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The transition route and bifurcations of the buoyant flows developing on a heated
horizontal circular surface are elaborated using direct numerical simulations and direct
stability analysis. A series of bifurcations, as a function of Rayleigh numbers (Ra) ranging
from 106 to 6.0 × 107, are found on the route to chaos of the flows at Pr = 7. When
Ra < 1.0 × 103, the buoyant flows above the heated horizontal surface are dominated
by conduction, because of which the distinct thermal boundary layer and plume are not
present. At Ra = 1.1 × 106, a Hopf bifurcation occurs, resulting in the flow transition from
a steady state to a periodic puffing state. As Ra increases further, the flow enters a periodic
rotating state at Ra = 1.9 × 106, which is a unique state that was rarely discussed in the
literature. These critical transitions, leaving from a steady state and subsequently entering
a series of periodic states (puffing, rotating, flapping and period-doubling) and finally
leading to chaos, are diagnosed using two-dimensional Fourier transforms. Moreover,
direct stability analysis is conducted by introducing random numerical perturbations into
the boundary condition of the surface heating. We find that when the state of a flow is in
the vicinity of critical values (e.g. Ra = 2.0 × 106), the flow is conditionally unstable to
perturbations, and it can bifurcate from the rotating state to the flapping state in advance.
However, for relatively stable flow states, such as at Ra = 1.5 × 106, the flow remains in
its periodic puffing state even though it is being perturbed.
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1. Introduction

Natural convection is of longstanding interest in fundamental research of fluid mechanics
(see e.g. Torrance, Orloff & Rockett 1969; Worster 1986; Fan et al. 2021). In particular,
buoyancy-driven flows on heated horizontal surfaces, as a ubiquitous phenomenon, have
been studied extensively in the past decades because of the underlying mechanisms in
various nature and industrial systems, such as urban heat island (Fan et al. 2019) and solar
receivers (Samanes, García-Barberena & Zaversky 2015). Specifically, plenty of literatures
concentrate on the dynamics and heat transfer of different regimes of the buoyancy-driven
flows.

When a horizontal surface is heated, a thermal fluid layer appears and rises above it
owing to the buoyancy that is gained through the heat transfer process. Such a fluid layer
is defined as a thermal boundary layer (Yu, Li & Ecke 2007) and can be characterized by
the Grashof number (Gr = gβ �T L3/ν2) or the Rayleigh number (Ra = gβ �T L3/(νκ))
in which the characteristic length (L) usually depends on the geometric length of the
model. Similarity solutions for the thermal boundary layer developed on the horizontal
surface immersed in a fluid with the Prandtl number of 0.7 (Pr = ν/κ) were obtained
using Boussinesq approximation by Stewartson (1958), in which an inclined angle α was
used to identify the transverse pressure gradient induced by buoyancy. Gill, Zeh & Del
Casal (1965) later revisited the boundary layer equations and indicated that the solutions
are applicable when the heated surface faces upwards in a fluid. Several experiments have
also been performed to investigate the flow pattern of the flows on heated surfaces of
various geometries such as square, rectangular, triangular and circular surfaces (Husar &
Sparrow 1968), the transition to large-eddy instability (Rotem & Claassen 1969), and the
heat transfer (Pera & Gebhart 1973). A summary of theoretical solutions and experimental
correlations obtained in those studies was presented by Goldstein & Lau (1983), in which
the scaling law of Nu ∼ Ra1/5 was given for laminar flows where Nu denotes the Nusselt
number.

As thermal boundary layers established from leading edges of a horizontal surface
meet at its centre, a starting plume accompanied by a large-eddy structure rises due to
buoyancy (Rotem & Claassen 1969). Since the work of Batchelor (1954) and Morton,
Taylor & Turner (1956) on the modelling of plumes, increasing attention has been devoted
to the study of plumes. Starting plumes, which rise above a horizontal surface in a
two-dimensional model (Hier et al. 2004; Hattori et al. 2013b; Van den Bremer & Hunt
2014), on a three-dimensional circular disk (Robinson & Liburdy 1987; Kitamura &
Kimura 2008; Plourde et al. 2008; Lesshafft 2015; Kondrashov, Sboev & Rybkin 2016b;
Sboev, Rybkin & Goncharov 2018; Sboev & Kuchinskiy 2020), and from a line heat
source (Noto 1989; Hattori et al. 2013a), were studied using theoretical, experimental and
numerical methods with a focus on the heat transfer and evolution of plume structures (e.g.
cap and stem). Specifically, the influence of the geometry of heated surfaces on plumes
(Kondrashov, Sboev & Dunaev 2016a, 2017) and other influencing factors such as ambient
stratification (Torrance 1979; Lombardi et al. 2011; Marques & Lopez 2014; Mirajkar &
Balasubramanian 2017) and Prandtl number (Worster 1986; Kaminski & Jaupart 2003)
were investigated extensively.

The process of general flow transition from steady to chaotic state is complicated, with
many interesting phenomena, which can behave very differently in flows at different
controlling parameters. At small Ra, the buoyant flow above a horizontal surface is
normally steady at equilibrium state after the starting plume rising upwards (Lopez
& Marques 2013). With increasing controlling parameters, the temporal and spatial
complexity increases after a succession of bifurcations before the onset of turbulence
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(Drazin 2002). Ruelle & Takens (1971) and Newhouse, Ruelle & Takens (1978) mapped
a transition route using dynamic system theory, in which the steady flow became periodic
with the increase of the controlling parameter, and it was followed by a quasi-periodic
state exhibiting several different frequencies and finally evolved into chaos. Libchaber
& Maurer (1978) also suggested that a series of period-doubling bifurcations may exist
when a flow evolves from a periodic state into a quasi-periodic state in a Rayleigh–Bénard
convection model. The Ruelle–Taken–Newhouse route and the period-doubling transition
are very common in many transitional flows, such as in the transition route of the flows in
a cylinder cavity heated from below (Lopez & Marques 2013), and on a top-open cavity
heated at the bottom (Qiao et al. 2018). At larger Ra, the buoyant flow may enter the chaotic
state or even the turbulent flow. Experiments are also conducted to study the heat transfer
and flow structures of turbulent flow (Yousef, Tarasuk & McKeen 1982; Kitamura, Chen
& Kimura 2001; Kitamura & Kimura 2008).

The heat transfer of the transitional flows on the horizontal surface is investigated as one
of primary interest. Goldstein & Lau (1983) studied the heat transfer of the transitional
flows on a heated horizontal plate using finite-difference analysis and experiments. Their
results show that the power of the Nu–Ra correlation increases from 1/5 to 1/3 when
the flow transits from laminar to turbulence, implying that the heat transfer is distinctly
different in laminar and turbulent regimes. Their results are also consistent with other
studies (see Clifton & Chapman 1969; Clausing & Berton 1989; Lewandowski et al. 2000;
Wei, Yu & Kawaguchi 2003).

