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Abstract We propose a notion of a proper Ehresmann semigroup based on a three-coordinate descrip-
tion of its generating elements governed by certain labelled directed graphs with additional structure.
The generating elements are determined by their domain projection, range projection and σ-class, where
σ denotes the minimum congruence that identifies all projections. We prove a structure result on proper
Ehresmann semigroups and show that every Ehresmann semigroup has a proper cover. Our covering
monoid turns out to be isomorphic to that from the work by Branco, Gomes and Gould and provides a new
view of the latter. Proper Ehresmann semigroups all of whose elements admit a three-coordinate descrip-
tion are characterized in terms of partial multiactions of monoids on semilattices. As a consequence, we
recover the two-coordinate structure result on proper restriction semigroups.
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1. Introduction

Ehresmann semigroups and their one-sided analogues are widely studied non-regular gen-
eralizations of inverse semigroups, see, e.g. [2, 8, 10, 11, 16, 17, 21, 22, 25, 26, 32, 33]. They
possess two unary operations a 7→ a+ and a 7→ a∗, which mimic the operations of taking
the domain idempotent and the range idempotent in an inverse semigroup. Ehresmann
semigroups were defined in the paper by Lawson [22] and arise naturally from certain
categories which appear in the work of the school of Charles Ehresmann on differential
geometry. Lawson’s results [22] generalize the famous Ehresmann–Schein–Nambooripad
theorem [23, Theorem 8.4.1] that connects inverse semigroups with inductive groupoids,
as well as its extension that connects restriction semigroups with inductive categories [1].
Ehresmann semigroups looked as algebras (S; ·,+ ,∗ ) form a variety of algebras. The

elements of free objects of this variety admit an elegant graphical description in terms of
birooted labelled directed trees, found by Kambites in [16]. This description extends the
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description of elements of the free restriction semigroups [9, 20] by means of the Munn’s
famous construction of elements of the free inverse semigroups [29].
Perhaps the most natural examples of Ehresmann semigroups are the semigroup B(X)

of all binary relations on a set X and its subsemigroup PT (X) of all partially defined
self-maps of X. The latter semigroup is an Ehresmann semigroup, which is in addition
left restriction, that is, it satisfies an additional identity called the left ample identity
(see § 2 for the definition). Extending the results obtained for inverse semigroups by
Steinberg [34, 35], Stein [32, 33] proved that the semigroup algebra of a left restriction
Ehresmann semigroup is isomorphic to the semigroup algebra of its attached Ehresmann
category and applied this result to studying representations of left restriction Ehresmann
semigroups. This study was further pursued by Margolis and Stein in [26].
Ehresmann semigroups appear naturally in the work on non-commutative Stone duality

by Lawson and the first named author [21]. They are constructed from certain, localic
or topological, étale categories and possess the additional structure of quantales, see also
the recent work by Lawson [25] where a construction of Ehresmann semigroups from
categories inspired by [21] is extensively studied.
East and Gray [8] have recently studied Ehresmann structures arising on partition

monoids and related diagram monoids such as Brauer monoids and rook partition
monoids.
The purpose of the present paper is to contribute to the development of the appropriate

notion of a proper Ehresmann semigroup, initiated by Branco, Gomes and Gould in [3],
see also Branco et al. [4]. An Ehresmann monoid S is defined in [3] to be strongly T -
proper, where T is a monoid, if T is contained in S as a submonoid, S is generated
by T and the projections of S and the congruence σ (which is the least congruence
that identifies all projections) separates T. It is proved in [3] that the free Ehresmann
monoid FEM (X ) is T -proper (for T being isomorphic to the free monoid X∗) and that
every Ehresmann monoid has a T -proper cover (i.e., for every Ehresmann monoid S,
there is some T -proper Ehresmann monoid P and a surjective projection-separating
morphism of Ehresmann monoids from P onto S ). It has been observed by Jones [15]
that, specialized to the class of restriction monoids, T -properness reduces to the property
of being a perfect restriction monoid [15, 19]; thus, T -proper Ehresmann monoids form
a natural class of Ehresmann monoids. However, since perfect restriction monoids do
not exhaust all proper restriction monoids, T -proper Ehresmann monoids generalize a
subclass of proper restriction monoids, rather than the whole class of proper restriction
monoids. Our motivaton for this research was to develop a notion of a proper Ehresmann
semigroup which would not necessarily be a monoid and which would generalize the
notion of a proper restriction semigroup.
Our approach is new and is not based on that adopted in [3, 4]: our notion of a

proper Ehresmann semigroup relies on matching factorizations of elements into products
of certain generating elements, which can be interpreted as arrows of a labelled directed
graph (see § 3 for details), whereas the T -proper Ehresmann monoid P(T, Y ) of [3, 4]
is defined as a certain quotient of the free product of a monoid T and a semilattice Y,
where T acts on Y from the left and from the right.
Proper restriction semigroups generalize E -unitary inverse semigroups, which have

been widely studied in semigroup theory and have important applications far beyond it.
The structure of the latter, first established by McAlister in [27, 28], can be equivalently
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described in terms of partial actions of groups on semilattices [18, 31]. This construc-
tion can be smoothly extended to partial actions of monoids on semilattices to describe
the structure of proper restriction semigroups [6, 19] (for further applications of partial
actions of monoids on semilattices to the study of restriction semigroups, see [7, 20]).
Similarly to the fact that the free inverse semigroup is E -unitary, the free restriction
semigroup is proper. In addition, every restriction semigroup has a proper cover, which
parallels the fact that every inverse semigroup has an E -unitary cover. In this paper,
we construct a class of Ehresmann semigroups based on a suitable generalization of the
notion of a partial action of a monoid on a semilattice, such that the free Ehresmann
semigroup belongs to this class and every Ehresmann semigroup has a cover that belongs
to this class.
We now describe the structure of the paper and highlight its main ideas and results.

In § 2, we collect the basic definitions and facts. In § 3, we define proper elements of an
Ehresmann semigroup as elements that are uniquely determined by their domain projec-
tion, range projection and σ-class (Definition 3.4). We then define proper Ehresmann
semigroup as Ehresmann semigroup generated by an order ideal containing all the
projections and consisting of proper elements with the property of the uniqueness of
matching factorizations (Definition 3.5). Recall that in proper restriction semigroups, all
elements are determined by their domain projection (or their range projection) and their
σ-class [6, 19]. However, in the free Ehresmann semigroup, FES (X ), such two-coordinate
description of elements fails (see, e.g., the remark after Question 6.14), whereas our
three-coordinate approach to generating elements works, and FES (X ) is proper (see
Proposition 5.1). Having defined proper Ehresmann semigroups, we proceed to a con-
struction which, given a semilattice E, a monoid T and a labelled directed graph G with
vertex set E and edges labelled by elements of T possessing additional structure called
compatible restrictions and co-restrictions (Definition 3.7), outputs an Ehresmann semi-
group, denoted EoG T , which, under an additional condition, is proper (Theorem 3.11).
Then in Theorem 3.14, we prove that every proper Ehresmann semigroup is isomorphic to
one so constructed. In § 4, we prove that every Ehresmann semigroup has a proper cover
(Theorem 4.1). In § 5, we show that in the case where S is an Ehresmann monoid, the
covering monoid P (S)oG X∗ from the proof of Theorem 4.1 is isomorphic to the monoid
P(X∗, P (S)) from [3]. This observation leads to uniquely determined normal forms of
elements of P(X∗, P (S)), which are different from the (not uniquely determined) normal
forms proposed in [3]. As a consequence, this implies that the free Ehresmann monoid
and the free Ehresmann semigroup are proper (Proposition 5.1). In § 6, we define par-
tial multiactions of monoids on semilattices, which are a special case of the previously
defined labelled directed graphs with compatible restrictions and co-restrictions and, at
the same time, are a natural generalization of partial actions of monoids on semilattices.
We first define partial multiactions of a monoid T on a set X (Definition 6.1) and show
that they are in a bijection with premorphisms T → B(X). We observe that a proper
Ehresmann semigroup is strictly proper (i.e., all its elements are proper) if and only if
its underlying labelled directed graph reduces to a partial multiaction (Proposition 6.7).
In Corollary 6.12, we provide a structure result on proper left restriction Ehresmann
semigroups. If S is a restriction semigroup, its attached partial multiaction reduces to
the usual partial action of a monoid on a semilattice by partial bijections between order
ideals, and we thus recover the known structure result on proper restriction semigroups
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[6], as it is formulated in [19]. We conclude the paper by two open questions about strictly
proper Ehresmann semigroups.

2. Preliminaries

2.1. Ehresmann and restriction semigroups

We now define the main objects of study of this paper. For more information, we refer
the reader to the survey [12], see also the recent papers on the subject [3–5].

Definition 2.1. (Ehresmann semigroups). A left Ehresmann semigroup is an
algebra (S; · ,+ ), where (S; ·) is a semigroup and + is a unary operation satisfying the
following identities:

x+x = x, (x+y+)+ = x+y+ = y+x+, (xy)+ = (xy+)+. (2.1)

Dually, a right Ehresmann semigroup is an algebra (S; · ,∗ ), where (S; ·) is a semigroup
and ∗ is a unary operation satisfying the following identities:

xx∗ = x, (x∗y∗)∗ = x∗y∗ = y∗x∗, (xy)∗ = (x∗y)∗. (2.2)

A two-sided Ehresmann semigroup, or just an Ehresmann semigroup, is an algebra
(S; · ,∗ ,+ ), where (S; · ,+ ) is a left Ehresmann semigroup, (S; · ,∗ ) is a right Ehresmann
semigroup and the operations ∗ and + are connected by the following identities:

(x+)∗ = x+, (x∗)+ = x∗. (2.3)

Restriction semigroups form an important subclass of Ehresmann semigroups. They
are defined as follows.

Definition 2.2. (Restriction semigroups). A left restriction semigroup is an alge-
bra (S; · ,+ ), which is a left Ehresmann semigroup and in addition satisfies the identity

xy+ = (xy)+x. (2.4)

Dually, a right restriction semigroup is an algebra (S; · ,∗ ), which is a right Ehresmann
semigroup and in addition satisfies the identity

x∗y = y(xy)∗. (2.5)

A two-sided restriction semigroup or just a restriction semigroup is an algebra (S; · ,∗ ,+ ),
which is a left and a right restriction semigroup and Equation (2.3) holds.

Restriction semigroups, in turn, generalize inverse semigroups. Recall that a semigroup
S is called an inverse semigroup if for each a ∈ S there exists unique b ∈ S such that
aba = a and bab= b. The element b is called the inverse of a and is denoted by a−1. If
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(S, ·) is an inverse semigroup and a ∈ S, we define a+ = aa−1 and a∗ = a−1a. Then
(S; · ,∗ ,+ ) is a restriction semigroup (and thus an Ehresmann semigroup).
An Ehresmann semigroup possessing an identity element is called an Ehresmann

monoid.
Left Ehresmann semigroups and right Ehresmann semigroups are usually considered

as (2, 1)-algebras and Ehresmann semigroups as (2, 1, 1)-algebras. It is immediate from
the definition that left Ehresmann semigroups, right Ehresmann semigroups, Ehresmann
semigroups, left restriction semigroups, right restriction semigroups and restriction semi-
groups form varieties of algebras. Morphisms, congruences and subalgebras of all these
algebras are taken with respect to their signatures.
Let S be an Ehresmann semigroup. In view of Equations (2.1), (2.2) and (2.3), the set

P (S) = {s∗ : s ∈ S} = {s+ : s ∈ S}

is closed with respect to the multiplication. Furthermore, it is a semilattice and
e∗ = e+ = e holds for all e ∈ P (S). It is called the semilattice of projections of S, and
its elements are called projections. A projection is necessarily an idempotent, but an
Ehresmann semigroup may contain idempotents that are not projections.
We will often use the following identities, which can be easily derived from the

definitions:

∀s ∈ S, e ∈ P (S) : (se)∗ = s∗e, (es)+ = es+. (2.6)

The next identities hold in restriction semigroups and are often called the left ample
identity and the right ample identity, respectively,

∀s ∈ S, e ∈ P (S) : se = (se)+s, es = s(es)∗. (2.7)

Let S be an Ehresmann semigroup. For a, b ∈ S, we put

• a ≤l b if there is e ∈ P (S) such that a = eb;
• a ≤r b if there is e ∈ P (S) such that a = be;
• a ≤ b if there are e, f ∈ P (S) such that a = ebf.

