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We investigate the deformation, dynamics and rheology of a single and a suspension of
elastic capsules in inertial shear flow using high-fidelity particle-resolved simulations.
For a single capsule in the shear flow, we elucidate the interplay of flow inertia and
viscosity ratio, revealing the mechanism behind the stretching of capsule surface during
tank-treading motion and the sign changes in normal stress differences with increasing
inertia. When examining capsule suspensions, we thoroughly discuss the impact of
volume fraction on average deformation, diffusion and rheology. Notably, we observe
the formation of bridge structures due to hydrodynamic interactions, which enhance
the inhomogeneity of the microstructure and alter the surface stress distribution within
the suspension. We identify a critical Reynolds number range that marks the transition
of capsule diffusion from non-inertial to inertial regimes. Furthermore, we reveal
close connections between the behaviour of individual capsules and dense suspensions,
particularly regarding capsule deformation and dynamics. Additionally, we propose
multiple new empirical correlations for predicting the deformation factor of a single
capsule and the relative viscosity of the suspension. These findings provide valuable
insights into the complex behaviour of elastic capsules in inertial flows, informing the
design of more accurate and efficient inertial microfluidic systems.

Key words: suspensions, capsule/cell dynamics

1. Introduction
Capsules, membrane-enclosing fluid objects, play pivotal roles across many natural
and industrial domains, including the biological, pharmaceutical, cosmetic and food
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industries (Barthes-Biesel 2016; Luo & Bai 2019; Sun et al. 2021). Capsules also
serve as simplified models for examining complex biological cells, such as red blood
cells (RBCs) and circulating tumour cells, through numerical analysis (Krüger 2012;
Gekle 2016; Balogh et al. 2021; Huet & Wachs 2023). Given their significant role
and applications, understanding and manipulating capsules require advanced theoretical,
experimental and numerical techniques. Recent advances have highlighted the utility of
microfluidic devices in separating cells by size and deformability, enriching specific cell
concentrations, and facilitating precise cell characterisation (Häner et al. 2021; Wang et al.
2016). Enhanced computing capabilities have further bolstered the design and optimisation
of these devices, enabling sophisticated numerical analyses that mimic experimental
conditions (Zhu et al. 2014; Gubspun et al. 2016). Notably, innovative microfluidic designs,
such as a semi-circular pillar geometry developed and optimised numerically by Zhu
et al. (2014), have demonstrated efficacy in sorting cells based on membrane stiffness,
confirmed through both numerical studies and experimental validations (Häner et al.
2021).

Over the last years, considerable research efforts have been directed towards modelling
and understanding the deformation and dynamics of capsules in non-inertial flows,
a focus driven largely by its relevance to microcirculatory systems such as capillary
blood vessels and conventional microfluidic applications. Based on the thin-shell
theory, Barthès-Biesel and Rallison initially provided an analytical framework for the
temporal evolution of elastic capsule deformation under infinite, slow-moving shear flows,
assuming infinitesimal deformations (Barthes-Biesel & Rallison 1981). Subsequently,
Pozrikidis expanded on this by applying the boundary integral method to accommodate
finite deformations (Pozrikidis 1995), a method further applied to analyse significant
deformation in capsules with distinct internal and external fluid viscosities (Ramanujan
& Pozrikidis 1998), and to incorporate the effects of bending stresses (Pozrikidis 2001).
In terms of the capsule dynamics, it was shown that the migration and diffusion of a
capsule suspension do differ from those of hard sphere suspensions due to the deformable
capsule–capsule interactions and the dissipating inner fluid (Bishop et al. 2002; Kulkarni
& Morris 2008; Gross et al. 2015; Rahmani et al. 2018). More recently, Balogh and
Bagchi (Balogh & Bagchi 2017, 2018, 2019) employed the front-tracking method (FTM)
to delve into the behaviour and structural changes of RBCs within the complex vessel
networks reminiscent of human microcirculation. Apart from the migration of capsules in
channels of different geometries, the mechanical and rheological properties of suspensions
of purely elastic capsules have been thoroughly studied in the non-inertial regime. The
rheological behaviour of suspensions, especially for the rigid particles, was addressed in
the pioneering work of Batchelor (1970), establishing that stresses due to the presence
of particles are formulated using a particle stress tensor, which can be expressed as
a summation of stresslets in a domain. Recently, Takeishi et al. (2019) conducted a
comprehensive investigation of the rheology of a suspension of RBCs in a wall-bounded
shear flow, highlighting that the dynamic motion of RBCs has an important influence on
the suspension rheology. Aouane et al. (2021) reveal that the strain-hardening capsules
share rheological features with both soft and solid particles depending on the ratio of
the area dilatation to shear elastic modulus and the effective volume fraction. Guglietta
et al. (2023) studied the suspension of viscoelastic capsules by considering the effects of
membrane viscosity on the transient dynamics of the suspension rheology. They showed
that the influence of the membrane viscosity strongly depends on the capsule volume
fraction.
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Inertial particle microfluidics has recently emerged as a cutting-edge technique for
high-precision and efficient manipulation of microparticles and biological cells. This
technology finds application in fields ranging from microbiology to biotechnology,
offering a promising avenue to expedite labour-intensive, non-destructive diagnostic
processes such as cell sorting and cell characterisation (Krüger et al. 2014; Son et al. 2017;
Yin et al. 2019; Owen et al. 2023). Given the substantially higher flow velocities in inertial
microfluidics compared with their non-inertial counterparts, traditional analytical theories
and methods relying on the Stokes conditions such as the boundary integral method fail
to account for the advective components of the fluid momentum equation (Amini et al.
2014). Initial investigations into the inertial dynamics of capsules, such as the work of
Doddi & Bagchi (2008), who explored the interactions and spiralling motions of two
capsules in a shear flow using the FTM, laid the groundwork for this field. Research into
the dynamics of deformable capsules in inertial flows has revealed distinct behaviours
depending on channel geometry. Subsequent studies in straight microchannels identified
multiple equilibrium positions for deformable capsules, diverging from the channel
centreline towards the cross-section diagonals, and primarily influenced by inertial forces:
wall repulsion, shear-gradient lift and drag forces in secondary flow fields (Kilimnik
et al. 2011; Raffiee et al. 2017; Owen et al. 2023). Building on this, Ebrahimi & Bagchi
(2021) extended the analysis to curved channels, systematically varying parameters such
as channel Reynolds number, capsule deformability and channel geometry to uncover the
effects of curvature on the capsule dynamics. Parallel advancements have focused on other
deformable particles, notably droplets, whose behaviours under finite inertia have been
extensively explored. These studies highlight insights into the dynamics of emulsions,
emphasising the effects of inclination angles on rheological behaviours (Li & Sarkar
2005b; Olapade et al. 2009; Singh & Sarkar 2009; Singh & Sarkar 2011, 2015). For
elastic capsule suspensions specifically, Banaei et al. examined nucleated capsules under
finite inertia (Banaei et al. 2017, 2021), showing significant effects on deformation and
suspension rheology, including increased relative viscosity. In our previous work (Huet
et al. 2024), we further investigated the dynamics of elastic capsule trains navigating sharp
corners under inertial flow, identifying mechanisms behind interaction and deformation in
these complex geometries.

Despite the existing body of knowledge previously summarised, significant gaps still
remain in our understanding of the deformation, diffusion and rheology of elastic capsule
suspensions in an inertial shear flow. Current research has yet to comprehensively
address the intricate interactions and behaviours that arise under varying conditions of
inertia and flow dynamics. We aim to answer the following questions using high-fidelity
particle-resolved numerical simulations: (i) How does flow inertia impact the deformation
and dynamics of a single capsule in a shear flow? (ii) What are the connections
between the behaviour of a single capsule and that of a dense suspension? (iii) What
are the major differences between capsule suspensions in the non-inertial and inertial
regimes?

This manuscript is organised as follows: § 2 provides the governing equations and
membrane models for the deformable capsule. In § 3, we introduce the numerical set-ups
for a single capsule and a capsule suspension in a shear flow. The novel findings for a single
capsule in a shear flow are presented in § 4. In § 5, we present the numerical results on the
deformation, lateral migration and rheology of the capsule suspension and discuss their
relationship with the behaviour observed in single capsule studies. Finally, § 6 provides
the conclusions and perspectives for future investigation.
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2. Numerical method and dimensionless numbers

2.1. Governing equation and membrane models

The capsule membrane Γ̃ is assumed infinitely thin and is surrounded by an
incompressible Newtonian fluid with constant viscosity and density. In this study, the
viscosity ratio between the inner and outer fluids of the capsule may differ from unity.
The fluid dynamics is governed by the mass and momentum conservation equations

∇̃ · ũ = 0, (2.1)
∂ ũ

∂ t̃
+ ũ · ∇̃ ũ = 1

ρ̃
∇̃ p̃ + ν̃∇̃2ũ + 1

ρ̃
f̃b, (2.2)

where ũ denotes the velocity field, p̃ the pressure field and ρ̃ the density. The kinematic
viscosity is given by ν̃ = μ̃/ρ̃, where μ̃ is the dynamic viscosity. The term f̃b represents
a body force that accounts for the influence of the capsule membrane on its surrounding
fluid. Dimensional quantities are indicated by the ∼ symbol. The membrane can exhibit
both elasticity and bending stresses, and its localised action on the fluid is described by
the following expression for f̃b:

f̃b =
(

F̃elast i c + F̃bending

)
δ̃(x̃ − x̃0), (2.3)

where x̃ = (x̃, ỹ, z̃) is the position vector and δ̃(x̃ − x̃0) is a Dirac delta distribution
defined at position x̃0, which is non-zero only on the surface of the membrane since
x̃0 ∈ Γ̃ . Please note that only the elastic force is considered in the current research, while
bending stresses are neglected.

The shear and area-dilatation membrane stresses are described using the thin-shell
theory, which is briefly summarised here. For more detailed information, readers are
referred to the analytical study by Barthes-Biesel & Rallison (1981). In this work, we
adopt the Skalak law to describe the elastic membrane, with the expression of the surface
strain energy function W̃s expressed as

W̃s = Ẽs

4

(
I 2
1 + 2I1 − 2I2 + C I 2

2

)
. (2.4)

The two invariants are defined as I1 = λ2
1 + λ2

2 − 2 and I2 = λ2
1λ

2
2 − 1, where λ1,2 are the

principal stretches in the two tangential directions, and Ẽs is the shear modulus. The
constant C = 1 represents the area-dilatation modulus, which prevents significant area
changes (Pozrikidis 1995). Subsequently, the membrane elastic stresses σ̃i, j are calculated
using the surface strain energy function W̃s

σ̃i, j = 1
λ j

∂W̃s

∂λi
, i, j ∈ {1, 2}, i �= j. (2.5)

Once the elastic stress is determined, the elastic force exerted by the membrane on the
fluid is calculated as follows:

F̃elast i c = ∇̃ · σ̃ . (2.6)

The adaptive FTM is employed to solve the aforementioned equations. A concise
overview of the numerical approach is provided in Appendix A. Equations (2.1) and (2.2)
are spatially discretised using the finite volume method on an adaptive octree grid, or
on a homogeneous Cartesian grid for capsule suspensions; and are implemented within
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Parameter Expression Range Symbol descriptions

Reynolds number Re = ρ̃ ˜̇γ r̃2
0

μ̃0
[0.1, 20] ρ̃ fluid density

r̃0 radius of spherical capsule
˜̇γ shear rate
μ̃0 fluid dynamic viscosity

Capillary number Ca = μ̃0 ˜̇γ r̃0

Ẽs
[0.01, 1] Ẽs membrane elastic modulus

volume fraction φ = 4Nπ r̃3
0

3Ṽ
[0.0008, 0.4] Ṽ computational domain volume

N number of capsules in Ṽ

Viscosity ratio λ= μ̃int

μ̃0
[1, 5] μ̃int capsule interior viscosity

Table 1. Flow control parameters for numerical simulations: mathematical expressions, range of values and
detailed symbol descriptions.

the open-source software Basilisk (Popinet 2015). A comprehensive description of the
numerical implementation is available in Huet & Wachs (2023).

