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POINCARÉ–WEYL’S PREDICATIVITY: GOING BEYOND Γ0

ARNON AVRON

Abstract. On the basis of Poincaré and Weyl’s view of predicativity as invariance, we
develop an extensive framework for predicative, type-free first-order set theory in which Γ0
and much bigger ordinals can be defined as von Neumann ordinals. This refutes the accepted
view of Γ0 as the “limit of predicativity”.

§1. Introduction.

1.1. What predicativism, and why? In [44] the basic historic problem of
the research in foundations of mathematics (FOM) is formulated as follows:

How to reconstruct mathematics on a secure basis, one maximally
immune to rational doubts.

The predicativist program [11, 12, 24, 49, 51] has been one of the attempts
to solve this basic problem of FOM. It seeks to establish certainty in
mathematics without revolutionizing it or changing its underlying classical
logic (as the intuitionistic program does). The program was initiated by
Poincaré [36–39]. Its viability was demonstrated by Weyl, who seriously
developed it for the first time in his famous small book “Das Kontinuum”
[52, 54]. Weyl, and then Feferman [22, 25], have shown that a very large
part of classical analysis can be developed within their predicative systems.
Feferman further argued that predicative mathematics in fact suffices for
developing all the mathematics that is actually indispensable to present-day
natural sciences. Hence the predicativist program has been successful in
solving the basic problem of FOM. (In my opinion it is the only one about
which this can truly be said.)

Poincaré’s predicativism started as a reaction to the set-theoretical
paradoxes. However, in the writings of both Poincaré and Weyl, predicativity
derives not so much from the need to avoid paradoxes, but from their
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42 ARNON AVRON

definitionist view that infinite objects, such as sets or functions, exist only in
so far as they are introduced through legitimate definitions:

“No one can describe an infinite set other than by indicating properties
which are characteristic of the elements of the set. And no one can
establish a correspondence among infinitely many things without
indicating a rule, i.e., a relation, which connects the corresponding
objects with one another. The notion that an infinite set is a ‘gathering’
brought together by infinitely many individual arbitrary acts of
selection, assembled and then surveyed as a whole by consciousness,
is nonsensical.” [54, p. 23]

The implications of the above principle concerning infinite objects depend
of course in a crucial way on the question: What definitions should be
accepted as ‘legitimate’? Therefore it is no wonder that ‘predicativism’ (like
‘constructivism’) becomes a name of a group of approaches to mathematics
and its foundations [12, 24].1 We emphasize that in this paper we reserve this
name solely to the program as it was initiated by Poincaré and pursued
by Weyl. That program is known nowadays as ‘predicativity given the
natural numbers’, since in addition to the definitionist principle mentioned
above, it also accepts the collection N of the natural numbers as a well
understood mathematical concept that constitutes a set. Moreover, it views
the idea of iterating an operation or a relation a finite number of times as
fundamental, and accepts induction on the natural numbers as a universally
valid method of proof.2 Still, even with this restriction, the word ‘predicative’
has two different interpretations, corresponding to Poincaré’s “two distinct
diagnoses of the source of the paradoxes” ([24]; see also [11]). We call
them ‘Russell’s predicativity’ and ‘Poincaré–Weyl predicativity’. This paper
is devoted to the second one. However, since it is the first which is usually
identified with predicativism, we discuss it first.

1.2. Russell’s predicativity. Adopting the analysis indicated in Richard’s
paper [40], Poincaré’s first diagnosis was that the definition of Richard’s
paradoxical real number is circular: it uses the totality of all definitions, to
which it already belongs. The corresponding Vicious Circle Principle, VCP,
was adopted by Russel in [41] and in Principia Mathematica [55]. According
to the latter, a vicious circle arises when we assume that “a collection of
objects may contain members which can only be defined in terms of the

1A particularly extreme case can be found in [34]. As noted in [24], what is called there
‘predicative arithmetic’ is actually strictly finitist arithmetic.

2For reasons that will be clarified in Section 3, true predicativity is in our opinion necessarily
‘predicativity given the natural numbers’.
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collection itself”.3 A clearer (and stronger) formulation of the VCP has
been given by Kreisel in [30]:

“A predicative definition of a set (say, of natural numbers) is required
to use quantification only over ‘previously defined’ totalities; the set
of natural numbers themselves is supposed to be given, or the notion
of ‘finite’ is supposed to be well-defined.”

Kreisel then went on and note that

“The traditional way of making the idea of a predicative definition
explicit is by introducing a ramified hierarchy.”

The idea of ramified hierarchy was introduced and used by Russell in
Principia Mathematica. Later it was generalized by Wang [48] and Kreisel.
In the second-order context the generalization is explained in [24] as follows:

“The basic step in that hierarchy consists in passing from a collection
D of subsets of N to a new collection D� by putting a set S in D�

just in case there is a formula ϕ(x) of second-order arithmetic such
that for all n, n ∈ S ↔ (ϕ(n))D, where the superscript ‘D’ indicates
that all second-order quantifiers in ϕ are relativized to range over D.
Then we can define the collections Rα for arbitrary ordinals α by
R0 = ∅, Rα+1 = (Rα)�, and for limit α,Rα =

⋃
�<α R� .”

This description raises the question: What ordinals α can serve for the
purpose of constructing this ramified hierarchy of Rαs? To answer this,
Kreisel proposed in [29] an autonomous process, where a well-ordering
becomes available at some stage only if it has been defined and recognized
(as a well-ordering of �) at an earlier stage. Without the ‘recognition’
criterion, which introduces proof-theoretic considerations, we are left with
a purely semantic condition that allows to go up to every well-ordering
< �CK1 (Church–Kleene’s first non-recursive ordinal). With the recognition
condition, Feferman [15] and Schütte [42] independently replaced �CK1 by
the much smaller Γ0 (the Feferman–Schütte ordinal). Following their work,
the hierarchies of formal systems up to Γ0 which were developed by them (on
the basis of the intuitive semantics of the Rαs) have become the “canonical
reference: one considers predicative any formal system which can be reduced
to a system in that hierarchy” [11]. Accordingly, Γ0 is almost universally
accepted as the ‘ordinal of predicativity’. An example of the implications of
this is given in [13]: “The fact that the proof-theoretic strength of theories
of inductive definitions exceeds the strength of the whole ramified hierarchy

3Chapter II.1 of the second edition; the explanation in the first edition is similar. The term
‘predicative’ is used in Principia Mathematica in a technical different sense.
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44 ARNON AVRON

is taken as clear indication that generalized inductive definitions involve
impredicativity.”

Up to now, the only mathematician to reject the ‘Γ0-thesis’ has been
Weaver, who forcefully attacked this thesis in [50]. Unfortunately, his (in
my opinion quite justified) criticism of the various justifications given by
Feferman for this thesis has been almost totally ignored by the logical
community. Nevertheless, as a true predicativist (which is what I am taking
myself to be), it is clear to me that the identification of predicativity
with the ramified systems of Feferman and Schütte cannot be correct. A
first, very simple, problem with it is that no predicativist (and for that
matter—no mathematician) thinks in terms of ramified systems. Moreover,
Feferman admits that “ramified theories are unsuitable as a framework for
the development of analysis” [24]. Another problem, that was repeatedly
noted by Feferman himself, is that the general notions of well-ordering and
ordinal on which they are based are not predicatively acceptable.4 Third,
and most important: just the description and understanding of the ramified
hierarchy rely on principles that are not included in the theories in [15] and
[43] which are based on this hierarchy. This is rather clear in case α is a limit
ordinal: Rα is actually defined in this case as

⋃
{R(x) | x ∈ {� | � < α}}.

Hence it is based on accepting at least some instances of ZF’s axioms of
union and replacement. However, if we letR0 = N (which is the predicativist
natural starting point, rather thenR0 = ∅), then similar problems exist even
if we do not use transfinite ordinals, but only the natural numbers (as Russell
did). Thus already in constructing elements of R2 we allow quantification
over R1. This should mean that R1 is taken as a “complete totality”. But
R1 is not obtained using just “quantification only over previously defined
totalities”, and it is actually unclear whatR1 is at the first place. Usually it is
identified with the collection (set?) of arithmetical subsets of N . If so, then
each element of R1 is indeed obtained using just quantification only over
N . But this does not mean that so is R1 itself. (For example, if we identify
ordinals with von Neumann’s ordinals, then Γ0 is not predicatively definable
according to the Γ0-thesis, even though each element of Γ0 is.) In fact, the

4Feferman explicitly wrote in [24] that in his view, a system considered adequate for
predicativity “should not be taken to involve the notions of ordinal or well-ordering in
any way that is not already contained in the basic concepts of predicativity”. This is the
reason why over the years he has developed three different characterizations of predicativity
that do not rely on the notion of ordinal (see [19, 21, 26]). Γ0 is still the proof-theoretical
ordinal of the three corresponding systems. However, in my opinion this is achieved in each
case by imposing unjustified constrains on the applications of some of the principles on
which the systems are based. This was first observed by Weaver in [50]. In the case of the
characterization given in [19] (about which Feferman admits in [21] that it “may still be
considered more persuasive” than the one given in that paper) this will be clearly shown in
the sequel.
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only reasonable definition of the collection of arithmetical sets I can think
of is the following:

{A | ∃n ∈ N (predicate(n) ∧ ∀k ∈ N (k ∈ A↔ n(k) ∈ True)},
where True is the set of true sentences in the first-order language of PA,
and predicate(n) means that n is a formula with exactly one free variable.
(As usual, we identify here a formula with its Gödel number.) However, this
definition relies on the availability of the set True, which is not arithmetical.
It follows that if R1 is the collection of arithmetical sets then it can only be
defined using a set that at best belongs to some Ri such that i > 1, and so is
defined in terms of R1. This is obviously circular. To construct the ramified
hierarchy we have therefore either to accept in addition to N infinitely
many other sets as ‘given’ to us, or to realize that some hidden predicatively
acceptable principles are involved already in the passage from N to R1. The
first option completely goes against the central ideas of Poincaré and Weyl.
So we are left with the second.

Note 1.1. A close inspection shows that in general, the passage from D
to D� implicitly involves accepting two principles:

• One may use the model-theoretic operation that associates with
any formula ϕ(x) of second-order arithmetic the set {n ∈ N | N |=
(ϕ(n))D}.

• One may take as predicatively valid the instance of the replacement
axiom that allows us to construct the image of this model-theoretic
operation.

Note 1.2. There are some other indications that the ‘Γ0-thesis’ might be
wrong.

• A system T which is proof-theoretically reducible to
⋃
α<Γ0

Rα is called
in the literature ‘locally predicative’. About such T Feferman wrote in
[24]:

Though the system T as a whole may not be justifiable predica-
tively, each theorem ϕ of T rests on predicative grounds, at least
indirectly. In practice, more can be said: T is conservative over the
autonomous ramified progression for arithmetic sentences, i.e.,
if ϕ is arithmetical and provable in T then it is provable in that
progression. For second-order T this can often be strengthened
to conservativity for Π1

1-sentences.

An important example of a ‘locally predicative’ system is ATR0, which is
one of the ‘big five’ theories which were studied in reverse mathematics
[46]. ATR0 is indeed conservative over

⋃
α<Γ0

Rα for Π1
1-sentences, and

its proof-theoretical ordinal is Γ0. In contrast, the proof-theoretical
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46 ARNON AVRON

ordinal of the full theory ATR is the much bigger Γ�0 . Hence the Γ0-
thesis implies that ATR is not locally predicative. But the only difference
between ATR and ATR0 is that the single induction axiom of the latter
is replaced in the former by the full induction schema. However, the
induction schema is universally accepted as being predicatively justified,
and is actually included in the finitary systems of [15]. Therefore at
least the arithmetical theorems of ATR might be viewed as no less
predicatively justified than those of ATR0.

• In the conclusion of [35], Pohlers made the following observation:

The studies in the present paper lead to the suspicion that the
role of Γ0 as the limit of predicativity might not depend on deep
philosophical but rather on technical reasons.

Pohlers went then on and suggested a line of investigation that (at least
according to my understanding) leads to predicativity beyond Γ0.

1.3. Poincaré and Weyl’s view of predicativity as invariance. As noted
above, a notion of predicativity which is quite different from the Russellian
one was introduced by Poincaré in [38]. This was particularly emphasized
in [11]:

“For Poincare impredicative definitions are problematic as they
treat as completed infinite classes which are instead open-ended
or incomplete by their very nature. Predicative definitions, instead,
guarantee that the classes so defined are stable and invariant.”

In Poincaré own words:

“Hence a distinction between two species of classifications, which
are applicable to the elements of infinite collections: the predicative
classifications, which cannot be disordered by the introduction of
new elements; the non predicative classifications, which are forced to
remain without end by the introduction of new elements.”

This view of predicativity underlies Weyl’s great work in [52]. A careful
reading (see [2, 6]) of this book and of related papers of Weyl on the subject
shows that predicativity as invariance is based in his work on the following
principles:5

1. Sets are ‘produced’ genetically, that is, from applying legitimate
operations to sets which are accepted as basic, or had previously
been produced.

5Most, if not all, of these principles have been accepted already by Poincaré. See Section
2 of [27] for an excellent analysis of his views on the subject.
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“If we imagine, as is appropriate for an intuitive understanding,
that the relations and corresponding sets are ‘produced’
genetically, then this production will ...occur in merely parallel
individual acts (so to speak).” [54, p. 40]

2. Accordingly, the elements of a set are logically prior to that set.
3. Sets are extensional, and the identity of a set is fully determined by

the identity of its elements—sets that have the same elements are
identical.

4. There is no single, complete intended universe V of sets. The ‘universe
of sets’ is created in stages, and is always open and growing. To
each stage corresponds what Weyl called a sphere of operation (i.e.,
a definite universe of sets equipped with some (finite) collection
of predicates and operations) in which terms and formulas take
values.

“Thus, contrary to Cantor’s proposal, no universal scale of
infinite ordinal and cardinal numbers applicable to every sphere
of operation can exist.” [54, p. 24]

On the other hand (and in contrast):

“The numbers can (in any sphere of operation) be used to
determine the cardinality of sets.” [54, p. 55]

5. The current sphere of operation may be expanded in the future, e.g.,
by introducing new legitimate methods of defining sets, which in turn
might produce new sets. The truth values of formulas may then be
changed.

“If we regard the principles of definition as an ‘open’ system,
i.e., if we reserve the right to extend them when necessary by
making additions, then in general the question of whether a
given function is continuous must also remain open (though we
may attempt to resolve any delimited question). For a function
which, within our current system, is continuous can lose this
property if our principles of definition are expanded and,
accordingly, the real numbers ‘presently’ available are joined
by others.” [54, p. 87]

6. Values of terms and truth-values of formulas are always evaluated
with respect to some definite sphere of operation—never with respect
to the whole open ‘universe of sets’. Hence classical logic is accepted
as valid. For example, ¬ϕ ∨ ϕ is valid in any sphere of operation, even
though the truth value of ϕ may change when the current sphere of
operation is expanded.
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7. In contrast, the identity of already existing objects (and so the value of
terms) should remain the same even if the current sphere of operation
is expanded. Accordingly, a definition of an object is legitimate (or
‘predicative’) if, and only if, the identity of the object it defines
is invariant under extension. (Because of this principle, there are
certain constraints in Weyl’s system on the use of quantification in
definitions. However, there are no constrains in that system on the use
of quantifiers in building formulas.) Weyl called an object so defined “a
definite, self-existent object”. Similarly, a definition of an operation is
legitimate if the results of its applications depend only on the identity
of the arguments, but not on the specific sphere of operation in which
the application is made.

