic functions. For
a smaller average value of /?o and for a magnitude of variation of four the critical
community size effect could still be observed.

This goes against intuition which says that the critical size phenomenon in the case
of measles is very much due to the large Ro. We believe that it is a consequence of the
spread of measles by droplets which leads to considerable seasonal variation of Ro.
Polioin contrast is spread by a fecal oral route and mumps by saliva — these methods
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FIGURE 3. Large orbit and central tight invariant curves. Here N — 3.6 million and S\ = N/\6; for the
large orbit l\ = 25 and for the tight orbit 1\ = 2040.

9000

6000 •

>

3000 •

0.9 1.1

Susceptibles
1.3

FIGURE 4. Self-intersecting steady state; here N = 1.6 million, 5, = N/16 = 100, 000 and 1\ - 23.
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of transmission mean that there will not be the required degree of seasonal variation
in Ro and hence there is no critical community size phenomenon.

5. The seasonal model and endemicity

For values of N > 400, 000 the long term behaviour is of interest. Because the
system is non-autonomous it may take upwards of sixty years or more to reach a
steady state. One possible steady state is a single large closed invariant curve with
a comparatively low minimum value of /„,;„ > 1 as seen in Figure 3. (We use a
log10 scale here for the infectives axis.) The closed orbit in Figure 3 has an epidemic
cycle of about 74-75 parasite generations and an epidemic itself lasts for about 18
parasite generations which is approximately as observed [2, p. 83]. (By contrast
the closed orbit of mass action has an epidemic cycle and an epidemic length of 79
and 20 parasite generations respectively.) The lower estimate for the epidemic cycle
corresponds better to available data but if anything it is still too high. This may be
because a population of this size is likely to exhibit clumping and consequently chaotic
behaviour [12].

Another possible steady state is a tight closed invariant orbit in the vicinity of
the steady state of the corresponding autonomous system (see Figure 3; here N =
3.6 million, /, = 2040 and S, = iV/16).

The third steady state is the most interesting. Figure 4 represents a simple self-
intersecting invariant orbit which is an icon of the prevaccination era for measles in a
population of N = 1.6 million, such as was the case in New Zealand at the time. There
are in effect two epidemic cycles of a period of three years and one of a period of two
years. The average epidemic period here is 2.75 years, whereas in New Zealand the
average epidemic cycle between 1949 and the commencement of mass immunisation
in 1969 was 2.86 years [6].

If N is fixed and I\ is gradually increased, each of the three steady states exists
over a number of windows of I\ values. The order of the states seems unpredictable
although as I\ approaches the value associated with the fixed point (of the mass action
equations) the tight orbit predominates. We offer the caveat that it may take an orbit
a very long time to reach a steady state particularly when h is close to a transition
value.

6. Conclusions

In this paper the critical community phenomenon for measles was investigated
for populations in the range 100, 000 < N < 3, 000, 000, that is, populations which
operate as a single unit. The final process of elimination at a low level of infectives will
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be subject to stochastic effects. However our approach has been to seek a deterministic
explanation. It was found that endemic fade-out can occur if the basic reproductive
rate of the parasite exhibits sufficient seasonal variation. We suggest that measles is
the only common infectious disease with the required seasonal variation in the basic
reproductive rate. Comparable fade-out might be observed for a less infectious disease
which also exhibited sufficient seasonal variation.
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