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Characterization of Low-pass Filters on
Local Fields of Positive Characteristic

Qaiser Jahan

Abstract. In this article, we give necessary and sufficient conditions on a function to be a low-pass
filter on a local field K of positive characteristic associated with the scaling function for multireso-
lution analysis of L2(K). We use probability and martingale methods to provide such a characteri-
zation.

1 Introduction

A function y € L?(R) is said to be a wavelet if its integer translations and dyadic
dilations {y; : j,k € Z} form an orthonormal basis for L*(R), where y; x(x) =
212y (2/x~k), j, k € Z. One way to construct a wavelet is through the multiresolution
analysis (MRA). An MRA is a sequence of closed subspaces {V; : j € Z} of L*(R),
satisfying the following conditions:

(@) Vjc Vjy for all jeZ;

(b) feVjifandonlyif f(2(-)) € Vi, forall jeZ;

(¢) Ujez Vjis dense in L*(R);

(d) Njez Vj = {0}

(e) there exists a function ¢ € Vj, called a scaling function , such that

{(p(- —k):keZ}
forms an orthonormal basis for V.

Using condition (e) of the MRA, we can write
1 1
(L1) -l =x) = arp(x+k),

where ay = 3 [z ¢(5x)9(x + k)dx.

Taking the Fourier transform of equation (1.1), we get 9(2£) = $(&)mo (&), where
mo(&) = Lyez axe'™, is a 27 periodic function in L?(T) called the low-pass filter
associated with the scaling function ¢.

A. Cohen [10] and W. Lawton [25] independently gave the necessary and sufficient
conditions for a trigonometric polynomial to be a low-pass filter of an MRA on L*(R).
Later, Herndndez and Weiss [19] gave a characterization of low-pass filters by using
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Cohen’s approach. They considered certain smooth classes of low-pass filters. Then
Papadakis, Siki¢, and Weiss [26] gave a complete characterization by assuming only
the Holder condition at the origin instead of smoothness condition. Furthermore, San
Antolin [28] generalized it to a general dilation matrix. The probabilistic approach of
this characterization was discussed by Dobri¢, Gundy, and Hitczenko [12].

In 2000, R. E Gundy [18] gave necessary and sufficient conditions for an arbitrary
periodic function to be a low-pass filter. His technique is also useful if we consider
that the translates of scaling function form a Riesz basis instead of an orthonormal
basis for V. E. Curry [11] extended this result for multivariable wavelets.

The characterization of wavelets and MRA wavelets on local fields of positive char-
acteristic has been discussed in [8]. We gave this characterization by using affine and
quasi-affine frames [6]. Characterization of scaling functions from which we can con-
struct wavelets on such a field has been provided in the article [4]. In this article, we
give the characterization of low-pass filter for local fields of positive characteristic.

A field K equipped with a topology is called a local field if both the additive and
multiplicative groups of K are locally compact abelian groups. The local fields are es-
sentially of two types (excluding the connected local fields R and C): zero characteris-
tic and positive characteristic. The local fields of characteristic zero include the p-adic
field Q,. Khrennikov, Shelkovich, and Skopina [21] constructed a number of scaling
functions generating an MRA of L*(Q, ). But later on in [2], Albeverio, Evdokimov,
and Skopina proved that all of these scaling functions lead to the same Haar MRA.
Some wavelet bases for L*(Q,) different from the Haar system were constructed in
[14] and [1]. These wavelet bases were obtained by relaxing the basis condition in the
definition of an MRA. Recently, Evdokimov and Skopina [13] proved that no orthog-
onal wavelet basis for L*(Q, ) exists that is not generated by Haar MRA.

Examples of local fields of positive characteristic are the Cantor dyadic group and
the Vilenkin p-groups. Even though the structures and metrics of local fields of zero
and positive characteristic are similar, their wavelet and MRA theory are quite dif-
ferent. Lang [22-24] constructed several examples of compactly supported wavelet
for the Cantor dyadic group. Farkov constructed many examples for Vilenkin groups
[15-17].

