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C0-limits of Legendrians and positive loops
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Abstract

We show that the image of a properly embedded Legendrian submanifold under a
homeomorphism that is the C0-limit of a sequence of contactomorphisms supported
in some fixed compact subset is again Legendrian, if the image of the submanifold is
smooth. In proving this, we show that any closed non-Legendrian submanifold of a
contact manifold admits a positive loop and we provide a parametric refinement of the
Rosen–Zhang result on the degeneracy of the Chekanov–Hofer–Shelukhin pseudo-norm
for properly embedded non-Legendrians.

1. Terminology and notation

Let (M, ξ) be a (2n + 1)-dimensional, possibly non-compact, contact manifold with contact
distribution ξ ⊂ TM . We will assume M to be co-orientable and so we can chose a contact
one-form α where ξ = ker{α}. We will denote by Λ ⊂ M a connected properly embedded (not
necessarily closed) Legendrian (submanifold), which means dim(Λ) = n and TΛ ⊂ ξ. We will
denote by K ⊂ M a connected properly embedded smooth submanifold with dim(K) � n. Usu-
ally K will be a non-Legendrian connected properly embedded submanifold, which means either
dim(K) < n, or dim(K) = n and there exists x ∈ K such that TxK �⊂ ξx. We will sometimes con-
sider these non-Legendrians (and Legendrians) as parameterized; i.e. K (and Λ) is equipped with
an embedding into M . One canonical example is the inclusion IdM |K : K → K ⊂ M . Also for
any contactomorphism Φ ∈ Cont(M, ξ) such that Φ(K) = K and Φ|K �= IdM |K , Φ|K is another
parameterization of K.

Recall that the contact isotopies Φt : M → M of a co-orientable contact manifold are in bijec-
tive correspondence with the time-dependent smooth functions, so-called contact Hamiltonians
Ht : M → R. Note that this bijection depends on the choice of contact one-form α. Given a
contact isotopy, we can recover the contact Hamiltonian by

α(Φ̇t) = Ht ◦ Φt.

Conversely, a contact Hamiltonian determines an isotopy via the equation

α(Φ̇t) = Ht ◦ Φt, dα(Φ̇t, ·)|ker α = −dHt|ker α

for each t. We say that Ht generates the contact isotopy Φt. The contact isotopy generated by
Ht ≡ 1 is called the Reeb flow of α.
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Note that the sign of the contact Hamiltonian at a point only depends on the choice of
co-orientation. We say that a (parameterized) submanifold A ⊂ (M, ξ) admits a positive loop if
there exists a contact isotopy Φt for which Φ1(A) = A (respectively, Φ1 ◦ IdA = IdA) for which
the generating contact Hamiltonian Ht satisfies Ht(x) > 0 for all x ∈ Φt(A) and t. We similarly
say that A admits a somewhere positive non-negative loop if Ht(x) � 0 for all x ∈ Φt(A) and t,
where the latter inequality, moreover, is strict for some point x and time t. Note that a contact
Hamiltonian that vanishes along a properly embedded Legendrian submanifold induces a flow
that fixes that Legendrian. Furthermore, any somewhere positive non-negative loop of a closed
Legendrian can be generated by a contact Hamiltonian that is non-negative on the entire ambient
manifold M .

In this paper all contactomorphisms, homeomorphisms, and isotopies are implicitly assumed
to have support contained inside some fixed compact subset, even though the ambient contact
manifold M and the connected properly embedded submanifolds Λ, K sometimes need not be
compact.

2. Statements of results

In this section, we describe a number of results contrasting flexibility and rigidity, for Legendrians
(loose or not) and non-Legendrians: C0-limits, positive loops, and pseudo-metrics.

2.1 C0-topology
We start with our main result, which is about Legendrians under homeomorphisms that are
C0-limits of contactomorphisms.

Theorem A. Consider a sequence

Φk : (M, ξ)
∼=−→ (M, ξ)

of contactomorphisms supported in a fixed compact set, and let Λ ⊂ M be a properly embedded

Legendrian. If Φk
C0−−→ Φ∞, where Φ∞ is a homeomorphism, and if Φ∞(Λ) is smooth, then Φ∞(Λ)

is also Legendrian.

Partial results of Theorem A have appeared elsewhere: Nakamura assumed that there was a
uniform lower bound on the length of Reeb chords, as well as some small technical conditions
[Nak20a, Theorem 3.4]; Rosen and Zhang assumed C0-convergence for the smooth fk : M → R

defined by Φ∗
kα = efkα (often called conformal factors) [RZ20, Theorem 1.4]; Usher relaxed Rosen

and Zhang’s hypothesis to certain lower bounds on the conformal factors [Ush21, Theorem 1.2];
we proved the general case in dimension 3 [DRS21, Theorem D]; and Stokić made no assumptions
in [Sto22, Proposition 6.1], but concluded the limiting submanifold could not be nearly Reeb
invariant [Sto22, Definition 1.3]. Stokić showed that not being nearly Reeb invariant implies
being Legendrian in the case when dim(Λ) = 1 (in higher dimensions we do not know if the
analogous result is true). Some of these results assumed the Legendrians were compact.