8. Any theory we develop should be true not only in the current sphere
of operation, but in any future one. Hence our current theories
impose constraints on future spheres of operation. Accordingly,
expanding our spheres of operation and extending our theories are
done simultaneously. Moreover:

“Our principles for the formation of derived relations can be
formulated as axioms concerning sets and functions; and, in
fact, mathematics will proceed in such a way that it draws the
logical consequences of these axioms.” [54, p. 44]

9. The predicates of elementhood (∈) and equality (=) are basic.
10. Using ramification in definitions, or classifying sets according to

‘levels’, should be avoided.

“The temptation to pass beyond the first level of construction
must be resisted; instead, one should try to make the range
of constructible relations as wide as possible by enlarging the
stock of basic operations.” [53]

It should be emphasized that according to the last quotation, Principle
10 is not due just to the inconvenience which is caused by using ramified
systems. There is also a direct conflict between the Russellian approach and
Weyl’s approach. The former is implicitly based on the view that there are no
predicatively legitimate methods of defining subsets of N beyond those that
are allowed in the construction of the hierarchy of Rαs. This view entails
that the union of the Rαs includes all the predicatively acceptable subsets
of N . In contrast, already the collection of first-level subsets of N is an
open collection according to Weyl’s view. Hence it may always be extended
“by enlarging the stock of basic operations”. Weyl indeed did just that
when he added the very important operation of iteration to this stock. As
discovered by Feferman in [20], this operation makes it possible to define
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non-arithmetical subsets of N . Hence Weyl recognized as first-level subsets
of N sets that do not belong to what is called above R1!6

Note 1.3. Actually, the invariance criterion has been used by Feferman
too in some of his unramified systems. Thus, IR, the first of the two
unramified second-order locally predicative systems which were given in
[15], uses the Hyperarithmetic Comprehension Rule Δ1

1-CR. This is justified
in [24] as follows:

“The motivation for Δ1
1-CR is the recognizable absoluteness (or

invariance) of provably Δ1
1 definitions, in the following sense. At each

stage one has recognized certain closure conditions on the ‘open’
universe of sets, and the definitions D(x) of sets introduced at the
next stage should be independent of what further closure conditions
may be accepted. In the words of Poincaré, the definitions used of
objects in an incomplete totality should not be “disturbed by the
introduction of new elements.” Thus if U represents a universe of sets
(subsets of N ) satisfying given closure conditions and is extended to
S ′ (satisfying the same closure conditions and possibly further ones)
one wants D to be provably invariant or absolute in the sense that
(∀x)[DU (x) ↔ DU ′

(x)]. This requirement is easily seen to hold for
provably Δ1

1 formulas D.”

This passage contains a rather accurate description of the invariance
criterion. However, it provides no explanation how it is connected with
the Russellian approach, on which Feferman’s ramified systems are based.

1.4. Predicative set theories: Why and how.
1.4.1. Why. Feferman’s systems (and to a lesser degree also Weyl’s system

in [52], as formalized in [6]) have one big drawback: they are practically
inaccessible to the majority of the mathematical community. We believe
that the major reason for this is that those systems do not use the
framework of axiomatic set theory, which is almost universally accepted
as the basic framework that provides the foundations of mathematics. What
is more: Feferman’s systems are by far more complicated in comparison to
impredicative axiomatic set theories like ZF, which are currently used for
developing the whole of present day mathematics.

Another reason to prefer the set-theoretical framework is that some of
its principles are anyway underlying the constructions on which the second-
order ramified systems of Feferman and Schütte are based. Thus we have
seen in Section 1.2 that the construction of the hierarchy of Rαs uses

6Unfortunately, Feferman interpreted his discovery about Weyl’s system as an incoherence
in that system. The above quotation from Weyl’s work shows that this interpretation is wrong.
For further details, see [6].
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instances of the union and replacement axioms of ZF. But in what cases is
such a use predicatively justified? It seems to me that developing predicative
set theories is the only way to answer such questions. What is more, the
notion of ordinal, which is crucial for the ramified systems but is also very
problematic in their context, is not problematic at all in the set-theoretical
one (assuming that the ∈-relation is well-founded7). In the latter, one can
use the notion of von Neumann ordinals, and those are defined by a simple,
absolute formula.

Finally, it is worth noting that predicativism was born as a reaction to
the set-theoretical paradoxes, and was intended to provide a satisfactory
solution to them. So (at least in my opinion) it should be most natural to
develop predicative mathematics in the framework in which it has started.

Note 1.4. Locally predicative (in the sense of being proof-theoretically
reducible to the systems of [15]) set theories have already been introduced
by Feferman in [16, 18]. We shall say more about them in Section 4.4.

1.4.2. How. In the case of pure set theories, the main principle of the
predicativity as invariance view of Poincaré and Weyl can be expressed as
follows: a set exists if and only if can be determined by an invariant definition.
Accordingly, the main two features of the system PW which is developed in
the sequel are:

(I) Any existence claim which is made in one of those axioms of PW
whose purpose is to allow the expansion of the sphere of operation is
actually an existence and uniqueness claim. In other words, positive
occurrences of the quantifier ∃ in such an axiom are in the form ∃!.
(This, of course, rules out the axiom of choice, as well as the axiom
of Δ0-collection of Kripke–Platek set theory as given in [9].)

(II) Following Principles 1 and 7 in Section 1.3, any definition of a set
which is made in PW is invariant. This is ensured by employing a
syntactically defined invariance relation	between formulas and finite
sets of variables. The intended meaning of “ϕ(x1, ...,xn, y1, ...,yk) 	
{x1, ...,xn}” is: “The identity of {〈x1, ...,xn〉 | ϕ} is invariant: it
depends only on the values assigned to y1, ...,yk , but not on the
surrounding universe”.8

Note 1.5. Principle (I) is not applicable to general validities like logically
valid formulas or instances of ∈-induction. A trivial example is given by
∀x¬ϕ ∨ ∃xϕ, where ϕ is arbitrary. In general, theorems of PW of this

7This assumption is discussed and justified in Section 4.3.2.
8In case k = 0 we get the notion of domain independence from database theory [1, 47]. In

case n = 0 we get the notion of absoluteness used in set theory (see [14]). � is a common
generalization of both which was first introduced in [3] and then used in [4] and [5].
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sort cannot be used for introducing new sets, or for providing absolute
identification of existing ones.

The following other important features of PW also directly correspond to
the principles of Weyl and Poincaré that were described in Section 1.3:

1. Like in ZF, and unlike in the systems of Weyl and Feferman, our system
has a single type (or ‘category’, in Weyl’s terminology) of objects: sets.
(This partially corresponds to Principle 10 in Section 1.3.)

2. Like in most of Feferman’s systems, PW is practically not really a single
theory, but involves many theories, all of them first-order. In each stage
of working within it, we do have a single theory T, but we have two
options how to proceed: We may simply derive new theorems in T,
but we may also move to a strictly stronger theory T� in an expanded
language.9 (This feature of PW implements Principles 4, 5, and 8 in
Section 1.3.)

3. The logic of all theories in PW is classical logic (Principle 6 in
Section 1.3).

4. The initial language of the system includes just two predicate symbols:
= and ∈ (Principle 9 in Section 1.3) and a constant � for the set of
natural numbers (taken to be the finite von Neumann ordinals). The
inclusion of the latter is actually not essential, but it reflects well the
central place that the natural numbers have in the predicativism of
Poincaré and Weyl.

5. The following axiom and axiom schemas are included in all theories
in PW:

• The axiom of extensionality (Principle 3 in Section 1.3).
• Comprehension for invariant formulas (Principle 7 in Section 1.3).
• ∈-induction (which implements the vague Principle 2 in Section

1.3).10

6. Our main method of extending a given predicative set theory T to a
stronger predicative set theory T� is by adding a new symbol to the
signature of T, together with an axiom that defines it. (In addition, we
include of course in T� all the instances in the extended language of
the axiom schemas of T.) Such an extension is done by applying one
of the syntactic methods that PW provides for this purpose.

7. As usual, extending T by an operation symbol is allowed only if T
proves some corresponding existence and uniqueness conditions. Still,
the extension is usually not conservative.

9Practical work with any ordinary first-order theory T also always involves the use of the
procedure of extension by definitions (see, e.g., [45]), which also allows moving from T to
an extension T� in an expanded language. However, this T� is a conservative extension of T,
and is no more than just an equivalent variant of it. This is not the situation in PW.

10In Section 4.3 we shall discuss the justification of full ∈-induction in greater detail.
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8. Adding an n-ary predicate symbol P is allowed only if its defining
axiom implies its absoluteness. Similarly, adding an n-ary operation
symbol F is allowed only if its defining axiom implies that the formula
y = F (x1, ... , xn) is invariant with respect to y in case y, x1, ... , xn are
distinct.

Note 1.6. In designing PW we have adopted two additional principles:

• Platonists should be able to accept any theory in our framework. In
particular, every such theory is actually a subsystem of ZF – (P) (ZF
without the powerset axiom). This principle immediately rules out,
e.g., Axiom VIII (Enumerability) of PS1E from [18] and the Axiom
of Countability of ATRSet

0 from [46] (which says that every set is
countable).11

• Every rule or axiom of PW is a very close counterpart of some rule or
axiom that was used by Feferman in one of his predicative (or locally
predicative) systems. Hence PW should be accepted as predicative by
anyone who accepts those systems of Feferman’s as predicative.

Note 1.7. Among the axioms of ZFC, PW completely rejects the axiom
of powerset and the axiom of choice, and it restricts the axiom schema
of separation to the case in which the separating condition is absolute. It
also accepts only special cases of the axiom schema of replacement. In our
opinion, these are properties that should be shared by any predicative set
theory.

Note 1.8. At least in my opinion, PW is simpler and easier to work in than
any of Feferman’s systems (see Section 4.4). Moreover, we believe that as
long as we confine ourselves to ZF – (P) (i.e., neither the powerset axiom nor
the axiom of choice is allowed to be used), working in PW exactly reflects the
way work in set theory is done in reality. In particular, one can use abstraction
terms as well introduce new operation and predicate symbols in the usual
way. Only when there is a worry whether what is done is predicatively
justified, a need arises to check whether certain syntactic conditions are
satisfied. In most cases this only involves checking whether a certain formula
is bounded or is a Σ-formula in the usual sense of this concept (see Note
4.7). However, there is one important case (the comprehension schema) in
which one should check for some formulaϕ whetherϕ 	 {x1, ... , xn} or not
(where x1, ... , xn are variables). This is also rather easy once one gets used to
the syntactic definition of 	, since that definition closely follows the logical
structure of ϕ. In fact, what is involved is just a short mechanical check,
which is usually much easier than proving that the existence of a certain set

11Another reason to reject these axioms is that the notion of being countable is not absolute.
Recall that Weyl rejected the idea of assigning different cardinalities to infinite sets.
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logically follows from the standard comprehension axioms of ZF – (P) (or
full ZF).

1.5. The structure of the paper. Section 2 explains our notations and
terminology. Section 3 establishes the predicativity of the set of natural
numbers, using a rather weak subsystem of PW. PW itself is precisely
defined, justified, and compared with Feferman’s Systems in Section 4.
Section 5 includes important examples of the power of PW. Section 6
develops in PW the fundamentals of the theory of von Neumann ordinals.
Section 7 includes the main results of this paper: that PW provides terms
which define Γ0 and much bigger ordinals, and that it can prove the main
properties of those ordinals. We conclude in Section 8 with some remarks
and directions for further research.

§2. Terminology and notations.

2.1. The difference between operations and functions. In standard text-
books on first-order theory, it is common to refer to the symbols in
a signature of a first-order language as ‘relation symbols’ and ‘function
symbols’. We cannot use this terminology here, since we reserve the words
‘relation’ and ‘function’ to their official meaning in set theory, that is, to sets
of pairs satisfying certain conditions. Instead, we use the name ‘predicate’
for any “relation” that is not a set (like the predicates ∈ or =), and we
use the name ‘operation’ for any “function” that is not a set (like the
operation of union on sets or the operation of addition on ordinals).12

Accordingly, the symbols of a first-order signature are divided in this paper
into predicate symbols, operation symbols, and constants. The latter may
actually be viewed as operations with arity 0, except that they should always
be interpreted as sets.

2.2. Notations. We assume that every first-order language for a set theory
has infinitely many variables for sets, officially taken here to be v0, v1, ....
We use letters (small or capital) from the end of the Latin alphabet to
vary over these variables, and letters from the beginning of that alphabet
as general variables for sets in the metalanguage. As usual, i, j, k, l, m, n are
used as special variables for natural numbers (in both the metalanguage and
the formal language). t and s serve as variables (in the metalanguage) for
terms, and ϕ,�, 	 (and sometimes also A and B) as variables for formulas.
In all cases the variables may be decorated with subscripts or superscripts.
We denote by Fv(ϕ) (Fv(t)) the set of free variables of ϕ (of t). When
we denote a formula by ϕ(x1, ... , xn) it means that {x1, ... , xn} ⊆ Fv(ϕ).

12Thus, what are usually called ‘the rudimentary functions’ (see [14, 28]) are called here
‘the rudimentary operations’.
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On the other hand, when we write ϕ(�y, x) it means that �y = 〈y1, ... , yn〉
for some n (whose identity may be obtained from the context or it does
not matter); the variables x, y1, ... , yn are all distinct from each other; and
Fv(ϕ) = {x, y1, ... , yn}.

The substitution of a term t for a free variable y in a formulaϕ (a term s) is
denoted by ϕ{t/y} (s{t/y}). However, when we denote a formula by ϕ(y)
(ϕ(x, y), ϕ( �x, y)) we might simply write ϕ(t) (ϕ(x, t), ϕ( �x, t)) instead.

Given a first-order signature 
, we take a structure for 
 to be a pair M =
〈D, I 〉, where D 
= ∅ is the domain of M and I is its interpretation function.
If r is one of the symbols in 
 we shall usually write rI instead of I (r). If � is
an assignment of elements of D to variables of the language, x1, ... , xn are n
distinct variables, and �a ∈ Dn, we denote by �{ �x := �a} the assignment which
is obtained from � by assigning ai to xi (i = 1, ... , n). We denote by �M[t]
the element of D that � assigns according to I to the term t of 
. Similarly, if f
is an operation symbol of 
 then we use in the metalanguage square brackets
to denote applications offI to arguments inD. Thus, if f is n-ary, and � is an
assignment in D, then �M[f(t1, ... , tn)] = fI [�M[t1], ... , �M[tn]]. We write
M, � |= ϕ in case � satisfies inM the formulaϕ of
. IfFv(ϕ) = {x1, ... , xn},
and �[xi ] = ai (i = 1, ... , n) then we might write insteadM |= ϕ(a1, ... , an).

Finally, when we refer in the metalanguage to the collection of things that
satisfy a certain condition C we shall denote it by [x | C (x)], reserving the
notation {x |ϕ(x)} for being used in our formal system. Moreover, in case
there is a danger of confusion, we shall use ‘:’ in the metalanguage instead of
‘∈’. (Recall that the latter is a basic symbol of the language of our system.)

§3. The predicativity of the natural numbers. Recall that all of our systems
are based on classical first-order logic with identity.

Our system PW includes a constant � for the natural numbers. Before
presenting PW in the next section, we should justify this inclusion on the
basis of the invariance criterion. We do that by:

1. Providing a bounded formula N (x) in the language of set theory that
defines when x is a natural number (i.e., a finite von Neumann ordinal).