The concept of wavelets on local fields was developed by J. J. Benedetto and R. L.
Benedetto [9]. Jiang, Li, and Jin [20] gave the definition of an MRA for local fields K of
positive characteristic and have constructed the corresponding orthonormal wavelet.
The work of Shukla and Vyas [29] is preceded by [20]. We refer the reader to [3,5,7]
for some other aspect of wavelet theory on such a field.

The algebraic structure of a local field K of positive characteristic is similar to that
of the real number field and the translation set {u(k) : k € Ny} of K is a countable
discrete subgroup of K (see Proposition 2.5). This is analogous to the fact that the
translation set Z of R is a countable discrete subgroup of R. But, unlike the real line,
it is not true in general that u(k) + u(l) = u(k + 1) for nonnegative integers k and I
(see Section 2 for details). This problem does not show up in the Euclidean case. We
have to deal with issues related to this problem separately.

The article is organized as follows. Section 2 contains a brief introduction to local
fields and Fourier analysis on such a field. In Section 3, we give some definitions and
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state the main theorem of this article, which gives necessary and sufficient conditions
for a function to be a low-pass filter on local fields of positive characteristic. In the last
section, we continue the proof of our main result by using probability and martingale
methods.

2 Preliminaries on Local Fields

Let K be a field and a topological space. Then K is called a locally compact field or a
local field if both K* and K* are locally compact abelian groups, where K* and K*
denote the additive and multiplicative groups of K, respectively.

If K is any field and is endowed with the discrete topology, then K is a local field.
Further, if K is connected, then K is either R or C. If K is not connected, then it is
totally disconnected. So by a local field, we mean a field K that is locally compact,
non-discrete, and totally disconnected.

We use the notation of the book by Taibleson [30]. Proofs of all the results stated
in this section can be found in [27,30].

Let K be a local field. Since K" is a locally compact abelian group, we choose a
Haar measure dx for K*. If « # 0,a € K, then d(ax) is also a Haar measure. Let
d(ax) = |a|dx. We call || the absolute value or valuation of a. We also let |0 = 0.

The map x — |x| has the following properties:

(a) |x| = 0ifand only if x = 0;

(b) |xy| = |x||y| forall x, y € K;

(€) |x + y| < max{|x|,|y|} forall x, y € K.

Property (c) is called the ultrametric inequality. It follows that

Jxc+ y| = max{|xl, [y[} if |x] # [y].

The set © = {x € K : |x| < 1} is called the ring of integers in K. It is the unique
maximal compact subring of K. Define P = {x € K : |x| < 1}. The set P is called the
prime ideal in K. The prime ideal in K is the unique maximal ideal in ®. It is principal
and prime.

Since K is totally disconnected, the set of values |x| as x varies over K is a discrete
set of the form {s* : k € Z} U {0} for some s > 0. Hence, there is an element of P} of
maximal absolute value. Let p be a fixed element of maximum absolute value in .
Such an element is called a prime element of K. Note that P = (p) = pD, as an ideal
in®.

It can be proved that ® is compact and open. Hence, 8 is compact and open.
Therefore, the residue space © /P is isomorphic to a finite field GF(q), where g = p°
for some prime p and ¢ € N. For a proof of this fact we refer the reader to [30].

For a measurable subset E of K, let |[E| = [} yg(x)dx, where yg is the characteristic
function of E and dx is the Haar measure of K normalized so that |D| = 1. Then it is
easy to see that [B] = ¢ and |p| = 7" (see [30]). It follows that if x # 0 and x € K,
then |x| = g* for some k € Z.

Let D* =D NP = {x € K : |x| = 1}. D* is the group of units in K*. If x # 0, we
can write x = p*x’, with x” € ©*.
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Recall that O/ = GF(q). Let U ={a;:i=0,1,...,9 — 1} be any fixed full set of
coset representatives of 3 in D. Let P* = p*D = {x € K : |x| < g7}, k € Z. These
are called fractional ideals. Each ¥ is compact and open and is a subgroup of K*
(see [27]).

If K is a local field, then there is a nontrivial, unitary, continuous character y on
K™. It can be proved that K* is self dual (see [30]).

