BOUNDARY VALUE PROBLEMS OF BIHARMONIC FUNCTIONS

HIDEMATU TANAKA

1. Introduction

Let Ω be a bounded domain of *n*-dimensional Euclidean space \mathbb{R}^n $(n \geq 2)$. On Ω we consider the biharmonic equation

$$\Delta^2 u = \left(\sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}\right)^2 u = 0.$$

A function u in $C^4(\Omega)$ is called biharmonic in Ω if it satisfies the equation (1). In this note we shall deal with the following boundary value problems. Find a biharmonic function u in Ω such that the following couples of functions have boundary values given on the boundary of Ω :

(a)
$$\frac{\partial u}{\partial n}$$
, $\frac{\partial (\Delta u)}{\partial n}$;

(b)
$$\Delta u$$
, $\frac{\partial u}{\partial n}$

(c)
$$u$$
, $\frac{\partial (\Delta u)}{\partial n}$

J. L. Lions [4] treated these problems for the operator $\Delta^2 + I$ and gave solutions in case that Ω is a Nikodym domain. But in his method, the boundary of Ω or boundary functions are not referred to.

In this note we take as the boundary the Martin boundary M of Ω and define notations $\gamma_0(u)$ and $\gamma_1(u)$ for a function u on Ω as follows. If u has a fine boundary function f on M we denote f by $\gamma_0(u)$ and if u has φ , as generalized normal derivative of Doob [3] (in a slightly modified sense), we denote φ by $\gamma_1(u)$ (c.f. Definitions 1 and 2).

Now our boundary value problems are described as follows. Find a biharmonic function u in Ω such that the following couples of functions are equal to boundary functions given on the Martin boundary M:

Received September 7, 1974.

- (a) $\gamma_1(u)$, $\gamma_1(\Delta u)$;
- (b) $\gamma_0(\Delta u)$, $\gamma_1(u)$;
- (c) $\gamma_0(u)$, $\gamma_1(\Delta u)$.

Let $K(x,\xi)$ be the Martin kernel and μ be the harmonic measure on M. Define new measures $\tilde{\mu}$ and $\tilde{\tilde{\mu}}$ on M by $d\tilde{\mu}(\xi) = k(\xi)d\mu(\xi)$ and $d\tilde{\tilde{\mu}}(\xi) = \frac{1}{k(\xi)}d\mu(\xi)$, where $k(\xi) = \int K(x,\xi)dx$.

Then we shall show that for any $\varphi \in L^2(\tilde{\mu})$ with $\int \varphi(\xi) d\mu(\xi) = 0$, there exists a square integrable harmonic function h on Ω with $D(h) < \infty$ such that $\gamma_1(h) = \varphi$ if and only if Ω is a Nikodym domain (Lemma 8). As an application of this fact we shall solve the above boundary value problems as follows.

Assume that Ω is a Nikodym domain, then

- (a) for any φ and ψ in $L^2(\tilde{\mu})$ with $\int \psi(\xi) d\mu(\xi) = 0$ there exists a biharmonic function u such that $\gamma_1(u) = \varphi$ and $\gamma_1(\Delta u) = \psi$;
- (b) for any $f \in L^2(\tilde{\mu})$ and $\varphi \in L^2(\tilde{\mu})$ with $\int \varphi(\xi) d\mu(\xi) = -\int H_f(x) dx$ there exists a biharmonic function u such that $\gamma_0(\Delta u) = f$ and $\gamma_1(u) = \varphi$;
- (c) for any $f \in L^1(\mu)$ and $\varphi \in L^2(\tilde{\mu})$ with $\int \varphi(\xi) d\mu(\xi) = 0$ there exists a biharmonic function u such that $\gamma_0(u) = f$ and $\gamma_1(\Delta u) = \varphi$.

Moreover the uniqueness of the above solutions will be shown.

2. Preliminaries

Let Ω be an arbitrary bounded domain of the *n*-dimensional Euclidean space $\mathbf{R}^n (n \geq 2)$ and G(x,y) be it's Green function with respect to the equation $\Delta u = 0$, that is $(-\Delta_y)G(x,y) = \varepsilon_x$ in Ω .