In [DRS21, Theorem D] we proved that Λ and Φ∞(Λ) are contactomorphic Legendrians
when dim(Λ) = 1. This equivalence, and many other weaker connections, are still unknown for
dim(Λ) > 1. For example, if Φ∞(Λ) is loose, then need Λ be loose as well? Only the following
theorem is known to us.

Theorem 2.1. Consider the set-up as in Theorem A. Assume Λ is closed, dim(Λ) > 1 and
k � 0.
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(i) There exists a standard one-jet neighborhood Λ ⊂ U such that the Legendrian Φ∞(Λ) is
contained in the one-jet neighborhood Φk(U). Furthermore, inside the one-jet neighborhood
Φk(U), the Legendrian Φk(Λ) can be squeezed into a one-jet neighborhood of Φ∞(Λ) and
Φ∞(Λ) can be squeezed into a one-jet neighborhood of Φk(Λ), in the sense of [DRS20, § 1.2].

(ii) (a) If Λ and Φ∞(Λ) are diffeomorphic, then Φk(Λ) and Φ∞(Λ) are smoothly isotopic inside
Φk(U).

(b) Φ∞(Λ) is not loose inside the one-jet neighborhood Φk(U).
(iii) Suppose some stabilization (M × T ∗X, ker{α + p dq}) of M admits an open contact

embedding into J1
R

N and the Legendrian Λ × 0T ∗X admits an augmentation for its
Chekanov–Eliashberg differential graded algebra as a Legendrian in J1

R
N . Then Φ∞(Λ)

is not loose in M . (See [DRS20, § 1] for a review of Chekanov–Eliashberg differential graded
algebras and augmentations in this context.)

Remark 2.2. The assumption in Theorems A and 2.1 that Φ∞ is a homeomorphism can be
dropped if we instead assume Φ∞(U) is a neighborhood of Φ∞(Λ) for some standard Legendrian
one-jet neighborhood Λ ⊂ U . See the proof of Theorem A and then use Theorem 2.1(i) in the
rest of the proof of Theorem 2.1.

2.2 Positive loops
The strategy of the proof of Theorem A is inspired by Stokić’s proof of [Sto22, Proposition 6.1].
However, instead of producing a Reeb invariant neighborhood of arbitrary non-Legendrians (it is
unclear if they always exist), we show that non-Legendrians admit positive loops in Theorem C.
We then allude to the classical theorem of non-existence of C0-small positive loops of Legendrians
proven by Colin, Ferrand and Pushkar [CFP17] (see Theorem 2.5).

In order to produce small positive loops of any non-Legendrian, we first prove the following
flexibility when it comes to the choice of contact Hamiltonian for a contact isotopy of any
non-Legendrian submanifold.

Theorem B. Let K ⊂ (M2n+1, ξ) be a properly embedded non-Legendrian and Φt : M → M be
a contact isotopy. There exists a contact isotopy Ψt : M → M such that the following statements
hold.

– Ψt is generated by a contact Hamiltonian Ht that vanishes when restricted to Ψt(K).
– Ψt(K) is contained inside an ε-neighborhood of Φt(K) for an arbitrary choice of ε > 0 and all

t ∈ [0, 1].
– Ψ1 and Φ1 agree in a small neighborhood of K.

In contrast, a contact Hamiltonian that vanishes along a properly embedded Legendrian
submanifold generates a contact isotopy that fixes the Legendrian setwise.

We continue by establishing some consequences of Theorem B, starting with the existence
of positive loops.

By Theorem B there is a flexibility in the choice of contact Hamiltonian for a contact isotopy
of a non-Legendrian submanifold; namely, it shows that we can C0-deform the isotopy to one
whose generating contact Hamiltonian vanishes along the image of the submanifold. The following
direct consequence shows that there also is flexibility for the behavior of contact isotopies that
are positive along the Legendrian.

Theorem C. Any closed non-Legendrian K ⊂ (M2n+1, ξ) sits in a positive loop. Equivalently,
there exists a contact isotopy Φt with generating Hamiltonian Ht such that the following
statements hold:
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– Φ0|V = Φ1|V = IdV is satisfied in some neighborhood V of K;
– Ht is positive on the image of K under Φt for all t ∈ [0, 1].