Let y be a fixed character on K* that is trivial on © but nontrivial on ~". We can
find such a character by starting with any nontrivial character and rescaling. We will
define such a character for a local field of positive characteristic. For y € K, we define

xy(x) = x(yx), x e K.

Definition 2.1 1If f € L'(K), then the Fourier transform of f is the function f
defined by

F& = [ £ ax.

Note that

7@ = [ 1@y dx= [ fa)x(-&x) dx.

Similar to the standard Fourier analysis on the real line, one can prove the following
results.
(a) The map f — fis a bounded linear transformation of L'(K) into L*°(K), and

Pl <1

(b) If f € L'(K), then f is uniformly continuous.
() If f € L'(K) n L*(K), then | f]l2 = [ f12.

To define the Fourier transform of function in L?(K), we introduce the functions
. For k € Z, let @ be the characteristic function of ¥

Definition 2.2 For f € L*(K), let f; = f®_; and
F(&) = Jim fi(§) = lim | f(x)xe(x) dé,
k—o0 k—oo J|x|<gk
where the limit is taken in L?(K).
We have the following theorem (see [30, Theorem 2.3]).
Theorem 2.3  The Fourier transform is unitary on L*(K).

A set of the form h + ¥ will be called a sphere with centre h and radius g~*. It
follows from the ultrametric inequality that if S and T are two spheres in K, then either
S and T are disjoint or one sphere contains the other. Also, note that the characteristic
function of the sphere & + 3 is @ (- — h) and that @, (- — h) is constant on cosets
of k.

Let x, be any character on K*. Since D is a subgroup of K™, the restriction y,|o
is a character on ©. Also, as characters on D, y, = x, ifand only if u — v € ©. That is,
Yu=xvifu+D=v+Dand y, # v if (u+D)n(v+D) = ¢. Hence, if {u(n)}3>,
is a complete list of distinct coset representative of D in K*, then { y,(n) } 2o is a list
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of distinct characters on ®. It was proved in [30] that this list is complete. That is, we
have the following proposition.

Proposition 2.4  Let {u(n)}, be a complete list of (distinct) coset representatives of
D in K*. Then { Xu(n) } neo is @ complete list of (distinct) characters on D. Moreover, it
is a complete orthonormal system on ®.

Given such a list of characters { x,(n)} 29> We define the Fourier coefficients of
fel'(D)as

Flu(n) = [ £ umx)dx.

The series 3,2 f(u(1)) Xu(n)(x) is called the Fourier series of f. From the stan-
dard L*-theory for compact abelian groups, we conclude that the Fourier series of f
converges to f in L*(®D) and Parseval’s identity holds:

S G = 3| il

Also, if f € L'(D) and f(u(n)) = 0 forall n = 0,1,2,..., then f = 0 almost every-
where.

These results hold irrespective of the ordering of the characters. We now pro-
ceed to impose a natural order on the sequence {u(n)};>,. Note that I = D/P
is isomorphic to the finite field GF(q) and GF(q) is a c-dimensional vector space
over the field GF(p). We choose a set {1 = €g,€1,€2,...,€6.1} € D such that
span{ej}j;(l) ~ GF(q). Let Ny = Nu {0}. For n € Ny such that 0 < n < g, we

have
n :a0+a1p+--~+ac,1pc_1, O<ar<p, k=0,1,...,c—-1
Define
(2.1 u(n) = (ap+ae +--- + a671€C71)p—1.
Note that {u(n) : n=0,1,...,g -1} is a complete set of coset representatives of D in

BL. Now, for 1 > 0, write

n=byo+biq+brg*+--+bq’, 0<br<qg, k=0,12,...,5,
and define
(2.2) u(n) = u(by) +u(b)p™ +---+u(by)p~.

This defines u(n) for all n € Ny. In general, it is not true that u(m + n) = u(m) +
u(n), but it follows that

u(rg +s) =u(r)p* +u(s) ifr>0,k>0 and 0<s<qr.
In the following proposition we list some properties of {u(n)} that will be used

later. For a proof, we refer the reader to [4].