We shall mention the definition of the Martin boundary of Ω . We put

$$K(x,y) = \frac{G(x,y)}{G(x_0,y)}$$

on $\Omega \times \Omega$ if $y \neq x_0$ and $K(x, x_0) = 0$ if $x \neq x_0$ and $K(x_0, x_0) = 1$, where x_0 is a fixed reference point in Ω .

We take a fixed exhaustion $\{\Omega_n\}$ of Ω such that $x_0 \in \Omega_1$, and put

$$d(x_1, x_2) = \sum_{n=1}^{\infty} \frac{1}{2^n} \sup_{x \in \Omega_n} \left| \frac{K(x, x_1)}{1 + K(x, x_1)} - \frac{K(x, x_2)}{1 + K(x, x_2)} \right|.$$

Then d defines a metric on Ω . We denote by Ω^* the completion of Ω by this metric. For a point $\xi \in \Omega^* - \Omega$, we can find a sequence $\{y_n\}$ in Ω such that $d(\xi, y_n) \to 0$ and so we can define

$$K(x,\xi) = \lim_{n \to \infty} K(x,y_n) .$$

We say that Ω^* is the Martin compactification of Ω and the set $M = \Omega^* - \Omega$ is called the Martin boundary of Ω . The function $K(x, \xi)$ on $\Omega \times \Omega^*$ is called the Martin kernel. We denote by μ the harmonic measure on M with respect to the fixed reference point x_0 .

Now let $G_1(x,y)$ be the Green function of Ω with respect to the equation $(\Delta-1)u=0$, that is $(-\Delta_y+1)G_1(x,y)=\varepsilon_x$ in Ω . For $x\in\Omega$ and $\xi\in M$, we put

(2)
$$K_1(x,\xi) = K(x,\xi) - \int G_1(x,y)K(y,\xi)dy$$
.

We set for $f \in L^1(\mu)$,

(3)
$$H_f(x) = \int K(x,\xi) f(\xi) d\mu(\xi)$$

and

(4)
$$H_f^1(x) = \int K_1(x,\xi) f(\xi) d\mu(\xi)$$
.

Denote by D(u) the Dirichlet integral of u on Ω . For measurable functions f and g on M, we put

(5)
$$D(f,g) = \frac{1}{2} \int_{M} \int_{M} (f(\xi) - f(\eta))(g(\xi) - g(\eta))\theta(\xi,\eta)d\mu(\xi)d\mu(\eta)$$

and D(f) = D(f, f), where $\theta(\xi, \eta)$ is the Naim kernel (c.f. [7]).

The following lemma is obtained by Doob [3].

LEMMA 1. If u is a harmonic function with $D(u) < \infty$, then u has a fine boundary function u' and D(u') = D(u). Conversely if f is an arbitrary measurable function on M with $D(f) < \infty$, then $f \in L^2(\mu)$ and $D(H_f) = D(f)$.

Put $k(\xi) = \int K(x,\xi) dx$, and $k(\xi)$ is a strictly positive lower semi-continuous function on M and so $\inf_{\xi \in M} k(\xi) = c > 0$. Since

$$\int k(\xi) d\mu(\xi) = \int \left(\int K(x,\xi) d\mu(\xi)\right) dx = |\varOmega|$$
 (area of \varOmega),

we see that $k(\xi) \in L^1(\mu)$.

Define new measures $\tilde{\mu}$ and $\tilde{\tilde{\mu}}$ on M by $d\tilde{\mu}(\xi) = k(\xi)d\mu(\xi)$ and $d\tilde{\tilde{\mu}}(\xi) = \frac{1}{k(\xi)}d\mu(\xi)$ respectively, and we have the following relations

$$B(M) \subset L^{2}(\tilde{\mu}) \subset L^{2}(\mu) \subset L^{2}(\tilde{\tilde{\mu}}) \subset L^{1}(\mu) ,$$

where B(M) is the space of all bounded measurable functions on M. We also see that

(7)
$$||f||_{L^{2}(\widetilde{p})} \leq \frac{1}{\sqrt{c}} ||f||_{L^{2}(\mu)} \leq \frac{1}{c} ||f||_{L^{2}(\widetilde{p})}$$

for any $f \in L^2(\tilde{\mu})$.