Direct stability analysis is also used to study the stability of buoyant flows to understand
the streamwise development of instabilities. The instability of travelling waves in the
thermal boundary layer formed in a side-heated cavity was studied by adding perturbations
to the start-up waves (Armfield & Janssen 1996). The stability features of steady-state
flow were obtained and compared to start-up flow. The radiation-induced convective
instability of a fluid layer filled in a shallow wedge was studied by adding random and
single-mode perturbations to the thermal boundary layer (Lei & Patterson 2003). The
most unstable region of the fluid layer in the wedge and the most unstable mode of the
convective instability were found. The critical time and Grashof number for the flow to
become unstable were also obtained in good agreement with the scaling laws. Symmetric
and asymmetric disturbances can be superimposed to a planar thermal plume on a finite
heating source (Hattori et al. 2013b). The coupling of oscillations with the fundamental
frequency and harmonics was observed in lapping flow and plume stem under different
conditions. The study mainly focused on the development of oscillations in horizontal
and vertical directions and also the relationship between the plume stem and lapping flow
instabilities.

Although some states of the transitional flows on a heated horizontal surface are
understood, the complete transition route from laminar to chaos along with the underlying
bifurcations of the buoyancy-driven flows are rarely investigated. Kitamura & Kimura
(2008) performed experiments with both water and air on the upward-facing circular disks
in a wide range of Ra. The critical Rayleigh numbers for the beginning of the transition to
turbulent flows were presented in two different working fluids. However, the study focused
on the heat transfer coefficients of the flows on the disks rather than the bifurcation routes
of different states. Khrapunov & Chumakov (2020) performed experiments and numerical
simulations of the flow on the horizontal surface with air as the working fluid, in which
only results of steady and puffing states were found. For the study of swirling plumes,
Torrance (1979) observed a plume rotating about the centreline in a stratified cylindrical
enclosure in an experiment. It is well known that the swirling plume cannot be reproduced
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by two-dimensional axisymmetric numerical simulations under the same conditions with
experiments. Accordingly, Marques & Lopez (2014) investigated the bifurcations in a
stratified ambient in a cylinder cavity similar to that in the experiments by Torrance
(1979), and documented the presence of a swirling plume in three-dimensional numerical
simulations, which provides a new perspective to understand the naturally occurring
swirling plumes. Unfortunately, the results in Marques & Lopez (2014) are restricted in
a closed stratified ambient with linear heating conditions, which is a quite small space,
different from the stratification in atmosphere or ocean in nature and in industry systems.

In summary, the complete transition route, dependent on the controlling parameters
of the buoyant flows on the isothermally heated horizontal circular surface, has not
been investigated adequately in previous studies. The instability of the transitional flows
in different states is also rarely understood. However, natural convection on a heated
surface is common in industry systems such as electronic cooling (e.g. Zoschke et al.
2010; Yoon et al. 2023). This motivates our study. In this study, the complete transition
route from steady to chaotic state of the buoyant flows on the isothermally heated
horizontal circular surface is illustrated with water (Pr = 7) as the working fluid based
on three-dimensional numerical results. Various bifurcations exhibiting different temporal
and spatial characteristics are identified within a small range of Ra. Direct stability
analysis is adopted subsequently to understand the stability of the transitional flows by
introducing random numerical perturbations of different amplitudes and initial condition
perturbations. In the remainder of this paper, the physical problem and numerical methods
are presented in § 2. A series of bifurcations of transitional flows on the horizontal surface
and the such as the steady state, periodic state, rotating state and period-doubling state and
the influence of perturbations on the transitional flows are discussed in § 3, followed by
concluding remarks in § 4.

2. Physical problem and numerical method

2.1. Governing equations and controlling parameters
Transitional flows on a heated horizontal surface are simulated in the computational
domain shown in figure 1. In this study, the three-dimensional continuity equation,
momentum equations and energy equation with the Boussinesq assumption are used as
governing equations. The non-dimensional governing equations can be written as follows:

∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0, (2.1)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= −∂p
∂x

+ Pr

Ra1/2

(
∂2u
∂x2 + ∂2u

∂y2 + ∂2u
∂z2

)
= 0, (2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+ Pr

Ra1/2

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
= 0, (2.3)

∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

= −∂p
∂z

+ Pr

Ra1/2

(
∂2w
∂x2 + ∂2w

∂y2 + ∂2w
∂z2

)
+ Pr T = 0,

(2.4)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

= 1
Ra1/2

(
∂2T
∂x2 + ∂2T

∂y2 + ∂2T
∂z2

)
= 0, (2.5)
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P2

P1

D
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y

2D

Line-v

Line-rLine-c

Plume

Puffing (Convective roll)

Thermal boundary layer

(a)

(b)

Figure 1. (a) Schematic of the computational domain with the temperature iso-surface (T = 0.1) of a thermal
plume in its periodic state at Ra = 1.5 × 106, in which the centre of the coordinate system aligns with the
centre of the heated surface. The dashed lines denote open boundaries adopted in numerical simulations.
(b) The probing points P1 = (0, 0, 0.01) and P2 = (0, 0, 0.2) and lines are used in the following figures. The
region highlighted in red denotes the heated surface; the grey part is the adiabatic wall. Line-v denotes a
vertical line leaving the centre of the heated surface; line-r and line-c denote radial and circumferential lines,
respectively.

where u, v and w are velocity components in x, y and z directions in Cartesian
coordinates, t is time, p is pressure and T is temperature. The governing
equations are non-dimensionalized using the scales x, y, z ∼ D, u, v, w ∼ κ Ra1/2/D,
ρ−1 ∂p/∂x, ρ−1 ∂p/∂y, ρ−1 ∂p/∂z, t ∼ D2/(κ Ra1/2) and T − T0 ∼ �T . Here, D is the
diameter of the heated horizontal surface, κ is thermal diffusivity ρ is density and �T is
the temperature difference between the heated horizontal surface and the initial ambient
fluid at T0.

According to (2.2)–(2.5), the non-dimensional governing equations are dominated by
two controlling parameters, the Rayleigh number (Ra) and the Prandtl number (Pr),
defined as

Ra = gβ �T D3

νκ
, Pr = ν

κ
, (2.6a,b)

where g is gravitational acceleration, β is the coefficient of thermal expansion and ν is the
kinematic viscosity.

2.2. Geometry, boundary conditions and grid
In this study, the working fluid is water (Pr = 7), which is treated as an incompressible
Newtonian fluid. As shown in figure 1(a), the flow develops on a heated circular rigid
surface of diameter of D that is enclosed by a cylindrical open boundary with diameter of
2D and height of D.
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The following initial and boundary conditions are adopted to investigate the transition
and instability of the thermal boundary layer and plume on an isothermally rigid horizontal
surface. Here, the bottom boundary is modelled as a no-slip rigid wall with isothermal
heating condition for the heated surface and adiabatic condition on the annular extension,
which can be written as

u(x, y, 0, t) = v(x, y, 0, t) = w(x, y, 0, t) = 0,

T(x, y, 0, t) = 1 for (x2 + y2)1/2 ≤ 1
2 ,

}
(2.7)

u(x, y, 0, t) = v(x, y, 0, t) = w(x, y, 0, t) = ∂T(x, y, 0, t)
∂z

= 0

for 1
2 < (x2 + y2)1/2 ≤ 1.