Remark 2.3. With the ideas behind Theorems B and C, it should be possible to prove that any
contact isotopy of a closed non-Legendrian can be C0-perturbed to an isotopy for which the
contact Hamiltonian is C0-close to any arbitrary function.

Consider a closed Legendrian Λ ⊂ M that is loose in the sense of Murphy [Mur12]. Since
a non-Legendrian push-off K of Λ admits a contractible positive loop, and since Λ can be
squashed onto K by a contact isotopy (which automatically preserves the positivity) in the sense
of [DRS22], Theorem C gives a new proof of the following result by Liu.

Corollary 2.4 [Liu20]. Any closed loose Legendrian admits a contractible positive loop.

This flexibility of non-Legendrians and loose Legendrians stands in contrast to the rigidity
of certain non-loose Legendrians. Colin, Ferrand and Pushkar used generating functions to prove
the non-existence of positive loops for the zero-section in a one-jet space 0N ⊂ (J1N, ξst) of
a closed manifold N in [CFP17, Theorem 1]; in the case of N = Sn the result was obtained
independently by Chernov and Nemirovski in [CN10b]. The latter authors generalized the result
to non-negative isotopies of 0N ⊂ (J1N, ξst):

Theorem 2.5 [Corollary 5.5, [CN10a]]. The zero-section in the one-jet space 0N ⊂ (J1N, ξst)
of a (not necessarily closed) manifold N does not admit a somewhere positive non-negative loop
supported in a compact subset.

The original sources assume N is compact, but their arguments apply to our set-up, since
the loop is assumed to have compact support. Take a double of a large pre-compact open X ⊂ N
with smooth boundary such that J1(X) contains the support of the purported loop. There is an
induced non-negative loop of the zero-section in the jet-space J1(X 	∂X X) of the double of X,
i.e. the manifold obtained by gluing X to itself along its boundary.

2.3 The Chekanov–Hofer–Shelukhin pseudo-norm
Fix a properly embedded submanifold K and consider its orbit space under the action of
Cont0(M, ξ), the identity component of the space of contactomorphisms. The (unparameterized)
Chekanov–Hofer–Shelukhin pseudo-metric on this orbit space is defined via

δunp
α (K0, K1) := inf{‖Φ1‖α; Φt ∈ Cont0(M, ξ), Φ1(K0) = K1},

where

‖Φ1‖α = inf
Φ1

H=Φ1

∫ 1

0
max
x∈M

|Ht(x)| dt

is the Shelukhin–Hofer norm on Cont0(M, ξ) [She17].
We define the parameterized Chekanov–Hofer–Shelukhin pseudo-metric on the orbit space of

parameterized embeddings φi : K ↪→ M by

δα(φ0, φ1) := inf{‖Φ1‖α; Φ1 ∈ Cont0(M, ξ), Φ1 ◦ φ0 = φ1}.
Given any parameterized submanifold φ : K ↪→ M , we get an induced pseudo-metric on
Cont0(M, ξ) by setting

δα,φ(Φ0, Φ1) := δα(Φ0 ◦ φ, Φ1 ◦ φ).

We typically consider this pseudo-metric defined by a choice of submanifold K ⊂ M with the
canonical parameterization φ = IdM |K : K ↪→ M . Rosen and Zhang showed that the unparame-
terized pseudo-metric δunp

α identically vanishes on the orbit space of any closed non-Legendrian
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submanifold [RZ20, Theorem 1.10]. (This was independently proved later in Nakamura’s MS
thesis [Nak20b, Corollary D.16].) In contrast, δunp

α is non-degenerate on the orbit space of any
Legendrian submanifold. The non-degeneracy of δunp

α for Legendrians was first proved by Usher
[Ush21, Corollary 3.5] when there are no contractible Reeb orbits or relatively contractible Reeb
chords, and then by Hedicke [Hed21, Theorem 5.2] when the Legendrian does not sit in a
positive loop. We then proved the non-degeneracy of δunp

α for arbitrary closed Legendrians of
closed contact manifolds in [DRS21, Theorem 1.5]. The analogous results for the parameterized
Chekanov–Hofer–Shelukhin pseudo-metric δα follow readily from Theorem B.

Corollary 2.6. The parameterized Chekanov–Hofer–Shelukhin pseudo-metric δα vanishes
identically for any non-Legendrian K. For any Legendrian, δα is degenerate.

Remark 2.7. When the Legendrian is closed, [DRS21, Theorem 1.5] implies that the degenerate
δα does not vanish identically. But to apply [DRS21, Theorem 1.5], we need the contact manifold
M to either be closed, or to have a codimension-0 contact embedding into a closed contact
manifold M̃ . In this latter case, moreover, we require the contact form α of M to be a restriction
of a contact form α̃ for M̃ .