By the Fubini theorem, $\int H_{f^2}(x)dx < \infty$ for any $f \in L^2(\tilde{\mu})$. Hence we know

$$\int H_{|f|}(x)H_{|g|}^{1}(x)dx \leq \int H_{|f|}(x)H_{|g|}(x)dx$$

$$\leq \left(\int (H_{|f|}(x))^{2}dx \cdot \int (H_{|g|}(x))^{2}dx\right)^{1/2}$$

$$\leq \left(\int H_{f^{2}}(x)dx \cdot \int H_{g^{2}}(x)dx\right)^{1/2} < \infty$$

for any f and g in $L^2(\tilde{\mu})$.

LEMMA 2. Let f and g be in $L^2(\tilde{\mu})$. Then

(8)
$$\int H_f(x)H_g^1(x)dx = \int H_g(x)H_f^1(x)dx$$

and

$$\int H_f(x)H_f^1(x)dx \leq \int (H_f(x))^2 dx \leq c' \cdot \int H_f(x)H_f^1(x)dx$$

for some constant $c' \geq 1$.

Proof. By the definition of $K_1(x,\xi)$ and the resolvent equation,

(10)
$$H_{f}^{1}(x) = H_{f}(x) - \int G_{1}(x, y) H_{f}(y) dy$$

and

(11)
$$H_{f}(x) = H_{f}^{1}(x) + \int G(x, y) H_{f}^{1}(y) dy.$$

Hence

$$\begin{split} \int H_{g}(x)H_{f}^{1}(x)dx &= \int H_{g}(x)\Big(H_{f}(x) - \int G_{1}(x,y)H_{f}(y)dy\Big)dx \\ &= \int H_{g}(x)H_{f}(x)dx - \int H_{f}(y)\Big(\int G_{1}(x,y)H_{g}(x)dx\Big)dy \\ &= \int H_{g}(x)H_{f}(x)dx - \int H_{f}(y)(H_{g}(y) - H_{g}^{1}(y))dy \\ &= \int H_{f}(x)H_{g}^{1}(x)dx \end{split}$$

and

(12)
$$\int (H_f(x))^2 dx - \int H_f(x) H_f^1(x) dx = \int H_f(x) (H_f(x) - H_f^1(x)) dx$$

$$= \int H_f(x) \left(\int G_1(x, y) H_f(y) dy \right) dx$$

$$= \int \int G_1(x, y) H_f(x) H_f(y) dx dy \ge 0 .$$

By (11)

$$\int (H_f(x))^2 dx - \int H_f(x) H_f^1(x) dx = \int H_f(x) \left(\int G(x, y) H_f^1(y) dy \right) dx$$

and hence

$$\begin{split} \left(\int (H_f(x))^2 dx &- \int H_f(x) H_f^1(x) dx\right)^2 \\ &\leq \int (H_f(x))^2 dx \cdot \left(\int \left(\int G(x,y) dy \cdot \int G(x,y) (H_f^1(y))^2 dy\right) dx\right) \\ &\leq c_0^2 \cdot \int (H_f(x))^2 dx \cdot \int (H_f^1(x))^2 dx \end{split}$$

where
$$c_0=\sup_{x\in D}\int G(x,y)dy$$
. Similarly to (12), we know
$$\int H_f(x)H_f^1(x)dx-\int (H_f^1(x))^2dx\geq 0\ ,$$

and so we have an inequality

$$\begin{split} &\int (H_f(x))^2 dx \, - \int H_f(x) H_f^1(x) dx \\ & \leq c_0 \cdot \left(\int (H_f(x))^2 dx \right)^{1/2} \! \left(\int H_f(x) H_f^1(x) dx \right)^{1/2} \, . \end{split}$$