⎫⎪⎬
⎪⎭ (2.8)

The side and top boundaries of the computational domain are set as open boundaries using
pressure outlet conditions, which can be given as

∂u(x, y, z, t)
∂n

= ∂v(x, y, z, t)
∂n

= ∂w(x, y, z, t)
∂n

= 0 for (x2 + y2)1/2 = 1, (2.9)

∂u(x, y, 1, t)
∂z

= ∂v(x, y, 1, t)
∂z

= ∂w(x, y, 1, t)
∂z

= 0, (2.10)

where n is the normal direction to the side boundary. The pressure outlet condition just
determines the static pressure at the outlet boundaries and also allows the backflow to
exist. All other flow quantities are extrapolated from the interior. Thus, the side and top
boundaries can be seen as free flow conditions without sidewalls. Besides, the temperature
of the inflow at open boundaries is set to the ambient temperature of T = 0, while the
temperature of the outflow at open boundaries can be solved. The initial condition of
the flow may be motionless and isothermal (or may be the numerical results at different
Rayleigh numbers), which gives

u(x, y, z, 0) = v(x, y, z, 0) = w(x, y, z, 0) = T(x, y, z, 0) = 0. (2.11)

2.3. Numerical simulation methods
The governing equations are solved using the finite volume method with the SIMPLE
scheme. The advection term is discretized by the QUICK scheme, the diffusion term
is discretized by a second-order central-difference scheme, and the transient term is
discretized by a second-order backward implicit time-marching scheme. This numerical
method is used successfully in other studies (Qiao et al. 2018; Jiang et al. 2021).

In order to make the grid lines ‘O’ shaped to reduce the skewness of block corners
on continuous curves and also to eliminate the coordinate singularity in the centre of the
domain, an O-type multi-grid system is established in Cartesian coordinates in which finer
grids are applied in the region close to boundaries, and coarse grids in other regions, as
shown in figure 2. Such a non-uniform grid system can be used to satisfactorily resolve the
regions where larger velocity and temperature gradients are expected to occur.

A series of tests are carried out to find the optimal time step, grid and domain size to
ensure computing accuracy and the use of affordable computing resources. Four different
grid systems with 0.5 million, 1 million, 2 million and 8 million cells, along with three
non-dimensional time steps of 0.0005, 0.001 and 0.002 are tested in the case for Ra =
6.0 × 107. That is, since the critical Rayleigh number is approximately Ra = 5.02 × 107
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(a) (b)

Figure 2. (a) Top view of the O-grid system discretizing the computational domain, (b) zoomed-in top view
of the O-grid system discretizing the computational domain of the red box in (a).

Case no. Number of cells (million, x × y × z) Time step z-velocity Temperature

Test 1 0.5 (92 × 92 × 60) 0.001 0.01769 (3.5 %) 0.1939 (3.2 %)
Test 2 1 (110 × 110 × 90) 0.001 0.01835 0.2004
Test 3 2 (140 × 140 × 110) 0.001 0.01823 (0.7 %) 0.1993 (0.5 %)
Test 4 8 (220 × 220 × 180) 0.001 0.01815 (1.1 %) 0.2018 (0.7 %)
Test 5 1 (110 × 110 × 90) 0.0005 0.01842 (0.4 %) 0.1989 (0.7 %)
Test 6 1 (110 × 110 × 90) 0.002 0.01819 (0.9 %) 0.2019 (0.7 %)

Table 1. Average z-velocity and temperature at point P1 = (0, 0, 0.01) for Ra = 6.0 × 107, using different
numbers of cells and time steps.

for which the flow becomes chaotic, the Rayleigh number of Ra = 6.0 × 107 larger than
and close to the critical value is selected to test the time step, grid and domain size to
make sure that the numerical results satisfy the computing accuracy for the whole range of
Rayleigh numbers. In x and y directions, the grid system is constructed with �x = �y =
0.007 with an expansion factor of 1.04 (growth rate of the cell length from one cell to
the next) from the centre to the boundary edge. In the z direction, the grid is constructed
with �z = 0.007 and an expansion factor of 1.06 from the bottom to the top boundary.
The temperature and velocity in the cases with different grid systems and time steps are
monitored at point P1 = (0, 0, 0.01), as illustrated in figure 1(b). The average temperature
and velocity as well as the relative variations with the reference solution of test 2 are
listed in table 1. Based on the results in table 1, the velocity variation is 3.5 %, 0.7 % and
1.1 % between tests 1, 3 and 4 and test 2, respectively. Furthermore, the velocity variation
between test 2 and tests 5 and 6 is small. Therefore, the case of test 2 with the grid system
of 1 million cells and time step of 0.001 is adopted as the best option, given both computing
accuracy and cost.

In order to make sure that the open boundaries do not influence the buoyant flows,
tests of different sizes of the computational domain are conducted. That is, the size of the
domain is diameter of 2D and height of D in test 2, diameter of 2D and height of 2D in test
7, and diameter of 4D and height of 2D in test 8. As shown in table 2, all variations of the
temperature and velocity between reference test 2 and other tests are less than 1 %. Since
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Case no. Domain size (diameter × height) z-velocity Temperature

Test 2 2D × D 0.01835 0.2004
Test 7 2D × 2D 0.01827 (0.4 %) 0.2021 (0.8 %)
Test 8 4D × 2D 0.01819 (0.9 %) 0.2010 (0.3 %)

Table 2. Average z-velocity and temperature at point P1 = (0, 0, 0.01) for Ra = 6.0 × 107, using different
domain sizes.

Experiment

Numerical

Nu

R

20

10

0 0.05 0.10

Figure 3. Validation of the local Nusselt number from the present numerical method with experimental
results from Khrapunov et al. (2017) at Ra = 3.78 × 106, where R is the radius of the disk.

the flow in the thermal boundary layer and the plume stem is near the surface centre, the
domain of 2D × D is sufficiently large to capture the characteristics and structures of the
transitional flows and is adopted in this study under consideration of accuracy and cost.

For a further validation, figure 3 shows numerical results calculated using the
present numerical simulation method and experimental data from Khrapunov, Potechin
& Chumakov (2017). That is, the profile of the local Nusselt number (NuR =
(R/(T0 − Tw))(∂T/∂n), where R is the radius of the disk) along the disk radius
is calculated and presented at Ra = 3.78 × 106 (or Gr = 5.40 × 106). Clearly, the
numerical results agree with experimental data from Khrapunov et al. (2017), suggesting
that the present numerical method is guaranteed to describe the buoyant flows on
the surface.

3. Results and discussion

To unravel the transition route of the buoyant flows on the horizontal surface, hundreds
of cases for Ra = 101–6.0 × 107 were calculated to distinguish various bifurcations, flow
structures and corresponding critical values (critical Rayleigh numbers).