2.2. Physical quantities and dimensionless numbers
Our problem is governed by several dimensionless numbers that describe and control the
flow configuration. These include the Reynolds number Re, which measures the ratio of
inertial to viscous forces; the capillary number Ca, representing the ratio of viscous to
elastic stresses; the capsule volume fraction φ, indicating the ratio of volume occupied
by the capsules; and the fluid viscosity ratio λ of the internal and external fluids of
the capsules. Please note that we adopt r̃0 and ˜̇γ r̃0 as length scale and velocity scale,
respectively. For brevity, we summarise the key input parameters of the flow configuration
in table 1, which presents the mathematical expression and range of values of each
parameter, together with associated symbols and the corresponding descriptions.

As for the output parameters, we investigate various physical quantities of capsules in an
inertial shear flow, including the Taylor deformation factor (D), particle stress (Σ), relative
viscosity (μr ) and capsule diffusivity (Dψ ). Below, we briefly outline the methods used to
compute and normalise these physical quantities.

The information on the deformation of the capsules is retrieved from the moment of
inertia tensor. We consider the ellipsoid with the same inertia tensor Ĩ as the capsule.
Once we obtain the three eigenvalues (ζ̃1 < ζ̃2 < ζ̃3) of Ĩ, we can use them to compute the
length of the three semi-axes : r̃1, r̃2 and r̃3 (Ramanujan & Pozrikidis 1998; Guglietta et al.
2023). Here, r̃1 and r̃3 are the longest and shortest lengths of the semi-axis in the shear
plane (x−y plane), and r̃2 denotes the radius along the vorticity direction along the axis
normal to the shear plane (z-axis). Subsequently, the Taylor deformation factor is defined
as

D = r̃1 − r̃3

r̃1 + r̃3
. (2.7)

Figure 1 presents a brief sketch illustrating the two main semi-axes r1, r3 and the
inclination angle θ of the capsule in shear flow on a x−y cut plane crossing the

1010 A52-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.294


G. Gai, D.P. Huet, J. Gong and A. Wachs

r3

r1

x

y

θ

Figure 1. Sequential illustration of a spherical capsule’s deformation in the shear plane. Transitioning from
blue to red depicts the deformation dynamics of a spherical capsule. Here, r1, r3 and the inclination angle θ are
annotated for clarity.

capsule centroid. The transition of the line colours from blue to red depicts the deformation
process of the capsule, transitioning from an initial spherical shape to an oval shape as
it reaches the steady state. The inclination angle is defined as the angle between the
longest semi-axis and the streamwise direction along the x-axis and is computed using
the eigenvectors, as depicted in figure 1

θ = arctan

(
ṽy

ṽx

)
. (2.8)

The bulk excess stress of the capsule suspension can be estimated using Batchelor’s
formulation (Batchelor 1970), considering two contributions to the total excess stress: Σ p

and Σ f . The particle stress tensor, which depends on the interaction between capsules
Σ p, can be computed by incorporating the viscosity ratio and the Lagrangian nodal forces
acting on the capsule surface, as described in the methodologies by Krüger (2012) and
Gross et al. (2014)

Σ̃
p
αβ = − 1

Ṽ

N∑
i=1

Nele∑
j

1
2

(
F̃ i, j
α r̃ i, j

β + F̃ i, j
β r̃ i, j

α

)
+ 1

Ṽ

N∑
i=1

∮
Ãi

(
λ̃v − 1

)
μ̃0
(
ũαnβ + ũβnα

)
dA,

(2.9)
where α and β are indices referring to the Cartesian directions (x , y or z), N denotes
the number of capsules considered in the control volume Ṽ and Nele is the number of
triangular elements on the capsule; Ãi is the area of the capsule i and Ã0 is the surface
area of the initial spherical capsule; F̃ i, j is Lagrangian force on the node with position
vector r̃ i, j . In the inertial regime, an additional Reynolds-stress-like term, denoted asΣ f ,
needs to be considered to account for the contribution of flow fluctuations to the bulk
stress. For a dilute system, the following formulation can be applied (Raja et al. 2010;
Srivastava et al. 2016; Mwasame et al. 2017):

Σ̃
f
αβ = − 1

Ṽ

∫
Ṽ
ρ̃ũ′

α ũ′
β, dV, (2.10)

where ũ′ = ũ − ũ is the flow fluctuation relative to the reference (or undisturbed) velocity
of the imposed shear flow ũ = ˜̇γ ỹ.

The rheology of the suspension is assessed using the relative viscosity and the normal
stress differences. For example, the relative viscosity of the suspension is defined as

μr = 1 +Σ tot
xy = 1 + Σ̃

p
xy + Σ̃

f
xy

μ̃0 ˜̇γ , (2.11)
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whereΣ tot
xy denotes the dimensionless total excess particle shear stress. The dimensionless

first and second normal stress differences are defined as

N∗
1 = Ñ∗

1

μ̃0 ˜̇γ = Σ̃∗
xx − Σ̃∗

yy

μ̃0 ˜̇γ , N∗
2 = Ñ∗

2

μ̃0 ˜̇γ = Σ̃∗
yy − Σ̃∗

zz

μ̃0 ˜̇γ , (2.12)

where ∗ indicates the contribution to the particle stress that arises from viscosity ratio and
particle interaction (p) or from the flow fluctuation ( f ). Similar approaches are applied to
non-dimensionalise other quantities using components of the stress tensor.

In addition to suspension rheology, we also investigate particle lateral migration by
analysing the statistical motion of the capsules, which can be described using the
mean-square displacement (MSD)〈

Δψ(t)
2〉 := 〈

(X̃ i,ψ

(
t̃ +Δt̃)− X̃ i,ψ(t̃)

)2
〉

i,t
, (2.13)

where X denotes the position of the capsule centroid and ψ is the diffusion direction of
the capsule centroid, i.e. the velocity gradient direction (y-axis) or the vorticity direction
(z-axis) in the shear flow. The ensemble average is taken over time and over all freely
moving capsules in the bulk flow, ensuring that both t̃ and t̃ +�t̃ are within the steady-
state interval. Then, the diffusivity along ψ direction can be defined as the slope of the
temporal evolution of the MSD in the diffusion regime. Conventionally, the dimensionless
diffusivity of the capsules is scaled as

Dψ = D̃ψ
˜̇γ r̃2

0

, with D̃ψ =
〈
Δψ(t)2

〉
d̃2

0
˜̇γ t̃

. (2.14)

It is important to note that �t̃ here represents a time window used for the computation of
the MSD and Dψ . This time window is distinct from, and can be significantly larger than,
the numerical time step.

3. Numerical set-up

3.1. Numerical set-up of a single capsule
As depicted in figure 2, we consider a simple shear flow along the x axis characterised
by a reference velocity Ũ0 within a cubic domain D̃ with an edge length L̃ and centred
at (0, 0, 0). The boundaries of the cubic computational domain are referred to as left
and right in the x direction, top and bottom in the y direction and front and back in
the z direction, collectively denoted as ∂D̃ = left ∪ right ∪ top ∪ bottom ∪ front ∪ back.
The flow velocity ũ satisfies homogeneous Dirichlet boundary conditions on the top and
bottom boundaries, and periodic boundary conditions on the left/right (along x-axis) and
front/back (along z-axis) boundaries. The complete set of boundary and initial conditions
is as follows:

ũ(x̃, t̃)=
(

Ũ0

2
, 0, 0

)
on the top boundary, (3.1)

ũ(x̃, t̃)=
(

−Ũ0

2
, 0, 0

)
on the bottom boundary, (3.2)

ũ(x̃, 0)=
(

Ũ0

L̃
ỹ, 0, 0

)
in D̃. (3.3)
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x

y

z

Figure 2. Illustration of a single capsule within an octree grid in a three-dimensional cubic computational
domain D̃. The red box shows a zoomed view of the capsule at φ = 8 × 10−4 in simple shear flow. The blue
box indicates the position of the capsule with the adaptive grid in the x−y cut plane at z = 0.

We begin with the numerical simulation of a single elastic capsule at 0.01 � Ca � 1.0.
The capsule is strategically positioned at the centre of the cubic domain D̃, as shown in
figure 2. This set-up provides a sufficiently large domain for the accurate resolution of the
flow dynamics and flow–capsule interactions. Initially at rest, the capsule at t = 0 is subject
to a simple shear flow in both the quasi-non- to low inertial regime (Re = 0.1, 1), hereafter
called the non-inertial regime for simplicity, and the inertial regime (Re = 10, 20). Several
viscosity ratios are considered: 0.1 � λ� 10 across the capsule membrane.

To achieve better accuracy in modelling capsule deformation while maintaining
reasonable computational cost, we apply an octree adaptive mesh refinement. This strategy,
implemented in the open-source platform Basilisk (Popinet 2015), involves partitioning
a parent cube cell into eight sub-cubes for local mesh refinement in specific regions of
interest (Huet & Wachs 2023). At each time step, the Cartesian octree grid is dynamically
adapted: it is refined in regions with strong gradient variations in any field of interest and
coarsened in regions with weak gradient variations. The primary field of interest in this
study is the flow velocity. We ensure that the region near the capsule surface always has
the finest grid resolution, guaranteeing that the stencils of the Lagrangian points on the
capsule membrane are correctly resolved, which is crucial for the effective functioning of
the immersed boundary method (IBM) (Appendix A). The hierarchical grid is constructed
so that the cell size between two successive levels differs by a factor of two. Consequently,
the smallest cell size is Δ̃= L̃/2nE , where nE denotes the maximum refinement level
of the Eulerian octree grid. In figure 2, the locally refined grid around the capsule is
highlighted. The blue box shows a cut plane at z = 0 across the capsule centroid, revealing
the instantaneous particle position in the grid and illustrating the size difference between
the particle and the computational domain. We conducted 128 simulations of a single
capsule in shear flow, varying Re, Ca and λ as depicted in table 1. Each simulation was
run until a steady state of deformation and dynamics was reached, for a minimum duration.

3.2. Flow configuration of a capsule suspension
Based on the knowledge gained from simulating a single capsule in shear flow, we extend
our simulations to investigate capsule suspensions with volume fractions ranging from
1010 A52-8
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x

y

z

(a) φ = 0.1, Re = 1, Ca = 0.1 (b) φ = 0.4, Re = 1, Ca = 0.1

Figure 3. Illustration of the capsule suspension in a simple shear flow with increasing volume fractions
(a) φ = 0.1, (b) φ = 0.4 in the three-dimensional cubic computational domain D̃ with the upper and lower
wall along the y-axis depicted. The periodic boundary conditions are applied along the x and z directions.