Hence

$$\int (H_f(x))^2 dx \le c' \cdot \int H_f(x) H_f^1(x) dx$$

for some constant $c' \geq 1$. This completes the proof. Now we set

(13)
$$\tilde{H}(M) = \{f; f \in L^2(\tilde{\mu}) \text{ and } D(f) < \infty \}$$
,

and define two inner products on $\tilde{H}(M)$ by

$$(f,g)_1 = \mathbf{D}(f,g) + \int H_f(x)H_g(x)dx$$

and

(15)
$$(f,g)_2 = D(f,g) + \int H_f(x)H_g^1(x)dx$$

for functions f and g in $\tilde{H}(M)$. By the above lemma, we know that $(\cdot, \cdot)_2$ is an inner product on $\tilde{H}(M)$. We put $||f||_1^2 = (f, f)_1$ and $||f||_2^2 = (f, f)_2$ for $f \in \tilde{H}(M)$. Then we have

LEMMA 3. Norms $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent and $\tilde{H}(M)$ is a Hilbert space with respect to these norms.

Proof. By the above lemma,

(16)
$$||f||_2 \le ||f||_1 \le (\max(1, c'))^{1/2} ||f||_2 ,$$

and so these norms are equivalent. Let f be in $\tilde{H}(M)$. Then by the Riesz decomposition of $-(H_f)^2$ we have

$$(H_f)^2 = H_{f\mathbf{2}} - \int G(\cdot\,,y) d\nu_f(y) \;.$$

Since $D(H_f) = \frac{1}{2} \int d\nu_f$, we have

(17)
$$||f||_{L^{2}(\mathbb{F})}^{2} = \int H_{f^{2}}(x)dx$$

$$= \int ((H_{f}(x))^{2} + \int G(x, y)d\nu_{f}(y))dx$$

$$\leq \int (H_{f}(x))^{2}dx + c_{0} \cdot \int d\nu_{f}$$

$$\leq \max(1, 2c_{0}) \left(\int (H_{f}(x))^{2}dx + D(H_{f}) \right)$$

$$= \max(1, 2c_{0}) \left(\int (H_{f}(x))^{2}dx + D(f) \right)$$

$$= \max(1, 2c_{0}) ||f||_{1}^{2} .$$

Hence we see that $\tilde{H}(M)$ is a Hilbert space.

3. Definitions of $\gamma_0(u)$ and $\gamma_1(u)$ for a function u on Ω

We shall define $\gamma_0(u)$ and $\gamma_1(u)$ for a function u on Ω as follows.

DEFINITION 1. If a function u on Ω has a fine boundary function f on M, we denote f by $\gamma_0(u)$.

The definition of $\gamma_1(u)$ is a slight modification of the definition of the generalized normal derivative of u (c.f. Doob [3]).

DEFINITION 2. Consider the function $u(x) = H_f(x) + u_p(x)$, where f is a measurable function on M with $\mathbf{D}(f) < \infty$ and u_p is a potential of a measure ν on Ω . We assume that for any $g \in \mathbf{H}(M)$, H_g is integrable on Ω with respect to the absolute variation of ν . If there exists a function φ on M such that $\int \varphi(\xi)g(\xi)d\mu(\xi) < +\infty$ and

(18)
$$\mathbf{D}(f,g) = -\int \varphi(\xi)g(\xi)d\mu(\xi) + \int H_g(x)d\nu(x)$$

for any $g \in \tilde{H}(M)$, we denote φ by $\gamma_1(u)$.

We shall show the following

LEMMA 4. Let φ be in $L^2(\tilde{\mu})$. Then there exists a unique function $f \in \tilde{H}(M)$ such that $\gamma_1(u) = \varphi$, where

$$u(x) = H_f(x) - \int G(x, y) H_f(y) dy .$$

Proof. In the Hilbert space $\tilde{H}(M)$ with the norm $\|\cdot\|_1$, the mapping