The relations ≤l, ≤r and ≤ are partial orders on S and are called the natural left
partial order, the natural right partial order and the natural partial order, respectively.
Clearly ≤=≤l ◦ ≤r=≤r ◦ ≤l, where ◦ stands for the product of relations. It is easy to see
that a ≤l b holds if and only if a = a+b and, dually, a ≤r b holds if and only if a = ba∗.
Restricted to P(S ), all the orders coincide and e ≤ f , where e, f ∈ P (S), holds if and
only if e = ef. In addition, P(S ) is an order ideal, that is, e ≤ f , where f ∈ P (S), implies
that e ∈ P (S). Moreover, if S is a restriction semigroup, all the orders coincide too.
The following is an easy but useful observation.

Lemma 2.3. An Ehresmann semigroup S is a monoid if and only if it has a maximum
projection. If this is the case, the maximum projection is the identity element of S.
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Proof. Suppose that S is an Ehresmann monoid with the identity element 1. Denote
e = 1∗. Then e = 1e = 11∗ = 1. Hence, 1 is a projection. Since 1e = e1 = e for all
e ∈ P (S), it is the maximum projection. Conversely, suppose that an Ehresmann semi-
group S has a maximum projection 1P (S) and let s ∈ S. Then s1P (S) = ss∗1P (S) =
ss∗ = s and similarly 1P (S)s = s. It follows that S is a monoid with the identity
element 1P (S). �

It is easy to see that in a left Ehresmann semigroup a ≤l b implies a+ ≤ b+. Indeed,
let a = a+b. Then a+ = (a+b)+ = (a+b+)+ = a+b+.
A reduced Ehresmann semigroup is an Ehresmann semigroup S for which |P (S)| = 1.

Then, necessarily, S is a monoid and P (S) = {1} so that s∗ = s+ = 1 holds for all s ∈ S.
On the other hand, any monoid S can be endowed with the structure of an Ehresmann
semigroup by putting s∗ = s+ = 1 for all s ∈ S. Hence, reduced Ehresmann semigroups
can be identified with monoids.
By σ we denote the minimum congruence on an Ehresmann semigroup S that identifies

all elements of P(S ). Observe that if τ is a semigroup congruence that identifies all of
P(S ), then a τ b of course implies a+ τ b+ and a∗ τ b∗. So semigroup congruences and
(2, 1, 1)-congruences identifying all the projections coincide. Thus, S/σ is the maximum
quotient of S, which is a reduced Ehresmann semigroup. The σ-class which contains a ∈ S
will be denoted by [a]σ. If a ≤ b, then clearly a σ b. If S is a restriction semigroup, each
of the following statements is equivalent to s σ t (see [13, Lemma 8.1]):

(i) There is e ∈ P (S) such that es = et.
(ii) There is e ∈ P (S) such that se = te.

A left (respectively, right) restriction semigroup is called proper if a+ = b+ (respec-
tively, a∗ = b∗), and a σ b imply that a = b. A restriction semigroup is proper if it is
proper as a left and as a right restriction semigroup.

2.2. The monoid of binary relations on a set and its submonoids

Let X be a non-empty set. By B(X) we denote the monoid of binary relations on X
with the operation of the composition of relations. Let τ ∈ B(X) and x, y ∈ X. We write
xτ = {z ∈ X : (x, z) ∈ τ} and τy = {z ∈ X : (z, y) ∈ τ}. In case where xτ = {y}, we
write xτ = y, and similarly if τy = {x}, we write τy = x. By idX = {(x, x) : x ∈ X},
we denote the identity relation, and by ∅, we denote the empty relation. The reverse
relation τ−1 of the relation τ ∈ B(X) is defined by τ−1 = {(y, x) : (x, y) ∈ τ}. The
partial transformation monoid PT (X) is a submonoid of the monoid B(X) consisting
of all τ ∈ B(X) such that |xτ | ≤ 1 for all x ∈ X. Let PT c(X) be the submonoid of
B(X) consisting of all τ ∈ B(X) such that |τy| ≤ 1 for all y ∈ X. Clearly, PT c(X) is
anti-isomorphic to PT (X) via the map τ 7→ τ−1. The symmetric inverse monoid I(X)
equals PT (X)∩PT c(X). It consists of all τ ∈ B(X) such that |xτ | ≤ 1 and |τx| ≤ 1 for
all x ∈ X.
It is well known that B(X) is an Ehresmann monoid if one defines τ+ and τ∗ by

τ+ = dom(τ) = {(x, x) ∈ X ×X : ∃y ∈ X such that (x, y) ∈ τ},

τ∗ = ran(τ) = {(y, y) ∈ X ×X : ∃x ∈ X such that (x, y) ∈ τ}.
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Note that P (B(X)) = {τ ∈ B(X) : τ ⊆ idX}; hence, the semilattice P (B(X)) is iso-
morphic to the powerset of X with respect to the operation of intersection of subsets.
It follows that PT (X), PT c(X) and I(X) are (·,+ ,∗ , 1)-subalgebras of B(X). It is well
known and easy to check that PT (X) is a left restriction monoid. Dually, PT c(X) is a
right restriction monoid. Furthermore, I(X) is a restriction monoid (of course, I(X) is
also an inverse monoid).
In this paper, we consider B(X), PT (X), PT c(X) and I(X) equipped with the partial

order ⊆ of inclusion of relations. It is known and easy to check that this partial order
is compatible with the multiplication. The inclusion order on each of PT (X), PT c(X)
and I(X) coincides with the natural partial order. However, the inclusion order on B(X)
contains the natural partial order ≤ but does not coincide with it. For example, if X =
{1, 2, 3, 4}, τ = {(1, 3), (1, 4), (2, 3), (2, 4)} and µ = {(1, 3), (2, 4)}, then µ ⊆ τ , but µ 6≤ τ .

3. The structure of proper Ehresmann semigroups

The goal of this section is to define proper Ehresmann semigroups and show that they
arise naturally from labelled directed graphs with vertices indexed by elements of a
semilattice and edges labelled by elements of a monoid, with an additional structure
called compatible restrictions and co-restrictions.

3.1. Matching factorizations

Let S be an Ehresmann semigroup.
A matching factorization of an element s ∈ S is a tuple (s1, . . . , sn), where n ∈ N and

s1, . . . , sn ∈ S are such that s = s1 · · · sn and s∗i = s+i+1 for all i = 1, . . . , n − 1. We say
that a matching factorization (s1, . . . , sn) of s ∈ S has n factors.
We record several easy properties of matching factorizations.

Lemma 3.1. Let (s1, . . . , sn) be a matching factorization of s ∈ S. Then s+ = s+1 and
s∗ = s∗n.

Proof. We apply induction on n. If n =1, there is nothing to prove. Suppose that
n ≥ 2 and that the statement holds for factorizations into n − 1 factors. We then
have s+ = (s1s2 · · · sn)+ = (s1(s2 · · · sn)+)+ = (s1s

+
2 )

+ = (s1s
∗
1)

+ = s+1 and similarly
s∗ = s∗n. �

Lemma 3.2. Let (s1, . . . , sn) be a matching factorization of s ∈ S and let e ≤ s∗ = s∗n.
Put s′n = sne, s

′
n−1 = sn−1(s

′
n)

+, . . . , s′1 = s1(s
′
2)

+. Then (se)∗ = e and (s′1, . . . , s
′
n) is

a matching factorization of se.

Proof. Note that e ≤ s∗ implies that e ∈ P (S). We apply induction on n. If
n =1, there is nothing to prove. Suppose that n ≥ 2 and that the statement holds
for factorizations into n − 1 factors. Note that, in view of Equations (2.6) and (2.1), we
have s+n (sne)

+ = (s+n sne)
+ = (sne)

+. It follows that (s′n)
+ = (sne)

+ ≤ s+n = s∗n−1.
By the induction hypothesis, we have that (s′1, . . . , s

′
n−1) is a matching factoriza-

tion of t = s1 · · · sn−1(s
′
n)

+. Since, using Equation (2.6), (s′n−1)
∗ = (sn−1(s

′
n)

+)∗ =
(s′n−1)

∗(s′n)
+ = (s′n)

+, it follows that (s′1, . . . , s
′
n) is a matching factorization of se. In

addition, (se)∗ = (sne)
∗ = s∗ne = e. �
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Lemma 3.3. Let s = s1 · · · sn. Then there are s′1 ≤ s1, . . ., s′n ≤ sn such that
(s′1, . . . , s

′
n) is a matching factorization of s.

Proof. We apply induction on n. If n =1, then s = s1 is trivially a matching factoriza-
tion. Suppose that n ≥ 2 and that the statement holds for factorizations into n − 1 factors.
Let t = s1 · · · sn−1, s

′
n = t∗sn and e = t∗s+n . Then s = tsn = (ts+n )s

′
n = tes′n, where

(ts+n )
∗ = (s′n)

+ = e. By the induction hypothesis, there are t1 ≤ s1, . . . , tn−1 ≤ sn−1 such
that (t1, . . . , tn−1) is a matching factorization of t. Because t∗n−1 = t∗ by Lemma 3.1, we
have e = t∗s+n = t∗n−1s

+
n ≤ t∗n−1. By Lemma 3.2, there are s′1 ≤ t1, . . . , s

′
n−1 ≤ tn−1

such that (s′1, . . . , s
′
n−1) is a matching factorization of te. Since e ≤ t∗, it follows from

Lemma 3.1 that (s′n−1)
∗ = (te)∗ = t∗e = e = (s′n)

+. Hence, (s′1, . . . , s
′
n) is a matching

factorization of s with s′1 ≤ s1, . . . , s
′
n ≤ sn, as required. �

3.2. Proper Ehresmann semigroups

Let S be an Ehresmann semigroup. Recall that by σ we denote the minimum
congruence on S that identifies all the elements of P(S ).

Definition 3.4. (Proper elements). An element s ∈ S will be called proper, if

∀t ∈ S : t+ = s+, t∗ = s∗ and tσs imply that t = s.

In other words, an element s is proper if it is uniquely determined by s+, s∗ and [s]σ.
If (s1, . . . , sn) is a matching factorization where all si are proper (or all si belong to

some subset Y of S, etc.), we will say that (s1, . . . , sn) is a matching factorization of s
into a product of proper elements (respectively, into a product of elements of Y, etc.).
Let s ∈ S and (s1, . . . , sn) be a matching factorization of s into a product of proper

elements. If there are i, j ∈ {1, 2, . . . , n}, where i ≤ j such that si · · · sj = t is a proper
element then (s1, . . . , si−1, t, sj+1, . . . , sn) is also a matching factorization of s into a prod-
uct of proper elements. In this case, we write (s1, . . . , sn) → (s1, . . . , si−1, t, sj+1, . . . , sn).
Clearly, the relation → is reflexive. Let ≡ be its symmetric and transitive closure.
We say that two matching factorizations (s1, . . . , sn) and (t1, . . . , tk) of s into products

of proper elements are equivalent if (s1, . . . , sk) ≡ (t1, . . . , tk), that is, if the factorization
(t1, . . . , tk) can be obtained from the factorization (s1, . . . , sk) by a finite number of
applications of the relation → or its inverse relation.