3. Proofs of results

3.1 Basic results for contact Hamiltonians
We start with some preliminary standard computations for contact Hamiltonians that will be
useful. In the following we fix a contact form α on M for the correspondence between contact
Hamiltonians and contact isotopies.

Lemma 3.1. If Φt
i : M → M , i = 0, 1, are contact isotopies generated by time-dependent contact

Hamiltonians H i
t : M → R then Φt

0 ◦ Φt
1 is a contact isotopy that is generated by

Gt = H0
t + eft◦(Φt

0)−1
H1

t ◦ (Φt
0)

−1

where the time-dependent function ft : M → R is determined by (Φt
0)

∗α = eftα. In particular,
(Φt

1)
−1 is generated by −eft◦Φt

1H1
t ◦ Φt

1 (which can be seen by setting Φt
0 := (Φt

1)
−1).

Here and throughout, composition occurs at each t. For example, Φt
0 ◦ Φt

1 is an isotopy with
the same time parameter as Φt

0 and Φt
1.

Proof. The chain rule implies

Gt(Φt
0 ◦ Φt

1) = α

(
d

dt

(
Φt

0 ◦ Φt
1

))
= α

((
d

dt
Φt

0

)(
Φt

1

)
+ DΦt

0 ◦
(

d

dt
Φt

1

))

= H0
t (Φt

0 ◦ Φt
1) + eft◦Φt

1H1
t ◦ Φt

1. �
Lemma 3.2. If Φt : M → M is a contact isotopy generated by a time-dependent contact
Hamiltonian Ht : M → R, then (Φ1)−1 ◦ Φ1−t is a contact isotopy generated by Gt =
−ef◦Φ1

H1−t ◦ Φ1 where the smooth function f : M → R is determined by ((Φ1)−1)∗α = efα.
In particular, if Ht vanishes along the image of K under Φt, then Gt vanishes along the image
of K under (Φ1)−1 ◦ Φ1−t.

Proof.

Gt((Φ1)−1 ◦ Φ1−t) = α

(
d

dt

(
(Φ1)−1 ◦ Φ1−t

))
= α

(
D(Φ1)−1

(
d

dt
Φ1−t

))

= −ef◦Φ1−t
H1−t(Φ1−t). �
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Lemma 3.3. Let Ψ ∈ Cont(M, ξ) be a contactomorphism not necessarily contact isotopic to the
identity. If Φt : M → M is a contact isotopy generated by a time-dependent contact Hamiltonian
Ht : M → R, then Ψ ◦ Φt ◦ Ψ−1 is a contact isotopy generated by Gt = ef◦Ψ−1

Ht ◦ Ψ−1 where
Ψ∗α = efα. In particular, if Ht vanishes along the image of K under Φt, then Gt vanishes along
the image of Ψ(K) under Ψ ◦ Φt ◦ Ψ−1.

Proof.

Gt(Ψ ◦ Φt ◦ Ψ−1) = α

(
d

dt

(
Ψ ◦ Φt ◦ Ψ−1

))
= α

(
DΨ

(
d

dt
Φt

)(
Ψ−1

))

= ef◦Φt◦Ψ−1
Ht

(
Φt ◦ Ψ−1

)
. �

3.2 Proof of Theorem B
Usher proved in [Ush15, Corollary 2.7] that the ‘rigid locus’ of a half-dimensional non-Lagrangian
submanifold of a symplectic manifold is empty. This was later generalized to the contact set-
ting by Rosen and Zhang in [RZ20] and independently by Nakamura [Nak20a]. This means,
in particular, that the unparameterized Hofer–Chekanov–Shelukhin pseudo-norm vanishes when
restricted to non-Legendrians, i.e. that two contact isotopic non-Legendrians are contact isotopic
via contact Hamiltonians of arbitrarily small norm. Our strategy here is to translate the proofs
in the aforementioned works to yield a more direct construction of the deformed contact isotopy
generated by a small contact Hamiltonian. This leads to Theorem B, which sharpens the result
from [RZ20] in the following two ways.

– The deformed contact isotopy can be assumed to be generated by a contact Hamiltonian that
vanishes along the image of the non-Legendrian (as opposed to just being arbitrarily small
there).

– The time-one map of the deformed contact isotopy can be assumed to induce the same
parametrization as the original one, when restricted to the non-Legendrian.

The latter property can be rephrased as saying that the parameterized version of the
Hofer–Chekanov–Shelukhin pseudo-norm vanishes when restricted to non-Legendrian submani-
folds; see Corollary 2.6.

We first simplify the problem to the case when Φt is C∞-small.

Lemma 3.4. Fix ε > 0. If Theorem B holds for any contact isotopy whose C∞-norm is bounded
by ε, then Theorem B holds for any contact isotopy.