 $g \to -\int g(\xi) \varphi(\xi) d\mu(\xi)$ is a linear functional. By the Schwarz inequality and (17), we have

$$\begin{split} \left| - \int g(\xi) \varphi(\xi) d\mu(\xi) \right|^{2} &\leq \left(\int |g(\xi)| \ k(\xi)^{1/2} \frac{1}{k(\xi)^{1/2}} |\varphi(\xi)| \ d\mu(\xi) \right)^{2} \\ &\leq \|\varphi\|_{L^{2}(\widetilde{\mu})}^{2} \cdot \|g\|_{L^{2}(\widetilde{\mu})}^{2} \\ &\leq \max \left(1, 2c_{0} \right) \|\varphi\|_{L^{2}(\widetilde{\mu})}^{2} \cdot \|g\|_{1}^{2} \ . \end{split}$$

Hence the above mapping is bounded on $\tilde{H}(M)$. Therefore there exists a unique function $f \in \tilde{H}(M)$ such that $(f,g)_1 = -\int \varphi(\xi)g(\xi)d\mu(\xi)$, namely

$$D(f,g) = -\int \varphi(\xi)g(\xi)d\mu(\xi) + \int H_g(x)(-H_f(x))dx$$

for any $g \in \tilde{H}(M)$. If we put $u(x) = H_f(x) - \int G(x, y) H_f(y) dy$, then from the definition we have $\gamma_1(u) = \varphi$.

Similarly we have

LEMMA 5. Let φ be in $L^2(\tilde{\mu})$. Then there exists a unique function $f \in \tilde{H}(M)$ such that $\gamma_1(H^1_f) = \varphi$.

Proof. By Lemma 3, the mapping $g \to -\int g(\xi)\varphi(\xi)d\mu(\xi)$ is a bounded linear functional on the Hilbert space $\tilde{H}(M)$ with the norm $\|\cdot\|_2$. Hence there exists a unique function $f \in \tilde{H}(M)$ such that

$$\mathbf{D}(f,g) = -\int \varphi(\xi)g(\xi)d\mu(\xi) + \int H_g(x)(-H_f^1(x))dx$$

for any $g \in \tilde{H}(M)$. Since $H_f^1(x) = H_f(x) - \int G(x, y) H_f^1(y) dy$, we have $\gamma_1(H_f^1) = \varphi$.

We set

$$\widehat{H(M)} = \{ f \in \widetilde{H}(M) ; \text{ there exists } \gamma_1(H_f) \in L^2(\widetilde{\mu}) \}.$$

Then we have similarly to Folgesatz 17.27 in [1] and Theorem 6 in [6] the following

LEMMA 6. $\widehat{H}(\widehat{M})$ is dense in $\widetilde{H}(M)$.

Proof. Let f_0 be in $\tilde{H}(M)$ and $(f_0, g)_1 = 0$ for any $g \in \tilde{H}(M)$. Then we have

(19)
$$D(f_0,g) + \int H_{f_0}(x)H_g(x)dx = 0.$$

Since f_0 is in $L^2(\tilde{\mu})$, by Lemma 4 there exists $f_0' \in \tilde{H}(M)$ such that

(20)
$$\gamma_1 \left(H_{f_0'} - \int G(\cdot, y) H_{f_0'}(y) dy \right) = f_0.$$

On the other hand

$$\gamma_1 \left(\int G(\cdot, y) H_{f_0'}(y) dy \right) = \int K(x, \cdot) H_{f_0'}(x) dx$$

and

$$\left\|\int K(x,\cdot)H_{f_0'}(x)dx\right\|_{L^2(\widetilde{a})}\leq \|f_0'\|_{L^2(\widetilde{a})}<\infty.$$

Hence $\gamma_1(H_{f_0'}) \in L^2(\widetilde{\mu})$ and f_0' is in $\widehat{H(M)}$. By (19), we have

$$D(f_0, f_0') + \int H_{f_0}(x) H_{f_0'}(x) dx = 0$$

and by (20),

$$D(f_0, f_0') = -\int f_0^2(\xi) d\mu(\xi) - \int H_{f_0}(x) H_{f_0'}(x) dx$$

therefore we know that $f_0 = 0$. This completes the proof.