2. Present a basic predicative set theory VBS, in which one can show that
N (x) is adequate for the task. This is done by proving in it all the
properties that one expects from a formula that defines the natural
numbers.

3. Give an intuitive proof in the metalanguage that the formula N (x) is
invariant, and so it may be used for defining a new set.

We start by presenting VBS.13 The axioms of this system include the
Extensionality axiom [Ext] and the ∈-induction axiom schema [∈-ind] from

13For the material of this section a much weaker system would suffice. However, we need
the full power of VBS for developing the basic theory of ordinals in Section 6.
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Section 4.1.6, as well as the following four elementary instances of the general
predicative comprehension scheme:

1. Empty Set ([Em]):

∃Z∀x(x ∈ Z ↔ x 
= x).

2. Pairing ([Pa]):

∀x∀y∀∃Z∀w(w ∈ Z ↔ w = x ∨ w = y).

3. Union ([U]):

∀x∃Z∀w(w ∈ Z ↔ ∃y(y ∈ x ∧ w ∈ y)).

4. Difference ([D]):

∀x∀y∃Z∀w(w ∈ Z ↔ w ∈ x ∧ w 
∈ y).

Note 3.1. It is easy to see that the structure 〈HF,∈〉, where HF (which is
identical to V�) is the set of the hereditarily finite sets, forms the minimal
model of VBS. Moreover, 〈Vα,∈〉 is a model of VBS whenever α is a limit
ordinal.14

In order to present the formula N (x) it is convenient (though not really
necessary) to use the usual procedure of extension by definitions, and
develop VBS in an enriched language in which the four axioms above are
replaced by:15

1. [Em]: ∀x(x 
∈ ∅).
2. [Pa]: ∀x∀y∀w(w ∈ {x, y} ↔ w = x ∨ w = y).
3. [U]: ∀x∀w(w ∈

⋃
x ↔ ∃y(y ∈ x ∧ w ∈ y)).

4. [D]: ∀x∀y∀w(w ∈ x – y ↔ w ∈ x ∧ w 
∈ y).

Note 3.2. In general, one should be careful when applying the extension
by definitions procedure to theories with axioms schemas, since the extension
of such a schema to the expanded language involves the addition of infinitely
many new axioms besides those that are allowed by the procedure. This is
not a problem in cases like we have here, where every axiom schema is pure
in the sense that no constraint is imposed on the formulas to which it may
be applied. Therefore we may assume that every instance of [∈–ind ] in the
expanded language is an axiom of VBS. However, one should be cautious
about the issue of being conservative when the procedure is applied in more

14From our predicativist point of view, Vα is not a set in case α > �, but only a class. By
this we mean that there is an absolute formula ϕ(α, x) that defines the predicate ‘x ∈ Vα ’.
See Example 5.11 at the end of Section 5.

15These applications of the extension by definitions procedure are permissible also
according to the restricted version of this procedure which is allowed in PW.
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complicated cases, like in case we have [∈–ind ] restricted to some class of
formulas (e.g., bounded formulas).

Proposition 3.3. For every n ≥ 0,

�VBS ∀x0∀x1 ∈ x0∀x2 ∈ x1 ... ∀xn ∈ xn–1.x0 
∈ xn.

Proof. We do the case n = 2 (which trivially implies the cases n = 0 and
n = 1). The proof for any other n is similar.

Given x0, to show that ∀x1 ∈ x0∀x2 ∈ x1.x0 
∈ x2, we may assume (using
[∈–ind ]) that (�) ∀y0 ∈ x0∀y1 ∈ y0∀y2 ∈ y1.y0 
∈ y2. Suppose now that
there are x1 and x2 such that: x1 ∈ x0 ∧ x2 ∈ x1 ∧ x0 ∈ x2 Since x1 ∈ x0,
we may apply (�) with y0 = x1, y1 = x2, and y2 = x0, to get that x1 
∈ x0,
which is a contradiction. So no such x1 and x2 exist. �

We are ready to introduce our definition of the notion of a natural number:

Definition 3.4.

1. S(x) := x ∪ {x} (where {x} = {x, x}).
2. N (x) := ∀y ∈ S(x)(y = ∅ ∨ ∃z ∈ x.y = S(z)).

Note 3.5. Officially, N (x) is the following formula:

∀y((y ∈ x ∨ y = x) → (∀z(z 
∈ y) ∨ ∃z ∈ x∀w(w ∈ y ↔ (w ∈ z ∨ w = z)))).

Proposition 3.6. Let 0 := ∅. The following are provable in VBS:

1. N (0).
2. ∀x(N (x) ↔ N (S(x))).
3. S(x) 
= 0.
4. S(x) = S(y) → x = y.

Proof. Points 1 and 3 are trivial. Point 4 easily follows from Proposition
3.3. We show point 2.

• Suppose that N (x). We show that N (S(x)), i.e., that

∀y ∈ S(S(x))(y = 0 ∨ ∃z ∈ S(x).y = S(z)).

So let y ∈ S(S(x)). We show that y = 0 ∨ ∃z ∈ S(x).y = S(z). Since
we assumeN (x), this is obvious in case y ∈ S(x), because every z ∈ x
is also in S(x). There remains the case y = S(x), but this case is trivial,
since x ∈ S(x) (and so x is an element z in S(x) such that y = S(z)).

• Suppose that N (S(x)), i.e.,

∀y ∈ S(S(x))(y = 0 ∨ ∃z ∈ S(x).y = S(z)).

We show that N (x). So let y ∈ S(x). We show that y = 0 ∨ ∃z ∈
x.y = S(z). Suppose that the first disjunct fails, i.e., y 
= 0. Since
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S(x) ⊆ S(S(x)), our assumption implies that there is z ∈ S(x) such
that y = S(z). It is impossible that z = x, since in this case we would
get that S(x) ∈ S(x). Hence z ∈ x, and we are done. �

Proposition 3.7. �VBS ϕ{0/x} ∧ ∀x(ϕ → ϕ{S(x)/x}) → ∀x(N (x) →
ϕ).

Proof. Assume (I) ϕ{0/x} ∧ ∀x(ϕ → ϕ{S(x)/x}). To show
∀x(N (x) → ϕ), it suffices by [∈–ind ] to show that ∀x(∀y ∈ x(N (y) →
ϕ{y/x}) → (N (x) → ϕ)). So assume that (II) ∀y ∈ x(N (y) → ϕ{y/x})
and (III) N (x). We show ϕ. If x = 0 then this is implied by (I). If not,
then it follows from (III) that there is z ∈ x such that x = S(z). Hence (II)
entails that N (z) → ϕ{z/x}. But N (z) follows from (III) by the second
item of Proposition 3.6. Thereforeϕ{z/x}. From thisϕ (which is equivalent
to ϕ{S(z)/x}) follows by (I). �

Proposition 3.8. Let <:=∈. The following are provable in VBS:

1. x 
< 0.
2. x < S(y) ↔ x < y ∨ x = y.
3. N (x) ∧ y < x → N (y).

Proof. The first two items are trivial. We prove the third by induction on
x (i.e., by using Proposition 3.7). So let ϕ := ∀y(N (x) ∧ y < x → N (y)).
Obviously, �VBS ϕ{0/x}. We show that �VBS ∀x(ϕ → ϕ{S(x)/x}). So
assume ϕ(x) and that N (S(x)) and y < S(x). By Proposition 3.6, the first
assumption implies that N (x). Hence y = x implies that N (y). Otherwise
y < x, and so the induction hypothesis implies that N (y). �

Finally we show that N (x) (intuitively) defines an invariant collection.
Since this is an intuitive theorem in the meta-language, the proof is intuitive
too. Still, it employs only predicatively acceptable principles.

Proposition 3.9. Let M1 and M2 be transitive models of VBS (in the usual
sense of set theory) such that M1 ⊆ M2. Then:

�2 = [x : M2 | M2 |= N (x)] = [x : M1 | M1 |= N (x)] = �1.

Proof. The fact that N (x) is bounded (and so absolute) implies that
�1 ⊆ �2. For the converse, we show that ∀a ∈ M2((M2 |= N (a)) → (a ∈
M1 ∧M1 |= N (a))). So let a ∈ M2, and assume that M2 |= N (a). By
[∈–ind ] we may assume also that ∀b ∈ a((M2 |= N (b)) → (b ∈ M1 ∧
M1 |= N (b))). Since M2 |= N (a), either a = ∅, or there exists b ∈ a such
that M2 |= a = S(b). In the first case a ∈ M1 holds trivially. So assume
the second case. Then item 2 of Proposition 3.6 implies that M2 |= N (b).
Hence the induction hypothesis implies that b ∈ M1 ∧M1 |= N (b). Again
by Proposition 3.6, this entails that S(b) ∈ M1 ∧M1 |= N (S(b)). Hence
a ∈ M1 ∧M1 |= N (a). �
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§4. The system PW.

4.1. A description of the system. The language of the system PW is an
one-sorted first-order language with equality. As in Section 2, we take its
variables to be v0, v1, ..., and use letters (both small and capital) from
the end of the Latin alphabet to vary over them. All other components
of the language (predicate and operation symbols, terms, formulas, the
invariance relation 	 and the Σ-formulas) are simultaneously generated as
described in Sections 4.1.1–4.1.5. The axioms and rules of PW are presented
in Sections 4.1.6 and 4.1.7, respectively. (Note that in the formulation of the
last rule [Unif] there is a use of the formula Fun, the operation Dom,
and the term f(x). They are all introduced in Section 5.1 without using
[Unif]. Fun(f) says that f is a function.Dom(f) and f(x) have their usual
meanings.)

4.1.1. Predicate symbols and operation symbols.

1. = and ∈ are binary predicate symbols.
2. � is a constant (i.e., an 0-ary operation symbol).
3. Ifϕ 	 ∅ and Fv(ϕ) = {v0, ...,vn} thenPϕ is an n + 1 predicate symbol.
4. Ifϕ is Σ and Fv(ϕ) = {v0, ...,vn} then Fϕ is an n-ary operation symbol.

4.1.2. Terms.

1. Every variable is a term.
2. F (t1, ...,tn) is a term if F is an n-ary operation, and t1, ...,tn are terms.

4.1.3. Formulas.

1. P(t1, ...,tn) is a formula if P is an n-ary predicate, t1, ...,tn are terms.
2. The formulas are closed under ¬, ∧, ∨, and →.
3. If ϕ is a formula and x is a variable, then ∃xϕ and ∀xϕ are formulas.

4.1.4. The invariance relation 	.

1. t ∈ s 	 ∅ and t = s 	 ∅.
2. Pϕ(t0, ...,tn) 	 ∅.
3. ϕ 	 {x} if ϕ ∈ {x 
= x, x = t, t = x, x ∈ t} and x 
∈ Fv(t).
4. ¬ϕ 	 ∅ if ϕ 	 ∅.
5. ϕ ∨ � 	 X if ϕ 	 X and � 	 X .
6. ϕ ∧ � 	 X ∪ Y if ϕ 	 X , � 	 Y and Y ∩ Fv(ϕ) = ∅.
7. ∃yϕ 	 X – {y} if y ∈ X and ϕ 	 X .

4.1.5. Σ-formulas.

1. If ϕ 	 ∅ then ϕ is Σ. Such formulas are called absolute.
2. If ϕ and � are Σ then so are ϕ ∨ � and ϕ ∧ �.
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3. If ϕ is Σ then so is ∃xϕ.
4. If ϕ 	 {y1, ...,yk}, and � is Σ, then ∀y1 ... ∀yk(ϕ → �) is Σ.

4.1.6. Axioms.

1. [Fol]: Every formula which is valid in first-order logic with equality.16

2. [Ext] (Extensionality): ∀z(z ∈ x ↔ z ∈ y) → x = y.
3. [Comp] (	-Comprehension): ∃!Z∀x(x ∈ Z ↔ ϕ), provided that
ϕ 	 {x}.17

4. [∈-ind] (∈-induction): (∀x(∀y(y ∈ x → ϕ{y/x}) → ϕ)) → ∀xϕ.
5. [Inf] (Infinity): ∀x(x ∈ � ↔ N (x)), where N (x) is presented in Note

3.5.
6. [PrI] Pϕ(v0, ...,vn) ↔ ϕ (provided that ϕ is as in Section 4.1.1).

4.1.7. Rules.

1. [MP]: From ϕ and ϕ → � infer �.
2. [Gen]: From �PW ϕ infer �PW ∀xϕ.
3. [OpI] From �PW ∀v1 ... ∀vn∃! v0ϕ infer �PW Fϕ(v1, ...,vn) = v0 ↔ ϕ

(provided that ϕ is as in Section 4.1.1, i.e., ϕ is Σ and Fv(ϕ) =
{v0, ...,vn}).

4. [Unif] (Unification Rule):

�PW ∀y1∀y2(ϕ{y1/y} ∧ ϕ{y2/y} → y1 = y2)
�PW ∀x ∈ Z∃yϕ → ∃!f(Fun(f) ∧Dom(f) = Z ∧ ∀x ∈ Zϕ{f(x)/y})

.

Provided ϕ is Σ, x and y are distinct variables in Fv(ϕ), and Z 
∈
Fv(ϕ).

Definition 4.1.

1. A proof in PW of a formula ϕ is a sequence of formulas ending with
ϕ, such that each element of the sequence is either an axiom of PW or
it can be inferred from previous elements of the sequence by one of the
four rules of PW. ϕ is a theorem of PW if it has a proof in PW.

2. A derivation in PW of a formula ϕ from a set T of assumptions is a
sequence of formulas ending with ϕ, such that each element of the
sequence is either a theorem of PW, or an element of T, or it can be
inferred from two previous elements of the sequence by [MP]. ϕ is
derivable in PW from T if it has a derivation in PW from T.

Note 4.2. It should be emphasized that by Definition 4.1 (as well as by the
difference in the way the rules of PW are formulated in Section 4.1.7), [MP]

16Instead, we can of course choose any standard axiomatization of this logic.
17That the collection Z which is defined here is not a proper class (in the platonist universe)

follows from Corollary 4.13.
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is the only rule of derivation of PW. All the rest are only rules of proof. This
means that they can be applied only in assumptions-free derivations (i.e., pure
derivations from axioms). It follows that the deduction theorem obtains for
PW: to show T �PW (ϕ → �) it suffices to prove that T, ϕ �PW �. However,
while using this theorem in order to show that T �PW (ϕ → �), one should
be careful not to rely on a proof of � from T ∪ {ϕ} in which [Gen],[OpI]
or [Unif] are applied to a formula which depends on an assumption in
T ∪ {ϕ}.18

Note 4.3. In the formulation above we have used the quantifier ∃! in
[Comp] and in [Unif]. This was done according to Principle (I) in Section
1.4.2. However, in both cases we can actually use the simpler connective ∃.
In the case of [Comp] this is due to the axiom [Ext], while in the case of
[Unif] it follows from the premise of that rule.

Note 4.4. Like in the system PZF from [5], the predicativity of definitions
of sets is ensured PW by using an appropriate syntactic invariance relation 	
between a formulaϕ and subsets of Fv(ϕ). (The intended meaning of 	 was
described in item (II) at the beginning of Section 1.4.2.) Relations of this
sort have originally been introduced in [3, 4] in order to provide a unified
theory of constructions and operations as they are used in different branches
of mathematics and computer science, including set theory, computability
theory, and database theory (see footnote 8). Further important theorems
about them can be found in [8].19

Note 4.5. It is easy to show by induction that if ϕ 	 X and Y ⊆ X then
ϕ 	 Y . Therefore we have not included this important condition from [8]
in our present definition of 	, but we shall use it freely in what follows.
Another important condition which we shall treat as if it included in the
definition of 	 is that ∀x1 ... ∀xn(ϕ → �) 	 ∅ if ϕ 	 {x1, ...,xn} and � 	
∅. The reason is that every consequence of this condition can easily be
derived without it (because ∀x1 ... ∀xn(ϕ → �) is logically equivalent to
¬∃x1 ... ∀xn(ϕ ∧ ¬�).)