φ = 0.1 to φ = 0.4. Again, both the non-inertial regime (Re = 0.1, 1) and inertial regime
(Re = 10, 20) are considered. Figure 3 depicts the capsule suspension in a simple shear
flow at Re = 1 and Ca = 0.1. To ensure consistent resolution across all simulations, all
capsules have the same diameter and resolution as in the single capsule case, with a
number of points per diameter of the initial spherical capsule 2r̃0/Δ̃= 30. The increase in
volume fraction is achieved by adding more capsules to the computational domain. Please
note that in the simulation of capsule suspensions, the high number of capsules in the
computational domain can significantly increase the computational cost, especially when
using octree adaptive mesh refinement. This is due to the extensive refinement required
around each capsule at every time step. To manage this computational expense effectively,
we employ a uniform Cartesian grid for the simulation of all capsule suspensions presented
in this work. This approach balances the need for spatial resolution and computational
efficiency, ensuring that the simulations remain feasible without compromising accuracy.
Figures 3(a) and 3(b) show capsule suspensions at φ = 0.1 and φ = 0.4, respectively. They
clearly illustrate that, as the capsule volume fraction increases, the frequency of strong
short-range capsule interactions (in the sense of capsules being in close proximity) rises
markedly. To gain a comprehensive understanding of the dynamics, rheology and diffusion
of the capsule suspension, we conducted more than 355 numerical simulations with
varying Re, Ca, φ and λ. Each simulation utilised 64 processors and ran for approximately
21 days to achieve a steady state of average deformation and dynamics, extending up to
t = 200. For capsule diffusion, specific cases were designed with smaller time steps and
longer simulation times to accurately capture the diffusion coefficient and identify the
critical Re for regime transitions.

We thoroughly validated our solver by examining the deformation factor, semi-axis
lengths, particle shear stress and the first/second normal stress differences. All our results
are consistent with data reported in the literature (Bagchi & Kalluri 2010; Aouane et al.
2021; Guglietta et al. 2023). Notably, a mesh refinement test in figure 18(g–h) indicates
that our choice of smaller grid size enhances the accuracy of numerical results compared
with existing literature. For brevity, the detailed numerical validation of our solver for a
single capsule and capsule suspensions in the shear flow is provided in Appendix B. In line
with methodologies used in previous studies (Aouane et al. 2021; Guglietta et al. 2023), a
repulsive force is also introduced when the Lagrangian nodes of adjacent capsules are in
close proximity. For more details, please refer to Appendix C.
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Figure 4. Deformation of capsules in the simple shear flow on the x−y plane across the capsule centroid in
the cases (a) Re = 1 and (b) Re = 10. The capsules are coloured with the maximum elastic stress σ2,max on
its surface when the flow is fully developed. Capsule outlines on the cut plane x−y across the capsule centroid
highlighted with pink dot showing (c–d) effects of Re on the capsules at λ= 0.1 and 1; (e–f ) effects of λ on
the capsules at Re = 0.1 and 10.

4. Single capsule results
In this section, we delve into the effects of flow inertia on the deformation, dynamics
and particle stress of a single elastic capsule in the simple shear flow. We aim to provide a
comprehensive understanding of how flow inertia influences capsule behaviour in different
flow conditions and to shed light on the interplay between these parameters.

4.1. Inertial effects on capsule deformation
We first examine the deformation of a single capsule within the shear plane (x−y plane)
across the capsule centroid, as depicted in figure 4. Understanding the capsule deformation
is critical for determining its mechanical response in the shear flow. The maximum stress
experienced by the capsule is of particular interest to experimentalists, as it can be used
to predict a priori whether a capsule will undergo plastic deformation or even break up in
the flow (Häner et al. 2021). Specifically, the largest eigenvalue of the membrane elastic
stress tensor σ2 provides crucial insight into the membrane integrity.

In figures 4(a) and 4(b), we elucidate the impact of flow inertia (Re), membrane
elasticity (Ca) and viscosity ratio (λ) on capsule deformation and the maximum stress
distribution. To facilitate comparison, we present the outlines of the most deformable
capsule (Ca = 1) projected on the x−y cut plane across the capsule centroid in
figure 4(c–f ). At Ca � 0.1, the deformation due to high inertia is not markedly visible.
However, a significant increase of the maximum stress, σ2,max with Re, is observed.
For all capsules featured in figure 4, σ2,max consistently manifests at the centre of the
membrane on the x−y plane, at the capsule extreme along the z-axis. An increase in Ca
results in a relaxation of σ2,max as the capsule membrane becomes more deformable.

The capsule exhibits clearly increased elongation when flow inertia is increased in
figure 4(c–d). Conversely, the increase of λ acts to preserve the spherical shape of
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Figure 5. Effects of flow inertia on the deformation of a single capsule in a shear flow at Re = 0.1 ∼ 20, and
λ= 0.1 ∼ 10. (a–c) Evolution of the Taylor deformation factor D as a function of Ca. (d–f ) Evolution of the
inclination angle θ in the x−y shear plane as a function of Ca, with black dashed lines denoting θ = π/4. (g–i)
Capsule angular velocity of tank treading, ω.

the capsule as a result of the internal resistance to deformation, especially at Re � 1.
Illustrated in figures 4(a) and 4(e), the capsule at Ca = 1 and λ= 0.1 adopts a spindle
shape, gradually transitioning to a more blunt and oval shape with increasing λ, eventually
achieving an inclined oblate spheroid shape at λ= 10. In the inertial regime, depicted
at Re = 10 in figures 4(b) and 4( f ), the influence of λ on capsule morphology becomes
notably less pronounced, where the outlines of the capsules tend to overlap.

4.1.1. Capsule deformation and inclination angle
Figure 5 shows the impact of flow inertia and viscosity ratio on capsule deformation
as a function of Ca. As depicted in figure 5(a), one immediate effect of inertia is the
enhancement of the Taylor deformation factor D, which increases with Re across the
range of Ca values explored. For capsules at Ca � 0.1, elevating the flow inertia from
Re = 0.1 to Re = 20 leads to a consistent increase in the deformation factor, with an
increment of ΔD ≈ 0.15. From another point of view, we fix Re to reveal the effects
of λ on the capsule deformation in the non-inertial flow at Re = 1 in figure 5(b) and
the inertial flow at Re = 10 in figure 5(c). In the non-inertial regime, the resistance to
deformation becomes more pronounced as Ca increases. For example, at Re = 1 and
Ca = 1, the deformation factor drops from D = 0.54 at λ= 0.1 to D = 0.17 at λ= 10 in
figure 5(b). However, the impact of λ is much less pronounced in the inertial regime in

1010 A52-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.294


G. Gai, D.P. Huet, J. Gong and A. Wachs

figure 5(c). A plausible explanation is that in the non-inertial regime (low Re), the flow is
dominated by viscous forces. At high Re, the inertial forces exert such a strong influence
on the capsule deformation that the internal viscosity becomes a secondary factor, leading
to only slight changes in D. Additionally, the evolution of capsule surface area A closely
mirrors the behaviour of the deformation parameter D under the influence of both Re and
λ. At Ca = 1 and Re = 20, A reaches a maximum value approximately 30 % larger than
the initial surface area of the capsule.

In terms of the inclination angle, θ exhibits a higher value for less deformable capsules
(low Ca). We see from figure 5(d) that increasing the flow inertia from Re = 0.1 to
Re = 10 increases the inclination angle for all Ca values at λ= 1. Capsules with Ca �
0.2 exhibit inclination angles θ < π/4 (extensional axis of shear), indicating that more
deformable capsules preferentially elongate along the streamwise direction. For low Ca,
the increased flow inertia raises θ above π/4, consistent with observations for a single
droplet in shear flow (Li & Sarkar 2005a; Srivastava et al. 2016). A maximal θ ≈ 0.9
is observed at Ca = 0.01, which significantly affects the interfacial stresses. At Re = 20,
θ is very close to the case at Re = 10, indicating that the increase in θ due to inertia
saturates. Similar to the deformation factor D, the increase of λ tends to decrease the
inclination angle θ for all Ca simulated, as shown in figure 5(e–f ). Higher inertia impedes
the alignment of the capsule with the flow direction, increasing θ . Conversely, increasing
the viscosity ratio λ reduces θ and enhances the alignment of the capsule with the
shear flow. This behaviour highlights the interplay between flow inertia and viscosity
ratio in determining capsule orientation, which in turn influences the characteristics
of normal stress differences – a topic we will explore further in the following
discussion.

In a fully developed shear flow, the capsule exhibits a tank-treading motion, with the
angular velocity ω decreasing as Ca increases. Here, ω is defined as the time-averaged
value across all surface Lagrangian points, after the flow has achieved a fully developed
state. Figure 5(g) shows that the increase of Re impedes the tank-treading velocity, leading
to a smaller magnitude of ω (note that the sign of ω is determined by the shear flow
direction and the chosen coordinate system). This deceleration is primarily due to the
capsule being stretched and elongated by inertial forces, which impedes capsule rotation.
Similarly, the viscosity ratio λ also contributes to slowing down the angular velocity of
the tank treading, as shown in figure 5(h–i). A higher λ means greater internal viscosity,
which resists the internal circulation of the fluid within the capsule. An exception is noted
at Re = 1 and λ= 10 in figure 5(h), where the angular velocity is increased compared with
the case at λ= 5 for Ca � 0.2. This behaviour can be attributed to the very high internal
viscosity (λ= 10) providing sufficient resistance to prevent excessive stretching, allowing
the capsule to maintain a higher rotational speed at Re = 1. At Re = 10, the acceleration
effect observed at λ= 10 is no longer present in figure 5(i).

4.1.2. Surface principal stretches
To gain deeper insights into the deformation of the membrane and capsule dynamics, we
explore the evolution of the principal stretches of the elastic membrane, denoted as λ1
and λ2, presented in figure 6. We focus on two specific regions on the capsule surface that
undergo significant deformation. The first point, C1, is located on the capsule outline in the
shear x−y plane initially located at (x, y, z)= (−1, 0, 0). The second point, C2, is found
at an extreme of the capsule initially at (x, y, z)= (0, 0, 1), where the membrane elastic
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(a) Two critical surface points C1 and C2 (b) λ = 10, Re = 1, Ca = 1.0

(c) λ =10, Re = 1, Ca = 0.1 (d) λ = 10, Re = 1, Ca = 1.0

(e) λ = 1, Re = 10, Ca = 0.1 ( f ) λ = 10, Re = 10, Ca = 0.1
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Figure 6. Evolution of principal stretches (λ1, λ2) on the capsule surface. (a) Sketch of the rotating capsule
with the two critical points highlighted, C1 ( ) denotes a point on the capsule outline in the shear plane x−y
across the capsule centroid and C2 ( ) is an extreme point along z-axis. (b) A snapshot of the principal stretch
distribution in the λ1λ2 space ( ) with the two critical points highlighted in corresponding colours. (c–f )
Temporal evolution of the principal stretches on the two critical points C1 and C2, with red point darkness
denoting the time evolution (from light to dark).

stress reaches its maximum values, as shown in figure 4. The specific locations of the two
critical points are illustrated in figure 6(a) for a better clarity.