4. Nikodym domain

In this section we shall treat the problem whether we are able to find $f \in \tilde{H}(M)$ such that $\gamma_1(H_f) = \varphi$ for any $\varphi \in L^2(\tilde{\mu})$ with $\int \varphi(\xi) d\mu(\xi) = 0$.

DEFINITION 3. (Deny-Lions [2]) We shall say that Ω is a Nikodym domain if every distribution T with $\frac{\partial}{\partial x_i}T\in L^2(\Omega)$ $(1\leq i\leq n)$ is in $L^2(\Omega)$.

We set
$$\mathscr{E}^1_{L^2}(\Omega) = \left\{ u \; ; \; u \in L^2(\Omega) \; \text{ and } \; \frac{\partial}{\partial x_i} u \in L^2(\Omega) \; (1 \leq i \leq n) \right\}$$
.

A necessary and sufficient condition for Ω to be a Nikodym domain is given by the following inequality of Poincaré: there exists a constant $P(\Omega)$ such that

$$\int (u(x))^2 dx - \frac{1}{|\Omega|} \left| \int u(x) dx \right|^2 \le P(\Omega) D(u)$$

for any $u \in \mathcal{E}_{L^2}^1(\Omega)$ (c.f. [2]).

Deny-Lions [2] gives another characterization of a Nikodym domain by setting

$$N = egin{cases} u \in \mathscr{E}^1_{L^2}(\Omega) \; ; \;\; arDelta u \in L^2(\Omega) \;\; ext{and} \;\; (-arDelta u, v)_{L^2(\Omega)} = D(u, v) \ & ext{for any} \;\; v \in \mathscr{E}^1_{L^2}(\Omega) \end{cases} \; .$$

LEMMA 7. (Deny-Lions) For any $F \in L^2(\Omega)$ with $\int F(x)dx = 0$ we can find u in N (unique up to an additive constant) such that $-\Delta u = F$ if and only if Ω is a Nikodym domain.

The following lemma gives an answer to our above problem and it gives a characterization of a Nikodym domain.

LEMMA 8. For any $\varphi \in L^2(\tilde{\rho})$ with $\int \varphi(\xi) d\mu(\xi) = 0$ we can find f in $\tilde{H}(M)$ (unique up to an additive constant) such that $\gamma_1(H_f) = \varphi$ if and only if Ω is a Nikodym domain.

Proof. Assume that Ω is a Nikodym domain. Let φ be in $L^2(\tilde{\mu})$ with $\int \varphi(\xi) d\mu(\xi) = 0$. Then by Lemma 4 there exists a unique function $f_0 \in \tilde{H}(M)$ such that

$$\gamma_1 \Big(H_{f_0} - \int G(\cdot, y) H_{f_0}(y) dy \Big) = \varphi$$
.

Hence

(21)
$$D(f_0, g) = -\int \varphi(\xi)g(\xi)d\mu(\xi) + \int H_g(x)(-H_{f_0}(x))dx$$

for any $g \in \tilde{H}(M)$. We put g = 1 in (21), then $\int H_{f_0}(x) dx = 0$ from the condition $\int \varphi(\xi) d\mu(\xi) = 0$.

Since f_0 is in $\tilde{H}(M)$, $H_{f_0} \in L^2(\Omega)$ and $D(H_{f_0}) = D(f_0) < \infty$. Therefore by Lemma 7, we can find u in N (unique up to an additive constant) such that $-\Delta u = H_{f_0}$. Hence we know that $\Delta^2 u = 0$, $u \in L^2(\Omega)$ and $D(u) < \infty$ and so by the uniqueness of the Royden decomposition of u, we have

$$u(x) = h(x) - \int G(x, y) \Delta u(y) dy$$
$$= h(x) + \int G(x, y) H_{f_0}(y) dy$$

for some harmonic function $h \in L^2(\Omega)$ with $D(h) < \infty$. From (17), h has a fine boundary function h' in $L^2(\tilde{\mu})$ and so $h = H_{h'}$ with $h' \in \tilde{H}(M)$.