With increasing Ra, the buoyant flows on the horizontal surface are observed to go
through a series of bifurcations, starting with the conduction dominated flow, followed by
a steady flow, a periodic flow with different states such as puffing, rotating and flapping,
then a period-doubling flow and finally transition to chaos. Since a rotating state found
in the transition route was rarely discussed in previous studies, we performed initial
condition perturbation and direct stability analysis to further understand the rotating state.
Random perturbations were imposed on the heated surface to understand the response of
the buoyant flows in different transitional states.
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Figure 4. The x–z plane temperature contour plot of conduction-dominated flow at t = 50 for (a) Ra = 101,
(b) Ra = 102, (c) Ra = 103; and temperature iso-surface at T = 0.1, t = 50 for (d) Ra = 101, (e) Ra = 102,
( f ) Ra = 103.

3.1. The transition route to chaos

3.1.1. Basic flow
Starting off with Ra = 101, heat transfer is dominated by conduction from the heated
surface to the fluids in a very weak flow. As shown in figure 4, there is no distinct thermal
boundary layer or plume, but a steady axisymmetric dome structure. With increasing Ra
from 101 to 103, a noticeable convection starts to establish, which leads to the shrinking of
the dome structure, where the high temperature region contracts and concentrates towards
the centre of the dome.

For relatively larger Ra, the convection effect becomes much more pronounced, which
takes place over the dominance of the conduction effect. The thermal boundary layer
and plume can be readily distinguished in figure 5. The radial temperature gradient and
baroclinic effect drive the fluid radially inward and rise upward due to the buoyancy effect,
finally forming a distinct plume. The temperature of the plume decreases with increasing
height because of the dissipation of heat from the plume to the ambient fluid in the process
of plume rising. With increasing Ra, the thicknesses of the thermal boundary layer and
plume reduce, respectively. This is because the convection effect becomes stronger, leading
to a larger temperature gradient. The heat transfer in this case is more intense, which is
compatible with the scaling laws obtained for a heated horizontal surface model in Jiang,
Nie & Xu (2019b). As shown in figure 5, the flow is still steady and axisymmetric.

For the purpose of illustrating the three-dimensional flow explicitly, time series of
temperature profile are presented in vertical axial, radial and circumferential directions,
as shown in figure 6. As illustrated in figure 1(b), the vertical line-v originates from the
original point and ends at the centre of the top boundary. The radial line-r goes across
the centreline and its length is 4D/5. The circumferential line-c diameter is also 4D/5.
Line-r and line-c are both D/30 height away from the bottom boundary. Note that at this
height, the temperature profiles can describe the structures of both thermal boundary layer
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Figure 5. The x–z plane temperature contour plot of convection-dominated flow at t = 50 for (a) Ra = 104,
(b) Ra = 105, (c) Ra = 106; and temperature iso-surface at T = 0.1, t = 50 for (d) Ra = 104, (e) Ra = 105,
( f ) Ra = 106.
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Figure 6. Temperature time series in (a) vertical, (b) radial and (c) circumferential directions, as illustrated in
figure 1(b) for Ra = 1.0 × 106.

and thermal plume more completely. Especially, in the circumferential direction, θ refers
to the non-dimensional angle of the circle from 0 to 360◦. For better understanding, we
trim and stretch the circle into a straight line and depict the temperature profiles along it.
In different directions, the variation of complex flow structures with increasing Rayleigh
number can be distinguished clearly.

When Ra = 1.0 × 106, the flow is in a steady state. In the vertical direction in
figure 6(a), the temperature declines with increasing height. The heat is transferred from
the heated surface into the surrounding fluid by convection and conduction. In figure 6(b),
the temperature decreases from the centre to the edge of the surface in the radial direction
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Figure 7. The x–z plane temperature contour plot for Ra = 1.1 × 106 at equilibrium state for one period at
(a) t + 5.3, (b) t + 5.7, (c) t + 6.4, (d) t + 7.3. The x–y plane temperature contour plot at height 0.01D for
Ra = 1.1 × 106 at equilibrium state for one period at (e) t + 5.3, ( f ) t + 5.7, (g) t + 6.4, (h) t + 7.3.

because the horizontal flow in the thermal boundary layer is heated continuously by the
surface. However, the temperature is uniform in the circumferential direction in figure 6(c),
because the flow is axisymmetric. Additionally, the temperatures remain constant with
time as the flow is in the steady state.

3.1.2. Hopf bifurcation: periodic puffing flow
With further increasing Ra, a Hopf bifurcation occurs, triggering the buoyant flows to
transit from steady to periodic state. The flow structures characterized by temperature
contours of a complete cycle in x–y and x–z planes at different times are shown in figure 7,
from which the evolution of the thermal boundary layer and plume can be readily observed.
As Ra increases, the radial flow in the thermal boundary layer driven by the baroclinic
effect speeds up and the fluid carried away by the rising plume is less than the fluid
accumulated due to the radial flow, which leads to the formation of a convective roll. The
convective roll sheds from the thermal boundary layer, and it is entrained by the rising
plume. After the departure of the convective roll, the flow from the edge of the plate fills
in so that the process repeats over time, resulting in a periodic flow that is called the
‘puffing’ state, as illustrated in List (1982).

As shown in figure 7(a), the flow structure in the puffing state is an axisymmetric plume.
A puffing forms in the thermal boundary layer on the outer side of the thermal plume in
the x–z plane, which is produced by the strong buoyant flows from the edge of the heated
circular surface in figure 7(b). The puffing is finally convected to the rising plume, as
shown in figure 7(c). In fact, the puffing evolves into a convective roll in the thermal
boundary layer around the thermal plume, as shown in figure 7(e). As the puffing moves
towards the thermal plume, the convective roll also shrinks in the x–y plane, as depicted in
figures 7(e,f ). According to the temperature contour plot in the x–z plane, the puffing forms
periodically on the edge of the thermal boundary layer, which can be illustrated from the
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Figure 8. Temperature time series in (a) vertical, (b) radial and (c) circumferential directions, as illustrated in
figure 1(b) for Ra = 1.1 × 106. (d) Two-dimensional Fourier transform of the radial temperature in (b) for Ra =
1.1 × 106 with the peak ( f , k, P) = (0.415, 800.781, 0.118), where f and k are frequency and wavenumber
respectively, and P is the power spectral density.

multiple convective rolls in the x–y plane. The temperature contour and iso-surface can be
seen in supplementary movies 1 and 2, available at https://doi.org/10.1017/jfm.2024.453.

As shown in figure 8(a), the time series of temperature profile becomes periodic for
Ra = 1.1 × 106 in the vertical direction. The magnitude of the temperature fluctuates
and peaks when the puffings merge into the plume and drops when the plume rises up.
Periodic stripes appear with time in figure 8(b), implying that the flow is in a periodic state.
According to the radial temperature profile, the stripes (puffings) appear simultaneously
on both sides of the radial line. In the circumferential direction, the temperature is constant
on the circle in the same time, proving that it is also a symmetric state.

Additionally, the two-dimensional Fourier transform (2-DFT) is used to study both
temporal and spatial development of the flows. While the temperature profiles in the
radial direction can generally describe the buoyant flows, the 2-DFT is applied on the
temperature profiles in the radial direction to obtain both frequency and wavenumber at
different Rayleigh numbers. The 2-DFT is performed on a long time period to ensure the
accuracy of the results.