Proof. This follows since (a finite number of) concatenated isotopies preserve the three properties
of Theorem B. Note that concatenation here is not a composition of maps at each time t, as it
was in § 3.1. �

By Banyaga’s fragmentation result [Ban97, p. 148] (see also Rybicki [Ryb10]), the concate-
nation preservation of the three properties of Theorem B enables us to assume, when proving
Theorem B, that Φt is not only C∞-small, but also supported in a small neighborhood of some
pt ∈ K. (If the small support of Φt does not intersect K, the proof is trivial as we set Ψt := Id
in Theorem B.)

Lemma 3.5. Consider the given non-Legendrian K, contact isotopy Φt, and constant ε from
Theorem B. Further, assume that Φt is supported in a neighborhood U ⊂ M that is displaced
from a neighborhood V ⊂ M of the non-Legendrian K ⊂ M by a contact isotopy Φ̃t. If supp Φ̃t ⊃
U is contained inside an ε-neighborhood of K and if Φ̃t is generated by a Hamiltonian which
vanishes on Φ̃t(K), then Theorem B holds for this K, Φt, ε.
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Proof. By Lemma 3.2 the contact isotopy (Φ̃1)−1 ◦ Φ̃1−t satisfies the property that its generating
Hamiltonian vanishes along the image of K under the isotopy. Moreover, the time-one map of this
contact isotopy displaces V from U (because Φ̃1(U) ∩ V = ∅ implies (Φ̃1)−1 ◦ Φ̃1−1(V ) ∩ U = ∅).

The contact isotopy Ψt is constructed by concatenating (locally) the contact isotopy (Φ̃1)−1 ◦
Φ̃1−t that displaces V from U , with the contact isotopy

Φ1 ◦ (Φ̃1)−1 ◦ Φ̃t ◦ Φ̃1 ◦ (Φ1)−1 =
(
Φ1 ◦ (Φ̃1)−1

) ◦ Φ̃t ◦ (
Φ1 ◦ (Φ̃1)−1

)−1
,

which is the conjugation of the isotopy Φ̃t with a contactomorphism Φ1 ◦ (Φ̃1)−1 that might not
be equal to the identity inside U ⊃ supp Φ1 at t = 0. (We concatenate these two paths as in the
proof of Lemma 3.4. Technically, Ψt is defined for 0 � t � 2, but to simplify notation, we omit
this needed reparameterization of t.)

Set Ψ and Φt, as used in the notation of Lemma 3.3, equal to Φ1 ◦ (Φ̃1)−1 and Φ̃t as used to
define the second contact isotopy in the preceding paragraph. Lemma 3.3 implies that this second
contact isotopy is generated by a Hamiltonian which vanishes on the image of Φ1 ◦ (Φ̃1)−1(K) =
(Φ̃1)−1(K) under this second isotopy. For this last equality, recall that Φ1|

(Φ̃1)−1(K)
= Id|

(Φ̃1)−1(K)

because Φt is supported in U which does not intersect (Φ̃1)−1(V ) ⊃ (Φ̃1)−1(K). Finally, we
conclude that

Ψ1|V = Φ1 ◦ (Φ̃1)−1 ◦ Φ̃1 ◦ Φ̃1 ◦ (Φ1)−1 ◦ (Φ̃1)−1 ◦ Φ̃0|V = Φ1|V
where in the last equality we use (Φ1)−1|

(Φ̃1)−1(V )
= Id|

(Φ̃1)−1(V )
and Φ̃0 = Id. �

Lemma 3.6. Consider ε > 0 and K from Theorem B. Fix p ∈ K. There exist a neighborhood
U ⊂ M of p, a neighborhood V ⊂ M of K and a contact isotopy Φ̃t which displaces U from
V ∪ U , such that Φ̃t satisfies its assumptions in Lemma 3.5 (i.e. supp Φ̃t ⊃ U is contained inside
an ε-neighborhood of K and Φ̃t is generated by a Hamiltonian which vanishes on Φ̃t(K)).

Proof. Given any choice of neighborhood of K, the construction below can be carried out inside
that neighborhood. This implies the desired property of the support of the contact isotopy that
we now proceed to define.

1: the case when TpK is not a Lagrangian subspace of ξp. This part of the argument is similar
to [RZ20, Proposition 8.6].

The property that TpK is not a Lagrangian subspace is equivalent to

(TpK ∩ ξp)dα �= TpK ∩ ξp,

where (TpK ∩ ξp)dα ⊂ ξp denotes the symplectic orthogonal (recall that dimTpK � n). Hence,
we can find a non-zero vector

XH ∈ (TpK ∩ ξp)dα \ TpK ⊂ ξp \ TpK

such that the one-form η := dα(·, XH) on TpM vanishes on TpK. The one-form η extends to the
exterior derivative dH of a function H : M → R that can be taken to vanish on all of K.