Note 4.6. The clauses in the definition of Σ-formulas are taken from [4].
This definition is a straightforward generalization of the usual definition
of Σ-formulas. In particular, it includes all the formulas which are called
‘essentially existential HF-formulas’ in [17]. From Theorem 4.1 of [17] it
follows that every persistent formula is equivalent in PW to a Σ-formula,
but we shall not use this fact here.

18As usual, in the case of [Gen] we can say something stronger: one may actually infer
∀xϕ from ϕ in derivation from assumptions as long as x is not free in any of the assumptions
on which ϕ depends in that derivation.

19Following standard terminology in database theory (see [47]), we have used in our
previous papers the name “safety relations” for this type of relations.
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Note 4.7. By the results of [8], it is possible to use in [Pri], [OpI],
and [Unif] bounded formulas instead of our absolute formulas, and the
ordinarily defined class of Σ-formulas instead of our somewhat bigger class.

Note 4.8. Actually, the use of [PrI] does not really increase the power
of PW, and so we can omit it from PW. However, it is very convenient to
include it.

4.2. PW and ZF – (P). In this section we prove that PW is a subsystem
of (an extension by definitions of) ZF – (P). It follows that every theorem
of PW is acceptable to the ordinary mathematicians.

Definition 4.9. Let e be a term or a formula or an operation symbol of
PW.

1. 
e is the minimal signature 
 that satisfies the following conditions:
• It includes ∈ and =.
• It includes all the predicate symbols and operation symbols

(including constants) that occur in e.
• If either P� or F� is in 
, then so are all the predicate symbols and

operation symbols that occur in �.
2. e is legal if the premises of [OpI] obtain whenever Fϕ is in 
e .
3. For legal e, PWe is the set of all theorem of PW in the language of 
e .

Definition 4.10. Let e be legal. A structure M is adequate for e if:

• M is a structure for a signature that contains 
e .
• M is a model of PWe .

Definition 4.11. Let M be a transitive set or class. Me is the structure
for 
e which is obtained from M by defining an interpretation Ie of 
e in M
using the following recursive definition:

• ∈Ie=∈.
• PIe� = [�a : Mn | Me, {�v := �a} |= �] in case P� is an n-ary predicate.
• If F� is an n-ary operation, then F Ie� [�a] is the unique b ∈ M such that
Me, {�v := �a ; vn := b} |= � in case such a unique b exists, ∅ otherwise.

Theorem 4.12. Let M be a transitive model of ZF – (P), and let 	 be a
formula of 
e . Suppose that 	 	 {x1, ... , xn} where n > 0. Then the following
collection is an element of M for every assignment � in M:

S�	, �x = [�a ∈ Mn | Me, �{ �x = �a} |= 	].

Proof. By induction on the structure of 	, using the relevant clauses in
the definition of 	.
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• If 	 is x 
= x then S�	,x = ∅ for every �. Hence S�	,x ∈ M.
• If 	 is x ∈ t where x 
∈ Fv(t), thenS�	,x = �[t] (becauseM is transitive).

Hence S�	,x ∈ M.
• If 	 is x = t where x 
∈ Fv(t), then S�	,x = {�[t]}. Hence S�	,x ∈ M by

the pairing axiom.
• If 	 is ϕ ∨ �, where ϕ 	 {x1, ...,xn} and � 	 {x1, ...,xn}, then S�	, �x =
S�ϕ, �x ∪ S

�
�, �x . Hence S�	, �x ∈ M by the induction hypotheses for ϕ and�.

• Suppose 	 is ϕ ∧ �, where ϕ 	 {w1, ... wl}, � 	 {y1, ... , yk}, n = l +
k, {y1, ... , yk} ∩ Fv(ϕ) = ∅, and �x = 〈w1, ... wl , y1, ... , yk〉. We have
three subcases to consider here.

– k = 0 and n = l . Then S�	, �x = [�a ∈ S�ϕ, �x | �]. Hence S�	, �x ∈ M by
the induction hypothesis for ϕ and the separation axiom.

– l = 0 and n = k. This case is similar to the previous one.
– l > 0 and k > 0. To simplify notation, assume that l = k = 1,
Fv(ϕ) = {w, z}, Fv(�) = {w, y, z}. For c ∈ M, let

Z(c) = [a ∈ M | Me |= ϕ(a, c)].

Since ϕ 	 {x}, Z(c) ∈ M by the induction hypothesis for ϕ. By
the induction hypothesis for �, this and the fact that � 	 {y}
imply that [b ∈ M | Me |= �(d, b, c)] ∈ M for every c ∈ M and
d ∈ Z(c). Denote this set byW (c, d ). Then [〈a, b〉 ∈ M2 | Me |=
	(a, b, c)] equals

⋃
d∈Z(c){d} ×W (c, d ). Hence [〈a, b〉 ∈ M2 |

Me |= 	(a, b, c)] ∈ M by the axioms of replacement and union.
• Suppose 	 is ∃yϕ, where ϕ 	 {x1, ...,xn, y}. Then

S�	, �x = [�a ∈ Mn | ∃b ∈M.〈a1, ... , an, b〉 ∈ S�ϕ, �x ].

Hence S�	, �x ∈ M, by the induction hypothesis for ϕ and the fact that
M is a model of Z – (P) (and so is closed under the projection
operation). �

Corollary 4.13. From a platonist point of view, every collection which is
defined by [Comp] is set (i.e., an element of the platonist universe V).

Proof. V is (believed to be) a model of Z – (P). Hence Theorem 4.12
applies. �

Note 4.14. Another platonist collection which is known to be a model of
Z – (P) is HC (the collection of hereditarily countable sets). From Theorem
4.24 it follows that if 	 	 {x1, ...,xn} then the collection S�	, �x is the same in
V and in HC for every assignment � in HC. Hence it is countable for every
such �.

Theorem 4.15. Every transitive model M of Z – (P) can be expanded to a
model of PW.
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Proof. Obviously, the recursive definition given in Definition 4.11 can be
extended to provide an expansion of M to a structure MPW for the language
of PW. Now the axiom [Comp] is valid in this structure by Theorem 4.12,
while the validity of [Unif] follows from the fact that if we replace this rule
by the corresponding implication, we get a schema which is equivalent (in
ZF without powerset and replacement) to the replacement schema. Hence
[Unif] is valid in MPW. That all other axioms and rules of PW are valid
there is obvious. �

Corollary 4.16. HC is a model of PW. (More precisely, HC can be
expanded to such a model.)

Theorem 4.17. PW is equivalent to a subsystem of ZF – (P).

Proof. This easily follows from Theorem 4.15 using ZF and model-
theoretic methods. Alternative (and also predicatively acceptable) method
is to turn the proof of Theorem 4.12 to a proof that every theorem of PW
is provable in (an extension by definition of) ZF – (P). This is not difficult.
That the other axioms and rules of PW are derivable in ZF – (P) is (almost)
obvious. �

4.3. Predicative justification of PW. From the non-logical axioms and
rules of PW, [Ext] and [PrI] need no justification, while [Inf] was justified
in Section 3. It remains to justify the other non-logical axioms and rules
of PW.

4.3.1. [Comp] and [OpI]. Theorem 4.12 alone is not sufficient for
justifying [Comp]. In order to really justify this axiom from a predicative
point of view, we should show that the identity of the sets it defines is
invariant. Similarly, in order to justify [OpI] we should show that the
operation defined by it is invariant. The first step towards these goals is
to provide a precise notion of invariance which is adequate for the set-
theoretical context.

Obviously, talking about invariance of definitions of sets and operations,
when we expand one sphere of operation M1 to a bigger one M2, can
make sense only if the identities of the elements of M1 are preserved in M2.
Since in the context of set theory we take the identity of a set to be fully
determined by the identity of its elements, this means that the same objects
should belong to an element a of M1 in both M1 and M2. Accordingly, we
define the following:

Definition 4.18. Let M1 = 〈D1, I1〉 and M2 = 〈D2, I2〉 be structures for
signatures that contain ∈, and let both be models of [Ext]. M2 is an ∈-
extension of M1 if D1 ⊆ D2, and the following holds for every element a
of D1:

[x : D1 | x ∈I1 a] = [x : D2 | x ∈I2 a].
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Note 4.19. From a platonistic point of view, if ∈I1 and ∈I2 are both the
‘real’ ∈ of V, then M2 is an ∈-extension of M1 iff D1 is a transitive subset
of D2.

Definition 4.20. For legal e, 〈M1,M2〉 is an e-pair if:

• M1 and M2 are adequate for e.
• M2 is an ∈-extension of M1.
• [a ∈ D2 | M2 |= N (a)] = [a ∈ D1 | M1 |= N (a)].

Definition 4.21.

1. A legal term t of PW is invariant if �M1[t] = �M2 [t] whenever 〈M1,M2〉
is a t-pair, and � is an assignment in M1.

2. A legal n-ary operation F of PW is invariant if

FM1 [a1, ...,an] = FM2 [a1, ...,an]

whenever 〈M1,M2〉 is an F-pair, and a1, ...,an are elements of M1.
3. A legal formula ϕ of PW such that {x1, ...,xn} ⊆ Fv(ϕ) is invariant

with respect to {x1, ...,xn} if the following holds for every assignment
� in M1:

[�a : Dn2 | M2, �{ �x := �a} |= ϕ] = [�a : Dn1 | M1, �{ �x := �a} |= ϕ].

4. A legal formula ϕ of PW is persistent if M1, � |= ϕ implies that
M2, � |= ϕ as well, whenever 〈M1,M2〉 is a ϕ-pair, and � is an
assignment in M1.

Note 4.22. The definition of invariability of formulas can also be
formulated as follows: a legal formula ϕ of PW such that Fv(ϕ) =
{x1, ...,xn, y1, ...,yk} is invariant with respect to {x1, ...,xn} if the following
holds whenever 〈M1,M2〉 is a ϕ-pair, and c1, ... , ck are elements of M1:

[�a : Dn2 | M2 |= ϕ(�a��c)] = [�a : Dn1 | M1 |= ϕ(�a��c)]

(where 〈a1, ...,an〉�〈c1, ...,ck〉 = 〈a1, ...,an, c1, ...,ck〉.)
Note 4.23. Identifying 〈〉 with ∅, we get that in case n = 0, the collection

[�a : Dn | M |= ϕ(�a��c)] is either 1 (= {∅}) or 0 (= ∅), depending on whether
M |= ϕ(�c) or not. Hence invariance with respect to ∅ is simply absoluteness.

Convention. From now on, when we talk about terms, we shall mean legal
terms. The same convention applies to formulas and operation symbols.

Theorem 4.24.

1. Every term t of PW is invariant.
2. Every operation F of PW is invariant.
3. If ϕ 	 {x1, ...,xn} in PW then ϕ is invariant with respect to {x1, ...,xn}.
4. Every Σ-formula of PW is persistent.
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Proof. We prove all parts simultaneously, using induction on the
complexity of e, where e is a term or a formula or an operation symbol
of PW. Nevertheless, to facilitate reading and understanding, we split the
various induction steps into groups that correspond to the four parts of the
theorem.

In what follows we assume that for every e we consider, 〈M1,M2〉 is an
e-pair (M1 = 〈D1, I1〉, M2 = 〈D2, I2〉), and � is an assignment in D1.

Operations: Suppose that e is the n-ary operation symbol Fϕ . For
convenience of presentation, assume that n = 1. Let a : D1, and let
b = F I1ϕ [a]. Since M1 is a model of PWe , the legality of Fϕ and the
rule [OpI] imply that M1 |= ϕ(〈a, b〉). Since ϕ should be a Σ-formula,
the induction hypothesis for ϕ implies that M2 |= ϕ(〈a, b〉) too. Since
M2 is a model of PWe , this in turn implies (with the help of [OpI]) that
b = F I2ϕ [a] as well.
Terms:

• The case where e is a variable is trivial.
• The case e = � is immediate from the third item of Definition 4.20.
• Suppose that e is the term Fϕ(s1, ...,sn). Then

�M1 [e] = F I1ϕ [�M1 [s1], ...,�M1 [sn]] �M2 [e] = F I2ϕ [�M2 [s1], ...,�M2 [sn]].

Now from the induction hypothesis for Fϕ we get:

F I1ϕ [�M1 [s1], ...,�M1 [sn]] = F I2ϕ [�M1 [s1], ...,�M1 [sn]]

while from the induction hypotheses for s1, ...,sn we get that

F I2ϕ [�M1 [s1], ...,�M1 [sn]] = F I2ϕ [�M2 [s1], ...,�M2 [sn]].

It follows that �M1 [e] = �M2 [e].
The invariance relation:	

• – To show the absoluteness (invariance with respect to ∅) of
s ∈ t, let � be an assignment inM1. Assume first thatM1, � |=
s ∈ t. Then �M1 [s] ∈I1 �M1 [t]. It follows by the induction
hypotheses for s and t and the fact that M2 is an ∈-extension
of M1 that �M2 [s] ∈I2 �M2 [t] too. Hence M2, � |= s ∈ t. The
proof of the converse (i.e., that ifM2, � |= s ∈ t thenM1, � |=
s ∈ t) is similar.

– We leave the simpler proof that s = t is absolute to the reader.
– The case e = Pϕ(t1, ...,tn) is immediate from the induction

hypothesis for ϕ, and the ϕ-instance of [PrI] (which is in
PWe).

• – That x 
= x is invariant with respect to x follows from the fact
that for every M = 〈D, I 〉 and �, [a : D | M, �{x := a} |=
x 
= x] = ∅.
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– Let e be the formula x = t, where x 
∈ Fv(t). Then the
collection [a ∈ D1 | M1, �{x := a} |= x = t] is the singleton
of �M1 [t], while [a ∈ D2 | M2, �{x := a} |= x = t] is the
singleton of �M2 [t]. Hence the induction hypothesis for t
implies that the two sets are equal.

– Let e be the formula x ∈ t, where x 
∈ Fv(t). Then

[a ∈ D1 | M1, �{x := a} |= x ∈ t] = [a ∈ D1 | a ∈M1 �M1 [t]],

[a ∈ D2 | M2, �{x := a} |= x ∈ t] = [a ∈ D2 | a ∈M2 �M2 [t]].

Since �M1 [t] = �M2 [t] by the induction hypothesis for t, these
two equations and the fact that M2 is an ∈-extension of M1
imply:

[a ∈ D1 | M1, �{x := a} |= x ∈ t]
= [a ∈ D2 | M2, �{x := a} |= x ∈ t].

• The proof that if ϕ is absolute then so is ¬ϕ is left to the reader.
• Let e be ϕ ∨ �, where ϕ 	 {x1, ...,xn} and � 	 {x1, ...,xn}. Then

the collection [�a ∈ Dn1 | M1, �{ �x := �a} |= ϕ ∨ �] is the union of
[�a ∈ Dn1 | M1, �{ �x := �a} |= ϕ] and [�a ∈ Dn1 | M1, �{ �x := �a} |=
�]. A similar equation holds for [�a ∈ Dn2 | M2, �{ �x := �a} |= ϕ ∨
�]. The equality of these two collections follows therefore from the
induction hypotheses for ϕ and �.

