A ONE-PAGE PROOF OF A THEOREM OF BELEZNAY

JUAN P. AGUILERA AND MARTINA IANNELLA

Abstract. We give a short proof of a theorem of Beleznay asserting that the set L2 of reals coding linear orders of the form I + I is complete analytic.

In studying functions of the form $g \circ g$, Humke and Laczkovich [4] proved that L2 is not Borel and Beleznay [2] improved this to the result in the abstract. Combined with [4, Lemma 3], this solved a problem of Becker [1, p. 4] and Kechris [5, p. 215]. We give a one-page proof. Let $A \subset \mathbb{R}$ be Σ_1^1 . Thus to each $x \in \mathbb{R}$ one can effectively associate a tree T_x on \mathbb{N} such that T_x is well-founded if and only if $x \notin A$. Uniformly in x (see, e.g., [7, Section VI.1.1]), one can find an ill-founded tree K_x recursive in x with no infinite branch in $\Delta_1^1(x)$. Let S_x be the tree of pairs $(l, m) \in T_x \times K_x$ of the same length ordered by $(l, m) <_{S_x} (l', m')$ if $l <_{T_x} l'$ and $m <_{K_x} m'$.

Observe that S_x is ill-founded if T_x is. Conversely, from any branch through S_x we can compute branches through both T_x and K_x . Let $L_x = \omega^{\mathsf{KB}(S_x)}$, where $\mathsf{KB}(S_x)$ denotes the Kleene–Brouwer ordering on S_x and $\omega^{\mathsf{KB}(S_x)}$ is the natural order on formal Cantor normal forms $\omega^{x_1} \cdot m_1 + \omega^{x_2} \cdot m_2 + \cdots + \omega^{x_k} \cdot m_k$, where $x_1 > \cdots > x_k$ are elements of $\mathsf{KB}(S_x)$. Note that if $x \notin A$, then L_x is well-ordered and additively indecomposable, so $L_x \notin L2$.

In contrast, if $x \in A$, then S_x is ill-founded but has no branch which is $\Delta_1^1(x)$, so $\mathsf{KB}(S_x)$ has no $\Delta_1^1(x)$ infinite descending sequence; neither does $L_x = \omega^{\mathsf{KB}(S_x)}$, by a result of Girard and Hirst (see [6, Theorem 1.3]). By a result of Harrison [3], $\mathsf{KB}(S_x)$ and L_x are respectively of the form $\omega_1^x \cdot (1 + \mathbb{Q}) + \alpha$ and $\omega_1^x \cdot (1 + \mathbb{Q}) + \alpha_0$ for some $\alpha, \alpha_0 < \omega_1^x$ (smallest non*x*-recursive ordinal). However, $\omega^{\omega_1^x \cdot (1 + \mathbb{Q}) + \alpha}$ contains arbitrarily large copies of \mathbb{Q} and thus $\alpha_0 = 0$. Since $\mathbb{Q} \cong \mathbb{Q} + 1 + \mathbb{Q}$, we have $L_x = \omega_1^x \cdot (1 + \mathbb{Q}) \cong$ $\omega_1^x \cdot (1 + \mathbb{Q}) \cdot 2 \in L2$.

Received March 18, 2024.

²⁰²⁰ Mathematics Subject Classification. 03E15, 03D55, 06A05.

Key words and phrases. descriptive set theory, linear order, analytic set, Harrison order.

[©] The Author(s), 2025. Published by Cambridge University Press on behalf of The Association for Symbolic Logic. 1079-8986/24/3004-0002 DOI:10.1017/bsl.2024.39

REFERENCES

[1] H. BECKER, *Descriptive set theoretic phenomena in analysis and topology*, *Set Theory of the Continuum* (H. JUDAH, W. JUST, and H. WOODIN, editors), Springer-Verlag, New York, 1992, pp. 1–25.

[2] F. BELEZNAY, The complexity of the collection of countable linear orders of the form I + I. Journal of Symbolic Logic, vol. 64 (1999), pp. 1519–1526.

[3] J. HARRISON, Recursive pseudo-well-orderings. Transactions of the American Mathematical Society, vol. 131 (1968), pp. 526–543.

[4] P. D. HUMKE and M. LACZKOVICH, *The Borel structure of iterates of continuous functions*. *Proceedings of the Edinburgh Mathematical Society*, vol. 32 (1989), pp. 483–494.

[5] A. S. KECHRIS, Classical Descriptive Set Theory, Springer-Verlag, New York, 1994.

[6] A. MARCONE and A. MONTALBÁN, *The Veblen function for computability theorists. Journal of Symbolic Logic*, 76 (2011), pp. 575–602.

[7] A. MONTALBÁN, Computable Structure Theory II: Beyond the Arithmetic. Book draft.

DEPARTMENT OF DISCRETE MATHEMATICS AND GEOMETRY TU WIEN WIEDNER HAUPTSTR 8–10, 1040 VIENNA AUSTRIA *E-mail*: aguilera@logic.at

E-mail: martina.iannella@tuwien.ac.at