Definition 3.5. (Proper Ehresmann semigroups). An Ehresmann semigroup S
is called proper if there is an order ideal Y of S, with respect to the natural partial order,
called a proper generating ideal of S, such that

(1) P (S) ⊆ Y ;
(2) all elements of Y are proper;
(3) each s ∈ S admits a unique, up to equivalence, matching factorization as a product

of elements of Y.

We say that S is strictly proper if all of its elements are proper. It is easy to see that a
strictly proper Ehresmann semigroup is proper (in Definition 3.5, one just takes Y =S ).
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It is immediate that a proper restriction semigroup S is strictly proper as an Ehresmann
semigroup. It follows that proper and strictly proper Ehresmann semigroups generalize
proper restriction semigroups.

3.3. Labelled directed graphs with compatible restrictions and

co-restrictions and their attached categories of paths

Definition 3.6. (Labelled directed graphs). Let X be a non-empty set, T a
monoid with the identity element 1 and G a labelled directed graph with vertex set X
and edges labelled by elements of T. The edge set of G is denoted by E(G). For c ∈ E(G)
by d(c), r(c) ∈ X and t = l(c) ∈ T , we denote its initial vertex, terminal vertex and label,
respectively. We assume that for every x, y ∈ X and t ∈ T , there is at most one edge in
G with initial vertex x, final vertex y and label t, that is, every edge c ∈ E(G) is uniquely
determined by d(c), r(c) and l(c). If G has an edge c with initial vertex x, terminal vertex
y and label t, we denote this edge by (x, t, y). We require that for each x ∈ X, there is an
edge (x, 1, x) ∈ E(G).

By the label of a path in G, we mean the product of labels of the consecutive edges of
this path.

Definition 3.7. (Labelled directed graphs with compatible restrictions and
co-restrictions). Let now E be a semilattice, T a monoid with the identity element 1
and G a labelled directed graph with vertex set E and edges labelled by elements of T (see
Definition 3.6). We assume that for every t ∈ T , there is a path in G labelled by t. We say
that G has restrictions if for any (e, t, f) ∈ E(G) and g ≤ e, there exists g|(e, t, f) ∈ E(G),
called the restriction of (e, t, f) to g such that the following axioms hold:

(R1) If (e, t, f) ∈ E(G) and g ≤ e, then g|(e, t, f) = (g, t, f ′) for some f ′ ≤ f .
(R2) If (e, t, f) ∈ E(G), then e|(e, t, f) = (e, t, f).
(R3) If (e, t, f) ∈ E(G) and h ≤ g ≤ e, then h|(g|(e, t, f)) = h|(e, t, f).
(R4) Let n ≥ 2 and p1 = (e0, t1, e1), . . . , pn = (en−1, tn, en) ∈ E(G) be such that

(e0, t1 · · · tn, en) ∈ E(G). Let also e′0 ≤ e0. Denote e′1 = r(e′0
|p1), e′2 = r(e′1

|p2), . . . ,
e′n = r(e′n−1

|pn). Then e′0
|(e0, t1 · · · tn, en) = (e′0, t1 · · · tn, e′n).

(R5) For any e, f ∈ E such that f ≤ e, we have f |(e, 1, e) = (f, 1, f).

Dually, we say that G has co-restrictions if for any (e, t, f) ∈ E(G) and g ≤ f , there
exists (e, t, f)|g ∈ E(G), called the co-restriction of (e, t, f) to g such that following axioms
hold:

(CR1) If (e, t, f) ∈ E(G) and g ≤ f , then (e, t, f)|g = (e′, t, g) for some e′ ≤ e.
(CR2) If (e, t, f) ∈ E(G), then (e, t, f)|f = (e, t, f).
(CR3) If (e, t, f) ∈ E(G) and h ≤ g ≤ f , then ((e, t, f)|g)|h = (e, t, f)|h.
(CR4) Let n ≥ 2 and p1 = (e0, t1, e1), . . . , pn = (en−1, tn, en) ∈ E(G) be such that

(e0, t1 · · · tn, en) ∈ E(G). Let also e′n ≤ en. Denote e′n−1 = d(pn|e′n), e
′
n−2 =

d(pn−1|e′n−1
), . . . , e′0 = d(p1|e′1). Then (e0, t1 · · · tn, en)|e′n = (e′0, t1 · · · tn, e′n).
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(CR5) For any e, f ∈ E such that f ≤ e, we have (e, 1, e)|f = (f, 1, f).

Suppose that G has restrictions and co-restrictions. We say that it has compatible
restrictions and co-restrictions if the following axiom holds:

(C) Let c = (e, t, f) ∈ E(G) and g ≤ e, h ≤ f . Then

(g|c)|r(g |c)h = d(c|h)g|(c|h) = (gd(c|h), t, r(g|c)h) .

The following diagrams illustrate the operations of restriction and co-restriction.

From now till the end of this section, let E be a semilattice, T a monoid and G a labelled
directed graph with vertex set E and edges labelled by elements T, which has compat-
ible restrictions and co-restrictions. By C(G) we denote the path semicategory of G. By
definition, the objects of C(G) are elements of E, and its arrows are non-empty (labelled)
directed paths in G. If p is a path in G with consecutive edges (e0, t1, e1), . . . , (en−1, tn, en),
n ≥ 1, we sometimes denote it by p = (e0, t1, e1, . . . , en−1, tn, en). We say that n is the
length of the path p. We put e0 = d(p) and en = r(p) to be the initial and the ter-
minal vertices of p, respectively, and l(p) = t1 · · · tn to be the label of p. Paths p and
q are composable if r(p) = d(q), in which case their product is their concatenation,
denoted pq.
We extend the definition of restriction and co-restriction from edges of G to non-empty

directed paths in G recursively as follows: let p = (e0, t1, e1, . . . , en−1, tn, en) be a path
and put p1 = (e0, t1, e1), . . . , pn = (en−1, tn, en).

(RPath) Let e′0 ≤ e0. We put e′1 = r(e′0
|p1), e′2 = r(e′1

|p2), . . . , e′n = r(e′n−1
|pn). We

then define e′0
|p = (e′0, t1, e

′
1, t2, e

′
2, . . . , e

′
n−1, tn, e

′
n).

(CRPath) Let e′n ≤ en. We put e′n−1 = d(pn|e′n), e
′
n−2 = d(pn−1|e′n−1

), . . . , e′0 =

d(p1|e′1). We then define p|e′n = (e′0, t1, e
′
1, t2, e

′
2, . . . , e

′
n−1, tn, e

′
n).

In the following lemma, we extend axioms (R1)–(R5), (CR1)–(CR5) and (C) from
edges of G to non-empty paths in G.

Lemma 3.8. Let p ∈ C(G) and e ≤ d(p), f ≤ r(p). Then,

(R1a) r(e|p) ≤ r(p);
(R2a) d(p)|p = p;
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(R3a) if g ≤ e, then g|(e|p) = g|p;
(R4a) if q ∈ C(G) is such that r(p) = d(q), then e|(pq) = e|p r(e|p)|q;
(R5a) if p = (e, 1, e)n, where n ≥ 1 and g ≤ e, then g|p = (g, 1, g)n;

(CR1a) d(p|f ) ≤ d(p);
(CR2a) p|r(p) = p;
(CR3a) if g ≤ f , then (p|f )|g = p|g;
(CR4a) if q ∈ C(G) is such that r(p) = d(q) and g ≤ r(q), then (pq)|g = p|d(q|g) q|g;
(CR5a) if p = (e, 1, e)n, where n ≥ 1 and g ≤ e, then p|g = (g, 1, g)n;

(Ca) (e|p)|r(e|p)f = d(p|f )e|(p|f ).

Remark that (R4a) and (CR4a) can be extended to products of more than two paths.

Proof. (R4a) Let p = p1 · · · pk, q = pk+1 · · · pn, where pi = (ei−1, ti, ei) for all i =
1, . . . , n. Put e′0 = e, e′1 = r(e′0

|p1), . . . , e′n = r(e′n−1
|pn). By (RPath), we have that

e|(pq) = (e′0, t1, e
′
1, . . . , e

′
n−1, tn, e

′
n) and also

e|p = (e′0, t1, e
′
1, . . . , e

′
k−1, tk, e

′
k), r(e|p)|q = e′

k
|q = (e′k, tk+1, e

′
k+1, . . . , e

′
n−1, tn, e

′
n).

The equality e|(pq) = e|p r(e|p)|q follows.
All other items (excluding (Ca)) can be proved easier or similarly, and we leave the

details to the reader.
We finally prove (Ca). If p has length 1, then the statement holds by (C). Suppose

that n ≥ 2 and that (Ca) holds for all paths of length n − 1. Denote p = rpn, where
r = (e0, t1, e1, . . . , en−2, tn−1, en−1) and pn = (en−1, tn, en). Put e′0 = e, e′n−1 = r(e′0

|r)
and e′n = r(e′n−1

|pn). Put also e′′n = f and e′′n−1 = d(pn|e′′n), e
′′
0 = d(r|e′′n−1

). Observe that

r(e′0
|p) = e′n. Indeed, e′0

|p = e′0
|(rpn), which by (R4a) equals e′0

|r r(
e′0

|r)|pn = e′0
|r e′n−1

|pn.

It follows that r(e′0
|p) = r(e′n−1

|pn) = e′n. Similarly, we have d(p|e′′n) = e′′0 . This can be

illustrated with the following diagram:

Applying (C) and the inductive hypothesis, we have

(e′n−1
|pn)|e′ne′′n

= e′n−1e
′′
n−1

|(pn|e′′n), (3.1)
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e′0e
′′
0
|(r|e′′n−1

) = (e′0
|r)|e′n−1e

′′
n−1

. (3.2)

It follows that

(e′0
|p)|e′ne′′n

= ((e′0
|r)(e′n−1

|pn))|e′ne′′n
(by (R4a))

= (e′0
|r)|e′n−1e

′′
n−1 e′n−1e

′′
n−1

|(pn|e′′n) (by (CR4a) and (3.1))

= e′0e
′′
0
|(r|e′′n−1

)e′n−1e
′′
n−1

|(pn|e′′n) (by (3.1))

= e′0e
′′
0
|(r|e′′n−1

pn|e′′n) (by (R4a) and (3.2))

= e′0e
′′
0
|(p|e′′n),

which completes the proof. �

For any edges p1 = (e0, t1, e1), . . . , pn = (en−1, tn, en) ∈ E(G) such that
(e0, t1 · · · tn, en) ∈ E(G), where n ≥ 2, we put p1 · · · pn ≡ (e0, t1 · · · tn, en). Note that
if p ≡ q, then d(p) = d(q), r(p) = r(q). Let ∼ be the congruence on the semicategory

C(G) generated by the relation ≡. By C̃(G) we denote the quotient semicategory of C(G)
by ∼. For any c ∈ C̃(G), we have that d(c) = d(p) and r(c) = r(p), where p is an arbitrary

representative of c. In addition, since p ∼ q implies l(p) = l(q), for any c ∈ C̃(G), we can
define l(c) to be equal to l(p), where p is an arbitrary representative of c. For p ∈ C(G)
by [p], we denote the ∼-class that contains p. Observe that C̃(G) is in fact a category.