Proposition 2.5 For n € Ny, let u(n) be defined as in (2.1) and (2.2). Then
(i) u(n)=0ifandonlyifn =0.Ifk > 1, then|u(n)| = q* ifand only ifg*~' < n < ¢;
Gi) {u(k):keNod = {u(k):keNo);
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(iii) fora fixed | € Ny, we have {u(l) + u(k) : k e No} = {u(k) : ke Ny }.

For brevity, we will write y, = y, () for n € No. Asmentioned before, {xn:neNg}
is a complete set of characters on ©.

Let K be alocal field of characteristic p > 0 and let €g, €3, . . . , 6.1 be as above. We
define a character y on K as follows (see [3]):

s exp(2mi/p), p=0andj=1,
x(eup J):{l p !4_ J .
, p=1...,c—lorj#1

Note that y is trivial on ® but nontrivial on P~

In order to be able to define the concepts of multiresolution analysis and wavelet on
local fields, we need analogous notions of translation and dilation. Since Ujez p iD=
K, we can regard p~! as the dilation (note that [p~*| = g), and since {u(n) : n € Ny}
is a complete list of distinct coset representatives of © in K, the set {u(n) : n € No}
can be treated as the translation set. Note that it follows from Proposition 2.5 that the
translation set form a subgroup of K™.

A function f on K will be called integral-periodic if

f(x+u(k)) = f(x) forall k € Ny.

3 Low-pass Filters

Similar to R", wavelets can be constructed from a multiresolution analysis. We define
an MRA on local fields as follows (see [20]).

Definition 3.1 Let K be alocal field of characteristic p > 0, let p be a prime element
of K,and let u(n) € K for n € Ny be as defined above. An MRA of L?(K) is a sequence
{V;: j € Z} of closed subspaces of L*(K) satisfying the following properties:

(i) Vjc Vi foralljeZ;

(ii) Ujez Vj is dense in L*(K);

(iii) Njez V= {0};

(iv) feVjifandonlyif f(p~") € Vj, forall jeZ;

(v) thereis a function ¢ € Vj, called the scaling function, such that

{(p(~ —u(k)):keNO}

forms an orthonormal basis for V.

Let ¢ be a scaling function for an MRA {V; : j € Z} of L*(K). For f € L*(K), we
define fj x(x) = g f(p7Ix - u(k)), jeZ, k e Ny.
Since ¢ € Vy c Vi, and {¢y & : k € Ny} is an orthonormal basis in V;, we have

(3.1) o(x) = > higo(p™'x - u(k)),

keNy

where hy = (@, 1) and {hy : k € Ng} € £*(Ny). Taking Fourier transforms, we get
(3.2) P& =a" 3 hox(p)F(pE) = m(pEP(p),

keNy
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where m(&) = g7V% ¥, M xx (£) is an integral-periodic function, called the low-
pass filter associated with the scaling function ¢.
We have the following relation for such a low-pass filter m (see [4]):
q-1
> [m(&+pu(l))* =1almost every £ € K.
1=0

We define two operators A and B on L™ (D) and L' n L= (K), respectively, by

Af - qz m(p(- + u())PS (- +u(D))),
Bf = Im(p ) F(p-).

Since m is a low-pass filter corresponding to the scaling function ¢, then by (3.2)

[p(&)|? is a fixed point of the operator B. For a scaling function ¢, let us denote
Se (&) = Len, [P(E+ u(k))|>. We have

(3.3)
SO = [P+ ut)[ = ¥ 5 [5(E+ ult+qi)|

keNy 1=0 keNy

5 S (e u() +p ()
1=0 keNy

:lq;—kzN:|a(ps+pu<z>+u(k>)|2|m(pe+pu<z>+u<k>)|2

:qz_:|m(pf+pu(l))|zsq,(p(f+u(l))) (since m is integral-periodic)
1=0

= AS,(¢).
Therefore, S, (£) is a fixed point of the operator A.

Definition 3.2 Letg € L'nL*°(K). A function f is almost everywhere g-continuous
at the origin if

i S
% (TP

exists and is constant almost everywhere. This limit is denoted by i ;((00))|2'

Definition 3.3 Do (@) is the space of functions h(¢) satisfying
(i) both k(&) and h7'(£) belong to L (D).