Figure 8(d) plots the 2-DFT results for Ra = 1.1 × 106. The power spectral density is
defined as

P = | fft(w)|2/(N · fs), (3.1)

where fft(w) is to perform Fourier transform to vertical velocity, N is the length
of data and fs is the sampling frequency. It is clear that one distinct peak appears,
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Figure 9. The x–y plane temperature contour plot at height 0.01D for Ra = 2.0 × 106 at equilibrium state for
one period at (a) t + 4.6, (b) t + 5.2, (c) t + 5.8, (d) t + 6.4. The temperature iso-surface for T = 0.1 and
Ra = 2.0 × 106 at equilibrium state for one period at (e) t + 4.6, ( f ) t + 5.2, (g) t + 5.8, (h) t + 6.4. The arrow
denotes that the flow rotates in anti-clockwise direction.

indicating its fundamental frequency (non-dimensionalized by (κ Ra1/2)/D2) ff = 0.415,
and wavenumber k = 800.781. It is clear that the solution loses its stability and bifurcates
into a periodic solution by means of Hopf bifurcation.

3.1.3. Symmetry-breaking bifurcation: periodic rotating flow
In this study, when Ra increases to 1.9 × 106, the periodic puffing state becomes unstable
and a different periodic solution presented as a rotating state is observed. As shown in
figure 9, the plume begins to rotate in anticlockwise order, as a consequence of which the
flow becomes asymmetric. In this rotating state, the puffings do not appear simultaneously
in the thermal boundary layer as they do in the puffing state. Instead, they appear on one
side and rotate around the z-axis. The plume in the centre has quite a large heat flux going
upwards at this Ra, which entrains the puffings around it. That is, the asymmetry of the
puffings leads to this type of the rotating plume. The temperature contour and isosurface
can be seen in supplementary movies 3 and 4.

Clearly, when an equilibrium state undergoes a symmetry-breaking bifurcation, new
fluid flow states appear with less symmetry and more sophisticated dynamics. According
to the study of Crawford & Knobloch (1991), if a system remains unchanged under
arbitrary rotation around the central axis and with reflections over any vertical plane
through the central axis, the symmetry group of solutions to the governing equations
under such boundary conditions is termed the group O(2). Breaking O(2) symmetry can
lead to either standing or rotating waves when the bifurcating eigenvalue is complex.
Furthermore, because of the reflection symmetry, the rotating state can be in the clockwise
or anticlockwise direction; both solutions bifurcate simultaneously, one of which can
be observed, dependent on initial conditions. Most rotating flows are generated through
symmetry breaking, as also observed in the stratified fluid in a closed cavity (Murphy &
Lopez 1984; Navarro & Herrero 2011).
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Figure 10. Velocity in the circumferential direction for different Rayleigh numbers.

The circumferential velocity can be used to distinguish the rotating flows. When the
circumferential velocity at one point inside the plume but away from the vertical axis
is zero, the flow has no velocity in circumferential direction and thus moves directly
upwards without rotation. When the plume begins to rotate in a specific direction, the
circumferential velocity will be non-zero. In figure 10, the circumferential velocity is
near zero when Ra is smaller than 1.7 × 106, but increases slightly at Ra = 1.8 × 106,
suggesting that the solution tends to become unstable and potentially approaches the
critical value. After the circumferential velocity suddenly rises to 0.018 at Ra = 1.9 × 106,
the flow becomes asymmetric and this symmetry-breaking process is responsible for
the propagation of rotation. It is worth noting that there is a large variance of the
circumferential velocity between Ra = 1.8 × 106 and 1.9 × 106. Accordingly, it may be
expected that the bifurcation to the rotating state occurs at Ra = 1.9 × 106. It is clear that
the circumferential velocity decreases again but will not be zero, as shown in figure 10,
because the flapping flows in § 3.1.4 still have circumferential velocity, which is not as
strong as that of the rotating flows.

As shown in figure 11(a), the temperature decreases sharply in the vertical axial
direction and the puffing stripes can be hardly distinguished. That is mainly because in
the rotating state, the plume rotates around the centre, rather than stationarily appearing
at the centre location. As a result, the temperature gradient is quite large in the centre.
Given the temperature profile in the other two directions, the puffings appear alternately
on different sides of the radial line, which means that the flow is no longer symmetric, as
shown in figure 11(b). Further, as depicted in figure 11(c), the temperature at the end of
this period is the same as that at the beginning of the next period, which suggests that the
plume rotates around the circle. Figure 11(d) shows the 2-DFT results for Ra = 2.0 × 106.
Clearly, the flow in the rotating state is still periodic with discernable harmonic modes.
The fundamental frequency of the rotating state ( ff = 0.452) is slightly larger than that of
the puffing state ( ff = 0.415), indicating that the fundamental frequency and wavenumber
increase with the Rayleigh number.

3.1.4. Reflection-symmetric state: periodic flapping flow
With increasing Ra, the periodic rotating state breaks but a periodic flapping state
with reflection symmetry occurs between Ra = 2.1 × 106 and Ra = 2.2 × 106. The flow
structure is also different from the structures presented in figure 7. Figures 12(a–h) show
that the puffings form alternately at the ‘two sides’ (outer region) of the plume in the
thermal boundary layer; that is, the convective roll is not symmetric, different from those
in the periodic puffing state in figure 7. The tilted puffings make the plume far away from
the z-axis at the centre, leading to a ‘flapping’ plume.
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Figure 11. Temperature time series in (a) vertical, (b) radial and (c) circumferential directions, as illustrated
in figure 1(b) for Ra = 2.0 × 106. (d) The 2-DFT of the radial temperature in (b) for Ra = 2.0 × 106 with the
peak ( f , k, P) = (0.452, 1113.28, 0.375), where f and k are frequency and wavenumber, respectively, and P is
the power spectral density.
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Figure 12. The x–z plane temperature contour plot for Ra = 2.5 × 106 at equilibrium state for one period at
(a) t + 3.8, (b) t + 4.4, (c) t + 5.0, (d) t + 5.6. The x–y plane temperature contour plot at height 0.01D for
Ra = 2.5 × 106 at equilibrium state for one period at (e) t + 3.8, ( f ) t + 4.4, (g) t + 5.0, (h) t + 5.6. The arrow
denotes that the flow flaps in this direction.

988 A38-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

45
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.453


Y. Jiang, Y. Zhao, J. Carmeliet, B. Nie and F. Xu

t0+60

t0+30t

t0
0 0.5

z
1.0

t0+60

t0+30

2000

1000

0 0.5 1.0

0.9
P

0.6

0.3

0

t0
–1 0

r

f

k

1

t0+60

t0+30

t0
0 0.5

θ
1.0

T0.05 0.25 0.45 0.65 0.85

(a) (b)

(d )

(c)

Figure 13. Temperature time series in (a) vertical, (b) radial and (c) circumferential directions, as illustrated
in figure 1(b) for Ra = 2.5 × 106. (d) The 2-DFT of the radial temperature in (b) for Ra = 2.5 × 106 with the
peak ( f , k, P) = (0.464, 1113.28, 0.889), where f and k are frequency and wavenumber, respectively, and P is
the power spectral density.