Indeed, if e is a vertex of G, then [(e, 1, e)] ∈ C̃(G) is the identity morphism at e in C̃(G).

Lemma 3.9. Let p, q ∈ C(G) be such that p ∼ q and let e ≤ d(p) = d(q) and f ≤
r(p) = r(q). Then e|p ∼ e|q and p|f ∼ q|f .

Proof. It is enough to assume that p = ap1 · · · pnb, where n ≥ 2, pi = (ei−1, ti, ei),
i ∈ {1, . . . , n}, and q = a(e0, t1 · · · tn, en)b, a, b ∈ C(G). Let h = r(e|a). Then

e|p = e|a h|(p1 · · · pnb) and e|q = e|a h|((e0, t1 · · · tn, en)b)

by (R4a). Hence, it suffices to show that h|(p1 · · · pnb) ∼ h|((e0, t1 · · · tn, en)b). By the
definition of ∼, we have p1 · · · pn ∼ (e0, t1 · · · tn, en), thus, applying (R4) and (RPath),
also h|(p1 · · · pn) ∼ h|(e0, t1 · · · tn, en). Let h′ = r(h|(p1 . . . pn)) = r(h|(e0, t1 · · · tn, en)).
Then

h|(p1 · · · pnb) = h|(p1 . . . pn) h′ |b ∼ h|(e0, t1 · · · tn, en) h′ |b = h|((e0, t1 · · · tn, en)b),

as needed.
For p|f ∼ q|f , the proof is similar. �

It follows that for c ∈ C̃(G) and e ≤ d(c), f ≤ r(c), we can define the restriction of c
to e by e|c = [e|p] and the co-restriction of c to f by c|f = [p|f ], where p is an arbitrary
representative of c.
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The following is an analogue of Lemma 3.8 for C̃(G).

Lemma 3.10. Let c ∈ C̃(G) and e ≤ d(c), f ≤ r(c). Then,

(R1b) r(e|c) ≤ r(c);
(R2b) d(c)|c = c;
(R3b) if g ≤ e, then g|(e|c) = g|c;
(R4b) if d ∈ C̃(G) is such that r(c) = d(d), then e|(cd) = e|c r(e|c)|d;
(R5b) if c = [(e, 1, e)] and g ≤ e, then g|c = [(g, 1, g)];

(CR1b) d(c|f ) ≤ d(c);
(CR2b) c|r(c) = c;
(CR3b) if g ≤ f , then (c|f )|g = c|g;
(CR4b) if d ∈ C̃(G) is such that r(c) = d(d) and g ≤ r(d), then (cd)|g = c|d(d|g) d|g;
(CR5b) if c = [(e, 1, e)] and g ≤ e, then c|g = [(g, 1, g)];

(Cb) (e|c)|r(e|c)f = d(c|f )e|(c|f ).

Proof. The proofs follow from (R1a)–(R5a), (CR1a)–(CR5a) and (Ca) using the defi-

nition of restriction and co-restriction in C̃(G). We prove, for example, (R4b): Let q ∈ cd.
Then q = pp′, where p ∈ c and p′ ∈ d. We have

e|(cd) = e|([pp′]) = [e|(pp′)] = [e|p r(e|p)|p
′] = [e|p][r(e|p)|p

′] = e|[p] r(e|p)|[p
′] = e|c r(e|c)|d,

as needed. All other items are proved similarly. �

3.4. From a labelled directed graph with compatible restrictions and

co-restrictions to a proper Ehresmann semigroup

Let T be a monoid, E a semilattice and G a labelled directed graph with the vertex set E
and edges labelled by elements of T, which has compatible restrictions and co-restrictions
(see Definition 3.7).

Let E oG T be the set which coincides with the underlying set of the category C̃(G).
On this set, we define the operations ·, + and ∗ as follows:

∀c, d ∈ E oG T : cd = c|r(c)d(d)r(c)d(d)|d, (3.3)

∀c ∈ E oG T : c+ = [(d(c), 1,d(c))] and c∗ = [(r(c), 1, r(c))]. (3.4)

Theorem 3.11

(1) (E oG T, ·,+ ,∗ ) is an Ehresmann semigroup.
(2) P (E oG T ) = {[(e, 1, e)] : e ∈ E} and P (E oG T ) ' E via the map [(e, 1, e)] 7→ e. It

follows that E oG T is a monoid if and only if E has a maximum element.
(3) Let c, d ∈ E oG T . If cσd, then l(c) = l(d).
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(4) Let c, d ∈ EoG T . Then c ≤l d (respectively, c ≤r d) if and only if there is some e ≤
d(d) (respectively, f ≤ r(d)) such that c = e|d (respectively, c = d|f ). Consequently,
c ≤ d holds if and only if there are some e ≤ d(d) and f ≤ r(e|d) such that
c = (e|d)|f .

(5) If cσd holds if and only if l(c) = l(d) for all c, d ∈ EoGT , then EoGT is proper with
the proper generating ideal Y = {[(e, s, f)] : (e, s, f) ∈ E(G)} and (E oG T )/σ ' T
as monoids.

Remark that in (4) above and in what follows the symbol ≤ denotes both the natural
partial order on E oG T and also the order on the semilattice E. It is always clear from
the context which of these two orders is being used.

Proof. (1) We start from showing that the multiplication · is associative. Let a, b, c ∈
EoG T . Denote f = r(a), g = d(b), h = r(b) and e = d(c). Let further m = fd(b|he) and
k = r(fg|b)e. For convenience, in this proof, we denote the multiplication in the category

C̃(G) by ◦. We calculate

(a · b) · c = (a|fg ◦ fg|b) · c (by the definition of ·)
= ((a|fg ◦ fg|b) |k) ◦ k|c (by the definition of ·)

=

(
(a|fg)|d

(
(fg |b)|k

) ◦ (fg|b)|k
)
◦ k|c (by (CR4b))

=

(
a|

d
(
(fg |b)|k

) ◦ (fg|b)|k
)
◦ k|c (by (CR3b))

= a|
d
(
(fg |b)|k

) ◦ ((fg|b)|k ◦ k|c) . (since ◦ is associative)

Denote a′ = a|
d
(
(fg |b)|k

), b′ = (fg|b)|k and c′ = k|c. On the other hand, we have

a · (b · c) = a · (b|he ◦ he|c) (by the definition of ·)
= a|m ◦ m| (b|he ◦ he|c) (by the definition of ·)

= a|m ◦
(
m|(b|he) ◦ r(m|(b|he))|c

)
. (by (R4b) and (R3b))

Denote a′′ = a|m, b′′ = m|(b|he), c′′ = r(m|(b|he))|c. Observe that

b′ = (fg|b)|r(fg |b)e
= (fg|b)|r(fg |b)he (since r(fg|b) ≤ hby (CR1b))

= d(b|he)fg|(b|he) (by (Cb))

= d(b|he)f |(b|he) (sinced(b|he) ≤ gby (CR1b))

= b′′
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It follows that d((fg|b)|k) = d(b′) = d(b′′) = m and similarly r(m|(b|he)) = k. Hence,
a′ = a|

d
(
(fg |b)|k

) = a|m = a′′ and similarly c′ = c′′. Thus, (a · b) · c = a′ ◦ (b′ ◦ c′) =

a′′ ◦ (b′′ ◦ c′′) = a · (b · c).
Let a ∈ E oG T . Applying the definition of ·, (R2b) and (CR2b), we have

a · a∗ = a · [(r(a), 1, r(a))] = a|r(a) ◦ r(a)|[(r(a), 1, r(a))] = a ◦ [(r(a), 1, r(a))] = a.

Hence, a · a∗ = a.
Let a, b ∈ EoG T . Put f = r(a), g = r(b). Then applying (R5b) and (CR5b), we have

a∗ · b∗ = [(f, 1, f)] · [(g, 1, g)] = [(f, 1, f)]|fg ◦ fg|[(g, 1, g)]
= [(fg, 1, fg)] ◦ [(fg, 1, fg)] = [(fg, 1, fg)2] = [(fg, 1, fg)].

It follows that (a∗ · b∗)∗ = a∗ · b∗ = b∗ · a∗ holds.
Let a, b ∈ E oG T . Put f = r(a), g = d(b). Then (a · b)∗ = (a|fg ◦ fg|b)∗ =

[(r(fg|b), 1, r(fg|b))] and (a∗ · b)∗ = ([(f, 1, f)]|fg ◦ fg|b)∗ = [(r(fg|b), 1, r(fg|b))]. It follows
that (a · b)∗ = (a∗ · b)∗.
We have verified that (E oG T, ·,∗ ) is a right Ehresmann semigroup. Dually, it follows

that (T oG E, ·,+ ) is a left Ehresmann semigroup. In addition, it is easy to see that
(a∗)+ = a∗ and (a+)∗ = a+ for all a ∈ E oG T . Therefore, (E oG T, ·,+ ,∗ ) is an
Ehresmann semigroup.
(2) Let a ∈ E oG T be a projection. Then a = a+ = [(d(a), 1,d(a))] and also clearly

any [(e, 1, e)], e ∈ E, is a projection. Now, since [(e, 1, e)] · [(f, 1, f)] = [(ef, 1, ef)], it
follows that P (E oG T ) is a semilattice and the map [(e, 1, e)] → e is an isomorphism
of semilattices. By Lemma 2.3, E oG T is a monoid if and only if it has a maximum
projection. As we have shown, this is the case if and only if E has a maximum element.
(3) Let ϕ : EoGT → T be the map given by a 7→ l(a), where T is a reduced Ehresmann

semigroup. It is easy to see that it is a (2, 1, 1)-morphism. Note that ϕ is surjective because
for every t ∈ T , there is a path in G labelled by t. So T is a reduced quotient of E oG T .
Hence, T is a quotient of (E oG T )/σ. It follows that aσb implies that ϕ(a) = ϕ(b), that
is, l(a) = l(b), which proves (3).
(4) Let c, d ∈ EoGT be such that c ≤l d. This means that there is a projection [(e, 1, e)]

such that c = [(e, 1, e)] · d. Applying Equation (3.3) and (CR5b), this is equivalent to
c = [(ed(d), 1, ed(d))]◦ ed(d)|d = ed(d)|d. The statement for ≤r is dual, and the statement
for ≤ follows from those for ≤l and ≤r.
(5) Suppose that cσd holds if and only if l(c) = l(d) for all c, d ∈ E oG T . It follows

from (4) that Y = {[(e, s, f)] : (e, s, f) ∈ E(G)} is an order ideal of E oG T with respect
to the natural partial order.
If c = [(e, s, f)], d = [(g, t, h)] ∈ Y are such that c+ = d+, c∗ = d∗ and c σ d, then,

clearly, s = l(c) = l(d) = t and also e = g and f = h, so c= d. It follows that all elements
of Y are proper. In addition, Y contains all the projections of E oG T , by the definition
of G.
Now each element of EoG T decomposes as a matching product of elements of Y, and,

moreover, the definition of ∼ yields that such a factorization is unique up to equivalence.
Therefore, the Ehresmann semigroup E oG T is proper. By the assumption, the map
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(E oG T )/σ → T given by [a]σ 7→ l(a) is well defined and injective. Since for every
t ∈ T , there is a path in G labelled by t, this map is surjective. It is also a monoid
homomorphism, and thus an isomorphism. Hence, (E oG T )/σ ' T . �

In what follows, the multiplication in E oG T will be often denoted by juxtaposition.
Since E oG T and C̃(G) have the same underlying set, the relations ≤l, ≤r and ≤ are

also partial orders on the category C̃(G). It is routine to show that, equipped with ≤l

and ≤r, the category C̃(G) is an Ehresmann category in the sense of Lawson [22]. After
this, the fact that E oG T is an Ehresmann semigroup becomes also a consequence of
[22, Theorem 4.21].
Observe that the partial orders ≤l and ≤r can be defined already on E(G) by u ≤l v

if there is some e ≤ d(v) such that u = e|v and u ≤r v if there is some f ≤ r(v) such
that u = v|f . Using (C), one can see that ≤l ◦ ≤r=≤r ◦ ≤l, denote this relation by ≤.
Clearly, u ≤l v (respectively, u ≤r v or u ≤ v) in E(G) implies [u] ≤ [v] (respectively,

[u] ≤r [v] or [u] ≤ [v]) in C̃(G).
We now single out a special case for which the assumption of Theorem 3.11(5) holds.