(i) k(&) is almost everywhere @-continuous at the origin and h(0)

GoE ~ -

Note that if ¢(x) is a scaling function then S, () is almost everywhere g-con-
tinuous at the origin. In fact, S;(§) € Do (9). Using this weak form of continu-
ity, Gundy [18] has given a characterization of low-pass filter for dyadic dilations.
E. Curry [11] has generalized this characterization for the multivariable case.
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Definition 3.4 We call a function ¢ a pre-scaling function associated with an MRA
{V;:jeZ} of L*(K) if its translates {¢(- — u(k)) : k € No} form a Riesz basis for
Vo.

Let H be a closed subspace of L*(K). A system { f : k € Ng} of functions in L*(K)
is said to be a Riesz basis of H if for any f € H, there exists a sequence {ay : k € Ny} €
€%(Ny) such that f = ¥y, ax f with convergence in L*(K) and

2
(3.4) G Y lal<| Y afi], <C 3 lal,

keNy keNy 2 keNg
where the constants C; and C, are independent of f.

Remark 3.5 (i) Note that if we take C; = C, = 1, then the Riesz basis is an
orthonormal basis for H.

(ii) A function ¢ € L?(K) that satisfies the refinement equation (3.1) for some
scalars {hy } ke, but need not satisfy the Riesz basis property (3.4) is called a refine-
ment function. So, every pre-scaling function is a refinement function.

In [4], we proved that if the discrete translates of a scaling function form a Riesz
basis of the core subspace V; of L?(K), then there exists another function ¢; such that
{¢1(- —u(k)) : k € Ny} forms an orthonormal basis of Vj.

We have the following lemma for integral-periodic unimodular functions on K.
This lemma will be helpful for proving our main result.

Lemma 3.6  Let y be an integral-periodic unimodular function on K. That is,

(D) p(&) = u(&+u(k)) almost everywhere for every k € Ny, and
(i) |p(&)| =1almost everywhere on K.

Then there is a unimodular function t on K such that
(3.5) u(&) =t(pOt(E) ae.onk.

Proof LetQ; = {x € K : x| = ¢/}. Observe that K \ {0} = U;ezQ;. Let t be any
measurable unimodular function defined on Qg. For example, we can take #(§) =1
forall £ € Q.

Consider £ € Qy; then |pé| = g7!|¢| = 1. This implies p& € Qo. Hence, t(p&) is well
defined for € € Q,. Define

(3.6) t(&) = t(pE)u(pd).

We now proceed inductively. Suppose that t is defined for Q;, Qz, . .., Q,_; so that
equation (3.5) satisfies for U]'-‘;O1 Qj. Define t by (3.6) if £ € Q,,. Hence, the induction
is complete.

Similarly, if & € Q_;, then p™'& € Qp. Hence, t(p~'&) is defined. Using (3.6), we
define

3.7) t(E) = t(p ' E)u(¥).

Again using induction we can define ¢ by equation (3.7) for Q;, j < -1.
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Therefore, we define ¢(&) for £ € Qj, j # 0, by

t(pdu(pf), forfeQ; j>1,
3.8 -
e 1 {t(plf)u(f), for ¢ Q< 1.
Thus, (3.5) follows from (3.8) if we set £(0) = L. [ |

We are now ready to present our main theorem, which gives necessary and suf-
ficient conditions of a function to be a low-pass filter for a local field K of positive
characteristic.

Theorem 3.7  Let m be a low-pass filter associated with a pre-scaling function ¢. Then

the following hold.

()  m is integral-periodic, m € L*(D), and |m(&)|? is almost everywhere @-contin-
uous at the origin with

lim [m(p’&)| =1 ae.
j—ooo

(ii) The operators A and B have nontrivial fixed points, Sy (&) € L™ (D) and |g]* €
L' n L>(K), respectively.
(iii) The fixed point S, of operator A is the unique function in the class Doo (9).
Conversely, if a function m satisfies (i), (ii), and (iii), then m is a low-pass filter
associated with a pre-scaling function ¢ for an MRA {V; : j € Z} of L*(K).