• Let e be 	 = ϕ ∧ �, where ϕ 	 X , � 	 Y , and Y ∩ Fv(ϕ) =
∅. To simplify notation, assume that Fv(ϕ) = {x, z}, Fv(�) =
{x, y, z}, X = {x}, Y = {y}. For c ∈ D1, let Z(c) = [a ∈ D2 |
M2 |= ϕ(a, c)]. Since ϕ 	 X ,Z(c) = [a ∈ D1 | M1 |= ϕ(a, c)] as
well (by the induction hypothesis for ϕ). HenceZ(c) ⊆ D1. By the
induction hypothesis for�, this and the fact that� 	 Y imply that
if d ∈ Z(c) then

[b ∈ D2 | M2 |= �(d, b, c)] = [b ∈ D1 | M1 |= �(d, b, c)].

Denote this set by W (c, d ). Now both [〈a, b〉 ∈ D2
2 | M2 |=

	(a, b, c)] and [〈a, b〉 ∈ D2
1 | M1 |= 	(a, b, c)] equal

⋃
d∈Z(c){d} ×

W (c, d ). Hence these two sets are the same (for every c ∈ D1).
• We leave to the reader the case e = ∃yϕ, where ϕ 	 X and y ∈ X .

Σ-formulas:
• Invariance implies persistence. Hence if ϕ is absolute then it is

persistent by what we have shown above.
• It is well known that persistence of formulas is closed under

disjunction, conjunction, and existential quantification, so we leave
to the reader the standard proofs of these cases.
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• Suppose that 	 is∀x(ϕ → �), whereϕ 	 {x} and� is a Σ-formula.
By the induction hypothesis forϕ and�,ϕ is invariant with respect
to x, and � is persistent. We show that 	 is persistent too. So
let � be an assignment in M1 such that M1, � |= 	. We show
that M2, � |= 	. So let a ∈ D2. We should show that M2, �{x :=
a} |= ϕ → �. This is certainly true in caseM2, �{x := a} 
|= ϕ. So
assume that M2, �{x := a} |= ϕ. Then the invariability of ϕ with
respect to x implies that a ∈ D1, �{x := a} is an assignment in
D1, and M1, �{x := a} |= ϕ. Since M1, � |= 	, also M1, �{x :=
a} |= ϕ → �. It follows that M1, �{x := a} |= �. This implies
that M2, �{x := a} |= �, since � is persistent. It follows that
M2, �{x := a} |= ϕ → � in this case too. �

Clearly, Theorem 4.24 provides the predicative justification of [Comp]
(according to the invariance criterion) that Theorem 4.12 does not. As for
[OpI], its premise ensures that Fϕ can be introduced using the usual procedure
of extension by definitions. That the resulting operation is invariant follows
again from Theorem 4.24.

4.3.2. [∈-ind]. That [∈-ind] is predicatively valid should be obvious: In
any sphere of operation, the empty set is the starting building block of all
sets, every other set A is formed from the elements of A, and those elements
are logically prior to A. Therefore in any sphere of operation, a property
that the empty set has and is inherited by a set from its elements should
necessarily hold for all sets. Hence [∈-ind] is valid in any acceptable sphere
of operation.

Another way to look at the matter is by asking what properties the basic
predicate ∈ should have according to the predicativist view of sets. Since
predicatively accepted sets are constructed bottom-up, it should be clear
that the ‘well-foundedness’ of ∈ should be one of those properties. But
only the general, open-ended schema of [∈-ind] fully exploits what we really
have in mind when we say that ∈ should be well founded. (In contrast, the
intuitive absoluteness of the well-foundness of ∈ is not fully captured by any
of the standard formal definitions of this notion.20 For example, whether
any subset of a given set A has a minimal element depends on what subsets of
A are available, while the non-existence of a descending ∈-chain of elements
of A depends on what sequences of elements of A are available.)

Still another point of view that might be taken here is that of a
modest platonist who looks at the predicative spheres of operation. As
was emphasized in Note 1.6 and shown in Theorem 4.17, in PW we restrict
ourselves to predicative subsystems (of some extension by definitions) of
ZF – (P). Assuming that the latter is consistent, it is impossible to define in it

20As observed by Weaver in [49], some of those definitions are not predicatively equivalent.
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a set which have elements that form an infinite descending chain with respect
to ∈. Hence this certainly cannot be done in more constrained predicative
systems like PW.

Here it is worth noting that the predicativist conception of sets that
underlies PW and the platonist cumulative one have a lot in common.
According to both, all sets are created in stages, where the latter can be
taken to be the von Neumann’s ordinals. (The difference is that according
to predicativists, the “creation” is done by using legitimate definitions, while
for platonists this can also be done by methods that go beyond what actual
people can use.) Moreover, as we are going to see, both predicativists and
platonists associate with every set A which is available to the former the same
stage (called rank(A)) in which it first becomes available (even though the
platonist set Vα is available to predicativists only for α ≤ �). It seems to me
obvious that this view of sets that predicativists and platonists share dictates
for both the validity of [∈-ind].

Two related notes:

1. In a private correspondence, Gerhard Jäger has raised two objections
against accepting full [∈-ind] as a predicatively accepted principle:

• [∈-ind] is a minimality condition on the universe and thus leads to
an inherent vicious circle.

I do not share this view. In my opinion, [∈-ind] is not a
minimality condition, but only a constraint that our spheres of
operation should respect. These are two different things. What is
more: I believe (though this belief is not reflected in the present
paper) that not all forms of ‘circularity’ should be rejected from
the invariance point of view. Thus, although one might claim
that all sorts of recursive definitions are inherently circular, some
forms of them, like primitive recursive definitions, are certainly
predicatively acceptable.

In any case, the same argument can be raised against accepting
the schema of induction on the natural numbers. However this
general schema was accepted and used Weyl in [52] (see [2, 6]), and
in fact it is accepted as predicative by almost everyone interested
in the subject.

• In the form ∃xϕ[x] → ∃x(ϕ[x] ∧ (∀y ∈ x)(¬ϕ[y]) the schema of
[∈-ind] claims the existence of a set, without presenting an explicit
definition of this set, and without ensuring that its identity is
invariant.

This issue has already been dealt with above in Note 1.5. As
was emphasized there, every predicative system which is based
on classical logic proves pure existential propositions of this sort,
and there is nothing impredicative about that, as long as such
propositions are understood and used in an appropriate way.
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2. Although this is not really an acceptable argument for the predicative
validity of [∈-ind], it is still interesting to note that Feferman himself
included this schema in the predicative set theories he constructed in
[18]. This clearly implies that he saw this schema as predicatively valid.
In response one may argue that Feferman justified his set theories in
[18] only by reducing them to what he did in [15]. However, Feferman
did not take his set theories out of the blue; actually he too was led
to them by pursuing the invariance criterion (see also [17]). Hence the
fact that he included [∈-ind] already in the system PS0, which is by
far the weakest system studied in [18], is telling. Moreover, Feferman
explicitly said about the system PS that he studied in [16] (note the
name of that paper!) that an ideal predicativist can recognize as correct
any particular axiom and rule of inference of that system. Since any
instance of [∈-ind] can be derived from the axioms and rules of PS,
this means that according to Feferman a predicativist can recognize as
correct any instance of [∈-ind].

A final remark: personally, I have no doubt that the answer to the question
whether [∈-ind] is predicatively valid is positive, and that the arguments given
above for this answer should be convincing (and would be accepted as such
by Weyl and even Feferman). However, this question is not a mathematical
one, and so some people might have different views on this point. Since I
see debates on the exact meaning of a given word as useless, I simply take
such conflicting views as indicating that like ‘predicativity’ in general, also
‘predicativity as invariance’ is a family of approaches to the foundations of
mathematics. I would be quite happy to call mine ‘predicativity given that ∈
is well-founded’.

4.3.3. [Unif]. Let ϕ be Σ. For convenience, let Fv(ϕ) = {x, y}. Suppose
that at a certain point of working in PW we have reached a stage s in which
the premise of [Unif] has been derived. Then from that point on it is valid
in any sphere of operation that we reach. Let a be an object in some such
sphere of operation. If ∀x ∈ Z∃yϕ is false for Z := a in every sphere of
operation that includes a which is reached at stage s or later, then certainly
the corresponding conclusion of [Unif] is valid in all such spheres. Otherwise
there is a stage s′ in which ∀x ∈ Z∃yϕ is true for Z := a. Since ϕ is Σ, so
is ∀x ∈ Z∃yϕ. Hence Theorem 4.24 implies that ∀x ∈ Z∃yϕ remains true
for Z := a at any stage from s′ on. This and the validity of the premise
of [Unif] in the sphere of operation M of each such stage imply that the
collection of pairs 〈c, d 〉 such that c ∈ a and 〈c, d 〉 satisfies ϕ in M forms
(‘in V’) a function f on a. From the fact that ϕ is Σ it again follows that as a
collection of pairs f remains invariant. Therefore f is entitled to be added at
some stage to the sphere of operation of that stage, and from that point the
corresponding instance of [Unif] remains valid.
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Note 4.25. The only justification given by Feferman in [19] for the version
of [Unif] which is used in his auxiliary system ∃/P is that he does not believe
there can be a real dispute about it. However, one might wonder why his rule
cannot simply be replaced by an axiom stating that its premise implies its
conclusion (both without the ‘�’ in front). Why could there be a real dispute
about this implication, but not about the rule? The answer is clear from the
argument given above: For the truth of the conclusion of the rule for some a
in someM such that ∀x ∈ Z∃yϕ holds inM forZ := a, it is crucial that the
premise of the rule (i.e., the unicity condition) remains valid in any sphere
of operation that contains M; its truth just at M itself is insufficient.

4.4. Comparison with Feferman’s systems. The design of PW has a lot
in common with - and was greatly influenced by - the second-order system
P + ∃/P for predicative analysis that Feferman has developed in [19]. In
particular:

• In practice, neither PW nor P + ∃/P has a signature which is fixed
in advance, and the method of repeatedly extending the language and
adding new corresponding axioms is an essential component of the
work in both.

• The definitions of both systems involve a simultaneous recursive
construction of their sets of symbols, terms, formulas, axioms, and
rules.

• The two special rules of PW, [OpI] and [Unif], which (as is shown
below) give this system its strong power (far beyond that of the systems
RST� and PZF investigated in [5, 7, 10]), generalize (respectively) to
set theory the following two rules from [19]:

Functional defining rule: This rule allows to infer

�P ∀v1∀v0(ϕ(v1, v0) ↔ v0 = Fϕ(v1))

from the premises �P ∀v1∀v2∀v3(ϕ(v1, v2) ∧
ϕ(v1, v3) → v2 = v3) and �∃/P ∀v1∃v0ϕ(v1, v0),
provided thatϕ is a formula in which quantification
is made only over the lowest type N (implying that
ϕ is absolute).

Unification rule: This rule allows to infer

�∃/P ∀v1 ∈ N∃v0ϕ(v1, v0) → ∃f∀v1 ∈ Nϕ(v1, f(v1))

from �P ∀v1 ∈ N∀v2∀v3(ϕ(v1, v2) ∧ ϕ(v1, v3) →
v2 = v3), provided that ϕ is a formula in which
quantification is made only over N.

It should be noted that a preliminary version, called [F], of a
combination of [OpI] and [Unif] appears already in the last section
of [15], where predicativity at higher types is discussed. [F] allows to
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infer from ∀x∃! yϕ(x, y) the formula ∃f∀x∀y(ϕ(x, y) ↔ y = f(x)),
provided that ϕ is a Σ-formula. (Note that unlike in the present context
of type-free set theory, in [F] the variable f is of type higher than that
of x.) The rule [F] was then implicitly split in [19] into the two rules
described above.

Nevertheless, there are also important differences between PW and
P + ∃/P:

1. PW is a single system. In contrast, P + ∃/P is a combination of two
different ones: P and ∃/P. P is taken to be the major system, while
the stronger system ∃/P is taken to be only an auxiliary one, which is
needed for the precise definition of P. The connection between these
two systems involves some choices for which no justification is given
in [19]. (See Weaver’s criticism, with which I fully agree, in Section 1.6
of [50].) We believe, in fact (though we have not tried to show), that
with different (but still predicatively justified) choices, P + ∃/P can be
strengthened to a single theory which is as strong as PW.

2. P and ∃/P are based on an extensive system of types, which has types
of all finite levels (but actually uses only those of levels 0, 1, and 2).
PW, in contrast, is a type-free, single-sorted set theory.

3. Unlike PW, which is purely first-order, P and ∃/P have second-order
variables in addition to the first-order ones. In the case of ∃/P it is even
allowed (under certain conditions) to quantify on them. Moreover,
both systems employ specific second-order rules, like substitution of
terms, and even (again under certain conditions) of formulas, for
second-order variables. (No rule of substitution is needed in the case
of PW.)

4. The set of natural numbers is taken as given in P. In PW it is defined.

Note 4.26. Because of these differences, and because PW has simpler
language and less rules than P + ∃/P, we believe that it is fair to say that
PW is significantly simpler then P + ∃/P. The latter, in turn, is according
to Feferman himself more perspicuous than the original predicative systems
of [15]. These observations justify the claim made at the beginning of
Note 1.8.

Other systems of Feferman which are obviously related to PW are the
pure set theories PSi and PSiE (i = 0, 1) which were introduced in [18] (see
Note 1.4). Like PW, they too are intuitively motivated by the invariance
criterion, and so Σ-formulas and absolute formulas play an important role
in their formulation. Accordingly, those systems are less restricted than
the second-order systems of [15]. Thus the union operation is allowed in
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them, although it is taken as impredicative in most of Feferman’s papers.21

On the other hand, unlike PW, none of those systems respects our principle
(I) from Section 1.4.2, since their axiomatizations include purely existential
principles. An example is given by the Σ-reflection rule, which allows to infer
∃a�(a) from � in case � is a Σ-formula (where �(a) is obtained from � by
restricting each quantifier in it to a). PSiE (i = 0, 1) violates Principle (II)
(from Section 1.4.2) as well, since it includes an axiom that says that every
set is enumerable. Another very significant point of difference is due to the
fact (shown in [18]) that PS1 and PS1E has a minimum model consisting
of all sets constructible before Γ0. In contrast, the results of Section 7 imply
than any transitive model of PW should contain Γ0. It follows that although
the predicativity of the systems in [18] is dubious, in some important sense
they are all weaker than PW.22

§5. Some examples of the power of PW.

5.1. Abstraction terms and RST. Let Fv(ϕ) = {x, v1, ...,vn} (n ≥ 0), and
suppose that ϕ 	 {x}. Using [Comp], this entails

�PW ∀v1 ... ∀vn∃! v0∀x(x ∈ v0 ↔ ϕ).

Since the formula ϕ� := ∀x(x ∈ v0 ↔ ϕ) is Σ,23 an application of [OpI]
yields

�PW Fϕ�(v1, ...,vn) = v0 ↔ ∀x(x ∈ v0 ↔ ϕ(x, v1, ...,vn)).

Henceforth we shall write {x | ϕ(x, v1, ...,vn)} instead of Fϕ�(v1, ...,vn)
(where ϕ� is defined from ϕ as above), and call this an abstraction term.
Obviously, �PW ∀x(x ∈ {x | ϕ} ↔ ϕ). It follows that PW is an extension
of the theory RST from [5]. By the results of that paper, this implies that
every rudimentary operation is definable in PW. Here are some examples of
terms available in RST, and so in PW:

• ∅ =Df {x | x 
= x}.
• {t1, ...,tn} =Df {x | x = t1 ∨ ··· ∨ x = tn}.
• 〈t, s〉 =Df {{t}, {t, s}}.
• {x ∈ t | ϕ} =Df {x | x ∈ t ∧ ϕ} (provided ϕ 	 ∅ and x 
∈ Fv(t)).