In figure 6(b), we present a snapshot at t = 90 that showcases the phase diagram of
principal stretches, λ1 and λ2, on the whole membrane of a single capsule at λ= 10 and
Ca = 1.0 in the flow at Re = 1. The red dots ( ) represent the principal stretches at the
point C1, which follow a periodic trajectory loosely resembling an infinity symbol ∞, as
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depicted in figure 6(d). This trajectory highlights a significant variation in stretches at the
point C1, exhibiting values of �λ1 ≈ 0.25 and �λ2 ≈ 0.2. In contrast, the evolution of
principal stretches at the point C2 is marked by a stationary dot ( ), indicating constant
principal stretches throughout the simulation, as illustrated in figures 6(b) and 6(d). Point
C2 consistently shows the maximum λ2 value (also the maximum elastic stress σ2,max )
during the simulation. The remaining surface points are represented by blue dots ( ) in
figure 6(b). These blue dots are positioned between the stationary yellow dot (C2) and the
dynamic trajectory of the red dots (C1). The principal stretches at all points on the capsule
surface are governed by the dynamic behaviour of the two critical points, C1 and C2.

To elucidate the impact of flow inertia and viscosity ratio, we examine additional cases
of the trajectories of the principal stretches at critical points C1 and C2, as illustrated in
figure 6(c–f ). The varying brightness of the red dots, from light to dark, illustrates the
temporal evolution of the principal stretches at C1. The staggered colour darkness indicates
that point C1 follows a periodic trajectory, revealing multiple cycles of evolution of the
principal stretches. A comparison of figures 6(c) and 6(d) reveals that an increase in Ca
significantly broadens the range of principal stretches of both λ1 and λ2, indicating more
pronounced deformation. Similarly, increasing Re leads to a higher maximum λ2, from
1.09 to 1.2, as shown in figures 6(c) and 6( f ). Furthermore, figures 6(e) and 6( f ) show
that an increase in λ results in a slight decrease in λ2, while maintaining a similar range
for λ1.

In summary, these trajectory patterns are influenced by the interplay of the flow
parameters Ca, Re and λ, which collectively dictate the deformation and dynamic
behaviour of the capsule. Our analysis yields three important novel insights: (i) the
trajectory of C1 displays periodic behaviour, characterised by extensive variability and
complex patterns at different Re, Ca and λ; (ii) the trajectory of C2 remains static within
the principal stretch (λ1, λ2) space, suggesting that the tank-treading motion of the capsule
maintains stability in the examined cases; (iii) the principal stretch evolution at points C1
and C2 governs the capsule overall deformation, with all other surface points exhibiting
principal stretches that lie strictly between those of C1 and C2.

4.1.3. Correlation of the deformation factor
Based on the previous discussion, it is clear that the capsule deformation is significantly
influenced by three primary factors: flow inertia, elasticity of the capsule and viscosity
ratio. A quantitative understanding of their roles is essential for optimising applications
in biomedical engineering, where precise control over capsule behaviour is critical. In
pursuit of this goal, we have formulated an empirical correlation to predict the capsule
deformation, by incorporating Re, Ca and λ

D̂ = 0.21(Ca)0.23︸ ︷︷ ︸
f1

(
0.73 log(Ca)+ 0.027Reλ−0.097 + 3.6

)
︸ ︷︷ ︸

f2

exp
(

− 0.078λ
exp(0.32Re)

)
︸ ︷︷ ︸

f3

− 0.23Ca︸ ︷︷ ︸
f4

, (4.1)

where D̂ denotes the predicted Taylor deformation factor. The first factor, f1, represents
the base influence of Ca, while the mixed factor, f2, describes the combined nonlinear
effects of Ca, Re and λ. Overall, the deformation D̂ increases with higher values of both
Re and Ca; λ acts as a damping factor on the deformation, with its effect being most
significant at low Re and Ca, where surface elasticity and viscous resistance dominate,
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Figure 7. Correlation prediction of the Taylor deformation factor D̂ in comparison with our computed results.
(a–d) Evolution of D in function of Ca at Re = 0.1 ∼ 20; (e) direction comparison between the prediction D̂
and numerical results D.

limiting deformation. The exponential decay term f3 shows that the damping effect due to
λ decreases as Re increases, allowing more significant deformation at higher flow inertia,
which captures the transition to the inertial regime. The final term f4, which subtracts a
linear function of Ca, provides a stabilising effect that adjusts the overall deformation. This
empirical correlation allows us to quantify the complex interplay between fluid dynamics
and material properties that govern the capsule deformation.

Figure 7(a–d) presents a meticulous comparison between our numerical results
(obtained by high-fidelity interface-resolved simulations, illustrated with coloured lines)
and the results predicted by the correlation (as formulated in (4.1) and indicated by red
dots) for the evolution of D of a single capsule. The comparison reveals the remarkable
accuracy of the correlation in predicting the deformation factor D across the entire range
of parameter space (Re, Ca, λ) explored. The panels distinctly illustrate the increase of D
as a function of Re, while the variations of D with respect to Ca are also accurately
reproduced. Additionally, the influence of λ on the decrease of D is comprehensively
delineated in figure 7(a–d). In general, the correlation in (4.1) demonstrates high precision
in predicting the deformation factor D as depicted in figure 7(e), achieving an average
relative error of εr = 7.21% and a determination coefficient of r2 = 0.9918. This level
of accuracy underscores the robustness of our empirical correlation in capturing the
complex dynamics governing capsule deformation. Moreover, it serves as a valuable
tool for experimentalists and engineers, providing a reliable means to estimate capsule
deformation and facilitating better design of microfluidic devices.

4.2. Inertial effects on particle stress
In addition to capsule deformation, the particle stress exerted on the capsule membrane
is also of vital importance. Understanding the behaviour of a single capsule provides
valuable insights into the dynamics and rheology of suspensions of capsules. Figure 8
illustrates the evolution of particle shear stress Σ p

xy , first and second normal stress
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Figure 8. Effects of inertia on the particle stress of a single capsule in a shear flow at Re = 0.1 ∼ 20 and
λ= 0.1 ∼ 10. (a-c) Particle shear stress Σ p

xy/φ, (d-f ) first normal stress difference N p
1 /φ, (g-i) second normal

stress difference N p
2 /φ.

differences (N p
1 , N p

2 ) as a function of Ca for a single capsule. The influence of flow
fluctuations is not accounted for in this section due to the minimal volume fraction.
We divide the particle stress by its volume fraction φ in figure 8 for a better visualisation.

From figure 8(a), we observe that an increase in Re leads to a clear rise in Σ p
xy .

At Re � 1, higher Ca values tend to reduce the shear stress, whereas for Re � 10, Ca
has an opposite effect. This behaviour mainly results from changes in two key factors
affectingΣ p

xy : (i) the capsule elongation, which is proportional to r1 and (i i) its inclination
angle θ . A longer r1 and a higher θ contribute to increase the shear stressΣ p

xy . For instance,
the increase in Σ p

xy with Re in figure 8(a) is mainly due to the more elongated capsule
at higher inertia. As the capsule deformation intensifies with increasing Ca, there is a
corresponding rise in r1, while θ undergoes a noticeable reduction. In the non-inertial
regime, such as at Re = 0.1, the increase in r1 is modest while the effect of decreasing θ
is more pronounced, leading to a decrease in shear stress with Ca as shown in figure 8(a).
At higher flow inertia (Re = 10), r1 increases more significantly (r1 = 2.0 at Ca = 1),
which outweighs the effect of the decreasing θ , causing shear stress to rise with Ca.
The interplay of r1 and θ becomes clearer when considering the effects of λ on the
particle shear stress, as shown in figures 8(b) and 8(c). We see in figure 5 that a higher λ
hinders capsule elongation, while simultaneously reducing the inclination angle θ , which
results in a clear decreasing trend of Σ p

xy with λ for Ca � 0.1. For capsules at Ca = 0.01
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and Ca = 0.05, Σ p
xy increases with λ due to the stronger internal viscous resistance and

corresponding limited deformation.
Figure 8(d–f ) illustrates the evolution of the first normal stress difference

N p
1 =Σ

p
xx −Σ

p
yy as a function of Ca at various Re and λ. In figure 8(d), we observe that

at Ca � 0.1, the flow inertia tends to decrease N p
1 , while at Ca � 0.2, higher Re leads to an

increase in N p
1 in the shear flow. These two opposing behaviours can also be explained by

the interplay between capsule elongation and inclination. At low Ca, the high inclination
angle θ (as depicted in figure 5e) promotes normal stress along the y direction Σ p

yy . For
the same elastic force along r1, a larger θ results in a greater component projected onto
the y-direction. Conversely, at Ca � 0.1, the more significant elongation of the capsule
together with the smaller θ , enhances normal stress along the streamwise direction (x-axis)
Σ

p
xx . Different from rigid particle suspensions (Haddadi & Morris 2014), the sign of N p

1
changes in the capsule suspension. This change of sign aligns closely with the variation of
the capsule inclination angle θ , similar to what is observed in studies of droplet emulsions
(Srivastava et al. 2016). We see that the reduction in θ from π/4 (extension axis of shear
flow) in figure 5(d–f ) drives the transition of N p

1 from negative to positive values for
elastic capsules. For emulsions of droplets, with a constant surface tension, the stresslet
term in (2.9) is purely geometric, which means that the sign change arises directly from
the inclination angle exceeding π/4 (Singh et al. 2014). Please note that while similar
mechanism applies, the sign change in N p

1 is not purely geometric for elastic capsules in
figure 8(d–f ), due to the distinct nature of their membrane. In figure 8(e–f ), the viscosity
ratio λ clearly mitigates N p

1 . Higher internal viscosity helps maintain a more balanced
stress distribution between the x and y directions, thereby reducing the difference N p

1 .
Similarly, figures 8(g–i) depicts the evolution of the second normal stress difference

(N p
2 =Σ

p
yy −Σ

p
zz). An increase in Re forces higher deformation in the x y plane and

hence higher stress along the y-axis relative to the z-axis. Conversely, an increase in Ca
leads to smaller inclination angle θ , which reduces Σ p

yy and consequently decreases N p
2 ,

even to negative values. At Re = 1 in figure 8(h), the high internal viscosity promotes a
more balanced stress distribution in the shear plane and enhancesΣ p

yy with respect toΣ p
zz .

However, λ has a very limited impact on N p
2 at Re = 10 in figure 8(i).

5. Capsule suspension results
In this section, we explore the behaviour of capsule suspensions in the shear flow. We
begin by examining how flow inertia affects capsule deformation and dynamics, including
microstructure and lateral diffusion of the capsule suspension. Then, we analyse the impact
of inertia on the rheological properties of the suspension, by establishing a connection with
the previous results of a single capsule.

5.1. Inertial effects on capsule deformation and dynamics
In a suspension, the interaction between capsules is the primary factor influencing its
dynamics and rheological behaviour. In a very dilute system, capsules rarely encounter
each other and behave similarly to single capsules in the flow. Hence, in this section, we
investigate capsule suspensions with volume fractions in the range 0.1 � φ � 0.4 in both
the non-inertial regime (Re = 0.1, 1) and the inertial regime (Re = 10, 20).

5.1.1. Bridge structures
We first examine the capsule interactions in dense suspensions with volume fraction of
φ = 0.4 at different Re and Ca in figure 9. The outlines of the capsules are projected onto
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(a) Re  = 1, Ca = 0.1 (d ) Re  = 10, Ca = 1.0(b) Re  = 1, Ca =1.0

(e) Re = 1, Ca = 0.1

(c) Re  = 10, Ca = 0.1

( f ) Re = 1, Ca = 1.0 (g) Re = 10, Ca = 0.1 (h) Re = 10, Ca = 1.0

Figure 9. Snapshots of the capsule suspension at φ = 0.4 projected on the shear plane z = 0 with the flow field
coloured by the pressure distribution (red indicates regions of high pressure, while blue represents areas of low
pressure) and the perturbed flow streamlines; with viscosity ratios (a–d) λ= 1, (e–h) λ= 5.

the shear plane at z = 0 in black contours. Additionally, figure 9 illustrates the pressure
distribution in the same shear plane, with regions of low and high pressure indicated by
blue and red colours, respectively. In shear flow, the streamwise velocity along the x-axis
is significantly greater than its transverse and spanwise components. To better illustrate
the flow dynamics, we subtract the imposed shear flow velocity from the total velocity and
present the streamlines of the perturbed velocity field ũ′ = ũ − Ũ0 ỹ/L̃ in figure 9.