Proof First we prove the converse part.

Suppose that the operator B has a fixed point [¢(£)|*. The fixed point S, (£) of the
operator A is the unique function in Do, (9). Then by [4, Proposition 3.5], the ratio
|§5|/S}P/2 is a scaling function for an MRA {V; : j € Z} of L*(K). The low-pass filter
corresponding to this scaling function is

mo(e)=|m(s>|(sfag(?€))”z.
This leads us to define

_ Sp(&) \1/2

(&) =m@)(55g)

Note that #19(&) = sgnm(&)mo (&) L
By Lemma 3.6, we can write sgnm(&) = t(p~1&)t(&), where ¢ is a unimodular
function on K. Define

P(E) = t(E)P(E)] = t(E)t(pE)t(PE)|m(pE)P(pE)|
=sgnm(p&)|[m(p&)|9(pé) = m(p)p(pé).

Since t(&) is a unimodular function, all the conditions of [4, Theorem 5.1] are satisfied,
and hence, ¢(¢) is a required pre-scaling function for an MRA.

Now let m(&) be a low-pass filter associated with a pre-scaling function ¢ for an
MRA {V;: j € Z} of L*(K). By definition, the operator B has a fixed point [¢]*. And

https://doi.org/10.4153/CMB-2016-027-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2016-027-9

Characterization of Low-pass Filters 537

also from (3.3), S,, is a fixed point of the operator A. Furthermore, S;l e L*(D) (see
[4, Lemma 3.4]). This implies that the function y(x), defined by

ey PO
|)}(£)| - S(p(f)’

is a scaling function for the same MRA (see [4, Proposition 3.5]) and that

S P(E+u()|” =1

keNy
By the characterization of scaling function, we have
e IS
1= lim [p(p/&)[* = lim 22— a
Jim [y7S)" = lim S,(pié)

This shows that S, (&) is almost everywhere @-continuous at zero. It only remains to
prove that S, is the unique function in the class Do (9).

4 Proof of the Uniqueness

In this section, we want to prove that S, () is a unique function in D (9). Sup-

pose h(&) is another such function. We claim that S, (§) = h(&) for almost every

& Since p(&) is a scaling function of an MRA, it is obvious that the Fourier trans-

form of y at £ = 0 is 1. Also, we have ¥y, [P(& + u(k))|* = 1 for almost every

£ €D andlimj_e [y(p’€)|* = 1 for almost every & on K. Therefore, we can interpret

[P(&+u(k))|?, k € Ny, as a probability distribution on Ny for almost every £ € D.
Let u be the low-pass filter associated with the scaling function y. Then

D S S,
MO56m0 50 "Vs,ee
Let M(&) = |u(&)|*. Notice that M (&) is an integral-periodic function and satisfies
M(0) =1and
(4.1 qz_:M(§+pu(l)) =1, ae (€D.
1=0

Every non-negative integer k € Ny can be expressed uniquely as
kzzwj(k)qj_l, OSw](k)Sq—l
j=1

We identify k with the sequence (0, w;(k), wz(k),...) and define wo(k) = 0. The
integer zero is identified with the sequence zero. Note that each such sequence has
finitely many non zero terms.

Let D = {1,2,...,q—1} and Dy = D u {0}. Let Q = D} be the set of sequences.
We identify N with the subset of Q consisting of finite sequences. Fix k € Ny. For
N>1letky = {w: w; = w;(k),0 < i< N} bea finite cylinder in Q.
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For each & € D, we define probability Q?’ on the set of all such cylinders as follows.
For 0 < k < g~ - 1, we set

N .
(4.2) QY (k) = TTM(p/ (&+u(k))).
j=1
Lemma 4.1
(4.3) > QF(k) =1
0<k<qN-1

Proof We will prove this lemma by using induction on N. Define conditional prob-
ability by

M(pj(f+ u(k))) = Qg(wj(k)ij_l,...,wl).

Equation (4.3) can also be written as Qg (ky) =1
For N =1,

Q¢(k) = M(p(§ +u(k))) = Qe(wi(k)).
Using equation (4.1), we can easily see that the result is true for N = 1.