It is worth noting that in the flapping state, the reflection symmetry is still preserved,
while the rotational symmetry has been broken. The buoyant flows are symmetrical
with the vertical plane through the central axis, as illustrated by the dashed lines in
figures 12(e–h). That is, this kind of asymmetrical convective roll makes the plume flap in
a certain direction, as shown in the top view of the temperature contours in the x–y plane.
The temperature contour and iso-surface can be seen in supplementary movies 5 and 6.

Figure 13 plots temperature time series in vertical, radial and circumferential directions
for Ra = 2.5 × 106. The stripes can be distinguished clearly in the vertical direction, as
shown in figure 13(a). The temperature difference between different stripes is also larger
than that in the puffing state due to the flapping of the plume. When the plume sways to
the edge of the heated surface, the temperature at the centreline decreases significantly. In
the radial direction, the puffings appear alternately on different sides of the radial line, and
the plume in the centre sways to the left and right to interact and merge with the puffings
on different sides, which is referred to as a flapping state. In figure 13(c), the temperature
in the circumferential direction is not spatially homogeneous at the same time. The stripes
turn into a ‘wave’ shape, and the wave evolves with the change of time, suggesting that the
flow is periodic but asymmetric. Figure 13(d) shows that the fundamental frequency of the
flapping state is 0.464, which proves that the flapping flow is still under a periodic state.
The wavenumber of the flapping state is the same as that of the rotating state.
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Figure 14. Fundamental frequency for different Rayleigh numbers.

The fundamental frequency varies under different flow states, as shown in figure 14.
The fundamental frequency of the flapping state is similar to that of the rotating state but
larger than that of puffing state. The similar fundamental frequency of the rotating and
flapping states implies that the flapping and rotating flows have similar time-dependent
characteristics.

3.1.5. Period-doubling bifurcation
Figure 15 shows the temperature contours at Ra = 6.5 × 106. Clearly, the second roll
(CR2) interacts with the first roll (CR1) before the first one vanishes. That is, there are
two small periods in one complete cycle, which is the period-doubling bifurcation. The
flow remains a flapping state, but sways in a different direction compared to that in the
periodic state in e.g. figure 12. Note that the difference between the two swaying directions
is quite small and hard to distinguish in these figures. The swaying direction of the plume
depends on the initial conditions. Additionally, the flapping plume does not sway on the
whole heated plate as it does in the periodic flapping state, but sways in a small region, as
shown in figures 15(a–d). That is mainly because with the Rayleigh number increasing, the
characteristic length of the heated surface that we observed in the flow field also becomes
bigger. According to the definition of Ra, the characteristic length will have growth factor
of 1.38 with the increasing of Ra from 2.5 × 106 to 6.5 × 106, which means that the
flapping region will have reduction factor of 0.74. As a result, the flapping on the whole
heated plate shrinks into a small region. Additionally, two puffings form successively and
merge into one puffing near the centre, which is different from the periodic flapping state.
According to the temperature contours in figures 15(e–h), two convective rolls (CR1 and
CR2) exist simultaneously and are then entrained by the plume and flow upwards, which
may explain why the period doubles in this state.

Figure 16 shows temperature time series in vertical, radial and circumferential directions
for Ra = 6.5 × 106. As shown in figure 16(a), the period is apparently longer than that of
the periodic flow shown in figure 8(a). Two stripes appear in one period, which can be
described as a period-doubling state. A different type of flow structure appears in the
radial direction. First, a puffing appears at the edge of the heated surface and moves to
the plume. Before it arrives at the centre, another puffing also appears and moves just
like the previous one. Two puffings meet and merge into one puffing, moving towards
the plume and finally being entrained by the plume. As shown in figure 16(b), two stripes
meet in the process of flowing towards the centre, and become one stripe. The plume in the
centre sways to its left and right, which makes this state an asymmetric flow. This special
flow structure is the combination of the puffing and flapping states. In the circumferential
direction, the temperature profile is more like an axisymmetric puffing state, as shown
in figure 16(c). That is mainly because the circle chosen in the circumferential direction is
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Figure 15. The x–z plane temperature contour plot for Ra = 6.5 × 106 at equilibrium state for one period at
(a) t + 2.9, (b) t + 5.2, (c) t + 7.5, (d) t + 9.8. The x–y plane temperature contour plot at height of 0.01D
for Ra = 2.5 × 106 at equilibrium state for one period at (e) t + 2.9, ( f ) t + 5.2, (g) t + 7.5, (h) t + 9.8. The
convective rolls are pointed out in the plot as CR1 and CR2.

close to the edge of the heated horizontal surface, where the flow structure captured on this
circle is only the puffings flowing away from the centre. For the period-doubling flow in
figure 16(d), another peak at a frequency of ff /2 = 0.2075 can be found under a different
wavenumber due to interaction between waves (also see figure 16 and Drazin (2002) for
the period-doubling bifurcation).

Figure 17 shows the temperature contours at Ra = 3.0 × 107. The buoyant flows above
the surface at Ra = 3.0 × 107 become axisymmetric again; that is, the plume in the centre
no longer sways. With further increasing Rayleigh number to Ra = 3.0 × 107, the flow is
still in a period-doubling state. However, the flow structure differs from that at Ra = 6.5 ×
106. The puffings form simultaneously on the outer sides and then merge, before they are
convected upwards by the plume, as shown in figures 17(a–d). That is, the convective rolls
form at the edge of the heated surface and move inwards to the centre axis, which remains
symmetric, as shown in figures 17(e–h).

As shown in figure 18(a), the two stripes in the vertical direction at Ra = 3.0 × 107 are
clearer compared to those at Ra = 6.5 × 106, which means that the plume does not sway
away from the centre but always puffs in the centre. The two stripes are very similar in one
period. In the radial direction, the puffings also move the same as before (at Ra = 6.5 ×
106), but the central plume does not sway and the flow thus becomes axisymmetric again.
As shown in figures 16(b) and 18(b), the temperature profiles in the radial direction at Ra =
6.5 × 106 and Ra = 3.0 × 107 are zoomed in for a better comparison and to understand
what causes the change. Although one might reckon that the meeting point of two puffs at
Ra = 6.5 × 106 is the same as that in figure 18(b), the difference can be observed clearly in
the insets of figures 16(b) and 18(b). The meeting points on the two sides are not the same
in one period. This asymmetry of puffs finally affects the plume and makes the plume
sway in different directions. However, at Ra = 3.0 × 107, the meeting points are the same
on both sides, which means that there is no symmetry-breaking effect on the plume.
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Figure 16. Temperature time series in (a) vertical, (b) radial and (c) circumferential directions, as illustrated in
figure 1(b) for Ra = 6.5 × 106. The black circles in the inset show the meeting points of puffs. (d) The 2-DFT
of the radial temperature in (b) for Ra = 6.5 × 106 with the peak ( f , k, P) = (0.415, 839.8, 0.721), where f
and k are frequency and wavenumber, respectively, and P is the power spectral density.
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Figure 17. The x–z plane temperature contour plot for Ra = 3.0 × 107 at equilibrium state for one period at
(a) t + 3.0, (b) t + 5.4, (c) t + 7.8, (d) t + 10.2. The x–y plane temperature contour plot at height 0.01D for
Ra = 2.5 × 106 at equilibrium state for one period at (e) t + 3.0, ( f ) t + 5.4, (g) t + 7.8, (h) t + 10.2.
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Figure 18. Temperature time series in (a) vertical, (b) radial and (c) circumferential directions, as illustrated
in figure 1(b) for Ra = 3.0 × 107. The black circles in the inset show the meeting points of puffs.
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Figure 19. The x–z plane temperature contour plot for Ra = 5.02 × 107 at equilibrium state for one period at
(a) t + 2.0, (b) t + 3.5, (c) t + 5.0, (d) t + 7.5.