Figures 9(a) and 9(b) show that unsurprisingly capsules become more elongated at
higher Ca. In very dilute systems, the capsules often form pairs. As φ increases, these
pairs tend to cluster together, forming longer structures. In such regions, an intriguing
bridge structure emerges, reminiscent of the rouleaux structures observed in experimental
studies of Chinchilla et al. (2021) and Lee & Paeng (2021). The formation of the bridge
structures is more prevalent at higher values of Re and Ca, as shown in figures 9(c) and
9(d). When the internal fluid viscosity is increased to λ= 5, the bridge-like structures in
the flow become more prominent, as demonstrated in figures 9(e) to 9(h). It is important to
note that these structures do not adhere together as real rouleaux structures would, since no
adhesion model is applied to the surface of the capsules. Nonetheless, these observations
provide strong evidence that pure hydrodynamic interactions can significantly contribute
to the formation of rouleaux structures.

Additionally, all panels in figure 9 demonstrate a marked increase in local fluid pressure
during capsule interactions, driven by compressive forces. The primary axis of the bridge
structures are typically perpendicular to the extension axis of shear flow, contributing to
the anisotropy of the microstructure and enhancing interactions. The anisotropy induced by
bridge structures leads to a redistribution of stresses among the different directions. This
impacts the particle stress tensor, altering the rheological properties of the suspension,
including the first and second normal stress differences. As an additional discussion, the
inhomogeneous distribution of membrane elastic stresses on the capsule surface in the
bridge structure is presented and analysed in Appendix D.

1010 A52-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.294


Journal of Fluid Mechanics

0.2

0.1

0.3

0.5

0.4

0.6

(a) φ = 0.4 (b) Re = 1

〈D〉

(c) Re = 10

(d) φ = 0.4 (e) Re = 1 ( f ) Re = 10

(g) φ = 0.4 (h) Re = 1 (i) Re = 10

0.250 0.50 0.75 1.00

0.2

0.1

0.3

0.5

0.4

0.6

0.250 0.50 0.75 1.00

0.2

0.1

0.3

0.5

0.4

0.6

〈θ〉

〈ω〉

0.8

0.7

0.9

0.5

0.4

0.6

0.250 0.50 0.75 1.00

0.250 0.50 0.75 1.00

0.8

0.7

0.9

0.5

0.4

0.6

0.250 0.50 0.75 1.00

0.8

0.7

0.9

0.5

0.4

0.6

0.250 0.50 0.75 1.00

Ca
0.250 0.50 0.75 1.00

−0.30

−0.25

−0.20

−0.15

−0.10

Ca
0.250 0.50 0.75 1.00

−0.30

−0.25

−0.20

−0.15

−0.10

Ca
0.250 0.50 0.75 1.00

−0.30

−0.25

−0.20

−0.15

−0.10

Re = 0.1
Re = 1.0
Re = 10.0
Re = 20.0

Re = 0.1
Re = 1.0
Re = 10.0
Re = 20.0

Re = 0.1
Re = 1.0
Re = 10.0
Re = 20.0

φ = 0.1
φ = 0.2
φ = 0.3
φ = 0.4

φ = 0.1
φ = 0.2
φ = 0.3
φ = 0.4

φ = 0.1
φ = 0.2
φ = 0.3
φ = 0.4

φ = 0.1
φ = 0.2
φ = 0.3
φ = 0.4

φ = 0.1
φ = 0.2
φ = 0.3
φ = 0.4

φ = 0.1
φ = 0.2
φ = 0.3
φ = 0.4

Figure 10. Effects of flow inertia on the deformation and dynamics of capsule suspensions at λ= 1, Re =
0.1 ∼ 20 and φ = 0.1 ∼ 0.4. (a–c) Ensemble-averaged Taylor deformation factor 〈D〉, with black dashed lines
denoting θ = π/4; (d–f ) inclination angle 〈θ〉; (g–i) angular velocity of tank-treading 〈ω〉.

5.1.2. Average deformation and inclination angle
We then study the effects of inertia on the deformation of capsules at viscosity ratio λ= 1
in a suspension with increasing volume fraction. Simulations of suspensions with a higher
viscosity ratio λ= 5 are also performed and analysed. Detailed results and discussions for
these cases are provided in Appendix E. In the following, the symbol 〈·〉 represents the
ensemble average of physical quantities once the flow regime has fully developed, such as
〈x〉 := 1

N

∑N
i=1 xi , with N the total number of capsules.

In figure 10, we depict the evolution of the ensemble-averaged Taylor deformation factor
〈D〉, inclination angle 〈θ〉 and angular velocity 〈ω〉 as a function of Ca. In general, capsules
exhibit similar deformation evolution with Ca as a single capsule in shear flow does. At
φ = 0.4, 〈D〉 increases with Ca and Re in figure 10(a). At Re � 1, the effects of flow
inertia on variations of 〈D〉 are minimal, such that data points nearly overlap for Re = 0.1
and Re = 1 at the scale presented. Further increase of Re enhances the deformation factor
〈D〉 in the inertial regime. In both figures 10(b) and 10(c), the influence of φ on 〈D〉 is
more pronounced for cases at low Ca. This is attributed to the more intense short-range
capsule interactions at low Ca.

The variation of the inclination angle 〈θ〉 at φ = 0.4 is depicted in figure 10(d). It is clear
that flow inertia generally leads to an increase in 〈θ〉. Conversely, in figure 10(e–f ), the
decrease of 〈θ〉 with φ can be attributed to the reduced free space between capsules along
the y direction. Regarding the average angular velocity 〈ω〉, an increase in Re leads to a
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(c) φ = 0.4, Ca = 0.1 (d) λ = 1, Re = 10, Ca = 0.1
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Figure 11. Evolution of the capsule suspension migration in a simple shear flow. (a) Temporal evolution of 50
capsule trajectories along they-axis in the case of φ = 0.4, λ= 1,Re = 10, Ca = 1.0; (b) probability density
function ( f , PDF) of the capsule distribution along they-axis in the suspension of increasing volume fraction
φ at λ= 1,Re = 10 and Ca = 0.1. (c, d) Evolution of the PDF of the standard deviation of the capsule motion
along the y-axis under the effects of φ, Re, λ and Ca.

lower magnitude of 〈ω〉 at φ = 0.4, as seen in figure 10(g). In comparison with figure 5(g),
〈ω〉 exhibits similar values as those of the single capsule in the non-inertial regime at
Re � 1. We observe that the impact of φ on 〈ω〉 is limited at Re = 1 in figure 10(h).
Interestingly at Re � 10, the angular velocity of the dense suspension is observed to
exceed that of a single capsule. The increase of volume fraction enhance the particle shear
stress, which in turn accelerates the tank-treading of the capsules as shown in figure 10(i).

5.1.3. Lateral transport and diffusion
We now examine the diffusion dynamics of the capsules. We focus on how the capsules
migrate in the direction of the velocity gradient (along the y-axis) and in the spanwise
direction (along the z-axis). To provide an intuitive illustration, we present the trajectories
of 50 initially randomly distributed capsules in a suspension at φ = 0.4, as shown in
figure 11(a). This figure shows the initial positions of the 50 capsules and their trajectories
along the y-axis over t ∈ [0, 70] in the shear flow. It can be observed that the capsules
exhibit varying patterns of migration along the y-axis: some oscillate within a limited
region, while others migrate as far as half the computational domain over t ∈ [0, 70].
By computing the time average of the number of capsules along the y-axis after the flow
is fully developed, we plot the probability density function (PDF) fy of the capsule spatial
distribution. Figure 11(b) reveals two depletion layers adjacent to the walls, with small
peaks in capsule concentration at ỹ/L̃ = ±0.4. An increase in volume fraction φ appears
to have only minor effects on the distribution fy .

Additionally, we investigate how λ, Re and φ affect the standard deviation σy of capsule
trajectory fluctuations along the y-axis. The corresponding PDFs, denoted fσy , are plotted
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(a) φ = 0.3 (b) φ = 0.3

(c) Ca = 0.01 (d) Ca = 1.0
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Figure 12. Diffusivity of the capsule suspension as a function of Ca and Re. (a-b) Comparison between Dy
and Dz ; (c-d) effects of flow inertia Re and volume fraction φ.

in figure 11(c–d). We observe that an increase in Re flattens fσy , and raises σy,peak , the
value of σy corresponding to the peak of fσy , indicating that flow inertia enhances capsule
migration. However, increasing λ has the opposite effect, reducing σy,peak , though its
impact on the shape of fσy remains minor, as shown in figure 11(c). Figure 11(d) illustrates
the evolution of fσy with increasing φ from 0.1 to 0.4. An increase in φ leads to more short-
range capsule interactions and restricts the free motion of the capsules along the y-axis.
This results in a narrower distribution and a lower σy,peak .

Subsequently, we take a closer look at capsule migration by computing the MSD using
(2.13). The MSD represents the average squared distance that a particle has moved along a
directionψ over a time interval�t . In an unsheared Brownian solid sphere system, without
a suspending fluid, the MSD is quadratic (∝�t2) for small �t , known as the ballistic
regime, and linear (∝�t) for large �t , known as the diffusive regime. In a simple shear
flow, the Brownian contributions are limited, and particle diffusion becomes primarily
shear induced and anisotropic (Eckstein et al. 1977; Leighton & Acrivos 1987; Breedveld
2000). Since the shear rate is constant in a simple shear flow, particle diffusion is solely due
to their interactions (Krüger 2012). With the presence of neighbouring particles, straight-
line motion is impeded, resulting in non-affine displacement and diffusive motion. In the
following, we investigate the diffusion properties of elastic capsules and reveal particular
properties of the capsule diffusivity Dψ with the increase of flow inertia and capsule
volume fraction. To wall effects, we will focus mainly on the diffusion behaviour of the
capsules along the z-axis in the suspension.

We begin by presenting the overall behaviour of capsule diffusivity Dψ , computed
using (2.14). The evolution of Dψ along the y- and z-axes as a function of Ca in a
suspension at φ = 0.3 is shown in figures 12(a) and 12(b), respectively. The high flow
inertia leads to an apparent increase in diffusivity in both directions, while the effects of
Ca remain minor. Depending on the flow regime, the volume fraction φ has two opposite
effects on the capsule diffusion. In the non-inertial regime, the increase of φ promotes
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(a) Ca = 0.1, Re = 10 (b) Ca = 0.1
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Figure 13. (a) Evolution of MSD of the capsule suspension for increasing φ; (b) evolution of capsule diffusivity
Dz within the Reynolds number range 1 �Re � 10, showing the transition from the non-inertial to the inertial
regime.

the capsule diffusion Dz in figure 12(c), which simply results from enhanced interactions
between capsules. Conversely, at Re � 10, Dz decreases with φ, indicating that a high
φ impedes capsule diffusion along the z-axis. One possible explanation is that, at higher
inertia, the streamline movement of capsules tends to dominate, reducing the influence
of lateral motion, especially in more densely packed suspensions where inter-particle
interactions are stronger and hinder transverse movements. A similar tendency is also
observed at Ca = 1.0 in figure 12(d), the most deformable case in this study. There is a
clear regime transition in the capsule suspension between the non-inertial regime Re = 1
and the inertial regime Re = 10.