Proposition 3.12. Suppose that T = X∗ is the free X-generated monoid, edges of G
are labelled by elements of X or 1, where the edges labelled by 1 are precisely the edges
(e, 1, e). Suppose further that for any two edges u, v ∈ E(G) with l(u) = l(v) 6= 1, there
is an edge w ∈ E(G) such that u, v ≤ w. Then for all c, d ∈ E oG T : cσd if and only if
l(c) = l(d). Consequently, the Ehresmann semigroup E oG T is proper with the proper
generating ideal Y = {[(e, s, f)] : (e, s, f) ∈ E(G)} and (E oG T )/σ ' T .

Proof. In view of Theorem 3.11(3), it is enough to assume that l(c) = l(d)
and to show that cσd. (We note that in view of Definition 3.7, each element of
X labels at least one edge of G.) Let l(c) = l(d) = a1 · · · an, where ai ∈ X
for i = 1, . . . , n and n ≥ 1. Then c = [(e0, a1, e1, . . . , en−1, an, en)] and d =
[(f0, a1, f1, . . . , fn−1, an, fn)] for some ei, fi ∈ E, 0 ≤ i ≤ n. For each i = 0, . . . , n− 1, let
(gi, ai+1, gi+1) ∈ E(G) be such that (ei, ai+1, ei+1), (fi, ai+1, fi+1) ≤ (gi, ai+1, gi+1). Then
[(ei, ai+1, ei+1)]σ[(gi, ai+1, gi+1)]σ[(fi, ai+1, fi+1)]. This yields cσd. If l(c) = l(d) = 1,
then cσd as σ identifies all the projections. �

3.5. The structure theorem

Let S be a proper Ehresmann semigroup and Y be a proper generating ideal of S (see
Definition 3.5). Denote T = S/σ and recall that for a ∈ S by [a]σ ∈ T , we denote
the σ-class of a. The underlying graph GS,Y of S with respect to Y is the labelled
directed graph defined as follows. Vertices of GS,Y are elements of P(S ), and for all
e, f ∈ P (S), edges of GS,Y from e to f are triples (e, t, f), where t ∈ T and there is a
(necessarily unique) a ∈ Y such that e = a+, f = a∗ and t = [a]σ. It is immediate that
a 7→ (a+, [a]σ, a

∗) is a bijection between Y and edges of GS,Y .
Let p = (e, t, f) ∈ E(GS,Y ) and let a ∈ Y be such that p = (a+, [a]σ, a

∗). For a
projection g ≤ e, we define the restriction g|p of p to g by

g|p = ((ga)+, [ga]σ, (ga)
∗) = (g, [a]σ, (ga)

∗). (3.5)
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Similarly, for h ≤ f , we define the co-restriction p|h of p to h

p|h = ((ah)+, [ah]σ, (ah)
∗) = ((ah)+, [a]σ, h). (3.6)

These are well defined since ga, ah ≤ a and Y is an order ideal.

Lemma 3.13. GS,Y is a labelled directed graph with compatible restrictions and
co-restrictions.

Proof. Since P (S) ⊆ Y and by the definition of GS,Y , we have that for every e ∈ P (S),
the graph GS,Y has an edge (e, 1, e). In addition, for each t ∈ S/σ, the graph GS,Y has a
path labelled by t.
Let p = (a+, [a]σ, a

∗) ∈ E(GS,Y ) and g ≤ a+. Then g|p = (g, [a]σ, (ga)
∗), and since

(ga)∗a∗ = (gaa∗)∗ = (ga)∗, we have (ga)∗ ≤ a∗ so that (R1) holds.
Let p = (a+, [a]σ, a

∗) ∈ E(GS,Y ). Then a+ |p = (a+, [a]σ, (a
+a)∗) = p, so that (R2)

holds.
Let us verify that condition (R3) holds. Let h ≤ g ≤ a+. Then

h|(g|p) = h|((ga)+, [ga]σ, (ga)∗) = ((hga)+, [hga]σ, (hga)
∗) = ((ha)+, [ha]σ, (ha)

∗) = h|p,

as needed.
To show (R4), let p1 = (a+1 , [a1]σ, a

∗
1), . . . , pn = (a+n , [an]σ, a

∗
n) ∈ E(GS,Y ), where a∗i =

a+i+1 for all i = 1, . . . , n−1 be such that (a+1 , [a1 · · · an]σ, a∗n) ∈ E(GS,Y ) where n ≥ 2. Put

e0 = a+1 and let e′0 ≤ e0. Define e′1 = r(e′0
|p1) = (e′0a1)

∗, e′2 = r(e′1
|p2) = ((e′0a1)

∗a2)
∗ =

(e′0a1a2)
∗, . . . , e′n = r(e′n−1

|pn) = ((e′0a1 · · · an−1)
∗an)

∗ = (e′0a1 · · · an−1an)
∗. Now

e′0
|(a+1 , [a1 · · · an]σ, a∗n) = (e′0, [a1]σ · · · [an]σ, (e′0a1 · · · an−1an)

∗) = (e′0, [a1]σ · · · [an]σ, e′n),

as needed.
If e, f ∈ P (S) are such that f ≤ e, then we have

f |(e, 1, e) = f |(e+, [e]σ, e∗) = (f, [e]σ, (ef)
∗) = (f, 1, f),

so that (R5) holds.
Axioms (CR1)–(CR5) follow dually.
We finally verify axiom (C). Let p = (a+, [a]σ, a

∗) ∈ GS,Y and g ≤ a+, h ≤ a∗. We
calculate

(g|p)|r(g |p)h = ((ga)+, [a]σ, (ga)
∗)|(ga)∗h (by (3.5))

= ((ga(ga)∗h)+, [a]σ, (ga)
∗h) (by (3.6))

= ((gah)+, [a]σ, (ga)
∗h) (by (2.2))

= (g(ah)+, [a]σ, (ga)
∗h) (by (2.6))

= (gd(p|h), [a]σ, r(g|p)h). (by (3.5) and (3.6))

The equality d(p|h)g|(p|h) = (gd(p|h), [a]σ, r(g|p)h) follows dually. �
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Therefore, we can construct the Ehresmann semigroup P (S)oGS,Y S/σ.

The following theorem describes the structure of proper Ehresmann semigroups in
terms of labelled directed graphs with compatible restrictions and co-restrictions. We
will show in § 6 that this result generalizes the structure result on proper restriction
semigroups in terms of partial actions [6, 19] and is thus a wide-ranging extension of the
McAlister theorem on the structure of E -unitary inverse semigroups, formulated in terms
of partial actions [18, 31].

Theorem 3.14. Let S be a proper Ehresmann semigroup and let Y be its proper
generating ideal. Then S ' P (S)oGS,Y S/σ.

Proof. Let a ∈ S and let (a1, . . . , an) be a matching factorization of a into a prod-
uct of elements of Y. We define (a1, . . . , an)Ψ = (a+1 , [a1]σ, a

+
2 , [a2]σ, . . . , a

+
n , [an]σ, a

∗
n) ∈

C(GS,Y ). Suppose that t = aiai+1 · · · aj ∈ Y , where 1 ≤ i < j ≤ n and let
(a1, . . . , ai−1, t, aj+1, . . . , an) be the matching factorization of a into a product of ele-
ments of Y obtained by the replacement of (ai, ai+1, . . . , aj) with t. The definition of the
congruence ∼ on C(GS,Y ) yields that (a1, . . . , ai−1, t, aj+1, . . . , an)Ψ ∼ (a1, . . . , an)Ψ. It
follows that Ψ maps equivalent matching factorizations of a into products of elements of Y
to equivalent paths in C(GS,Y ). Therefore, we can define the map Ψ: S → P (S)oGS,Y S/σ

by

aΨ = [(a+1 , [a1]σ, a
+
2 , [a2]σ, . . . , a

+
n , [an]σ, a

∗
n)],

where (a1, . . . , an) is a matching factorization of a into a product of elements of Y.
It is immediate from the definitions that Ψ is a bijection. Let us show that it preserves

the multiplication. Let a, b ∈ S and let (a1, . . . , an) and (b1, . . . , bm) be matching factor-
izations of a and b into products of elements of Y. Let a′n = anb

+
1 , a

′
n−1 = an−1(a

′
n)

+,
. . . , a′1 = a1(a

′
2)

+ and b′1 = a∗nb1, b′2 = (b′1)
∗b2, . . ., b′m = (b′m−1)

∗bm. Note that
(a′n)

∗ = (anb
+
1 )

∗ = a∗nb
+
1 = (a∗nb1)

+ = (b′1)
+. By Lemma 3.2 and its dual, we see that

(a′1, . . . , a
′
n, b

′
1, . . . , b

′
m) is a matching factorization of ab into a product of elements of Y,

thus

(ab)Ψ = [((a′1)
+, [a1]σ, . . . , (a

′
n)

+, [an]σ, (a
′
n)

∗, [b1]σ, (b
′
1)

∗, . . . , [bm]σ, (b
′
m)∗)].

From Equation (3.3), we have that

(aΨ)(bΨ) = [(a+1 , [a1]σ, . . . , a
+
n , [an]σ, a

∗
n)]|a∗nb+1 a∗nb+1

|[(b+1 , [b1]σ, . . . , b+m, [bm]σ, b
∗
m)],

which, in view of Equations (3.5), (RPath) and (CRPath), equals

[((a′1)
+, [a1]σ, . . . , (a

′
n)

+, [an]σ, (a
′
n)

∗][((b′1)
+, [b1]σ, (b

′
1)

∗, . . . , [bm]σ, (b
′
m)∗)] = (ab)Ψ.

Let (a1, . . . , an) be a matching factorization of a into a product of elements of Y. Then,

(a+)Ψ = (a+1 )Ψ = [(a+1 , [a
+
1 ]σ, a

+
1 )] = [(a+1 , [a1]σ, a

+
2 , [a2], . . . , [an]σ, a

∗
n)]

+ = (aΨ)+.

It follows that Ψ preserves the operation +. Dually, it also preserves ∗. Hence, Ψ is a
(2, 1, 1)-isomorphism. �
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Combining Theorems 3.11 and 3.14, we obtain the following result.