Qi) = Y Qelwr(k) = 3 M(p(E+u(k) =1 ae. &

w1€Dy k=0

Assume that it is true for N — 1, i.e., Q?_l(kN_l) = 1. Now we want to prove it is
true for N. We write

Q¥ () = ( TT M(P(E+ u(k))) ) x M(p¥(E + u()))
j=1

= Q7' (k) x Qe on (k)| wn-ts- . @1),
Q¥ (k) = QF " (k1) x Qe @ (kn) |n-ts - 1)

where,

Qe( @ (ky)|@n-r- -, 1)

= qZ_: M( PN(5+ u(w) +pu(wy) + ~--+p_N+1u(wN)))

wN:O

= ‘ZZ‘: M(PNf+pNu(wl)+pN_1u(w2)+"'+p“(wN))-

wN=0

Note that the summation is only on wy as wy, ..., wy-; are given. Again using (4.1),
we get

Qe( wn(ky)|wn-1s...,w1) =1

Hence, the induction is complete. ]
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Therefore, Q?’ , N > 1, specifies a probability. By the basic Kolmogorov theorem,

the family Q?’ extends to a probability say P; on the Borel sets of (2. If we assume that
infinite product of (4.2) exists, then we have

1= 3 PE+u(k)l? = 3 lim TTM(p/(§+u(k)))
j=1

keN, keN, N7 =
= > lim Q?(k) forae. &.
N—oco
keNy

Hence, QIEV is tight in the Prokorov sense on the set of finite sequence. Therefore,
Py is concentrated on finite sequences. We say P¢(N) = 1 for almost every &.

Consider Xj(w(k)) = w;j(k), where w;(k) € Dy. Define & (k) := £and &, (k) :=
p(§j+u(w;(k))).

For 0 < k < g~ — 1, we write k = Z?Ll wi(k)g",0< w;(k) <q-1 And

_N+1Ll(

u(k) = u(wr) +pu(wy) +---+p wy), using equation (2.2).

Also, we can write
pN(E+ u(k)) = pN(E+ u(wy) + pu(w,) +~~+p*N+1u(wN))
=p(p" T+ pN u(w) + pV P u(wz) +o- 4 pu(wnr) + u(wy))
= p( Env + u(wN)).

Now we can define the conditional probability of X; given X;_y,..., X) is

M(p(& +u(e;(K))))
for each j > 1. Since P is concentrated on finite sequences for almost every &, hence,

the sequence { X} j>; converges to zero relative to P;.
Now

PE(E]‘FIH fj, ey El) = M(p( gj + u(w](k))) ) .
By construction, Pz (&1 €), ..., &) = Pe(&j41]/€;). Thus, {&;} ;51 is a Markov pro-
cess.
Since P; is concentrated on a finite sequence, hence, sequence {&;} ;>; converges
to zero.
Now we will come back to uniqueness question. Consider r(&) = Sh(—(?) We want
¢

to show that (&) = 1 for almost every {. We know that h(&) and S, (¢) are fixed
points of the operator A and S, () = 1almost everywhere , hence, r(&) satisfies

q-1
r(§) = ZZ m(p(&+u(D))Pr(p(€+u(l))).
=0
Therefore, the composition r(&;) is a martingale, i.e.,

E(r(&p)lr(&),. ... r(&)) = E(r(p(& +u(w)))) Ir(&), ..., r(&))
=E(r(p(&+u(w))))[r(&))
= Y M(p(&+u(w))))r(p(&+u(w)))) =r(&).

w;€Do
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The martingale r(&;) is strictly positive, bounded, and converges P-almost surely
to r(0) = 1 for almost every &, since £; - 0. By Lebesgue dominated converges
theorem and for all j > 1, we get

r(0) = E(r(0)[(&;)) = E( lim r(&,)[r(¢;)) = lim E(r(&n)[r(&))) =r(&))-

Thus,

(0)=r(6) = <)
14

for almost every &. This gives h(&) = S, (&) for almost every &, which proves the
uniqueness assertion of the theorem. ]
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