Since u is in N and $\{H_g; g \in \tilde{H}(M)\} \subset \mathscr{E}^1_{L^2}(\Omega)$, we have

$$\int H_g(x)(-\Delta u(x))dx = D(u, H_g)$$

for any $g \in \tilde{H}(M)$. Hence we have

$$\begin{split} \boldsymbol{D}(h',g) &- \int \boldsymbol{H}_{\boldsymbol{g}}(\boldsymbol{x}) \boldsymbol{H}_{\boldsymbol{f_0}}(\boldsymbol{x}) d\boldsymbol{x} \\ &= D(h,\boldsymbol{H}_{\boldsymbol{g}}) - \int \boldsymbol{H}_{\boldsymbol{g}}(\boldsymbol{x}) (-\varDelta u(\boldsymbol{x})) d\boldsymbol{x} \\ &= D(h,\boldsymbol{H}_{\boldsymbol{g}}) - D(u,\boldsymbol{H}_{\boldsymbol{g}}) \\ &= D(h-u,\boldsymbol{H}_{\boldsymbol{g}}) \\ &= D\Big(\!\int \boldsymbol{G}(\cdot,\boldsymbol{y}) \varDelta u(\boldsymbol{y}) d\boldsymbol{y}, \boldsymbol{H}_{\boldsymbol{g}}\Big) = 0 \end{split}$$

for any $g \in \tilde{H}(M)$ and so $\gamma_1(u) = 0$.

Now we put $f = f_0 + h'$, then f is determined (uniquely up to an additive constant) in $\tilde{H}(M)$ and we have

$$\begin{split} \gamma_1(H_f) &= \gamma_1(H_{f_0} + h) \\ &= \gamma_1 \left(H_{f_0} - \int G(\cdot, y) H_{f_0}(y) dy + u \right) \\ &= \varphi \; . \end{split}$$

Conversely assume that for any $\varphi \in L^2(\tilde{\mu})$ with $\int \varphi(\xi) d\mu(\xi) = 0$ we can find f in $\tilde{H}(M)$ such that $\gamma_1(H_f) = \varphi$. We shall show that for any $v \in L^2(\Omega)$ with $\int v(x) dx = 0$, we can find u in N (unique up to an additive constant) such that $-\Delta u = v$. Then by Lemma 7 we conclude that Ω is a Nikodym domain. Let v be in $L^2(\Omega)$ with $\int v(x) dx = 0$. Since

$$\int |v(x)| \cdot |H_g(x)| \, dx < \infty$$

for any $g \in \tilde{H}(M)$, we know

$$\gamma_1\left(-\int G(\cdot,y)v(y)dy\right) = -\int K(x,\cdot)v(x)dx$$
.

Put $\varphi_v = \gamma_1 \left(-\int G(\cdot, y) v(y) dy \right)$, and we know

$$\begin{split} \int \varphi_v^2(\xi) d\tilde{\mu}(\xi) &= \int \frac{1}{k(\xi)} \varphi_v^2(\xi) d\mu(\xi) \\ &\leq \int \frac{1}{k(\xi)} \left(\int K(x,\xi) dx \cdot \int K(x,\xi) v^2(x) dx \right) d\mu(\xi) \\ &= \|v\|_{L^2(\Omega)}^2 < \infty \end{split}$$

and

$$\int \varphi_v(\xi) d\mu(\xi) = \int \left(-\int K(x,\xi)v(x)dx\right) d\mu(\xi) = -\int v(x)dx = 0.$$

Hence we can find f in $\tilde{H}(M)$ (unique up to an additive constant) such that $\gamma_1(H_f) = \varphi_v$. We put

$$u(x) = H_f(x) + \int G(x, y)v(y)dy$$

thus u is determined (uniquely up to an additive constant) in $\mathscr{E}_{L^2}^1(\Omega)$, $-\Delta u = v$ and $\Delta u \in L^2(\Omega)$.

Now we shall show that u is in N, that is $D(u, w) = (-\Delta u, w)_{L^2(\Omega)}$ for any w in $\mathscr{E}^1_{L^2}(\Omega)$.