Consider the contact isotopy Ψ̃t generated by the autonomous contact Hamiltonian H. Since
H vanishes on p we get Ψ̇0(p) = XH . In view of Lemma 3.1, the inverse Φ̃t := (Ψ̃t)−1 is generated
by the non-autonomous contact Hamiltonian Gt := −eft◦(Φ̃t)−1

H ◦ (Φ̃t)−1. In particular, Φ̃t is
generated by a contact Hamiltonian that vanishes along the image of K under Φ̃t. Finally, since
the contact vector field −XH = XG0 is normal to K at p, it follows that Gt generates a contact
isotopy that displaces a small neighborhood p ∈ U ⊂ M from V ∪ U for some small neighborhood
V of K.
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2: the case when TpK ⊂ ξp is a Lagrangian subspace. Consider the closed subset L(K) ⊂ K of
points for which TpK ⊂ ξ is Lagrangian (which of course is empty whenever dimK < n).

2.1: the case when p ∈ bdL(K). First, by a construction which is similar to the one above, for
any X ∈ TpK ⊂ ξ we can construct a time-dependent contact Hamiltonian H that vanishes on
the image of K under the generated isotopy Φt

X , and for which the corresponding contact vector
field at time t = 0 satisfies XH(p) = X. Since X is tangent to K, it is not necessarily the case
that p is displaced by Φt

X for small t � 0.
If we can find some X such that Φε

X(p) /∈ K for all small ε > 0 then we are done. Assume
not; then Φε

X(p) ∈ K for all X and for some ε � 0. Since we are in the case p ∈ bdL(K), the
point p does not have a Legendrian neighborhood in K. We can thus find a direction X for which
Φε

X(p) is contained inside K \ L(K). Note that, for this reason, K and Φε
X(K) are not tangent

at Φε
X(p). Take a non-zero tangent vector W ∈ TΦε

X(p)Φε
X(K) ⊂ ξΦε

X(p) that is normal to K. By
the assumption above, we can find a contact isotopy of Φε

X(K) whose infinitesimal generator
is equal to W at Φε

X(p), and such that the generating contact Hamiltonian vanishes along the
image of Φε

X(K) under the isotopy.
The latter contact isotopy displaces Φε

X(p) from some small neighborhood V of K, and the
concatenation of contact isotopies thus displaces a small neighborhood U of p from V as desired.

2.2: the case when p ∈ intL(K). Finally, since K is connected, any point in the open Legendrian
submanifold L(K) \ bdL(K) can be moved arbitrarily close to a point p′ ∈ bdL(K) by a contact
isotopy that fixes K \ (L(K) \ bdL(K)) pointwise and L(K) \ bdL(K) setwise. Note that the
Hamiltonian of such a contact isotopy can be taken to vanish on all of K. (See [DRS20, § 1]
and the proof of [Gei08, Theorem 2.6.2].) We then apply the contact isotopy from case 2.1 to p′

displacing its small neighborhood U ′ from V . This also displaces a smaller neighborhood U ⊂ U ′

of p from V as desired. �

Remark 3.7. Global infinitesimal displaceability of non-Legendrians is an important ingredient
in Nakamura’s work [Nak20a]. The vanishing of the unparameterized Chekanov–Hofer–Shelukhin
norm [RZ20] implies that any closed non-Legendrian has a displacement that can be realized by
a contact Hamiltonian that is arbitrarily C0-small. To that end we use the fact that, for any
non-Legendrian K, a generic Reeb vector field is nowhere tangent to K. Hence, the Reeb flow is
a contact isotopy that displaces the non-Legendrian K.

3.3 Proof of Corollary 2.6
The parameterized pseudo-metric δα is clearly degenerate on Legendrian submanifolds, since a
Legendrian can be reparameterized by a contact Hamiltonian that vanishes along the Legendrian.
See [DRS20, § 1] and the proof of [Gei08, Theorem 2.6.2]. It is non-vanishing because δunp

α is
non-degenerate [DRS21, Theorem 1.5]. The pseudo-metric δα vanishes identically for any non-
Legendrian because of the first and third bullet points of Theorem B.

3.4 Proof of Theorem C
Let ρ : M → [−1, 0] be a smooth compactly supported bump function such that ρ|U = −1 for
some ‘large’ (see below) neighborhood U ⊃ K. Apply Theorem B, setting K and Φt in Theorem B
to be K in Theorem C and the flow induced by the autonomous contact Hamiltonian ερ, respec-
tively. Note that this flow is equal to the negative Reeb flow on U rescaled by ε > 0, which is
assumed to be small. Theorem B produces Ψt by constructing Ψt to be local to the image of
the compact K under the negative Reeb flow. So without loss of generality, we can assume U
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is sufficiently large such that supp(Ψt) ⊂ U . We claim that (Φt)−1 ◦ Ψt is the desired isotopy in
Theorem C (which unfortunately is also called Φt in that theorem).