Theorem 3.15. Let T be a monoid, E a semilattice and G a labelled directed graph
with the vertex set E and edges labelled by elements of T, which has compatible restrictions
and co-restrictions (see Definition 3.7). Suppose that cσd holds in E oG T if and only
if l(c) = l(d) for all c, d ∈ E oG T . Then E oG T is a proper Ehresmann semigroup
with the proper generating ideal Y = {[(e, s, f)] : (e, s, f) ∈ E(G)} and the semilattice of
projections isomorphic to E via [(e, 1, e)] 7→ e. In particular, E oG T is a monoid if and
only if E has a top element. Furthermore, (E oG T )/σ ' T as monoids.
Conversely, every proper Ehresmann semigroup S has this form (up to isomorphism).

Specifically, if Y is a proper generating ideal of S, then S ' P (S)oGS,Y S/σ.

4. Covers

An Ehresmann semigroup T is called a cover of an Ehresmann semigroup S, if there is
a surjective projection-separating morphism ϕ : T → S. Let X+ = X∗ \ {1} be the free
X -generated semigroup.

Theorem 4.1. Any Ehresmann semigroup has a proper cover.

Proof. Let S be an Ehresmann semigroup, and let X be a (2, 1, 1)-generating set of
S. For v ∈ X+, let v be the value of v in S. We construct a labelled directed graph G
with vertex set P(S ) and edges labelled by elements of X ∪{1} as follows. Edges labelled
by 1 are precisely the edges (e, 1, e), where e ∈ P (S) and for a ∈ X the edges labelled by
a are all the edges (e, a, f), where e, f ∈ P (S) are such that e = (eaf)+, f = (eaf)∗. We
define the restriction and co-restriction on G as follows. For an edge (e, a, f) and g ≤ e,
we put

g|(e, a, f) = (g, a, (ga)∗f) = ((gaf)+, a, (gaf)∗) (4.1)

and for h ≤ f , we put

(e, a, f)|h = (e(ah)+, a, h) = ((eah)+, a, (eah)∗). (4.2)

The second equality in Equation (4.1) holds because

(gaf)+ = (geaf)+ (since g ≤ e)

= g(eaf)+ (by (2.6))

= ge = g (since (eaf)+ = e and g ≤ e)

and (ga)∗f = (gaf)∗ by Equation (2.6). Observe that g|(e, a, f) is an edge since
(ga(ga)∗f)+ = (gaf)+ = g and (ga(ga)∗f)∗ = (gaf)∗. Similarly, one shows that the
second equality in Equation (4.2) holds and that (e, a, f)|h is an edge.
Furthermore, if f ≤ e, we put (e, 1, e)|f = f |(e, 1, e) = (f, 1, f).
Let us show that G is a labelled directed graph with compatible restrictions and co-

restrictions. It is immediate that axioms (R1), (R2) and (R5) hold.
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To show that (R3) holds, we need to show that h|(g|(e, a, f)) = h|(e, a, f) whenever
h ≤ g ≤ e. This reduces to showing that (h, a, (ha)∗(ga)∗f) = (h, a, (ha)∗f). It is enough
to verify the equality (ha)∗(ga)∗ = (ha)∗. We have

(ha)∗(ga)∗ = (ha(ga)∗)∗ (by (2.6))

= (hga(ga)∗)∗ (since h ≤ g)

= (hga)∗ (by (2.2))

= (ha)∗, (since h ≤ g)

as needed.
To show (R4), observe that if p1 = (e0, t1, e1), . . . , pn = (en−1, tn, en) ∈ E(G) with

ti ∈ X∪{1} such that (e0, t1 · · · tn, en) ∈ E(G), then at most one of the elements ti differs
from 1, since labels of edges of G belong to X ∪ {1}. If ti = 1 for all i, then ei = e0
and pi = (e0, 1, e0) for all i. Hence, (e0, t1 · · · tn, en) = (e0, 1, e0) and thus (R4) obviously
holds. If tk ∈ X for some k ∈ {1, . . . , n} and ti = 1 for all i 6= k, then (e0, t1 · · · tn, en) =
(ek−1, tk, ek) = pk, pi = (ek−1, 1, ek−1) for i < k and pi = (ek, 1, ek) for i > k. It is now
easy to see that (R4) holds in this case, too. By symmetry, axioms (CR1)–(CR5) also
hold.
We finally check that axiom (C) holds. Let c = (e, a, f) ∈ E(G) where a ∈ X and let

g ≤ e, h ≤ f . Then g|c = (g, a, (ga)∗f). Thus, r(g|c)h = (ga)∗fh = (ga)∗h which, in view
of Equation (2.6), equals (gah)∗. Similarly, one checks that d(c|h)g = (gah)+. Then

(g|c)|r(g |c)h = (g, a, (ga)∗f)|(gah)∗ (by (4.1))

= (g(a(ga)∗h)+, a, (gah)∗) (by (4.2))

= ((ga(ga)∗h)+, a, (gah)∗) (by (2.6))

= ((gah)+, a, (gah)∗) (by (2.2))

and symmetrically d(c|h)g|(c|h) = ((gah)+, a, (gah)∗). If a =1, then e = f, and it is easy
to see that both (g|c)|r(g |c)h and d(c|h)g|(c|h) are equal to (gh, 1, gh). Thus, (C) holds.
We can thus form the Ehresmann semigroup P (S) oG X∗. Let us show that it is

proper. Let (e, a, f) ∈ E(G). Then e = (eaf)+ = e(af)+ ≤ (af)+ ≤ a+. It follows that

e|(a+, a, a∗) is defined and, in view of Equation (4.1) and (ea)∗a∗ = (ea a∗)∗ = (ea)∗,
it equals (e, a, (ea)∗). Now, since f = (eaf)∗ = (ea)∗f ≤ (ea)∗, it follows that the
element (e, a, (ea)∗)|f is defined and, in view of Equation (4.2), it equals (e, a, f). It
follows that (e, a, f) ≤ (a+, a, a∗). By Proposition 3.12, we have that the Ehresmann
semigroup P (S)oG X∗ is proper and (P (S)oG X∗)/σ'X∗.
Define a map ϕ : P (S)oG X∗ → S by

[(e, 1, e)]ϕ = e,

[(e0, a1, . . . , an, en)]ϕ = e0a1e1 . . . anen.

The map ϕ is well-defined because all the paths, which are equivalent to
(e0, a1, . . . , an, en), are obtained from it by inserting or removing edges of type (e, 1, e)
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(and no other edges). Let us show that ϕ preserves the multiplication. It is immediate
that [(e, 1, e)]ϕ[(f, 1, f)]ϕ = ef = [(ef, 1, ef)]ϕ = ([(e, 1, e)][(f, 1, f)])ϕ.
Let now s = [(e0, a1, . . . , an, en)] and t = [(f0, b1, . . . , bk, fk)], where n, k ≥ 1 and

ai, bj ∈ X for all i = 1, . . . , n and j = 1, . . . , k. Then by (RPath), (CRPath) and
Equations (4.1), (4.2), we have

s|enf0
= [(h0, a1, h1, a2, . . . , an, hn)],

where hn = enf0 and hi = ei(ai+1hi+1)
+ for i = 0, . . . , n− 1, and

enf0
|t = [(g0, b1, g1, b2, . . . , bk, gk)],

where g0 = enf0 = hn and gi = (gi−1bi)
∗fi for i = 1, . . . , k. Applying Equation (3.3), we

calculate

(st)ϕ = (s|enf0 enf0
|t)ϕ

= [(h0, a1, . . . , an, hn, b1, g1, . . . , bk, gk)]ϕ

= h0a1h1a2 · · · anenf0b1g1 · · · bkgk (by the construction of ϕ)

= e0(a1h1)
+a1h1a2 · · · anenf0b1g1 · · · bkgk (since h0 = e0(a1h1)

+)

= e0a1h1a2h2 · · · anenf0b1g1 · · · bkgk (since (a1h1)
+a1h1 = a1h1)

= e0a1e1(a2h2)
+a2h2 · · · anenf0b1g1 · · · bkgk (since h1 = e1(a2h2)

+)

. . .

= e0a1e1a2e2 · · · anenf0b1g1 · · · bkgk.

Starting from gk and moving leftwards, we then similarly arrive at

(st)ϕ = e0a1e1a2e2 · · · anenf0b1f1 · · · bkfk,

which is precisely sϕtϕ.
The remaining two cases where s = [(e0, a1, . . . , an, en)] with ai ∈ X for all i = 1, . . . , n

and t = [(f, 1, f)], and the dual case, are treated similarly.
Let us show that ϕ preserves the unary operation +. If s = [(e, 1, e)], it is immediate

that (s+)ϕ = (sϕ)+ = e. Let s = [(e0, a1, . . . , an, en)] with ai ∈ X for all i = 1, . . . , n.
Then (s+)ϕ = [(e0, 1, e0)]ϕ = e0. On the other hand, we have

(sϕ)+ = (e0a1e1 · · · en−1anen)
+ (by the definition of ϕ)

= (e0a1e1 · · · en−2an−1(en−1anen)
+)+ (applying the third identity of (2.1))

= (e0a1e1 · · · en−2an−1en−1)
+ (by the definition of G)

. . .

= (e0a1e1)
+ = e0.

https://doi.org/10.1017/S0013091523000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000391


Proper Ehresmann semigroups 779

Hence, (sϕ)+ = (s+)ϕ, as needed. By a dual argument, ϕ preserves also the operation ∗.
Since P (P (S)oG X

∗) = {[(e, 1, e)] : e ∈ P (S)} and [(e, 1, e)]ϕ = e, it is immediate that
ϕ is projection separating.
Let us show that ϕ is surjective. It suffices to show that every element s ∈ S can

be written as a product s = e0x1e1 · · ·xnen, where ei ∈ P (S), xi ∈ X and for all
i = 1, . . . n : (ei−1xiei)

+ = ei−1, (ei−1xiei)
∗ = ei. Since S is (2, 1, 1)-generated by

X, every element of S can be written as a product of projections and elements of the
multiplicative subsemigroup of S generated by X. Since, for x, y ∈ X, we have xy =
(x+ xx∗y+)(x∗y+ y y∗), any s ∈ S can be written as s = (f0x1f1)(f1x2f2) · · · (fn−1xnfn),
where fi ∈ P (S) and xi ∈ X. Lemma 3.3 now implies that there are si ≤ fi−1xifi,
i = 1, . . . , n, such that (s1, . . . , sn) is a matching factorization of s. Let i ∈ {1, . . . , n} and
note that si = gxih for some g, h ∈ P (S). Put ei−1 = g(xih)

+ and ei = (gxi)
∗h. We then

can write si = ei−1xiei, where s+i = (gxih)
+ = g(xih)

+ = ei−1 and s∗i = (gxi)
∗h = ei.

Hence, s = e0x1e1 · · ·xnen is the required factorization of s. �

Remark 4.2. If a proper Ehresmann semigroup S has the identity element, then by
Lemma 2.3, it coincides with the maximum projection 1P (S). Then the proper Ehresmann
semigroup P (S)oG X∗ has the identity element [(1P (S), 1, 1P (S))]. The definition of the
covering map ϕ in the proof of Theorem 4.1 yields that [(1P (S), 1, 1P (S))]ϕ = 1P (S). It fol-
lows that every proper Ehresmann monoid (in the signature (2, 1, 1)) has a proper cover,
which is a monoid and the covering morphism preserves the identity element. Proof of
Theorem 4.1 holds true also if we consider Ehresmann monoids in the extended signa-
ture (2, 1, 1, 0), so we conclude that every proper Ehresmann monoid (in the signature
(2, 1, 1, 0)) has a proper cover.