21Following Weyl, Feferman did not accept Dedekind’s argument for the general principle
of g.l.b. that is based on the general union (or alternatively, intersection) operator. This
rejection of the g.l.b. principle (and Dedekind’s argument for it) can be found in many of his
papers (see, e.g., the 2nd page of his famous [15]).

22More information about the relations between the axioms and rules of PW and those of
PS1 is given in Note 5.9.

23More precisely, the logically equivalent formula ∀x ∈ v0ϕ(x) ∧ ∀x(ϕ(x) → x ∈ v0) is
Σ.
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• {t(x) | x ∈ s} =Df {y | ∃x.x ∈ s ∧ y = t}.
•

⋃
t =Df {x | ∃y.y ∈ t ∧ x ∈ y}.

• s × t =Df {x | ∃a∃b.a ∈ s ∧ b ∈ t ∧ x = 〈a, b〉}.
• 
xϕ =Df

⋃
{x | ϕ} (provided ϕ 	 {x}).

• �x ∈ s.t =Df {〈x, t〉 | x ∈ s}.
• f(x) =Df 
y.∃z∃v(z ∈ f ∧ v ∈ z ∧ y ∈ v ∧ z = 〈x, y〉).
• Dom(f) = {x ∈

⋃
f | ∃y ∈

⋃ ⋃
f.〈x, y〉 ∈ f}.

• Im(f) = {x ∈
⋃
f | ∃y ∈

⋃⋃
f.〈y, x〉 ∈ f}.

• f � s =Df {〈x,f(x)〉 | x ∈ s} (where x is new).

Note 5.1. The definition of 	 does not directly imply that z = 〈x, y〉 	
{y}. Therefore we could not have defined abovef(x) := 
y.∃z(z ∈ f ∧ z =
〈x, y〉). However, it is not difficult to construct a formula �(x, y, z) that is
equivalent in PW to z = 〈x, y〉 and �(x, y, z) 	 {y}, and even �(x, y, z) 	
{x, y}. (Implicitly, this is what is done above in the definition of f(x).)
Therefore from now in we assume that z = 〈x, y〉 	 〈x, y〉. (In addition
z = 〈x, y〉 	 {z} too, of course.)

The following are examples of easy related theorems of RST:

• ∃!xϕ(x) → ∀x(ϕ(x) ↔ x = 
xϕ(x)) (if ϕ 	 {x}).
• u ∈ s → (�x ∈ s.t)u = t{u/x} (if u is free for x in t).
• Fun(f) → (〈x, y〉 ∈ f ↔ y = f(x)), where Fun(f) is the following

absolute formula (which says that f is a function):

∀z ∈ f∃x∃y(z = 〈x, y〉) ∧ ∀x∀y1∀y2(〈x, y1〉 ∈ f ∧ 〈x, y2〉 ∈ f → y1 = y2).

5.2. Explicit definitions and the extended [OpI].
5.2.1. Explicit definitions. Explicit definitions of operations are particu-

larly simple case of applying [OpI]:

Proposition 5.2. Let t be a term of PW such that Fv(t) = {v1, ...,vn}.
Then PW has an operation F such that �PW ∀v1 ··· ∀vnF (v1, ...,vn) = t.

Proof. F = Fϕ , where ϕ is v0 = t. �

5.2.2. The extended [OpI]. The use of [OpI] can be made more effective
with the help of the following proposition:

Proposition 5.3. For 1 ≤ i ≤ k, let ϕi and�i be formulas of PW such that
ϕi ∈ Σ, Fv(ϕi) = {v0, v1, ..., vn}, �i 	 ∅, and Fv(�i) ⊆ {v1, ...,vn}. Suppose
that for every 1 ≤ i, j ≤ k such that i 
= j we have that �PW ¬(�i ∧ �j) and
that �PW ∀v1, ...,∀vn(�i → ∃! v0ϕi). Then PW has an operation F such that
for every 1 ≤ i ≤ k: �PW ∀v1 ... ∀vn(�i → ϕi{F (v1, ...,vn)/v0}).

Proof. F =F	 , where 	=(�1 ∧ ϕ1)∨ ··· ∨(�k ∧ ϕk)∨(¬(�1 ∧ ... �k) ∧
v0 = 0). �
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We shall call the principle stated in Proposition 5.3 the extended [OpI].

Example 5.4. Let ϕ be the following Σ-formula (where we write y, x, n
instead of v0, v1, v2, respectively).

∃f(Fun(f) ∧Dom(f) = S(n) ∧ f(0) = x ∧ f(n) = y ∧ ∀i ∈ n.f(i + 1) =
⋃
f(i).

An induction on n shows that �PW ∀x∀n(n ∈ � → ∃! yϕ). Hence the
extended [OpI] implies that �PW ∀x∀n(n ∈ � → ϕ{H (x, n)/y}) for some
operation H of PW. Let RTC (x) = ∪{H (n, x) | n ∈ �}. Then RTC (x)
represents in PW the reflexive–transitive closure of x, and so TC (x) =
RTC (x) – {x} represents the transitive closure of x. Hence the relation ∈�
(the transitive closure of ∈) is definable in PW by y ∈� x =Df y ∈ TC (x).

5.3. Transitive closures and PZF. Let � be a formula of PW such that
{x, y} ⊆ Fv(�), and � 	 {y}. Define ϕ like in Example 5.4, replacing
the conjunct ∀i ∈ n.f(i + 1) =

⋃
f(i) by ∀i ∈ n.f(i + 1) = {y | ∃z ∈

f(i).�{z/x}}. Following exactly the same procedure as in Example 5.4,
we construct in PW an operation TC� such that TC�(x, y) := y ∈ TC�(x)
is true iff there is a finite �-chain that connects y to x. Hence this formula is
semantically equivalent to the formula (TCx,y�)(x, y) of PZF. Moreover,
like the latter,TC�(x, y) 	 {y}. It is also easy to prove in PW thatTC�(x, y)
has all the properties that (TCx,y�)(x, y) has in PZF according to Section
3.3 of [5]. It follows that PW contains PZF.

5.4. The use of Δ-formulas.

Definition 5.5. A formula ϕ is a Δ-formula if both ϕ and ¬ϕ are
equivalent in PW to Σ-formulas.

Proposition 5.6. Let ϕ be a Δ-formula, Fv(ϕ) = {v1, ...,vn}. Then PW
has an n-ary predicate Rϕ such that �PW Rϕ(v1, ...,vn) ↔ ϕ.

Proof. Let � := (ϕ ∧ v0 = 1) ∨ (¬ϕ ∧ v0 = 0). Obviously, �PW ∀v1 ...
∀vn∃! v0�, and � is equivalent in PW to a Δ-formula ��. Therefore by
[OpI] we get

�PW ∀v1 ... ∀vn(ϕ ∧ F��(v1, ...,vn) = 1) ∨ (¬ϕ ∧ F��(v1, ...,vn) = 0).

It follows that �PW ϕ ↔ F��(v1, ...,vn) = 1. Let ϕ� := F��(v1, ...,vn) = 1.
Then ϕ� is absolute. Hence we may apply [PrI] to it. Take Rϕ to be Pϕ� . �

Corollary 5.7. PW has a predicate Tr which defines in it truth in N of
formulas in the first-order language of PA.

Proof. It is well-known that truth in N for that language is definable by
a Δ-formula, and it is not difficult to see that the main properties of truth
are derivable in PW for the corresponding predicate that Proposition 5.6
provides. �
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Corollary 5.8. Let ϕ be a Δ-formula, Fv(ϕ) = {v1, ...,vn}. Then:

�PW ∀a∃Z∀v1 ... ∀vn(〈v1, ...,vn〉 ∈ Z ↔ 〈v1, ...,vn〉 ∈ a ∧ ϕ).

Note 5.9. The stronger form of [PrI] given by Proposition 5.6 appears
as an admissible procedure in [18]. (see (ii) on page 18 there). However, its
direct use for getting new instances of nonlogical schemas of the theory PS1

considered there is explicitly forbidden—in sharp contrast to its use here.
Our Corollary 5.8 provides what is called in [16] the ‘predicative separation
rule’. Both the procedure and the rule are obvious counterparts of [HCR]
(also called [Δ1

1-CR] in, e.g., [24])—the hyperarithmetic comprehension rule.
This rule is used in [15] as the basis of the progression of theories HCα, as
well as in the single second-order theory IR. According to [15], the latter
proves exactly the second-order arithmetic formulas that can be proved by
predicative means according to the Γ0-thesis.

5.5. Predicative set-theoretic recursion.

Theorem 5.10. Let F be an (n + 2)-ary operation of PW. Then PW has an
(n + 1)-ary operation G such that

�PW ∀z1 ... ∀zn∀x.G(z1, ...,zn, x) = F (z1, ...,zn, x,G �TC (x))

(where by G �y we mean the function �u ∈ y.G(z1, ...,zn, u)).

Proof. For simplicity of the presentation, we prove the case n = 0. We
freely use (here and later) facts about provability in PW that can easily be
seen.

Define a formula ϕ such that Fv(ϕ) = {x,f} by

ϕ :=Fun(f)∧Dom(f)=RTC (x) ∧ ∀z∈RTC (x).f(z)=F (z, f �TC (z)).

Next we show that ϕ has the following properties.

1. ϕ is absolute.This easily follows from Example 5.4.
2. �PW ϕ(x,f) ∧ z ∈ RTC (x) → ϕ(z, f �RTC (z)).

This follows from �PW z ∈ x → RTC (z) ⊆ RTC (x) and ϕ’s defi-
nition.

3. �PW ϕ(x,f1) ∧ ϕ(x,f2) → f1 = f2.
The proof is by ∈-induction on x, using the previous item and the

fact that �PW RTC (x) = {x} ∪
⋃
{RTC (z) | z ∈ x}.

4. �PW ϕ(x1, f1) ∧ ϕ(x2, f2) ∧ z ∈ RTC (x1) ∩RTC (x2) → f1(z) =
f2(z).

This follows from the previous two items and the definition of ϕ.
5. �PW ∀x∃fϕ(x,f).

The proof is by an ∈-induction (in PW) on x. So assume (in PW)
that ∀z ∈ TC (x)∃gϕ(z, g). Using an application of [Unif] (which
is justified by items 1 and 3), it follows from this assumption that
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there is a function g such that Dom(g) = TC (x) and ϕ(z, g(z))
holds for every z ∈ TC (x). Let f� =

⋃
{g(z) | z ∈ TC (x)}. From

item 4 it follows that f� is a function whose domain is TC (x). Let
f = f� ∪ {〈x, F (x,f�)〉}. It is straightforward to verify that ϕ(x,f).

Define �(x, y) = ∃f.ϕ(x,f) ∧ f(x) = y. From items 3 and 5 it follows
that�PW ∀x∃! y�(x, y), while item 1 implies that� is a Σ-formula. Therefore
by applying [OpI] we get an operation G such that �PW �{G(x)/y}.
Obviously, G has the required property. �

Example 5.11. From Theorem 5.10 it follows that PW has a unary oper-
ation rank such that �PW rank(x) =

⋃
{S(rank(y)) | y ∈ x}. Obviously,

platonists assign to any set which predicativists construct the same rank as
the predicativists do.

§6. Ordinals in PW. The notion of an ordinal as a type of some well-
order R is totally impredicative. Therefore like in ZF (and unlike Feferman
or Schütte), we identify here the notion of an ordinal with that of a von
Neumann’s ordinal.

6.1. Basic theory of ordinals.

Definition 6.1.

• Tra(x) := ∀y ∈ x∀z ∈ y.z ∈ x (x is transitive).
• Lin(x) := ∀y ∈ x∀z ∈ x.y ∈ z ∨ y = z ∨ z ∈ y (x is linear).
• On(x) := Tra(x) ∧ Lin(x) (x is an ordinal).

As usual, we use small Greek letters to vary over ordinals (writing, e.g.,
∃αϕ instead of ∃x(On(x) ∧ ϕ) and ∀αϕ instead of ∀x(On(x) → ϕ)). We
shall also frequently write α < � instead of α ∈ � and α ≤ � instead of
α ∈ � ∨ α = � .

Proposition 6.2. The following are provable already in VBS:

1. On(α) ∧ � ∈ α → On(�).
2. On(∅).
3. On(α) ↔ On(S(α)).
4. α ≤ � ↔ α ⊆ �.
5. α ≤ � ↔ α ∈ S(�).
6. α = ∅ ∨ ∅ ∈ α.
7. � ∈ α → (α = S(�) ∨ S(�) ∈ α).
8. � ∈ α ∨ α = � ∨ α ∈ �.
9. Every transitive set of ordinals is an ordinal.

10. Every set A of ordinals has a supremum supA.
11. If α 
= 0 then α = supα ∨ α = S(supα) (and not both). In the first

case α is called a limit ordinal, in the second—a successor.
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12. Every non-empty set A of ordinals has a minimal element minA.

Proof. All the proofs are standard, and are left for the reader. We just
note that none of the proofs requires the full power of the ∈-induction
schema of VBS; ∈-induction limited to absolute formulas suffices. (The
latter principle is equivalent to the foundation axiom of ZF.) �

From now on, we leave to the readers most of the proofs of claims about
provability in PW in case the proofs in PW are practically just the standard
ones, and their availability in PW can easily be checked. (This does not
include, of course, any proof which makes use of [PrI], [OpI], or [Unif].)

Proposition 6.3. The principle of transfinite induction on ordinals is
available in PW: �PW ∀α(∀� < αϕ(�) → ϕ(α)) → ∀αϕ(α).

6.2. Operations on ordinals.

Theorem 6.4. Let F be an (n + 2)-ary operation in PW. Then PW has an
(n + 1)-ary operation G such that

�PW ∀�z∀α.G(�z, α) = F (�z, α, �� ∈ α.G(�z, �)).

Proof. Immediate from Theorem 5.10, since �PW On(α) →
TC (α) = α. �

Once we have the ability to use transfinite recursion on ordinals, we can
introduce the standard binary operations of addition (α + �), multiplication
(α × �) and exponentiation (α�) in the usual way, and prove their main
properties using transfinite induction. One particularly important such
property is given in the next definition and proposition.

Definition 6.5. An ordinal α is additive principal if � + α = α for every
� < α.

Proposition 6.6. �PW α is additive principal iff α = �� for some � < α.

In the sequel we shall also need the following theorem about�-sequences.

Theorem 6.7. Suppose that (∗) �PW �(α, �1) ∧ �(α, �2) → �1 = �2,
where �(α, �) is a Σ-formula. Then the following is a theorem of PW:

∀α∃��(α, �) → ∀�∃!f(Fun(f)∧Dom(f)=�∧f(0)=�∧∀n ∈ ��(f(n), f(n + 1))).

Proof. The proof of the uniqueness of f is standard, and is left to the
reader. For the existence of f, let 	(�, n, h) be the following Σ-formula:

Fun(h) ∧Dom(h) = S(n) ∧ h(0) = � ∧ ∀k < n[On(h(S(k))) ∧ �(h(k), h(S(k)))].

Using (∗), an easy induction on k shows that

�PW 	(�, n, h1) ∧ 	(�, n, h2) → ∀k < S(n) h1(k) = h2(k).
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Hence (∗∗) �PW 	(�, n, h1) ∧ 	(�, n, h2) → h1 = h2.
Since 	 is a Σ-formula, it follows from (∗∗) by [Unif] that

�PW ∀n ∈ �∃h 	(�, n, h) → ∃g[Fun(g) ∧Dom(g) = � ∧ ∀n ∈ �	(�, n, g(n))].