That (Φt)−1 ◦ Ψt satisfies the first bullet point of Theorem C follows from the third bullet
point of Theorem B.

Note that Φt is generated by a Hamiltonian which is negative on U , and thus negative on the
support of Ψt. The second part of Lemma 3.1, setting Φt

1 = Φt, implies that (Φt)−1 is generated
by a Hamiltonian which is positive on U , and thus positive on the support of Ψt. The first part
of Lemma 3.1, setting Φt

0 = (Φt)−1, Φt
1 = Ψt, combined with the first bullet point of Theorem B

applied to Ψt, implies that (Φt)−1 ◦ Ψt satisfies the second bullet point of Theorem C. (To see this,
using the notation of Lemma 3.1, the Hamiltonian Gt which generates Φt

0 ◦ Φt
1, when restricted

to Φt
0 ◦ Φt

1(K), is a sum of the positive term H0
t |Φt

0◦Φt
1(K) and eft◦(Φt

0)−1
H1

t ◦ (Φt
0)

−1|Φt
0◦Φt

1(K).
But the second term vanishes because H1

t |Φt
1(K) = 0.)

3.5 Proof of Theorem A
First we show that the general case when K and Λ are properly embedded, but not necessarily
closed, can be deduced from the statement in the case when the involved submanifolds are
assumed to be closed.

Recall that the sequence Φk of contactomorphisms are all assumed to have support inside
some fixed compact subset. Take a compact domain U ⊂ M with smooth boundary that contains
the support of all contactomorphisms Φk in the sequence, which in particular means that Λ = K
holds in a neighborhood of M \ U . For a generic choice of domain U , we may further assume
that the intersection

B := Λ ∩ ∂U = K ∩ ∂U

is transverse, yielding a smooth submanifold B ⊂ Λ of codimension one. After deforming the
neighborhood U near B we may further assume that there is a neighborhood O of Λ ∩ U in U
that is contactomorphic to J1(Λ ∩ U), under which j10 is identified with Λ ∩ U .

Now produce an open contact manifold M̃ from intU in the following manner. Let Λ̃ denote
the closed manifold obtained by gluing two disjoint copies of Λ ∩ U along its common boundary
in the obvious manner. Clearly J1Λ̃ contains J1(Λ ∩ U) as a properly embedded submanifold
with boundary. Hence, we can glue J1Λ̃ to int U , resulting in an open contact manifold M̃ in
which Λ extends to a closed Legendrian Λ̃. Applying the statement to the closed Legendrian
manifold Λ̃ ⊂ M̃ , we deduce that

K̃ := (K ∩ U) ∪ (Λ̃ \ int U)

is Legendrian, and hence so is the original submanifold K.
It remains to prove Theorem A when Λ and K are closed, which we do by contradiction.

Suppose K ⊂ M is a closed non-Legendrian submanifold that is the C0-limit of the closed
Legendrian submanifolds Φn(Λ), where Φn are contactomorphisms that C0-converge to a homeo-

morphism: Φn
C0−−→ Φ∞. Let Φt be the contact isotopy from Theorem C generated by Ht such

that Ht|Φt(K) > 0. Take a sufficiently small neighborhood U ⊃ K contained inside V provided
by the theorem, so that Ht|Φt(U) > 0 as well as Φ1|U = Id are satisfied. Since Φk(Λ) ⊂ U holds
for all k � 0, we have produced a positive loop Φt|Φk(Λ) of a closed Legendrian submanifold.
This contradicts Theorem 2.5. Hence, K is Legendrian.
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3.6 Proof of Theorem 2.1
(i) Since Φ∞ is a homeomorphism, Φ∞(U) is a neighborhood of Φ∞(Λ). (Or see Remark 2.2.)

The C0-convergence implies that Φk(U) is a neighborhood of Φ∞(Λ) for k � 0. The C0-
convergence ensures that the fiberwise rescaling inside Φk(U) projects Φ∞(Λ) onto Φk(Λ)
with degree 1, as required in this squeezing [DRS20, § 1.2 ]. Since Φk(Λ) also may be assumed
to be contained inside a one-jet neighborhood of Φ∞(Λ), there is also a squeezing of Φk(Λ)
into this one-jet neighborhood in the same sense (i.e. the fiberwise projection is of degree
one).