5. Connection with the work [3]

Suppose that P(S ) has the maximum element and consider the covering proper
Ehresmann monoid P (S) oG X∗ from the proof of Theorem 4.1 in the signature
(2, 1, 1, 0). The construction of P (S) oG X∗ implies that it is generated by elements
[(x+, x, x∗)], where x ∈ X, and projections. In addition, the monoid homomorphism
ϕ : X∗ → P (S)oG X∗, induced by the map x 7→ [(x+, x, x∗)], is injective because for any
v ∈ X∗, we have v = l(vϕ) (note that 1ϕ = [(1P (S), 1, 1P (S)]). It follows that P (S)oG X

∗

is X∗-generated in the sense of [3]. Moreover, since different elements of X∗ϕ have differ-
ent labels, it follows that the congruence σ separates X∗. Hence, P (S)oG X∗ is strongly
X∗-proper in the sense of [3].
We now briefly recall the definition of the construction of the Ehresmann monoid

P(T, Y ) by Branco, Gomes and Gould from [3]. Let T be a monoid, Y a semilattice with
a top element 1Y and suppose that T acts on Y by order-preserving maps from the left
and from the right subject to certain compatibility conditions. Denote the right action
by ◦ and the left action by ·. These actions, together with the natural action of Y on
itself by the multiplication, extend to the right and the left actions, also denoted by ◦
and ·, of the semigroup free product T ∗ Y on Y. For any u ∈ T ∗ Y , denote u+ = u · 1Y
and u∗ = 1Y ◦ u. Then one defines P(T, Y ) as the quotient of T ∗ Y by a congruence ∼,
which is the minimum congruence with the property that the operations ∗ and + can

https://doi.org/10.1017/S0013091523000391 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000391


780 G. Kudryavtseva and V. Laan

be pushed down to the quotient T ∗ Y/ ∼ and this quotient can be endowed with the
structure of an Ehresmann monoid. For more details, see [3].
Let us show that the covering Ehresmann semigroup P (S) oG X∗ from the proof of

Theorem 4.1 is isomorphic to the semigroup P(X∗, P (S)) from [3, Section 5]. We argue
similarly to the last paragraph of the proof of Theorem 4.1. First, since P(X∗, P (S))
is X∗-generated (in the sense of [3]), every element of s ∈ P(X∗, P (S)), which is not
a projection, can be written as a product s = (f0x1f1)(f1x2f2) · · · (fn−1xnfn), where
fi ∈ P (S) and xi ∈ X. Furthermore, applying Lemma 3.3, this can be written as
s = (e0x1e1)(e1x2e2) · · · (en−1xnen) = e0x1e1 · · · en−1xnen, where for all i = 1, . . . n :
(ei−1xiei)

+ = ei−1, (ei−1xiei)
∗ = ei. It is natural to say that the elements e, where

e ∈ P (S), and e0x1e1 · · · en−1xnen are in the canonical form. It follows from [3, Theorem
5.2] that the map P(X∗, P (S)) → P (S) oG X∗ given on the elements in the canonical
form by e 7→ ([e, 1, e)], where e ∈ P (S), and

e0x1e1 · · · en−1xnen 7→ [(e0, x1, e1, . . . , en−1, xn, en)],

is a (2, 1, 1, 0)-morphism, and it is obvious that it is a bijection. Thus, it is a (2, 1, 1, 0)-
isomorphism of P(X∗, P (S)) and P (S) oG X∗. In particular, the canonical form of s ∈
P(X∗, P (S)) is well defined.
Recall that the free Ehresmann monoid FEM (X ) and the free Ehresmann semigroup

on the set X are defined as the free objects in the varieties of X -generated Ehresmann
monoids and of X -generated Ehresmann semigroups. Elegant combinatorial models for
FEM (X ) and FES (X ) were proposed in [16] by Kambites. We note that FEM (X ) can
be obtained from FES (X ) by adjoining of an external identity element.
We arrive at the following statement.

Proposition 5.1. The free Ehresmann monoid FEM(X) and the free Ehresmnann
semigroup FES(X) are proper.

Proof. Since FEM (X ) is (2, 1, 1, 0)-generated by X, it has a proper cover
P (FEM(X)) oG X∗ constructed in the proof of Theorem 4.1. By the above argument,
we have that P (FES(X)) oG X∗ is isomorphic to P(X∗, P (FEM(X))), which, by [3,
Theorem 6.1], is isomorphic to FEM (X ). The constructions imply that the covering
morphism from P (FEM(X)) oG X∗ to FEM (X ) is in fact a (2, 1, 1, 0)-isomorphism.
Detaching the external identity element in both P (FEM(X))oG X∗ and FEM (X ), we
obtain the needed statement for FES (X ). �

6. Special cases

In this section, we define partial multiactions of a monoid T on a set X and show that
they are in a bijection with premorphisms T → B(X). We then define partial multiactions
of monoids on semilattices with compatible restrictions and co-restrictions and show
that these are a special case of labelled directed graphs with compatible restrictions
and co-restrictions. This leads to a structure result for proper left restriction (or proper
right restriction) Ehresmann semigroups, which generalizes the known structure result
for proper restriction semigroups in terms of partial actions.
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6.1. Partial multiactions of monoids on sets

Definition 6.1. (Partial multiactions). Let T be a monoid and X a non-empty
set. Let G be a labelled directed graph with vertex set X and edges labelled by elements of
T (see Definition 3.6). Suppose that for each t ∈ T , there is an edge in G labelled by t
and the following condition holds:

(PM) If (x, t, y), (y, s, z) ∈ E(G), then (x, ts, z) ∈ E(G).

We define the edges (x, t, y), (u, s, v) ∈ E(G) to be composable if y= u, in which case
we put (x, t, y)(y, s, z) = (x, ts, z). It is easy to verify that this makes G a category with
objects X and arrows E(G). We call it a partial multiaction of T on X.

The identity arrow of G at x is (x, 1, x). We have d(x, t, y) = x and r(x, t, y) = y.

Remark 6.2. Recall [24] that the Cauchy completion of a semigroup S is the category

C(S) = {(e, s, f) ∈ E(S)× S × E(S) : esf = s},

with the composition rule (e, s, f)(f, t, g) = (e, st, g). If we extend the definition of a
partial multiaction from monoids to semigroups by requiring that (PM) holds, then C (S )
becomes an example of a partial multiaction of the semigroup S with X = E(S).

Let us show that the notion of a partial multiaction of T on X subsumes those of both
left and right partial actions of T on X. Recall that a right partial action of T on X is
a partially defined map X × T → X, (x, t) 7→ x · t, such that for every t ∈ T , there is
x ∈ X such that x · t is defined and

(i) if x · s and (x · s) · t are defined, then x · st is defined and (x · s) · t = x · st.
(ii) for all x ∈ X, we have that x · 1 is defined and x · 1 = x.

Left partial actions of T on X are defined dually.
Suppose that the (partially defined) assignment (x, t) 7→ x · t defines a right partial

action of T on X and define G to be the labelled directed graph with vertex set X, edges
labelled by elements of T and E(G) = {(x, t, x · t) : x · t is defined}. Then G is a partial
multiaction of T on X and also satisfies the following condition:

(LD) (Left determinism) For all t ∈ T and x ∈ X, there exists at most one y ∈ X such
that (x, t, y) ∈ E(G).

In this way, right partial actions of T on X are in a bijective correspondence with
partial multiactions of T on X, which satisfy condition (LD). Dually, given a left partial
action (t, x) 7→ t · x of T on X, we define G to be the labelled directed graph with vertex
set X, edges labelled by elements of T and E(G) = {(t · x, t, x) : t · x is defined}. Then G
is a partial multiaction of T on X and also satisfies the following condition:

(RD) (Right determinism) For all t ∈ T and y ∈ X, there exists at most one x ∈ X
such that (x, t, y) ∈ E(G).
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Hence, left partial acitons of T on X are in a bijective correspondence with partial
multiactions of T on X, which satisfy condition (RD).

6.2. Partial multiactions and premorphisms

We now introduce the notion of a premorphism from a monoid T to the monoid B(X)
and relate it with the notion of a partial multiaction of T on X.

Definition 6.3. (Premorphisms). Let T be a monoid and X a set. A map ϕ : T →
B(X), t 7→ ϕt, will be called a premorphism provided that for all t ∈ T , ϕt 6= ∅, and

(Prem1) idX ⊆ ϕ1,
(Prem2) for all s, t ∈ T, ϕsϕt ⊆ ϕst.

Proposition 6.4.

(1) Let G be a partial multiaction of T on X. For every t ∈ T , define ϕt = {(x, y) ∈
X ×X : (x, t, y) ∈ E(G)}. Then ϕ : T → B(X), t 7→ ϕt, is a premorphism.

(2) Let ϕ : T → B(X) be a premorphism and define G to be the category with objects X
and arrows E(G) = {(x, t, y) : t ∈ T, (x, y) ∈ ϕt}. Then G is a partial multiaction of
T on X.

(3) A partial multiaction G of T on X satisfies condition (LD) (respectively, condition
(RD)) if and only if ϕ(T ) ⊆ PT (X) (respectively, ϕ(T ) ⊆ PT c(X)), where ϕ : T →
B(X) is the premorphism defined in part (1).

(4) A partial multiaction G of T on X satisfies both (LD) and (RD) if and only if
ϕ(T ) ⊆ I(X), where ϕ : T → B(X) is the premorphism defined in part (1).

Proof. Parts (1), (2) and (3) are direct consequences of the definitions. Part (4) follows
from (3) and PT (X) ∩ PT c(X) = I(X). �

We call a partial multiaction G and the premorphism ϕ defined in Proposition 6.4(1)
attached to each other.

Remark 6.5. Suppose that a partial multiaction G satisfies (LD) and (RD) and let
ϕ : T → B(X) be its attached premorphism. Then for each (x, t, y) ∈ E(G), we have
y = xϕt or, equivalently, x = yϕ−1

t , where ϕ−1
t is the reverse relation to ϕt and coincides

with the inverse of ϕt in I(X). Therefore, E(G) = {(x, t, xϕt) : t ∈ T, x ∈ dom(ϕt)} =
{(yϕ−1

t , t, y) : t ∈ T, y ∈ ran(ϕt)}. Also, E(G) = {(ϕty, t, y) : t ∈ T, y ∈ ran(ϕt)} =
{(x, t, ϕ−1

t x) : t ∈ T, x ∈ dom(ϕt)}.

Observe that if G satisfies condition (LD), then for its attached premorphism ϕ : T →
B(X), condition (Prem1) reduces to ϕ1 = idX . In addition, we have ϕs ⊆ ϕt if and only
ϕs ≤ ϕt, where ≤ is the natural partial order on PT (X). This leads to the following
corollary of Proposition 6.4.

Corollary 6.6. There is a bijective correspondence between partial multiactions of
T on X and premorphisms T → B(X). This correspondence subsumes the bijective
correspondences between the following:
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(1) right (respectively, left) partial actions of T on X and premorphisms T → PT (X)
(respectively, T → PT c(X)), see [14, Proposition 2.8],

(2) right (or, equivalently, left) partial actions of T on X by partial bijections and
premorphisms T → I(X), see [19].