On the other hand, it is straightforward to prove in PW by induction on
n that ∀α∃��(α, �) → ∀n ∈ �∃h 	(�, n, h). Given �, the assumption that
∀α∃��(α, �) implies therefore in PW that there exists a function g such
that Dom(g) = � and 	(�, n, g(n)) holds for every n ∈ �. It is easy now
to verify (assuming ∀α∃��(α, �)) that �n ∈ w.g(n)(n) has the required
properties. �

6.3. Ordering functions.

Definition 6.8. A function f such that Dom(f) and Im(f) consist
of ordinals is strictly monotonic if f(�) < f(�) whenever � < � (�, � ∈
Dom(f)).

Proposition 6.9. PW proves that if f is a strictly monotonic function such
that Dom(f) is an ordinal, then α ≤ f(α) for every α ∈ Dom(f).

Proof. By transfinite induction on α. �

Notation. f[X ] =Df {f(x) | x ∈ X}.

Definition 6.10. A function f is an ordering function of a set B of ordinals,
(in symbols: Ord (f,B)) if:

• Dom(f) is an ordinal.
• Im(f) = B .
• f is strictly monotonic.

Proposition 6.11. PW proves that every set B of ordinals has a unique
ordering function f.

Proof. The proof of uniqueness is standard, and is left for the reader.
To prove the existence of f, we first introduce the following abbreviations:

ϕ(X, g) := ∀x ∈ X.On(x) ∧ Fun(g)

�0 = max{S(supX ), S(sup{x ∈ Im(g) | On(x)})}

� := (� ∈ X ∨ � > supX ) ∧ � 
∈ Im(g) ∧ ∀�
< �((� ∈ X ∨ � > supX ) → � ∈ Im(g)).

It is easy to see that

�PW ϕ(X, g) → (�0 > X ∧ �0 
∈ Im(g)).
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Using items 10 and 12 of Proposition 6.2, this implies

�PW ∀X∀g(ϕ(X, g) → ∃! ��(X, g, �)).

Since ϕ is absolute, and � is in Σ (and even absolute), an application of the
extended [OpI] (Section 5.2.2) provides therefore an operation F such that

�PW ∀X∀g(ϕ(X, g) → �(X, g, F (X, g))).

It easily follows from that by Theorem 6.4 that PW has an operation G such
that

�PW ∀X∀�((∀x ∈ X.On(x)) → G(X, �) = F (X, �� ∈ �.G(X, �)).

Suppose now that B is a set of ordinals. Then it follows from the last
two theorems of PW shown above that ∀��(B, �� ∈ �.G(B, �), G(B, �)).
It is straightforward to show that for every ordinal �, �� ∈ �.G(B, �) is
strictly monotonic. It follows by Proposition 6.9 that G(B, S(supB)) ≥
S(supB), and so G(B, S(supB) 
∈ B . Let � be the minimal ordinal such
that G(B, �) 
∈ B . It is not difficult to see that �� ∈ �.G(X, �) is an ordering
function of B. �

§7. The operations φ and Γ. The main problem dealt with in this section is
to define the operations φ and Γ which are needed for the standard definition
of the ordinal Γ0 (i.e., Γ(0)). That this is possible is not at all obvious. Let
us explain the difficulty. Recall (see, e.g., [43]) that the binary operation φ
is defined by φ(α, �) = φα(�), where φ0(�) = �� , and for α > 0, φα(�) is
the �th ordinal � such that φ�(�) = � for every � < α. (The unary operation
Γ on ordinals is then defined by letting Γ(�) be the �th ordinal � such
that φ(�, 0) = �. In particular, Γ0 is the first fixed-point of the operation
�α.φ(α, 0).) Hence φ is obtained as the unification of the class [φα | On(α)].
Unfortunately, in PW we can unify only a set of functions, not a set of
operations, and certainly not a class of operations. In fact, we cannot even
define sets of operations in PW, since operations are not objects of it. Our
problem is therefore to find some set of functions that can replace the class
of operations [φα | On(α)] in the definition of φ(α, �).

Note 7.1. The problem does not arise, e.g., in the development of φ and
Γ in §13 of [43], since the existence of the set O of all countable ordinals is
assumed there. This assumption makes it possible to take each φα (where
α ∈ O) as a function from O to O. Doing the same is of course impossible
in the framework of PW, since O is not available there.

7.1. The binary operation φ.

Definition 7.2. The absolute formula �φ(�, α, f) is the conjunction of
the following absolute formulas:
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1. On(α) ∧On(�).
2. Fun(f) ∧Dom(f) = α.
3. ∀�∈α(Fun(f(�))∧On(Dom(f(�)))∧∀�∈Dom(f(�))On(f(�)(�))).
4. α > 0 → (Dom(f(0)) = � ∧ ∀� < �(f(0)(�) = ��)).
5. ∀�(0 < � < α → Ord (f(�), {� ∈ � | ∀� < �(� ∈ Dom(f(�)) ∧
f(�)(�) = �)}).

Proposition 7.3. �PW �φ(�, α, f1) ∧ �φ(�, α, f2) → f1 = f2.

Proof. Suppose that �φ(�, α, f1) and �φ(�, α, f2). Then Dom(f1) =
Dom(f2) = α. We show that f1(�) = f2(�) for every � ∈ α. For this we
use an induction on �. The claim is obvious for � = 0. So assume that � > 0
and that f1(�) = f2(�) for every � ∈ �. By the definition of �φ, this implies
that both f1(�) and f2(�) are the ordering functions of the same set of
ordinals. Hence f1(�) = f2(�). �

Lemma 7.4. �PW � < α ∧ �φ(�, α, f) → �φ(�, �, f � �).

Proof. Immediate from the definition of �φ . �
Proposition 7.5. �PW ∀�∀α∃!f �φ(�, α, f).

Proof. Ifα = 0 thenf = ∅ is the only f such that�φ(�, α, f). So assume
that α > 0. Since �φ is absolute, it follows by [Unif] from Proposition 7.3
that

(�) �PW ∀� ∈ α∃f�φ(�, �, f) → ∃! g(Fun(g) ∧Dom(g)
= α ∧ ∀� ∈ α�φ(�, �, g(�))).

Now let � be an ordinal. By Proposition 7.3, it suffices to prove in PW that
∀α∃f�φ(�, α, f). For this we use an induction on α. The claim is obvious in
case α = 0 or α = 1. So assume that α > 1 and that ∀� ∈ α∃f�φ(�, �, f).
Using (�), this implies that there is a function g such that Dom(g) = α and
∀� ∈ α�φ(�, �, g(�)). Now we have two cases to consider:

• α = S(�0) for some �0. then we let f = g(�0) ∪ {〈�0, o〉}, where o is
the ordering function of {� ∈ � |∀� < �0(� ∈ Dom(f(�)) ∧ f(�)(�) =
�)}).

• α is a limit ordinal. Then for � < α let f(�) = g(S(�))(�).

Using Lemma 7.4, it is straightforward to verify in both cases that
�φ(�, α, f). �

Proposition 7.5 allows us to apply [OpI] and introduce in PW a new
operation symbol Fφ together with:

AXIOMFφ : f = Fφ(�, α) ↔ �φ(�, α, f).
In other words: for any two ordinals α and �, Fφ(�, α) is the unique

function that has the properties 2–5 from Definition 7.2.
Some other important properties of Fφ are given in the next proposition.
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Proposition 7.6. The following are theorems of PW:

1. If α > 0 and � < � then Fφ(�, α)(0)(�) = �� .
2. If α1 < α2 then Fφ(�, α1) = Fφ(�, α2) � α1.
3. If �1 < �2 then for every � < α : Dom(Fφ(�1, α)(�)) is an initial

segment of Dom(Fφ(�2, α)(�)), and Fφ(�1, α)(�) = Fφ(�2, α)(�) �
Dom(Fφ(�1, α)(�)).

4. If �1 < �2 then for every �2 ∈ Dom(Fφ(�, α)(�2)) there exists
�1 ≥ �2 such that �1 ∈ Dom(Fφ(�, α)(�1)), and Fφ(�, α)(�2)(�2) =
Fφ(�, α)(�1)(�1).

5. If � < α and � ∈ Dom(Fφ(�, α)(�)) then there exists � < � such that
Fφ(�, α)(�)(�) = ��. In particular, Fφ(�, α)(�)(�) > 0.

6. If � < α and � ∈ Dom(Fφ(�, α)(�)) then Fφ(�, α)(�)(�) ≥ max(�, �).

Proof.

1. Immediate from AXIOMFφ and Definition 7.2.
2. Immediate from AXIOMFφ and Lemma 7.4.
3. Induction on �. The claim is obvious for � = 0 by the first item.

Now suppose that � > 0, and that for every � < � it holds that
Dom(Fφ(�1, α)(�)) is an initial segment of Dom(Fφ(�2, α)(�)), and
Fφ(�1, α)(�) = Fφ(�2, α)(�) � Dom(Fφ(�1, α)(�)). For i = 1, 2 let

Ai = {� ∈ �i | ∀� < �(� ∈ Dom(Fφ(�i , α)(�)) ∧ Fφ(�i , α)(�)(�) = �)}.

Then A1 = A2 ∩ �1 by our induction hypothesis. Since Fφ(�i , α)(�) is
the ordering function of Ai (i = 1, 2), this implies the claim for �.

4. Immediate from the fact that Fφ(�, α)(�2) is the ordering function of a
certain subset of Im(Fφ(�, α)(�1)).

5. Immediate from the previous item and the fact that Fφ(�, α)(0)(�) =
��.

6. That Fφ(�, α)(�)(�) ≥ � follows from Proposition 6.9 in case � > 0,
and from the fact that �� > � in case � = 0.
That Fφ(�, α)(�)(�) ≥ � is shown by induction on �. It is certainly
true if � = 0. Suppose that � > 0. Let � < �. Then item 3 of this
proposition and the induction hypothesis for � together imply that
� ≤ Fφ(�, α)(�)(�). Since this is true for every � < �, it follows that
� ≤ Fφ(�, α)(�)(�). �

Next we introduce a ternary Σ-formula that expresses (as we show below)
the graph of the binary operation φ on ordinals.

Definition 7.7. ϕφ(α, �, �) is the following Σ-formula:

∃�(� ∈ Dom(Fφ(�, S(α))(α)) ∧ Fφ(�, S(α))(α)(�) = �).

Proposition 7.8. �PW ϕφ(α, �, �) → (α ≤ � ∧ � ≤ �).
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Proof. This follows from the last item of Proposition 7.6. �
Proposition 7.9. �PW ϕφ(α, �, �1) ∧ ϕφ(α, �, �2) → �1 = �2.

Proof. Suppose that ϕφ(α, �, �1) and ϕφ(α, �, �2). Then there exist �1
and �2 such that � ∈ Dom(Fφ(�1, S(α))(α)) ∧ Fφ(�1, S(α))(α)(�) = �1,
and also � ∈ Dom(Fφ(�2, S(α))(α)) ∧ Fφ(�2, S(α))(α)(�) = �2. Without
loss in generality, we may assume that �1 ≤ �2. Then it follows from item 3
of Proposition 7.6 that Fφ(�2, S(α))(α)(�) = �1. Hence �1 = �2. �

To follow the proof of the next theorem, it would be helpful to remember
that the intend meaning of the formula ‘ϕφ(α, �, �)’ of PW is ‘φ(α, �) = �’
(which at present is a formula only in the metalanguage of PW).

Theorem 7.10. �PW ∀α∀�∃! �ϕφ(α, �, �).

Proof. The uniqueness part follows from Proposition 7.9. We prove the
existence part by using an ∈-induction on α in PW to simultaneously show:

(a) ∀�∃�ϕφ(α, �, �).
(b) ∀�∀�([Fun(f) ∧ Fun(g) ∧Dom(f) = Dom(g) = � ∧ ∀n ∈ �ϕφ(α,
f(n), g(n))∧�=sup{f(n) |n ∈ �} ∧ � = sup{g(n) | n ∈ �}] →
ϕφ(α, �, �)).

The case α = 0 is easy, since �PW ϕφ(0, �, �) ↔ �� = �.
Now fix some α > 0, and assume that (a) and (b) are true for every � ∈ α.

In particular, we have that ∀� ∈ α∀�∃�ϕφ(�, �, �). This implies

(1) ∀�∀� ∈ α∃�ϕφ(�, �, �).

Using Proposition 7.9, an application of [Unif] yields

(2) �PW ∀� ∈ α∃�ϕφ(�, �, �))
→ ∃!f(Fun(f) ∧Dom(f)=α ∧ ∀� ∈ αϕφ(�, �, f(�))).

From (1) and (2), we get

(3) ∀�∃!f(Fun(f) ∧Dom(f) = α ∧ ∀� ∈ αϕφ(�, �, f(�))).

Let 	(�, �) be the following formula:

	 := ∃f(Dom(f) = α ∧ ∀� ∈ αϕφ(�, �, f(�)) ∧ � = sup{f(�) | � ∈ α}).

Then 	 is in Σ, and (3) implies that the following holds for the given α:

(4) ∀�∃! �	.

Next we show that for every ordinal � there exists a bigger ordinal � such
thatϕφ(�, �, �) holds for every � ∈ α. So fix an ordinal � . From (4) it follows
by Theorem 6.7 that there exists an �-sequence g such that g(0) = � + 1,
and 	{g(n), g(n + 1)} for every n ∈ �. Let � = sup{g(n) | n ∈ �}. Then
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g(n) ≤ � for every n ∈ �. Hence � < � (since � < g(0)). We show that
ϕφ(�, �, �) for � < α. So fix � ∈ α. (1) implies that ∀n ∈ �∃� ′ϕφ(�, g(n), � ′).
Using Proposition 7.9 and an application of [Unif], this yields a function d
such that ϕφ(�, g(n), d (n)) for every n ∈ �. Let D = {d (n) | n ∈ �}. Part
(b) of the induction hypothesis entails that ϕφ(�, �,D). Hence � ≤ D by
Proposition 7.8. On the other hand, the fact that 	{g(n), g(n + 1)} implies
that there is a function f such that Dom(f) = α and for every � < α,
ϕφ(�, g(n), f(�)) ∧ g(n + 1) ≥ f(�). In particular, (i) ϕφ(�, g(n), f(�))
and (ii) g(n + 1) ≥ f(�). By Proposition 7.9, (i) entails that f(�) = d (n).
Hence (ii) implies that d (n) ≤ g(n + 1). This is true for every n ∈ �. Hence
D ≤ �. It follows that D = �, implying that ϕφ(�, �, �).

Now we prove (a) forα, i.e., that for every � there is � such thatϕφ(α, �, �).
We do this by induction on � . So suppose that ∀� < �∃�ϕφ(α, �, �). Using
Proposition 7.9 and [Unif], this provides a function h with domain � such
that ∀� < �ϕφ(α, �, h(�)). Let �0 be the least ordinal � such that ϕφ(�, �, �)
for every � ∈ α, and � > sup{h(�) | � < �}. (�0 exists by the claim we have
just proved.) By definition, the first property of �0 means that

(6) ∀� < α∃�(�0 ∈ Dom(Fφ(�, S(�))(�)) ∧ Fφ(�, S(�))(�)(�0) = �0).