(ii) (a) Recall that two maps from the same domain that are sufficiently C0-close are homotopic;
Φk|Λ is thus homotopic to Φ∞|Λ inside Φk(U) for k � 0. Diffeomorphic and homotopic
implies smoothly isotopic in high dimensions [Hae63].

(b) To show that Φ∞(Λ) is not loose in the one-jet neighborhood Φk(Λ), we claim that
the zero-section in J1Λ cannot be squeezed into the one-jet neighborhood of a loose
Legendrian, while (1) provides such a squeezing. To see that the zero-section cannot
be squeezed into the one-jet neighborhood of a loose Legendrian we argue as follows.
After stabilizing the ambient contact manifold (M, α) to (M × T ∗S1, α + p dq), the
Legendrian Λ to Λ × 0T ∗S1 , and the contactomorphisms Φk to Φk × IdT ∗S1 , we may
consider the case when U ∼= J1(Λ × S1) since we can stabilize the squeezing. The result
follows from Lemma 3.8.

(iii) This follows directly from [DRS20, Theorem 1.7]. (In [DRS20], the term ‘stabilized’ Legen-
drian is used in a completely different sense than Λ × 0T ∗X as above. When dim(Λ) = 1,
in a local front projection, a neighborhood of a point of Λ is replaced by a zig-zag. We use
this zig-zag construction in the proof of Lemma 3.8 below. When dim(Λ) > 1, stabilization
is defined by a more general construction which Murphy proves equivalent to the existence
of a loose chart [Mur12].)

Lemma 3.8. The zero-section in J1(Λ × S1) cannot be squeezed into the one-jet neighborhood
of a loose Legendrian submanifold.

Proof. Let Π : J1Λ → T ∗Λ be the projection along the standard Reeb flow. A Legendrian Λ′ ⊂
J1Λ is horizontally displaceable if there exists a contact isotopy that disjoins Λ′ from its image
under this Reeb flow, Π−1(Π(Λ′)). This is an open condition in the sense that if Λ′ is horizontally
displaceable, then so too is any Legendrian that is sufficiently C0-close to Λ′. The Rabinowitz
Floer complex (e.g. see [DRS21, § 4]) of the zero-section j1(0) of J1Λ is not acyclic and its
homology is invariant under contact isotopy. Since the complex is generated by Reeb chords
between j1(0) and its image under the contact isotopy, this implies j1(0) is not horizontally
displaceable.

Let Zst ⊂ J1S1 denote the stabilized zero-section in J1S1 whose front is given by a single
zig-zag. This Legendrian is horizontally displaced when after the contact isotopy, the minimum
magnitude of the slope of the zig-zag is greater than its initial zig-zag slope’s maximum magni-
tude. It follows that the stabilized zero-section j1(0) × Zst ⊂ J1(Λ × S1) also admits a horizontal
displacement.

We claim that by Murphy’s h-principle [Mur12], any compact loose Legendrian Λ0 ⊂ J1(Λ ×
S1) can be placed inside a one-jet neighborhood of j1(0) × Zst by a contact isotopy. To see the
isotopy, we construct a formal Legendrian isotopy between the loose Legendrian Λ0 and a formal
Legendrian Λ1 contained in the neighborhood of j1(0) × Zst. The formal Legendrian isotopy
is constructed by, first, fiber-scaling Λ0 towards the zero-section. Then, since Zst ⊂ J1S1 is
smoothly isotopic to j10, it is now easy to see that there is a smooth isotopy ft : L → J1(Λ × S1)
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such that fi(L) = Λi for i = 0, 1, where the smooth (not necessarily Legendrian) submanifold Λ1

is contained inside the one-jet neighborhood of j10 × Zst. The formal isotopy (g, G) : [0, 1]t ×
[0, 1]s × L → (

J1(Λ × S1), T (J1(Λ × S1))
)

is defined as follows. Set gt,s = ft, Gt,0 = dft, G0,s =
df0. Then use homotopy lifting to extend Gt,s as a full-rank bundle map whose image is a
Lagrangian in the contact planes for all t ∈ [0, 1] and s = 1. The 0-parametric version of Murphy’s
h-principle produces an actual loose Legendrian Λ′

1 in an arbitrarily small neighborhood of Λ1.
Since Λ′

1 is formally Legendrian isotopic to Λ0 by construction, the 1-parametric version of
Murphy’s h-principle produces the Legendrian isotopy that takes Λ0 into the neighborhood, as
desired.

Hence the loose Legendrians are all horizontally displaceable as well. If the zero-section
of J1(Λ × S1) can be squeezed into the one-jet neighborhood of some loose Legendrian, then
by fiber-scaling it can be squeezed into an arbitrarily small one-jet neighborhood of the loose
Legendrian. So the zero-section is horizontally displaceable, contradicting its Rabinowitz Floer
calculation. �
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