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A ONE-PAGE PROOF OF A THEOREM OF BELEZNAY

JUAN P. AGUILERA AND MARTINA IANNELLA

Abstract. We give a short proof of a theorem of Beleznay asserting that the set L2 of reals
coding linear orders of the form I + I is complete analytic.

In studying functions of the form g ◦ g, Humke and Laczkovich [4] proved
that L2 is not Borel and Beleznay [2] improved this to the result in the
abstract. Combined with [4, Lemma 3], this solved a problem of Becker
[1, p. 4] and Kechris [5, p. 215]. We give a one-page proof. Let A ⊂ R be Σ1

1.
Thus to each x ∈ R one can effectively associate a tree Tx on N such that
Tx is well-founded if and only if x �∈ A. Uniformly in x (see, e.g., [7, Section
VI.1.1]), one can find an ill-founded tree Kx recursive in x with no infinite
branch in Δ1

1(x). Let Sx be the tree of pairs (l, m) ∈ Tx ×Kx of the same
length ordered by (l, m) <Sx (l ′, m′) if l <Tx l

′ and m <Kx m
′.

Observe that Sx is ill-founded if Tx is. Conversely, from any branch
through Sx we can compute branches through both Tx and Kx . Let
Lx = �KB(Sx), where KB(Sx) denotes the Kleene–Brouwer ordering on Sx
and �KB(Sx) is the natural order on formal Cantor normal forms �x1 ·m1 +
�x2 ·m2 + ··· + �xk ·mk , where x1 > ··· > xk are elements of KB(Sx). Note
that if x �∈ A, then Lx is well-ordered and additively indecomposable, so
Lx �∈ L2.

In contrast, if x ∈ A, then Sx is ill-founded but has no branch which
is Δ1

1(x), so KB(Sx) has no Δ1
1(x) infinite descending sequence; neither

does Lx = �KB(Sx), by a result of Girard and Hirst (see [6, Theorem 1.3]).
By a result of Harrison [3], KB(Sx) and Lx are respectively of the form
�x1 · (1 + Q) + α and�x1 · (1 + Q) + α0 for some α, α0 < �

x
1 (smallest non-

x-recursive ordinal). However, ��
x
1 ·(1+Q)+α contains arbitrarily large copies

of Q and thus α0 = 0. Since Q ∼= Q + 1 + Q, we have Lx = �x1 · (1 + Q) ∼=
�x1 · (1 + Q) · 2 ∈ L2.
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