3.1.6. Transition to chaos
The buoyant flows above the horizontal surface become more complex and finally evolve
into a chaotic state. Figure 19 displays the temperature contours of the chaotic state at
Ra = 5.02 × 107 in the x–z plane. The plume in the centre is quite chaotic and presents
flow structures of various length scales. However, the puffings near the edge of the
plate still remain approximately ordered to some extent. According to Hattori et al.
(2013b), instability of the plume stem could be caused by Kelvin–Helmholtz instability.
The stability characteristics of the thermal boundary layer flow appear to be affected
by oscillations in the stem by a feedback mechanism. That is, the flow in the plume
stem becomes randomly oscillatory with feedback to the thermal boundary layer flow.
As a result, the flow in the thermal boundary layer is also chaotic with some periodic
characteristics at the critical value of the bifurcation to chaos.

According to the temperature profiles in figure 20(a), there is no distinct period of the
plume and the stripes become irregular. However, the puffings still appear regularly at the
edge of the heated surface in figure 20(b), which indicates that the flow has not entered
a fully developed chaotic state. It also indicates that chaotic bifurcations occur first in
the centre plume part and then in the boundary layer at the outer regions. As shown in
figure 20(c), the stripes appear as small waves in the circumferential direction, suggesting
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Figure 20. Temperature time series in (a) vertical, (b) radial and (c) circumferential directions as illustrated in
figure 1(b) for Ra = 5.02 × 107. (d) The 2-DFT of the radial temperature in (b) for Ra = 5.02 × 107, where f
and k are frequency and wavenumber, respectively, and P is power spectral density.

that the puffings at the edges still have small differences in the circumferential direction
and thus are not in a symmetric state. Additionally, the 2-DFT results of the chaotic flow in
figure 20(d) show that there is no distinct fundamental frequency with more flow structures
of different wavelengths.

3.1.7. The whole route to chaos
For better understanding of the route to a chaotic state, the trajectories from tf to tf +
30 with about 12 cycles in the u–w–T space are plotted in figure 21 for the typical flow
states at point P1 on the circular surface. The trajectory finally approaches a fixed point
at Ra = 1.0 × 106 at the steady state in figure 21(a), and a limit cycle at Ra = 1.1 × 106

at the periodic puffing state in figure 21(b). For periodic rotating and flapping states at
Ra = 2.0 × 106 and Ra = 2.5 × 106, the trajectory is also a limit circle, but to some extent
twisted compared with the puffing case (figures 21c,d). A T2 torus appears at Ra = 3.0 ×
107 in which the flow is in the period-doubling state in figure 21(e). Finally, the trajectory
becomes a complex attractor at Ra = 5.02 × 107 in which the flow is chaotic, as shown in
figure 21( f ).

To identify the chaotic state, the maximum Lyapunov exponent (λL) of the attractors in
figure 21 is calculated, defined as (Odavić, Mali & Tekić 2015)

λL = 1
tn − t0

n∑
i=1

ln
d(ti)

d(ti−1)
. (3.2)
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Figure 21. The attractors of x-velocity u, z-velocity w and temperature T at P1 at tf to tf + 30 for (a) Ra =
1.0 × 106, (b) Ra = 1.1 × 106, (c) Ra = 2.0 × 106, (d) Ra = 2.5 × 106, (e) Ra = 3.0 × 107, ( f ) Ra = 5.02 ×
107.

In this equation, d(t0) is the initial distance of two points selected in the orbit of the
attractors (also see figure 21). For the next time t1 = t0 + �t (e.g. �t = 100 time steps),
the two points arrive at new positions, and the distance between two points becomes d(t1).
Further, we can find new points with a distance d(t0), and then we may start the next
calculation and iterate several times (n > 50). As shown in figure 22, λL becomes larger
than zero for Ra ≥ 5.02 × 107, beyond which the flow enters the chaotic state (also see
Odavić et al. (2015), for chaos described by the maximum Lyapunov exponent).

For further understanding of the heat transfer of the transitional flow on the heated
circular surface, the Nusselt number on the horizontal surface is also calculated. As shown
in figure 23, the Nusselt number of unsteady flows calculated from the present numerical
results is consistent with experimental results from Kitamura & Kimura (2008). With Ra
increasing, Nu also increases with the scaling law of Nu ∼ Ra1/4, which means that the
heat transfer is enhanced with the increasing of Ra.
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Figure 22. The maximum Lyapunov exponent λL for different Rayleigh numbers.
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Figure 23. Nusselt number of unsteady flows from numerical results and experimental data from Kitamura &
Kimura (2008).

3.2. Various states subjected to perturbations
As we discussed above, the onset of the transition usually goes through a series of
bifurcations. Adding perturbations is one way to control different flow states and also
control chaos (Shinbrot et al. 1993; Markman & Bar-Eli 1994). To examine the stability
of the flow near the critical values and especially the stability of different flow states,
the effect of initial condition on the bifurcation of the transitional flow is tested. The
dependence of initial condition is also termed ‘hysteresis’ in the previous studies by e.g.
Ridouane & Campo (2006) and Ma, Sun & Yin (2006), in which different flow states and
critical values were obtained by increasing or decreasing Gr or Ra.

In this study, numerical tests about how initial condition affects the bifurcation are
performed, in which the solutions at critical values are obtained by using the results for
other Rayleigh numbers as initial condition. For example, the results at Ra = 1.1 × 106

(periodic puffing state) are used as initial condition for the simulation at Ra = 1.0 × 106

(steady state). As shown in table 3, in most cases, the change of initial condition does not
change the flow characteristics except for the rotating state. When the numerical results of
a periodic flapping state at Ra = 2.5 × 106 are used as initial condition for the simulation
of the periodic rotating flow at Ra = 2.0 × 106, the flow finally becomes flapping because
of the effect of initial condition (hysteresis effect). Further, when the numerical results of a
periodic rotating state at Ra = 2.0 × 106 are adopted as initial condition for the simulation
of the periodic puffing flow at Ra = 1.8 × 106, the flow will also become rotating. It is
clear that the rotating state is easily affected by initial condition; that is, the rotating flow
near the critical value has a distinct hysteresis effect (see Ma et al. (2006) for hysteresis
effect).
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Case no. Ra States with initial conditions States with initial conditions
using (2.11) using results at larger Rayleigh numbers (Ra)

1 1.0 × 106 Steady Steady (1.1 × 106)
2 1.5 × 106 Periodic puffing Periodic puffing (2.0 × 106)
3 1.8 × 106 Periodic puffing Periodic rotating (2.0 × 106)
4 2.0 × 106 Periodic rotating Periodic flapping (2.5 × 106)
5 2.5 × 106 Periodic flapping Periodic flapping (6.5 × 106)
6 6.4 × 106 Periodic flapping Periodic flapping (6.5 × 106)
7 5.0 × 107 Period-doubling Period-doubling (5.1 × 107)

Table 3. Tests of flow states using different initial conditions.

