Canad. Math. Bull. Vol. 43 (4), 2000 pp. 472-476

An Estimate
For a Restricted X-Ray Transform

Daniel M. Oberlin

Abstract. This paper contains a geometric proof of an estimate for a restricted x-ray transform. The result
complements one of A. Greenleaf and A. Seeger.

Fixd > 2 and, fors € R, let y(s) = (1,5,5%,...,5%"1) € R Let II(s) be the space of
vectors in RY which are orthogonal to y(s). We consider a restricted x-ray transform R on
R? defined by

Rf(s,p) = /oo f(p + t’y(s)) dt, seR, pell(s).

—00

Our interest is in estimates

0 ([ | R pltdpds)” < o, )l Iy
{IsI<1} J{peli(sy|p|<1}

related to the mapping properties of R as an operator on L? (R?). It is observed in [GS] that
if (1) holds then (%, é) must belong to the triangle 7 = hull (A, B, C), where A = (0,0),

B=(1,1),C = (%, %). In case d = 4, the converse is nearly true. This follows

by interpolation from trivial estimates and a result in [GSW] which shows that R maps
LY/71(R*) into L/>°°(R*). In general, let D = (g;;f;j, 1), so that D is on the lower edge
AC of T. Proposition 5.2 in [GS] shows that R is bounded if ( %, é) belongs to hull (A, B, D).
Our purpose here is to prove another partial result of this type: let E = (d%dl, % ), so that

E lies on the upper edge CB of 7.

Theorem R is of restricted weak type (d%“ % ).

It follows by interpolation that R is bounded if ( %, é) # E belongs to hull (A, B, E). The
method of proofis geometrical. It is an adaptation of the proofin [O1]. One motivation for
studying the mapping properties of R is that R can be regarded as a model for the operator
Tf(x) = fol f(x —T(s)) ds, where I'(s) = (5,5%/2,...s%/d)—see [02], [M], [03], [04],
[C2].

Proof of Theorem In addition to its usual usages as norm or absolute value, the notation
| - | will stand for the Lebesgue measure of a set in R? or R¥~! or {(s,p) : s € R,p €
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I(s)} ~ RY, the choice being clear from the context. Fix A > 0 and a measurable set
EC R Let F = {|s|,|p| < 1,Rxe(s,p) > A}.
We need to show that

d—2 d—1
(2) MF|&= < C|E| ™
for some C independent of E and A. The trivial estimate
AIF| < 2[E]|

gives (2) if A|F| =1/~ is small, so we consider the other case. Let k be a positive number
so small that k/2 — (2k)¥¢; > 0—here ¢y isa positive constant that will appear later in the
proof. Assuming that kA/@=D|F|=1/@=2" > 1 je that A\|F|~"/@=1 is not small, choose
an integer N such that

—1

(3) AT [F| o7 < N < kATST[F| @0 + 1 < 2kATT |,
For |s| < 1,let E(s) = {p € II(s) : |p| < 1,Rxx(s,p) > A}. Then fil |E(s)| ds = |F|.
Assume without loss of generality that fol |E(s)| ds > |F|/2. Choose sy, . .. , sy with

1

0<s <5<+ <8N, 5]-+1—sj:ﬁ,

if:|ﬁ(s¢)|>/l ()| ds > E]
N & = -2

By shrinking some of the E(s;) if necessary, we can assume that

Fl 15
By < ZTIZI|E(5])| < |F|.
=
Let P; denote the orthogonal projection of R? onto the plane II(s;) and set
E(Sj) = {X cE: ij € E(S])}

Then

4) sl = [  R(sy P (P)dp = AIEGs)
HS]'

where the first inequality follows because ~y(s;) has norm at least one and the second in-
equality follows from the definition of E(s). To simplify notation we will write E ; for E(s;)
and E; for E(sj). We will establish (2) by using a counting lemma to estimate |E| from
below.

Lemma 1 The following inequality holds:

).

N 1 N
’UEJ“Zg(ZIEjI* > E n--nE,
j=1 =1

1<ji<--<ja<N
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Proof of Lemmal Let G, = {x € E;: Zl§j<k Xg; (%) < d — 1}. Then

N
W= Y ) S Y <,
1<ji<<ja—1<k 1

and so

N

Z(XEk - Z XEj, " XEj,_, XEk> <dxyvg,-

1 1<ji<<ja_, <k

Integrating this inequality yields the desired result. ]

=g s L
Lemma2 |E; M- NEj| < CIIciercqlsic =il = [T, |Ej, |71

Proof of Lemma 2 The change of variables (uy, ... ,u) — x = ijl upy(sj,) has Jaco-
bian J given by the Vandermonde determinant

H (Sjk - Sje)'

1<k<t<d

Thus

d d
|Ej, - NEj,| = U|/HXEjk (O wy(sj))duy - - ug

k=1 =1
d d

< Ul/HXEjk (ij (Z uw(m))) duy - - ug
k=1 =1
d d

= U|/HXE,k <ij(2un(5j{))> duy - - - ug.
k=1 (=1

1#k
The following result of Blei (see Lemma 2.4 of [B]) applies to the last integral: suppose

fi,-.., fa are nonnegative functions of u,... ,u,; with f; independent of u; for k =
1,...,d,so that f; is a function on R, Then

|L(171(]Rd71) .

d d
/ka(ul,... ,ud)dul---udSHka
k=1 k=1

This leads to

d d
|Eji -+ N Eg))| < |]H</Xﬁjk <ij(z uM%ﬂ)) dul"'ukluk+1"'ud>
k=1

=1
4k

1

d—1
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Now

d
V(i)
/Xﬁjk (P]k (Z “l’Y(SJ;))) dul cc U Ukt UG = | |]]‘k ‘ |E]k|7
(=
which one can see, for example, by considering an orthogonal transformation of R? that
takes (s;,) onto (|y(sj,)[,0,0,...,0). Lemma 2 follows since |s| < 1. [ |

Lemma 2 will be applied in conjunction with a multilinear inequality for nonnegative
sequences:

® S Mo Tt =o(Xe)

. PR
S >0 =1 1<ket<d LT |jk = jel ™

This inequality is a discrete version of Proposition 2.2 in [C1] and follows from that result
or from its proof. Using Lemma 2, (5), and the equality |s;, — s;,| = N[ jx — ji|, we get

N d
> |Ej1ﬂ"'ﬂEjd\SclNg(Z\Eszj)z
1

1<ji<--<ja<N

[y

d
)d—1
N
—3)d, _d 1 -
2@—1 T d—1 fE |E]‘
N 1

< o NU(|F) 7.

N

dy (d=3)d -

< ¢ N2 E |E
1

d
d—1

d
= ClN2+

The last inequality here follows from the fact that the E; were chosen so that

L&
N Z |Ej| < |F|
=1
Since also N
|F| 1 .
7 S N Z |E] |7
=1
Lemma 1 and (4) yield
" |F| :
d‘ E‘ > AN o NY|F| .
j:LJl il Z 2 1 | |

With (3) this gives

s (g _ (2k)dc1).

N
d‘UEj‘ > ATT|F
j=1

Since | J E; C E and since k was chosen so that k/2 — (2k)4¢c, is positive, (2) follows and the
proof is complete. ]
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