Figure 13 presents the MSD along the z-axis of the capsule suspension for 1 �Re � 10
and 0.1 � φ � 0.4. In the log − log plots, the MSD evolution shows a slope ∝�t2 in the
ballistic regime and ∝�t in the diffusion regime, consistent with the behaviour observed
in solid particle suspensions. This transition process exists across all the parameter ranges
investigated. In particular, in figure 13(a), increasing the capsule volume fraction leads
to a decrease of MSD at Re = 10, which supports the observations of figure 12(c). The
decrease of MSD is more pronounced in the diffusion regime than in the ballistic regime.
This trend is opposite to the case at Re � 1, confirming the existence of a transition
from the non-inertial regime to the inertial regime. To better capture this novel transition
process, we perform additional simulations and plot the diffusivity Dz as a function of φ
for a capsule suspension at Ca = 0.1 in figure 13(b). At other values of Ca, the evolution
of Dz mirrors that at Ca = 0.1, and therefore, the results are not plotted to eliminate
redundancy. Figure 13(b) clearly shows that Dz exhibits an increasing trend with φ at
Re = 1, similar to the behaviour observed in solid particle suspensions. As φ increases,
the probability of strong short-range capsule interactions rises, enhancing mixing and their
lateral migration along the z-axis. Generally, increasing flow inertia leads to higher capsule
diffusivity due to greater lateral motion following capsule interactions at all φ levels. The
enhancement of lateral motion by Re along the z-axis is more evident at low volume
fractions (e.g. φ = 0.1). However, a further increase in φ impedes the lateral motion of
capsules, as the probability of encountering a neighbouring capsule with opposite lateral
motion rises. Thus, the steric interactions between neighbouring capsules result in a
decrease in Dz with φ, which is observed for Re � 5 in figure 13(b). At Re = 2.5 the
capsule diffusivity exhibits similar values across the range φ = 0.1 to 0.4. Based on the
current dataset, the critical Rec for the non-inertial regime to inertial regime transition is
identified to be between Re = 1 and Re = 2.5.

1010 A52-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

29
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.294


Journal of Fluid Mechanics

1.0

(a) (b)Re = 0.1 Re = 1

(c) Re = 10 (d ) Re = 20

0.1
0.2
0.3
0.4
0.5

0.10
1

2

3

4

5

6

1

2

3

4

5

6

0.2 0.3 0.4 0.5

Ca0.6
0.7
0.8
0.9

0.1
0.2
0.3
0.4
0.5

Ca0.6
0.7
0.8
0.9
1.0

0.1

4

3

2

1

4

3

2

1

0.2
0.3
0.4
0.5

Ca0.6
0.7
0.8
0.9
1.0

Einstein: 1 + 5φ/2
Batchelor: 1 + 5φ/2 + 5φ

2

Numerical results

Einstein: 1 + 5φ/2
Batchelor: 1 + 5φ/2 + 5φ

2

Numerical results

Einstein: 1 + 5φ/2
Batchelor: 1 + 5φ/2 + 5φ

2

Numerical results

Einstein: 1 + 5φ/2
Batchelor: 1 + 5φ/2 + 5φ

2

Numerical results

0.1
0.2
0.3
0.4
0.5

Ca0.6
0.7
0.8
0.9
1.0

μr

φ

0.10 0.2 0.3 0.4 0.5

φ

0.10 0.2 0.3 0.4 0.5 0.10 0.2 0.3 0.4 0.5

μr

Figure 14. Relative viscosity μr of the capsule suspension as a function of φ. Einstein’s correlation is shown
as a solid black line, Batchelor’s as a black dashed line and the effects of Ca are illustrated from light blue (low
Ca) to dark blue (high Ca).

Additionally, knowing that in the absence of capsule interactions, a single capsule at
steady state exhibits little lateral motion. It is presumed that there exists a critical volume
fraction (φc � 0.1) at which Dz reaches its maximum value for the suspension at Re = 10,
before it decreases as depicted in figure 13(b).

5.2. Inertial effects on suspension rheology
Building on the insights gained from the deformation and diffusion of capsule suspensions,
we now investigate the effects of flow inertia on their rheology. We begin by examining
the relative viscosity, followed by an analysis of the normal stresses.

5.2.1. Relative viscosity
Figure 14 shows the evolution of relative viscosity defined in (2.11) as a function of φ
at 0.1 �Re � 20. The simulation results for capsule suspension, at 0.01 � Ca � 1.0, are
depicted using colours from light to dark blue. In figure 14(a), it is clear that most data
points at Re = 0.1 lie between the correlations of Einstein (1911) and Batchelor & Green
(1972). Einstein’s equation is a simple model for predicting the relative viscosity of a
dilute suspension of non-interacting, rigid spherical particles. It assumes that the particle
concentration is very low, so interactions between particles are negligible. Batchelor’s
equation includes a quadratic term to account for hydrodynamic interactions and Brownian
motion in a more concentrated suspension. We observe that less deformable capsules (at
low Ca) exhibit relative viscosities close to Batchelor’s correlation. As the deformability
of the capsule increases (at a higher Ca) the value of μr tends to decrease for all volume
fractions investigated (0.1 � φ � 0.4). One possible reason is that more deformable
capsules experience reduced hydrodynamic interactions because they can adapt to the flow
and align more smoothly with the fluid streamlines, thus reducing μr . As Re increases,
we have higher μr especially at small Ca. In figure 14(b), the relative viscosity μr of the
suspension at Ca � 0.2 largely exceeds the values predicted by Batchelor’s correlation.
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In the inertial regime, at Re � 10, the values of μr further increase, and both correlations
fail to capture the numerical data of φ � 0.2 in figure 14(c–d).

Considering flow inertia is necessary for more accurate predictions and better control
over the rheological properties of capsule suspensions within our parameter space. In the
following, we establish several new correlations to better predict the relative viscosity μr
of the capsule suspension in the inertial regime. We first extend Batchelor’s correlation
and propose the following empirical correlation based on the entire numerical dataset
within the parameter space 0.1 � φ � 0.4, 0.1 �Re � 20 and 0.01 � Ca � 1.0 using a
multivariate regression

μr = 1.34 − 6.68φ +
(
−0.23 + 11.13φ1.19

)
Ca−0.066

(
1 + 0.081Re0.62

)
. (5.1)

Instead of a simple quadratic term, our multivariate correlation explicitly incorporates the
two additional variables Ca and Re to account for capsule deformability and flow inertia,
respectively. The correlation shows good agreement with our computed results, accurately
capturing the increasing trend of μr with φ and the decreasing trend with Ca. Although
there exist a few discrepancies at low Ca and low Re, the model demonstrates an average
relative error 〈ε〉 = 4.9 % and a determination coefficient of r2 = 0.9916.

A second way to predict the relative viscosity of the capsule suspension is to incorporate
the deformability of the capsules into the volume fraction φ and apply an Eilers-type model
(Aouane et al. 2021)

μr =
(

1 + αφe

1 − βφe

)2

, (5.2)

where α and β are coefficients of the model, and φe denotes the effective volume fraction
of the capsule suspension. In the non-inertial regime, Rosti et al. (2018) proposed the
following effective volume fraction, considering an effective sphere:

φe,Rosti = 4
3
π〈r3〉3 N

V
. (5.3)

However, this definition is not well suited for elongated capsules in inertial flow, especially
for Re � 10. Therefore, we propose a novel alternative definition of the effective volume
fraction, considering an effective spheroid

φe = 4
3
π〈r1〉〈r3〉2 N

V
. (5.4)

This definition emphasises the role of particle elongation under flow inertia and proves to
be more effective for the parameter space investigated, particularly for capsules in inertial
flow. The following analysis is based on the novel spheroidal effective volume fraction
defined by (5.4).

In figure 15, we present the relative viscosity μr of the capsule suspension as a function
of the effective volume fraction φe for 0.1 �Re � 20. To enhance clarity, we show the
cases separately at different Re in the panels. For a single capsule in the shear flow, we
have μr = 1 as φe → 0. In the non-inertial regime, at Re � 1, the values of μr collapses
to a master curve as a function of φe, as shown in figure 15(a–b). In the inertial regime, the
influence of Ca on μr becomes more pronounced, as illustrated in figure 15(c). Although
the numerical results still approximate a master curve, the data points are grouped by
φ and show more outliers at small Ca. Consistent with the lateral migration of capsules
discussed above, the behaviour of the capsule suspension in the inertial regime differs from
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(a) Re = 0.1 (b) Re = 1
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Figure 15. (a–c) Relative viscosity μr of the capsule suspension as a function of φe. The panels illustrate cases
with increasing flow inertia Re; results at different φ are represented using distinct markers. (d) Prediction of
μr using Eilers-type model.

Re α β 〈ε〉 r2

0.1 1.8518 0.9835 2.3 % 0.9928
1
10 4.0152 −0.4291 4.1 % 0.9851
20 3.9968 0.3317 7.8 % 0.9764

Table 2. Correlation coefficients α, β, relative error 〈ε〉 and determination coefficient for Eilers-type models
in (5.2).

that in the non-inertial regime. To accurately model the relative viscosity of the capsule
suspension, it is essential to consider the effects of inertia and the transition between these
two regimes.

Given that the values of μr as a function of φe fall close to a master curve, we can
establish new correlations for μr using the Eilers-type models in (5.2). For each Re
investigated, we determine the coefficients α and β using the least-square method, as listed
in table 2. The prediction results are presented and compared with our computed results in
figure 15(d). The first observation is that all the numerical data for Re = 0.1 and Re = 1
collapse onto the same master curve (solid black line in figure 15d). Consequently, we use
the same coefficient set (α, β) for modelling μr for these cases in the non-inertial regime,
as shown in table 2. The obtained correlation exhibits high accuracy, with an average
relative error 〈ε〉 = 2.3 % for Re = 0.1 and Re = 1. In the inertial regime, the effects of
Re on the viscosity evolution become more pronounced, necessitating separate modelling
for each Re. The best fit yields a relative error of 〈ε〉 = 4.1 % for Re = 10 and 〈ε〉 = 7.8 %
for Re = 20, using the parameters listed in table 2.

Even though Eilers-type models show a promising ability to fit relative viscosity data for
suspensions in the non-inertial regime, the dependence on Re of the model coefficients
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Figure 16. Prediction of models based on the effective volume fraction φe using the inertia-tuned model.

also makes it less convenient to use and extrapolate at Re � 10. To address this, we extend
the Eilers-type model by introducing an inertia factor of the form A + BReC , resulting in
the inertia-tuned model

μr = 1 +
(

2.8φe

1 + 2.59φe

)2 (
7.92 + 1.65Re0.63

)
. (5.5)

Now, with the inertia-tuned model in (5.5), the entire data set is well captured with a
single set of coefficients, as shown in figure 16(a). The inclusion of the inertia factor
allows for accurate prediction of the dependence of μr on Re. As shown in figure 16(b),
the inertia-tuned model in (5.5) achieves a satisfactory determination coefficient of r2 =
0.9811.