By the second item of Proposition 7.6, this implies

(7) ∀� < α∃�(�0 ∈ Dom(Fφ(�, S(α))(�)) ∧ Fφ(�, S(α))(�)(�0) = �0).

Let A(�, �) := �0 ∈ Dom(Fφ(�, S(α))(�)) ∧ Fφ(�, S(α))(�)(�0) = �0, and
let B(�, �) := A ∧ ∀�′ < �¬A{�′/�}. (7) implies that ∀� < α∃� B(�, �).
Obviously, �PW B(�, �1) ∧ B(�, �2) → �1 = �2. Since B is absolute (because
A is), we can use [Unif] in order to infer from the last two facts that
there is a function q such that ∀� < αB(�, q(�)). This, in turn, implies
that ∀� < αA(�, q(�)). Let �0 = sup{q(�) | � < α}. By the third item of
Proposition 7.6, we get from the last claim and the definition of A that

(8) ∀� < α(�0 ∈ Dom(Fφ(�0, S(α))(�)) ∧ Fφ(�0, S(α))(�)(�0) = �0).

Now, by AXIOMFφ and Definition 7.2(5), we have that Im(Fφ(�0, S(α))(α))
is {� ∈ �0 |∀� < α(� ∈ Dom(Fφ(�0, S(α))(�)) ∧ Fφ(�0, S(α))(�)(�) = �)}.
Hence (8) implies that �0 ∈ Im(Fφ(�0, S(α))(α)). It follows that there
exists � ′ in Dom(Fφ(�0, S(α))(α)) such that Fφ(�, S(α))(α)(� ′) = �0.
But for every � < � , �0 > h(�). Since ∀� < �ϕφ(α, �, h(�)), this and
Proposition 7.9 imply that ∀�∀� < �(ϕφ(α, �, �) → � < �0). By definition
of ϕφ, this means that ∀�∀� < �Fφ(�0, S(α))(α)(�) < �0. In particular,
Fφ(�0, S(α))(α)(�) < �0 for every � < � . Therefore � ′ ≥ � . It follows
that � ∈ Dom(Fφ(�0, S(α))(α)) as well (by the definition of an ordering
function). Let � = Fφ(�0, S(α))(α)(�). Then ϕφ(α, �, �).

Finally, we prove that α satisfies (b) too. So let f and g be functions whose
domain is�, and suppose that ∀n ∈ �ϕφ(α,f(n), g(n)), �=sup{f(n) |n ∈
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�} and � = sup{g(n) | n ∈ �}. Then ∀n ∈ �∃�(Fφ(�, S(α))(α)(f(n)) =
g(n)). With the help of the method used above to infer (8) from
(7), we can infer from this that there exists � such that ∀n ∈
�(Fφ(�, S(α))(α)(f(n)) = g(n)). Since �φ(�, S(α), Fφ(�, S(α))) by
AXIOMFφ , and 0 < α < S(α), this implies that Ord (Fφ(�, S(α))(α), {� ∈
� | ∀� < αFφ(�, S(α))(�)(�) = �}. It follows that for every n ∈ � we
have that ∀� < αFφ(�, S(α))(�)(g(n)) = g(n). By item 2 of Proposition
7.6 this implies that ∀� < αFφ(�, S(�))(�)(g(n)) = g(n), and so also
∀� < αϕφ(�, g(n), g(n)) (by the definition of ϕφ). Hence the induction
hypothesis for � < α entails that ∀� < αϕφ(�, �, �). It follows that
∀� < α∃�′(Fφ(�′, S(�))(�)(�) = �). Applying again the method used
to infer (8) from (7), we get from that an ordinal � such that ∀� <
α(Fφ(�, S(�))(�)(�) = �). Therefore ∀� < α(Fφ(�, S(α))(�)(�) = �) (by
the second item of Proposition 7.6). It follows that � ∈ Im(r), where
r = Fφ(�, S(α))(α). Hence � = r(� ′) for some � ′. Since r is monotonic,
and � ≥ g(n) for every n ∈ �, � ′ ≥ f(n) for every n ∈ �, and so � ′ ≥ � . It
follows that � is in the domain of r, and so � = r(� ′) ≥ r(�). On the other
hand, r(�) ≥ r(f(n)) = g(n) for every n ∈ �, and so r(�) ≥ �. Hence
r(�) = �, and so ϕφ(α, �, �). �

Theorem 7.10 allows us to apply [OpI] and introduce in PW a new
operation symbol φ together with the following axiom:

AXIOMφ: � = φ(α, �) ↔ φ(α, �, �).
The standard characteristic properties of φ are given in the next

proposition.

Proposition 7.11. The following are theorems of PW:

1. �1 < �2 → φ(α, �1) < φ(α, �2).
2. φ(0, �) = �� .
3. α > 0 → ∀�(∃�(� = φ(α, �)) ↔ ∀� < α(φ(�, �) = �)).

Proof.

1. Let φ(α, �1) = �1, φ(α, �2) = �2. Then ϕφ(α, �1, �1) and ϕφ(α, �2, �2).
Hence there exist �1 and �2 such that Fφ(�i , S(α))(α)(�i ) = �i for
i = 1, 2. Without loss in generality, we may assume that �1 ≤ �2. Then
it follows from item 3 of Proposition 7.6 thatFφ(�2, S(α))(α)(�1) = �1.
Since Fφ(�2, S(α))(α) is an ordering function, it follows that �1 < �2.

2. Immediate from the first item of Proposition 7.6 (and Theorem 7.10).
3. Suppose first that � = φ(α, �). Then ϕφ(α, �, �), and so there exists
� such that Fφ(�, s(α))(α)(�) = �. Therefore it follows by AXIOMFφ
and Definition 7.2 that Fφ(�, S(α))(�)(�) = � for every � < α. Hence
Fφ(�, S(�))(�)(�) = � for every � < α, by the second item of Proposi-
tion 7.6. It follows that ϕφ(�, �, �), and so φ(�, �) = �, for every � < α.
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For the converse, let φ(�, �) = � (i.e., ϕφ(�, �, �)) for every � < α.
We can show that this implies that there exists � such that � ∈
Im(Fφ(�, s(α))(α))) exactly as we show the same implication for �0
at the proof of Theorem 7.10. This means that there is � such that
Fφ(�, s(α))(α))(�) = �. Hence, by definition, ϕφ(α, �, �), and so there
exists � such that φ(α, �) = �. �

Corollary 7.12. The following are theorems of PW:

1. φ(�, φ(α, �)) = φ(α, �) for every � < α.
2. α > 0 → ∀� < φ(α, �)((∀� < αφ(�, �) = �) → ∃� ′ < �φ(α, � ′) = �).
3. Let α > 0, and suppose that the following three conditions are satisfied:

(a) φ(�, �) = � for every � < α.
(b) φ(α, � ′) < � for every � ′ < � .
(c) ∀� ′ < �[(∀� < αφ(�, � ′) = � ′) → ∃� ′ < �φ(α, � ′) = � ′].
Then φ(α, �) = �.

Proof. Easily follows from Proposition 7.11. �
Proposition 7.13. �PW α ≤ φ(α, �) ∧ � ≤ φ(α, �).

Proof. Immediate from Proposition 7.8. �
Corollary 7.14. PW proves that for every ordinal α > 0 and for

every ordinal � such that ∀� < α φ(�, �) = � there exists � ≤ � such that
φ(α, �) = �.

Proof. � < φ(α, S(�)) by Proposition 7.13. Hence the claim follows from
item 2 of Corollary 7.12. �

Once we have proved Proposition 7.11, all of φ’s main properties (as given,
e.g., at Section 13 of [43]) can predicatively be derived using the standard
proofs. As an example, we present here the full proof of the following well-
know result.

Proposition 7.15. �PW ∀A(A 
= ∅→∀α(φ(α, sup A)=sup{φ(α, �) |
� ∈ A})).

Proof. The claim is obviously true for α = 0. So assume that α > 0.
Using ∈-induction on α, we show that φ(α, �) = �, where � = sup{φ(α, �) |
� ∈ A} and � = sup A. We do that by showing that the three conditions
given in item 3 of Corollary 7.12 are satisfied.

• Let � < α. Then φ(�, �) = sup{φ(�, φ(α, �)) | � ∈ A} by the induction
hypothesis for �. Hence φ(�, �) = � by item 1 of Corollary 7.12.

• Let � ′ < � . Then there exists � ∈ A such that � ′ < �. It follows by item
1 of Proposition 7.11 that φ(α, � ′) < φ(α, �) ≤ �.

• Let � ′<�, and suppose that φ(�, � ′) = � ′ for every � < α. We show
that there exists � ′<� such that φ(α, � ′) = � ′. Since � ′ < �, there
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exists �� ∈ A (and so �� ≤ �) such that � ′ < φ(α, ��). Hence item
2 of Corollary 7.12 implies that there exists � ′ < �� ≤ � such that
φ(α, � ′) = � ′. �

7.2. Γ0 and the operation Γ. Once the operation φ becomes available, it is
almost a routine matter to introduce in PW the operation Γ as well.

Proposition 7.16. �PW α > 0 → (φ(α, 0) = α ↔ ∀� < αφ(�, α) = α).

Proof. The implication from left to right follows from item 1 of Corollary
7.12. Its converse follows from the assumption that 0 < α. �

Theorem 7.17. �PW ∀α∃�(� > α ∧ φ(�, 0) = �).

Proof. Given an ordinal α, we use Theorem 6.7 to define a function f
on � by letting f(0) = S(α), and f(n + 1) = φ(f(n), 0) for every n ∈ �.
Then f(n) ≤ f(n + 1) by Proposition 7.13. Let � = sup{f(n) | n ∈ �}.
Obviously, � > α. We show that also φ(�, 0) = � . By Proposition 7.16 it
suffices to show that φ(�, �) = � for every � < � . So let � < � . Then there
exists k ∈ � such that � < f(n) for every n > k. Hence φ(�, f(n)) = f(n)
for every n > k by item 1 of Corollary 7.12. It follows by Proposition 7.15
that φ(�, �) = � . �

Theorem 7.18. PW has an operation Γ such that PW proves the following:

1. ∀α∀�(� > α → Γ(�) > Γ(α)).
2. ∀α φ(Γ(α), 0) = Γ(α).
3. ∀α∀�(Γ(α) > � ∧ φ(�, 0) = � → ∃� < α � = Γ(�)).

Proof. Using the basic properties of ordinals, Theorem 7.17 implies that

�PW ∀α∃! �(� > α ∧ φ(�, 0) = � ∧ ∀�(� < � ∧ φ(�, 0) = � → � ≤ α)).

Therefore it follows from [OpI] that PW has an operation G such that

�PW G(α) > α ∧ φ(G(α), 0) = G(α) ∧ ∀�(� < G(α) ∧ φ(�, 0) = � → � ≤ α).

We can now use recursion to introduce an operation Γ as follows:

Γ(α) =

⎧⎨
⎩
G(0), α = 0,
G(Γ(�)), α = S(�),
sup{Γ(�) | � < α}, α is a limit ordinal.

It is obvious that Γ has property 1. To show that Γ has property 2, we
use an ∈-induction on α. This is obviously true in case α = 0 or α is a
successor ordinal. So assume that α is a limit ordinal, By Propositions 7.13
and 7.16, it suffices to show that φ(�,Γ(α)) ≤ Γ(α) for all � < Γ(α). So let
� < Γ(α). Since α is a limit ordinal, the definition of Γ(α) implies that there
is � < α such that � < Γ(�). By induction hypothesis and Corollary 7.12,
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for every such � it holds that φ(�,Γ(�)) = Γ(�) and so φ(�,Γ(�)) < Γ(α).
By Proposition 7.15, this implies that φ(�,Γ(α)) ≤ Γ(α).

Finally, we prove that Γ has property 3 by an∈-induction onα. So suppose
that Γ(α) > � and φ(�, 0) = �. There are three cases to consider:

• The case α = 0 is trivial, since by definition of G, there is no � such that
Γ(0) > � and φ(�, 0) = �.

• Suppose that α = S(�) for some �. Then Γ(α) = G(Γ(�)). It follows
that � < G(Γ(�)). By the properties of G, this implies that � ≤ Γ(�). If
� = Γ(�) we are done. Otherwise we apply the induction hypothesis to
�, and get � < � < α such that � = Γ(�).

• Suppose that α is a limit ordinal. Then by definition of Γ, � < Γ(α)
implies that � < Γ(�) for some � < α. By applying the induction
hypothesis to � we get � < � < α such that � = Γ(�). �

Corollary 7.19. �PW φ(�, 0) = � → ∃�(� = Γ(�)).

Proof. Together with the first item of Theorem 7.18, Proposition 6.9
implies that � ≤ Γ(�) < Γ(S(�)). Hence the claim follows from item 3 of
that theorem. �

Corollary 7.20. Feferman–Schütte’s ordinal Γ(0) (usually denoted Γ0) is
definable by a term of PW. So are much bigger ordinals, like Γ(Γ0).

Note 7.21. It is not difficult to define in PW a relation R on � such that
PW proves that 〈�,R〉 is isomorphic to 〈Γ0,∈〉. This can be done, e.g., by
using the recursive well-ordering of the natural numbers which is constructed
in [43] (with the help of notations for the ordinals smaller than Γ0).

§8. Conclusion and further research. As recalled by Feferman in [24],
Kreisel criticized in [31] existing proof theory for “the lack of a clear and
convincing analysis of the choice of methods of proof,” and took as his
ultimate aim “the discovery of objective criteria for such a choice”. Following
ideas of Poincaré and Weyl, in this paper we have done exactly this for
predicative set theory, using invariance of definitions and statements as our
main criterion. What is more, we have shown that the power of predicative
reasoning goes well beyond the accepted Γ0 limit given to it by Feferman
and Schütte.

At this point it should be emphasized that we are not claiming that the
predicative system PW which is developed in this paper is in any way
complete for predicative set theory. Given Weyl’s views about the open-
ended nature of predicativity (which are adopted and followed in this paper),
it is hard to believe that such a complete system exists—even from the
point of view of a Platonist who tries to determine “from the outside”
the extension and limit of predicative reasoning (as Feferman explicitly
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tried to do in [15]). Thus, in this paper we have deliberately confined
ourselves only to methods that were accepted in one way or another by
Feferman in some of his systems. However, there is no reason to continue
to do so in future predicative extensions of PW. One obvious direction
here is to investigate what sorts of inductive definitions of operations and
predicates are predicatively acceptable. (Note that PW allows to introduce
new predicate symbols only via explicit definitions, but there is no reason to
forbid predicative implicit definitions of predicates, as long as the invariance
condition is observed.) According to the principles which guide us in this
work, such a definition should be acceptable whenever it uniquely and
invariantly determines in our framework the predicate or operation which it
defines. This mean that an inductive definition which uniquely determines
only some minimal predicate or operation satisfying certain conditions is not
acceptable. In contrast, an example of an implicit definition of a predicate
that should be acceptable is the following inductive characterization of ∈�,
the transitive closure of ∈: y ∈� x ↔ y ∈ x ∨ ∃z ∈ x.y ∈� z.

Another important goal for further research is to develop mathematics
in PW (or in a predicative extension of it) in a way which is as natural as
possible. Significant work in this direction has started in [7], and is extended
and corrected in the Ph.D thesis of Nissan Levy [32] (see also [33] for a part
of his work).

Finally, two interesting technical questions concerning PW, which we have
not tried to answer yet, are:

• What is the proof-theoretic ordinal of PW?
• What is the minimal ordinal (from a platonistic point of view) that is

not definable by a term of PW? (Given a set theory S, we call such an
ordinal the set-theoretical ordinal of S.)
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