When the initial condition perturbation is added to the system at the beginning, it is
easy to be dissipated during the development of the transitional flows. To examine the
stability of the flows near critical values with persistent perturbations, a direct stability
analysis is performed. That is, random numerical perturbations in both time and space
are superimposed onto the boundary condition of the heated horizontal surface. The
amplitude of random perturbations is 5 % of the difference between the temperatures of the
surface and ambient fluid. Furthermore, the effect of the perturbation amplitude is tested
to guarantee that the response in the thermal boundary layer is in the linear regime (also
see Zhao, Lei & Patterson (2013), for details).

Numerical results show that when Ra = 0.9 × 106, the flow is steady both with and
without random perturbations. Random perturbations do not grow but decay when they
travel downstream.

As shown in figure 6, the flow is also steady for Ra = 1.0 × 106. Further, we introduce
random perturbations into the flow at Ra = 1.0 × 106. However, numerical results show
that the flow transits into a periodic state in which the bifurcation occurs at this Ra. That
is, the flow is steady without random perturbations but periodic with random perturbations
for which the decay of the periodic characteristics is compensated through the persistent
perturbations. This means that the flow is conditionally stable at Ra = 1.0 × 106.

Further, the puffing state is also tested through introducing random perturbations; that
is, the calculation similar to that for Ra = 1.0 × 106 is repeated for Ra = 1.5 × 106. The
numerical results demonstrate that the flow of the puffing state is stable.

Additionally, the flow of the rotating state at Ra = 2.0 × 106 is also examined. Figure 24
shows the numerical results with random perturbations. Clearly, after superimposing
random perturbations onto the heating boundary, the flow bifurcates from the rotating
state in figure 24(a) to the flapping state in figure 24(b). That is, introducing random
perturbations may alter the stability of the rotating state, advancing it to other states.
For the purpose of understanding the influence of the perturbation amplitude, a series of
random numerical perturbation tests are performed, with 1 %, 2 %, 3 %, 4 %, 5 % and 10 %
of temperature difference as the random perturbation amplitude. Numerical perturbation
tests show that when the perturbation amplitude is sufficiently large (>3 %), the rotating
state can be disturbed and it enters a flapping state in advance at the same Ra, implying
that the rotating state is conditionally stable, which is also dependent on initial condition
as described above.

With further increasing Ra to 6.4 × 106 near the critical value for the bifurcation from
the periodic flapping state to the period-doubling flapping state, random perturbations are
also introduced to the heating boundary in numerical simulation. Numerical results show
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Figure 24. The x–y plane temperature contour plot at height of 0.01D for Ra = 2.0 × 106 at equilibrium state
for (a) isothermal heating and (b) isothermal heating with superimposed perturbations.
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Figure 25. The transition route of the buoyant flow on a heated horizontal surface with the increasing of Ra,
in which the dashed line means the extension of the axis.

that the perturbed flow remains periodic rather than entering the period-doubling state.
This is probably because the break of symmetry occurs more easily in the spatial domain
but not in the temporal domain (e.g. from periodic to period-doubling).

In summary, perturbations may influence the stability of the flow on a heated horizontal
surface; that is, the flow could be conditionally stable with hysteresis effect near the
critical values. In the case for small Ra, the perturbations may increase the complexity
of the flow and lead the flow to bifurcate in advance to the next transition state. For
example, in the rotating state, the flow is conditionally stable. When random perturbations
of large amplitude are introduced, the rotating state transits to the flapping state. The
whole transition route of the flow on a heated horizontal surface with the increasing of
Ra with and without random perturbations is shown in figure 25. Without perturbations,
the flow goes through a series of bifurcations and has different flow structures, from steady
to periodic puffing, rotating, flapping, period-doubling and finally chaos. However, with
random perturbations, the flow may be affected by random perturbations and bifurcate into
the next transition state such as from steady to periodic puffing and from periodic puffing
to flapping without rotating state. It is worth noting that only perturbation tests of typical
states are performed because of computing time and cost.

4. Conclusions

The critical transition route of the buoyant flows on an isothermally heated horizontal
circular surface is investigated in this study using three-dimensional numerical
simulations. The range of Ra is covered from 101 to 6.0 × 107 for Pr = 7 (water). Apart
from the transition route, the stability of different states is studied using direct stability
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analysis, in which the influence of random perturbations on transition is examined using
numerical perturbation tests.

In the transition route of the buoyant flows, when Ra is less than 103, the flow is under
conduction dominance without presenting a distinct thermal boundary layer or starting
plume, exhibiting a heat dome structure. When Ra is larger, for instance in the range for
103 < Ra < 106, the convective effect becomes more distinct and gradually dominates
the flow, which results in the distinct rising plume while the flow is still steady and
axisymmetric.

A Hopf bifurcation occurs as Ra is in the range from 1.0 × 106 to 1.1 × 106, resulting in
a periodic puffing flow with puffings forming in the thermal boundary layer. The puffings
are then entrained by the plume and convected upwards eventually. As Ra increases further,
the flow enters a unique periodic rotating state, and the symmetry of the flow is lost
between Ra = 1.8 × 106 and Ra = 1.9 × 106. Next, the flow enters a periodic flapping
state, which is not axisymmetric but is symmetric about the vertical plane only for Ra
between 2.1 × 106 and 2.2 × 106. When Ra increases to 6.5 × 106, a period-doubling
bifurcation occurs and the period of the flow becomes twice as large as the period of the
preceding state. Finally, the flow evolves into the chaotic state when Ra is in the vicinity
of 5.02 × 107. This study is based on an isothermal heated boundary condition. However,
there are certainly a number of applications for which an isoflux heated plate is relevant.
According to Jiang, Nie & Xu (2019a) and Jiang et al. (2019b), the dynamics and heat
transfer of natural convection on isothermal and isoflux heated surfaces are quite different,
which can also lead to the difference in the transition route to chaos. The difference
between different boundary conditions can also be investigated in the future.

Direct stability analysis is also conducted to understand different states. Initial condition
perturbations and random numerical perturbations are superimposed on the system. We
find that for the regimes near critical values for Ra = 1.0 × 106 and Ra = 2.0 × 106,
the flow is conditionally stable and it bifurcates to the next state in advance due to
the perturbations. The direct stability analysis is focused on the temporal variation of
the transitional flows. However, the spatial development of the perturbations, i.e. from
upstream to downstream in different states, may be different (convective instability). The
spatial characteristics are also worth investigating in future work.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.453.
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