Overall, the inertia-tuned model is more physically interpretable and has fewer empirical
coefficients than the multivariate correlation in (5.1). However, it is important to note that
(5.5) requires the a priori computation of the effective volume fraction φe defined in (5.4).
In contrast, the multivariate correlation in (5.1) depends directly on the physical properties
of the system: Re, Ca and φ, and does not require the computation of φe. In general,
the correlations and models derived in this section can be of specific interest in different
applications, depending on the particular requirements.

5.2.2. Normal stress of the suspension
In addition to relative viscosity, we present the evolution of first and second normal stress
differences of capsule suspension at λ= 1 in figure 17. We begin by analysing the particle
stress contributions arising from capsule interactions, N p

1 and N p
2 . Subsequently, we take

a closer examination of the stress resulting from flow fluctuations, N f
1 and N f

2 .
For the dense suspension at φ = 0.4, the first normal stress difference, N p

1 ,
predominantly shows positive values except in cases where Re � 10 and Ca = 0.01, as
depicted in figure 17(a). Both Re and Ca contribute to the increase of N p

1 , with the effect
of Ca being more pronounced in the inertial regime. This trend closely resembles the
behaviour of a single capsule in shear flow plotted in figure 8(d). The high similarity
suggests that the evolution of N p

1 with Ca in the suspension results from the collective
effects of flow inertia on individual capsules. Figures 17(b) and 17(c) illustrate that a higher
φ significantly increases N p

1 in both the non-inertial and inertial regimes. Compared with
figure 10(d–f ), the observed sign change of N p

1 aligns closely with the variation in the
capsule inclination angle 〈θ〉, similar to the single capsule case discussed before. The
reduction in 〈θ〉 from π/4 (extension axis of shear flow) drives the transition of N p

1 from
negative to positive values, particularly pronounced at Re = 10. This phenomenon mirrors
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(a) φ = 0.4 (b) Re = 1 (c) Re = 10

(d) φ = 0.4 (e) Re = 1 ( f ) Re = 10

(g) Ca = 0.1 (h) φ = 0.3 (i) φ = 0.3
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Figure 17. Effects of inertia on the particle stress of capsule suspensions at λ= 1, Re = 0.1 ∼ 20 and φ =
0.1 ∼ 0.4. Panels (a–c) depict the first normal stress difference N p

1 , panels (d–f ) illustrate the second normal
stress difference N p

2 and panels (g–i) present the bulk stress due to flow fluctuation N f
1 and N f

2 .

a similar mechanism identified in both dilute and dense droplet emulsions, as reported by
Li & Sarkar (2005a) and Srivastava et al. (2016). Another possible contribution is the
inhomogeneous microstructure of the suspension. Bridge structures often indicate regions
of strong interaction and deformation of capsules, which can contribute to the considerable
enhancement of particle stress, Σ p

xx , along the streamwise direction in inertial flow, thus
increasing N p

1 .
Regarding N p

2 , we observe a decreasing trend as a function of Ca at φ = 0.4 in
figure 17(d). At Re � 1, N p

2 exhibits negative values at high φ, different from the positive
values observed in the single capsule case in figure 8(g). The enhanced flow inertia at
Re � 10 results in positive N p

2 at small Ca. In figure 17(e), we note that a high volume
fraction φ leads to a significant decrease in N p

2 at Re = 1. The negative values of N p
2

indicate that the increase in normal stress along the z-axis is more significant than along
the y-axis as φ increases. From the point of view of the suspension microstructure, the
capsules forming the bridge structures provide ample free space for other capsules in the
shear plane, potentially reducing the overall normal stressΣ p

yy in the gradient direction. In
contrast, along the z-axis, the normal stress Σ p

zz increases with φ due to the rise in binary
interactions. At Re = 10 in figure 17( f ), the sign change of N p

2 occurs at 0.2 � Ca � 0.4,
distinct from that of N p

1 , as it does not directly correlate with the inclination angle 〈θ〉.
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The evolution of bulk stress due to flow fluctuations is presented in figures 17(g)–17(i).
The shear stress Σ f

xy is significantly smaller compared with Σ p
xy and is therefore not

plotted here. Flow fluctuations predominantly impact the first normal stress difference,
N f

1 , whose magnitude increases with φ, as shown in figure 17(g). Unlike N p
1 , N f

1 exhibits
negative values for φ in the range of 0.1 to 0.3. Intuitively, increasing Re amplifies the
magnitude of N f

1 . At φ = 0.3, figure 17(h) illustrates the evolution of N f
1 as a function of

Ca. Higher capsule deformability results in a sharp rise in the magnitude of N f
1 , which

can surpass N p
1 , as shown in figures 17(b) and 17(c). Conversely, increasing Ca reduces

the magnitude of the second normal stress difference, N f
2 , as shown in figure 17(i). This

behaviour arises from the reorientation of capsules along the x-axis in more deformable
cases, which mitigates stress along the y axis.

6. Conclusions
We conducted a comprehensive investigation into the deformation, dynamics and rheology
of a single and suspensions of immersed elastic capsules in an inertial shear flow.
We performed high-fidelity interface-resolved simulations using octree and multigrid
methods to accurately capture the behaviour of elastic capsule suspensions and create an
extensive dataset for numerical analysis and modelling.

For a single capsule in the shear flow, we elucidate the promoting effects of flow inertia
on capsule deformation and the internal resistance to deformation brought by the viscosity
ratio, highlighting the interplay of these two competing factors. We reveal the mechanism
behind the stretching of the capsule surface during tank-treading motion. Specifically, we
demonstrate that certain critical surface points exhibit constant principal stretches, while
others undergo periodic changes. Our study shows that the first and second normal stress
differences exhibit a change of sign with increasing flow inertia, indicating a complex
interaction between the capsules and the surrounding fluid.

In examining capsule suspensions, the effects of increasing volume fraction on the
capsule average deformation, diffusion and rheology are thoroughly discussed. We find
the formation of bridge structures due to the pure hydrodynamic interactions among
elastic capsules in the shear plane. These interactions enhance the inhomogeneity of
the microstructure within the capsule suspension, altering the capsule surface stress
distribution and providing new insights into the formation of rouleaux structures in inertial
flows. In terms of capsule lateral migration, we identify a critical range of Re marking
the transition of capsule diffusion from the non-inertial regime to the inertial regime,
providing a deeper understanding of the underlying mechanisms at play. Furthermore,
we reveal close connections between the behaviour of individual capsules and dense
suspensions and demonstrate that inertia significantly affects the deformation and rheology
of capsule suspensions. We propose multiple new empirical correlations to predict the
capsule deformation factor of a single capsule and the relative viscosity of the capsule
suspension, which can serve as valuable tools for future research and practical applications.

Our findings enhance the understanding of elastic capsule behaviour in inertial shear
flows, paving the way for advances in inertial microfluidic applications. The proposed
empirical correlations offer predictive tools to guide the selection of flow parameters,
channel geometries and capsule properties, helping to avoid costly and time-intensive trial-
and-error processes. These insights enable the customisation of microchannel geometries
to meet specific needs, such as isolating tumour cells or bacteria from whole blood, and
optimising device designs to reduce clogging. By understanding capsule deformation and
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orientation under various shear stresses, device parameters can be precisely tuned to im-
prove separation efficiency and sorting accuracy. The novel insights obtained in this study
lay a foundation for future advancements, fostering the development of next-generation
inertial microfluidic systems for specific, high-precision applications in healthcare and
biotechnology. Future research could extend this work to explore polydisperse capsule
suspensions and the behaviour of capsules in channels with complex geometries.
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Appendix A. Immersed boundary method
In this study, the membrane is discretised using an unstructured triangulation. Equation
(2.5) is resolved via a linear finite element method. Communication between the
membrane triangulation and the grid utilises the IBM (Peskin 1977, 2002), where the
regularisation of the Dirac distribution in (2.3) employs a smoothed 2-point formulation
(Yang et al. 2009)

δ̃h(x − x0)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

Δ̃3

3∏
i=1

(
3
4

− |xi − x0,i |2
)

if |xi − x0,i |� 0.5

1

Δ̃3

3∏
i=1

(
8
9

− 3
2
|xi − x0,i | + 1

2
|xi − x0,i |2

)
if 0.5< |xi − x0,i |� 1.5

0 otherwise

,

(A1)
where x0 = [x0,1, x0,2, x0,3] represents the location of a Lagrangian node on the
membrane surface, x = x̃/Δ̃ and Δ̃ is the local mesh size of the Eulerian grid. The
prefactor 1/Δ̃3 ensures that the discrete integral over the entire space,

∫
Ω
δ̃h(x0 − x) dx,

remains equal to one.
The velocity Ṽ0 of a Lagrangian node located at x̃0 is interpolated from the Eulerian

velocity field ũ using

Ṽ0 =
∑

i∈supp(δ̃h(x0−xi ))

ũi δ̃h(x0 − xi )Δ̃
3, (A2)

where supp(δ̃h) denotes the support of the regularised Dirac delta function. Similarly,
the membrane force F̃0 at a Lagrangian node x̃0 is distributed to the Eulerian force
density function f̃ using (2.3). Once the Lagrangian velocities of all the capsule nodes
are interpolated from the Eulerian velocity field using (A2), the position of each node is
updated using an explicit forward Euler scheme (Krüger 2012; Aouane et al. 2021).

Additionally, when the fluid viscosity inside and outside the capsule membrane differ,
we adopt the approach developed by Tryggvason and co-workers (Unverdi & Tryggvason
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1992; Tryggvason et al. 2001). A discrete indicator χ̃ is computed from a discrete grid-
gradient field G̃

G̃(x) =
∑
i∈T

Ãi δ̃h(x0 − xi )ni , (A3)

where T denotes the triangular elements on the capsule surface, Ãi is the surface area of
triangle i , xi represents the coordinates of its centroid and ni is its inward normal vector.
By definition, G̃ is non-zero only on the supports of δ̃h(x0 − xi ). The discrete indicator
function χ̃ can be computed by solving a Poisson problem

∇2χ̃ = ∇ · G̃. (A4)

Since χ̃ is a regularised step function, it remains constant away from the membranes.
Our current implementation of the FTM requires all cells belonging to the supports

of δ̃h(x0 − xi ) to be the same size Δ̃. In other words, all Eulerian cells surrounding a
membrane must be of uniform size corresponding to the smallest grid size Δ̃, through
adaptive mesh refinement. Note that the volume of the capsule is forced to be conserved
in all cases investigated.

Appendix B. Numerical validation of the solver

B.1. Validation of a single capsule in shear flow
Figure 18 illustrates the validation of our solver in comparison with the literature for the
simulation of a single spherical elastic capsule subjected to a shear flow at Re = 0.01. The
viscosity ratio of the capsule studied is unity. We investigate the evolution of the Taylor
deformation factor, D, as defined in (2.7) and illustrated in figure 18(a). Our simulations
align closely with the data reported by (Lac et al. 2004; Aouane et al. 2021; Guglietta et al.
2023). To enhance understanding, we also compute the Taylor deformation factor using an
alternate, yet popular, definition

Dm = rmax − rmin

rmax + rmin
, (B1)

where rmax and rmin represent the maximum and minimum radial distances from the
capsule’s membrane to its centroid within the shear plane. Remarkably, as shown in
figure 18(a), applying these two definitions at Re = 0.01 results in overlapping curves,
demonstrating their consistency. Similar observations extend to the inclination angle
of the capsule within the shear plane, as demonstrated in figure 18(b). Despite minor
discrepancies in θm determined by the directions of rmax and rmin in comparison with
the definition by (2.8), the fundamental physical principles continue to hold. In the
remainder of the current study, we apply definitions of D and θ using (2.7) and (2.8).
In figure 18(c–e), we plot the evolution of the lengths of three semi-axis (r1, r2, r3) of
the inertia-equivalent ellipsoid in a function of Ca. Our numerical results show excellent
agreement with existing data reported in the literature (Li & Sarkar 2008; Aouane et al.
2021; Guglietta et al. 2023).