6.3. Partial multiactions of monoids on semilattices with compatible

restrictions and co-restrictions

Let T be a monoid, E a semilattice and G a labelled directed graph with compatible
restrictions and co-restrictions (see Definition 3.7). In this subsection, we additionally
suppose that G is a partial multiaction of T on E (see Definition 6.1). This means that
if (e, t, f), (f, s, g) ∈ E(G), then (e, ts, g) ∈ E(G). We then call the category G a partial
multiaction of T on E with compatible restrictions and co-restrictions. Note that every
≡-class of the path semicategory C(G) contains a unique path of length 1, which is an

edge of G. It follows that the category C̃(G) is isomorphic to G via the identity map on

objects and the map [(e, t, f)] 7→ (e, t, f) on the arrows. From now on, we identify C̃(G)
with G. In particular, the underlying set of the Ehresmann semigroup E oG T coincides
with E(G).
For a strictly proper Ehresmann semigroup S, we put GS to be the underlying graph

GS,S of S with respect to the proper generating ideal S. Applying Theorem 3.11(5), we
obtain the following statement.

Proposition 6.7.

(1) Let G be a partial multiaction of a monoid T on a semilattice E with compatible
restrictions and co-restrictions and assume that for all c, d ∈ E oG T : cσd holds if
and only if l(c) = l(d). Then E oG T is strictly proper and (E oG T )/σ ' T via the
map [(e, s, f)]σ 7→ s.

(2) Let S be a strictly proper Ehresmann semigroup. Then the underlying labelled
directed graph GS is a partial multiaction of S/σ on P(S).

6.4. Strictly proper Ehresmann semigroups arising from deterministic

partial multiactions

Let G be a partial multiaction of a monoid T on a semilattice E with compatible
restrictions and co-restrictions.

Lemma 6.8. Let G satisfy (LD) or (RD). Then,

(1) (e, s, f)σ(g, t, h) if and only if s= t;
(2) E oG T is strictly proper and (E oG T )/σ ' T via the map [(e, s, f)]σ 7→ s.

Proof. (1) In view of Theorem 3.11(3), we only need to prove that s = t implies that
(e, s, f)σ(g, t, h). Consider the case where G satisfies condition (LD), the other case is
dual. So let s ∈ T and show that (e, s, f)σ(g, s, h). Applying Equations (3.3) and (CR5b),
we have (eg, 1, eg) · (e, s, f) = (eg, 1, eg)|eg eg|(e, s, f) = eg|(e, s, f). Since σ identifies
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all the projections, eg|(e, s, f) = (eg, 1, eg) · (e, s, f)σ(e, 1, e) · (e, s, f) = (e, s, f) and
similarly eg|(g, s, h)σ(g, s, h). Note that d(eg|(e, s, f)) = d(eg|(g, s, h)) = eg. Condition
(LD) implies that eg|(e, s, f) = eg|(g, s, h). This yields that (e, s, f)σ(g, s, h), as desired.
(2) This follows from part (1) and Proposition 6.7(1). �

We now demonstrate that proper left (respectively, right) restriction Ehresmann
semigroups arise from partial multiactions of monoids on semilattices with compatible
restrictions and co-restrictions that satisfy condition (LD) (respectively, condition (RD)).

Proposition 6.9. If G satisfies condition (LD) (respectively, condition (RD), or
conditions (LD) and (RD)), then the Ehresmann semigroup EoGT is a proper left restric-
tion semigroup (respectively, proper right restriction semigroup, or proper restriction
semigroup) with (E oG T )/σ ' T via the map [(e, s, f)]σ 7→ s.

Proof. We consider only the case of condition (LD), the case with (RD) is dual, and
the third case follows from the first two. From Lemma 6.8, it follows that the Ehresmann
semigroup E oG T is strictly proper with (E oG T )/σ ' T via the map [(e, s, f)]σ 7→ s.
We verify that E oG T satisfies the left ample identity given in Equation (2.7). Let
a = (e, s, h) and f = (g, 1, g). Then by Equations (3.3) and (R5), we have a · f =
(e, s, h) · (g, 1, g) = (e, s, h)|hg hg|(g, 1, g) = (e′, s, hg)(hg, 1, hg) = (e′, s, hg), where e′ =
d((e, s, h)|hg). Hence, (a · f)+ = (e′, 1, e′) and

(a · f)+ · a = (e′, 1, e′) · (e, s, h) = e′ |(e, s, h) = (e′, s, h′),

where h′ ≤ h and for the last equality we applied (R1). Since (e′, s, hg), (e′, s, h′) ∈ E(G),
condition (LD) yields h′ = hg. This implies that a · f = (a · f)+ · a, as needed. We finally
show that E oG T is a proper left restriction semigroup. Assume that a, b ∈ E oG T
are such that a+ = b+ and aσb. This means that a = (e, s, f) and b = (e, s, g) for some
e, f, g ∈ E and s ∈ T . Condition (LD) now yields that f = g, that is, a = b. �

The following statement shows that strictly proper Ehresmann semigroups gener-
alize Ehresmann semigroups, which are proper left (or right) restriction, and they
also generalize proper restriction semigroups. It follows directly from the definition of
properness.

Lemma 6.10. Let S be an Ehresmann semigroup, which is a proper left (or right)
restriction semigroup. Then S is a strictly proper Ehresmann semigroup. Consequently,
if S is a proper restriction semigroup, then it is a strictly proper Ehresmann semigroup.

We now determine when an Ehresmann semigroup is proper left restriction (respec-
tively, proper right restriction, or proper restriction).

Theorem 6.11. Let S be an Ehresmann semigroup. Then S is proper left restriction
(respectively, proper right restriction, or proper restriction) if and only if S is strictly
proper Ehresmann and its underlying partial multiaction GS satisfies condition (LD)
(respectively, (RD), or both (LD) and (RD)).

Proof. We consider only the case of a left restriction semigroup, the case of a right
restriction semigroup being dual and the third case following from the first two. Suppose
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that S is a proper left restriction semigroup. Then it is a strictly proper Ehresmann
semigroup and let a = (e, s, f), b = (e, s, g) ∈ P (S) oGS S/σ. Then a+ = b+ and aσb in
P (S)oGS S/σ. By Theorem 3.14, P (S)oGS S/σ is isomorphic to S ; hence, it is a proper
left restriction semigroup, so a = b. It follows that GS satisfies condition (LD).
For the reverse direction, suppose that S is strictly proper Ehresmann and its

underlying partial multiaction GS satisfies condition (LD). Proposition 6.9 implies that
P (S) oGS S/σ is a proper left restriction semigroup. In view of Theorem 3.14, the
statement follows. �

As a corollary, we obtain a structure result for Ehresmann semigroups, which are proper
left restriction (or proper right restriction) and of proper restriction semigroups.

Corollary 6.12.

(1) Let S be an Ehresmann semigroup, which is proper left restriction (respectively,
proper right restriction). Then it is a strictly proper Ehresmann semigroup, and its
underlying partial multiaction GS satisfies condition (LD) (respectively, condition
(RD)) and S is isomorphic to P (S)oGS S/σ.

(2) Let S be a proper restriction semigroup. Then it is a strictly proper Ehresmann
semigroup, and its underlying partial multiaction GS satisfies conditions (LD) and
(RD) and S is isomorphic to P (S)oGS S/σ.

6.5. The structure of proper restriction semigroups

In this subsection, we show that the known result on the structure of proper restriction
semigroups [6, 19] is equivalent to Corollary 6.12(2); thus, it can be recovered as a special
case of Theorem 3.14.
For a semilattice E, let Σ(E) be the inverse semigroup of all order isomorphisms

between order ideals of E [30, VI.7.1].

Proposition 6.13. Let G be a partial multiaction of a monoid T on a semilattice E
with compatible restrictions and co-restrictions, and let ϕ : T → B(E) be its attached
premorphism.

(1) If G satisfies condition (LD) (respectively, condition (RD)), then for all t ∈ T ,
dom(ϕt) (respectively, ran(ϕt)) is an order ideal of E, and the map ϕt (respectively,
ϕ−1
t ) is order-preserving.

(2) If G satisfies both of the conditions (LD) and (RD), then for all t ∈ T , we have that
ϕt ∈ Σ(E).

Proof. (1) We consider the case where G satisfies (LD), the other case being dual.
Let e ∈ dom(ϕt) and f ≤ e. Then f |(e, t, eϕt) = (f, t, g), where g ≤ eϕt by (R1), which
implies that f ∈ dom(ϕt); thus, dom(ϕt) is an order ideal. Furthermore, it follows from
(LD) that g = fϕt so that f |(e, t, eϕt) = (f, t, fϕt). It now follows by Equation (R1) that
fϕt ≤ eϕt. Hence, ϕt is order-preserving.
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(2) Let G satisfy both the conditions (LD) and (RD). Then dom(ϕt) and ran(ϕt)
are order-ideals of E ; in addition, ϕt is an injective map and both ϕt and ϕ−1

t are
order-preserving. This means that ϕt ∈ Σ(E), as needed. �

Let S be a proper restriction semigroup. Denote T = S/σ. Let ϕ : T → B(P (S)) be
the premorphism attached to the partial multiaction GS . It follows from Theorem 6.11
that ϕ(T ) ⊆ Σ(P (S)). Let t ∈ T . We have

dom(ϕt) = {e ∈ P (S) : ∃a ∈ S such that e = a+and [a]σ = t}.

If e ∈ dom(ϕt), then eϕt = a∗ and a∗ϕ−1
t = a+, where a ∈ S is such that [a]σ = t and

a+ = e. Since ϕe = eϕ−1 for all ϕ ∈ I(E), the operations on P (S)oGS T can be written
as follows:

(e, s, eϕs) · (f, t, fϕt) = ((eϕs ∧ f)ϕ−1
s , s, eϕs ∧ f) · (eϕs ∧ f, t, (eϕs ∧ f)ϕt)

= ((eϕs ∧ f)ϕ−1
s , st, (eϕs ∧ f)ϕt),

(e, s, eϕs)
+ = (e, 1, e), (e, s, eϕs)

∗ = (eϕs, 1, eϕs).

Since the third component of a triple (e, s, eϕs) is determined by the first two com-
ponents, (e, s, eϕs) is determined by the pair (e, s). The set A of all such pairs is in a
bijection with the underlying set of P (S) oGS T . The operations on P (S) oGS T are
translated to operations on A as follows:

(e, s)(f, t) = ((eϕs ∧ f)ϕ−1
s , st), (e, s)+ = (e, 1), (e, s)∗ = (eϕs, 1). (6.1)

On the other hand, let ϕ be a partial action of T on E by partial bijections between
order ideals such that dom(ϕt) 6= ∅ for all t ∈ T . The graph assigned to ϕ has vertex set
E and edges (e, t, f), where t ∈ T , e ∈ dom(ϕt) and f = eϕt. We define the restriction
of (e, t, f) to g ≤ e by g|(e, t, f) = (g, t, gϕt) and the co-restriction of (e, t, f) to h ≤ f by
(e, t, f)|h = (hϕ−1

t , t, h). It is routine to verify that then G is a partial multiaction with
compatible restrictions and co-restrictions, which satisfies conditions (LD) and (RD). We
have rediscovered the structure result on proper restriction semigroups, as it is formulated
in [19, Theorem 3].
We conclude the paper with the following open questions.

Question 6.14. Is the free Ehresmann semigroup FES (X ) strictly proper?

In other words, is it true that every element of a ∈ FES(X) is uniquely determined
by a∗, a+ and [a]σ? It is known [3] and easy to see that, unlike what happens in proper
restriction semigroups, an element a ∈ FES(X) is not in general uniquely determined
only by a+ (or by a∗) and [a]σ. For example, if X = {x, y}, the elements xy+ and (xy)+x
are different (because their underlying Kambites trees [16] are different) and we have
that (xy+)+ = ((xy)+x)+ and xy+σ(xy)+x. However, (xy+)∗ 6= ((xy)+x)∗.

Question 6.15. Does every Ehresmann semigroup have a strictly proper cover?
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