In terms of validation of forces acting on the capsule membrane, we analyse the particle
shear stress Σ p

xy , and the first/second normal stress differences (N p
1 , N p

2 ), illustrated
in figure 18( f –h). Our results indicate that the particle shear stress aligns closely with
existing studies (Bagchi & Kalluri 2010; Aouane et al. 2021) as shown in figure 18( f ).
A mesh convergence analysis on the first and second normal stress differences N p

1
and N p

2 as functions of Ca is presented in figure 18(g–h). We denote nE and nL as
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Figure 18. Validation of the deformation and particle stress of a single capsule in a shear flow at γ̇ = 1, λ= 1
and Re = 0.01 as a function of Ca; (a) Taylor deformation factor, (b) inclination angle, (c-e) three semi-axis
lengths of the moment of inertia equivalent ellipsoid r1, r2, r3, ( f ) particle shear stressΣ p

xy/φ and (g-h) particle
first/second normal stress difference N p

1 /φ, N p
2 /φ.

the refinement levels of the Eulerian (fluid phase) and Lagrangian (capsule membrane)
meshes, respectively. We note that simulations with a coarse mesh (nE = 7, nL = 3)
reveal good agreement with the literature. Yet, increasing the mesh resolution modifies the
outcomes; for instance, at nE = 8, we observe discrepancies for N p

1 and N p
2 in comparison

with the reported findings by (Bagchi & Kalluri 2010; Aouane et al. 2021), underscoring
their sensitivity to the mesh size. Further elevation of the Eulerian mesh resolution to
nE = 9 demonstrates incremental variance in N p

1 and N p
2 . Given this, we opt for nE = 8

and nL = 4 for subsequent simulations of a single capsule in shear flow, a compromise
ensuring both high precision and computational efficiency.

B.2. Validation of capsule suspensions in a shear flow
Now that the solver is validated for single capsule scenarios, we proceed with simulations
to examine the interactions between capsules in a suspension. Figure 19 illustrates the
validation of our FTM for a suspension in a shear flow at φ = 0.1 and Re = 0.01 in
comparison with data reported in the literature (Aouane et al. 2021; Guglietta et al. 2023).
Our numerical results show a very good agreement with the data reported in Aouane et al.
(2021) for the three semi-axis lengths of the moment of inertia equivalent ellipsoid, 〈r1〉,
〈r2〉 and 〈r3〉, as seen in figure 19(a–c). The symbol 〈·〉 represents the ensemble average
of physical quantities after the flow regime has fully developed. The relative viscosity
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Figure 19. Validation of the deformation and rheology of capsule suspensions in a shear flow at γ̇ = 1, λ= 1,
Re = 0.01 and φ = 0.1 as a function of Ca; (a-c) three semi-axis lengths of the moment of inertia equivalent
ellipsoid 〈r1〉, 〈r2〉, 〈r3〉; (d) relative viscosity of the suspension μr ; (e-f ) particle first/second normal stress
difference N p

1 and N p
2 .

〈μr 〉, an important aspect of the suspension rheology, is also well captured, as shown in
figure 19(d). Similar to the single capsule case shown in figure 18(g–h), our simulation
results for N p

1 and N p
2 show slight differences with those reported in the literature.

However, given the higher spatial resolution of our simulations, we are confident that our
results are accurate and thoroughly validated.

Appendix C. Repulsive model and its impacts
To prevent capsules from overlapping in a relatively dense suspension, we introduce a
repulsive force to simulate the normal component of the lubrication force. This force is
activated when the Lagrangian nodes of two neighbouring capsules come into close prox-
imity, specifically when the numerical stencils of the Lagrangian points begin to overlap

f̃ r,i j =

⎧⎪⎨
⎪⎩ K

[(
2Δ̃
d̃i j

)2

− 1

]
d̂i j if d̃i j < 2Δ̃,

0 if d̃i j � 2Δ̃.

(C1)

The repulsive force acts on nodes i and j , which belong to two neighbouring capsules.
Let d̃i j be the distance between these two nodes and d̂i j be the unit vector connecting
them. The repulsive coefficient K = ||ũ||/8 is chosen to be proportional to the local fluid
velocity. By implementing this repulsive interaction, we ensure that the capsules maintain
a minimum separation distance, preventing any undesired physical overlap.

In figure 20, we show that the macroscopic behaviour of the suspension remains
unaffected by the additional repulsive nodal force. We present the temporal evolution of
the Taylor deformation factor 〈D〉 and the relative viscosity μr in a dilute suspension of
capsules at φ = 0.1 and Re = 0.01. As illustrated in figure 20(a–b), the repulsive force
model has no impact on the temporal evolution of both 〈D〉 and μr . In this dilute system,
the likelihood of interactions between the capsules is low. The ample free space allows the
lubrication effects to be well resolved when two capsules encounter each other, effectively
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(a) ϕ = 0.1, Re = 0.01, Ca = 0.3 (b) ϕ = 0.1, Re = 0.01, Ca = 0.3

(c) ϕ = 0.4, Re = 10, Ca = 0.1 (d) ϕ = 0.4, Re = 10, Ca = 0.1
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Figure 20. Effects of the repulsive force on the deformation and relative viscosity of the capsule suspension.
Panels (a) and (b) illustrate the effects of the repulsive force on a dilute suspension at φ = 0.1 in the non-inertial
regime Re = 0.01, while panels (c) and (d) show the results for a dense suspension with volume fraction
φ = 0.4 in the inertial regime at Re = 10.

preventing them from approaching too closely. As a result, the repulsive model is rarely
activated.

In a dense suspension with φ = 0.4 in an inertial flow at Re = 10, interactions among
the capsules become significant. As shown in figure 20(c), the repulsive force has minor
effects on the temporal evolution of the Taylor deformation factor 〈D〉, while maintaining
the same time-averaged value. Similarly, figure 20(d) demonstrates that the repulsive force
has minor effects only on the temporal evolution of the relative viscosityμr , with a relative
error of less than 6 % compared with the case without the repulsive force.

To conclude, the repulsive force effectively prevents membrane overlapping and
accounts for lubrication effects, thereby enhancing numerical stability. Importantly, this
is achieved without altering the dynamics or rheology of the capsule suspension in both
the non-inertial and inertial regimes.

Appendix D. Capsule elastic stress in the bridge structure
We plot the capsule elastic stress distribution on the contours of capsules on a cut plane in a
suspension with φ = 0.3 in figure 21. The cut plane, perpendicular to the z-axis, is located
at z = 0 as shown in figure 21(a). The capsule contours in this shear plane are coloured
based on σ2,max , with red indicating high stresses and blue indicating low values. From
figure 21(b), we observe the formation of bridge structures in the suspension. The capsule
membrane in the lubrication layer exhibits low σ2,max values. The maximum elastic stress,
σ2,max , is observed at the two extremities of the capsule in the shear plane. The bridge
structures are temporary because there is no adhesive force holding the capsules together.
Without adhesion, the structures are easily broken apart by the shear flow. Despite their
temporary nature, the conditions in the shear flow repeatedly bring capsules into close
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Figure 21. Distribution of the maximum elastic stress σ2,max in a capsule suspension at φ = 0.3, Ca = 0.05
and Re = 0.1. (a) Location of the cut plane in the cubic computation domain, (b) snapshot of capsule contours
coloured by σ2,max .
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Figure 22. Effects of viscosity ratio on the capsule suspensions in a shear flow at Re = 10 and φ = 0.4.
(a) Ensemble-averaged Taylor deformation factor 〈D〉, (b) inclination angle 〈θ〉, (c) tank-treading velocity 〈ω〉,
(d) relative viscosity μr , (e) first normal stress difference N p

1 and (e) second normal stress difference Σ p
xy .

proximity, leading to the frequent formation of bridge structures, due to the hydrodynamic
forces in the suspension.

Appendix E. Effects of viscosity ratio on capsule suspension
We briefly present and discuss the effects of the viscosity ratio λ on capsule suspensions
at φ = 0.4 and Re = 10 in figure 22. Generally, the effects of λ on a dense suspension
are minor compared with the effects of φ discussed in § 5. As shown in figure 22(a),
increasing the viscosity ratio from λ= 1 to λ= 5 barely changes the average deformation
〈D〉 of the suspension. However, the inclination angle 〈θ〉 and the magnitude of the tank-
treading velocity 〈ω〉 are reduced due to the increased resistance in the internal fluid of the
capsules. Regarding particle stresses, we observe a slight increase in the relative viscosity
μr in figure 22(d), which is opposite to the effect of λ in the single capsule case, as depicted
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(a) ϕ = 0.4, Re = 10

(b) Re = 10, Ca = 0.1

(c) ϕ = 0.3, Ca = 0.1

(d ) Re = 1.0, ϕ = 0.1 (e) Re = 1.0, ϕ = 0.4
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Figure 23. Shear stress fluctuation of the capsule suspension. (a-c) Temporal evolution of the shear stress
under effects of Ca, φ and Re, respectively; (d-e) probability distribution function f of particle shear stress
fluctuations at φ = 0.1 and φ = 0.4; a reference normal distribution is presented in black solid line. Here, σΣ p

xy

denotes the standard deviation of the particle shear stress Σ p
xy .

in figure 8(c). This increase can be attributed to the enhanced short-range interactions
among the suspended capsules due to the higher internal viscosity at a higher λ. In terms
of the normal stress differences, λ shows only a minor impact on the evolution of N p

1
in figure 22(e), although a slight decrease in N p

2 is observed at a higher viscosity ratio
λ= 5 in figure 22( f ). In the non-inertial regime, we observe similar effects of λ, so the
numerical results are not presented for brevity.

Appendix F. Fluctuations of the shear stress
Due to the inhomogeneous microscopic structure of the capsule suspension, the particle
shear stress consistently fluctuates around the average value, once the flow is fully
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developed

Σ
p
xy =Σ

p
xy + δΣ

p
xy, (F1)

where Σ
p
xy and δΣ

p
xy denote the time-averaged shear stress and its fluctuations,

respectively. Figure 23(a–c) presents the temporal evolution of the shear stress fluctuations
at different Ca, φ and Re. We observe that higher deformability of the capsules leads to
increased shear stress fluctuations δΣ p

xy at Re = 10 and φ = 0.4 in figure 23(a). In the
inertial regime, φ has minor effects on δΣ p

xy as shown in figure 23(b). However, an increase
in Re results in a significant rise in shear stress fluctuations in figure 23(c). Generally,
δΣ

p
xy represents less than 15 % of the total shear stress Σ p

xy even at Re = 20.
Regarding the distribution of stress fluctuations, figure 23(d) shows that at low Reynolds

number (Re = 1), low volume fraction (φ = 0.1) and low capillary number (Ca = 0.01),
δΣ

p
xy follows a normal distribution with an average value of zero. Increasing Ca causes

deviations from this normal distribution, leading to a lower peak value as seen in
figure 23(d). In a dense suspension (φ = 0.4), there is a clear deviation from the normal
distribution for all investigated Ca values, as shown in figure 23(e). Higher Re also causes
deviations from the normal distribution, although these results are not shown here for
brevity.
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