We have the following decomposition of $\mathscr{E}_{L^2}^1(\Omega)$:

$$\mathscr{E}^1_{L^2}(\varOmega) = \{H^1_g; g \in \tilde{H}(M)\} \oplus L^2D_0(\varOmega)$$
,

where $L^2D_0(\Omega)$ is the closure of $C_0^{\infty}(\Omega)$ with respect to the norm $D(\cdot) + \|\cdot\|_{L^2(\Omega)}$. In case $w = H_g^1$ for some $g \in \tilde{H}(M)$, we have

$$\begin{split} D(u,w) &= D(u,H_g^1) \\ &= D(H_f,H_g) - D\Big(\!\int G(\cdot\,,y)v(y)dy, \int G(\cdot\,,y)H_g^1(y)dy\Big) \\ &= D(f,g) - \int v(x)\Big(\!\int G(x,y)H_g^1(y)dy\Big)dx \;. \end{split}$$

Since
$$\gamma_1(u) = \gamma_1(H_f) + \int K(x, \cdot)v(x)dx = \varphi_v - \varphi_v = 0$$
, we know

$$D(f,g) = \int v(x)H_g(x)dx$$

for any $g \in \tilde{H}(M)$. Hence we have

$$\begin{split} D(u,H_{g}^{1}) &= \int v(x) \Big(H_{g}(x) - \int G(x,y) H_{g}^{1}(y) dy \Big) dx \\ &= - \int \varDelta u(x) H_{g}^{1}(x) dx \; . \end{split}$$

In case w is in $C_0^{\infty}(\Omega)$ we know that

$$w(x) = \int G(x, y)(-\Delta w(y))dy.$$

Hence

$$D(u, w) = D\left(\int G(\cdot, y)v(y)dy, \int G(\cdot, y)(-\Delta w(y))dy\right)$$
$$= \int v(x)\left(\int G(x, y)(-\Delta w(y))dy\right)dx$$
$$= -\int \Delta u(x)w(x)dx.$$

For any w in $L^2D_0(\Omega)$, we can find a sequence $\{w_n\}$ in $C_0^\infty(\Omega)$ such that $w_n \to w$ in $L^2D_0(\Omega)$. Since $D(u,w_n) = -\int \varDelta u(x)w_n(x)dx$, letting $n \to \infty$, we have $D(u,w) = -\int \varDelta u(x)w(x)dx$. Therefore we know

$$D(u, w) = (-\Delta u, w)_{L^2(\Omega)}$$

for any $w \in \mathcal{E}_{L^2}^1(\Omega)$ and so u is in N. This completes the proof.

5. Boundary value problems

In this section we shall solve the boundary value problems described in section 1 as an application of Lemma 8. We put

$$\begin{split} \mathscr{S}_1 &= \{ u \in C^4(\Omega) \; ; \; u \; \text{and} \; \varDelta u \; \text{are in} \; \mathscr{E}^1_{L^2}(\Omega) \} \; , \\ \mathscr{S}_2 &= \{ u \in C^4(\Omega) \; ; \; u \; \text{is in} \; \mathscr{E}^1_{L^2}(\Omega) \; \text{and} \; \varDelta u \; \text{is in} \; L^2(\Omega) \} \end{split}$$

and

$$\mathcal{S}_3 = \{ u \in C^4(\Omega) ; \Delta u \text{ is in } \mathcal{E}_{L^2}^1(\Omega) \}$$
.

Then we shall show

THEOREM. Assume that Ω is a Nikodym domain, then

(a) for any φ and ψ in $L^2(\tilde{\mu})$ with $\int \psi(\xi) d\mu(\xi) = 0$, there exists u in

 \mathscr{S}_1 unique up to an additive constant such that $\Delta^2 u = 0$, $\gamma_1(u) = \varphi$ and $\gamma_1(\Delta u) = \psi$;

(b) for any f in $L^2(\tilde{\mu})$ and φ in $L^2(\tilde{\mu})$ with

(22)
$$\int \varphi(\xi)d\mu(\xi) = -\int H_f(x)dx,$$

there exists u in \mathcal{S}_2 unique up to an additive constant such that $\Delta^2 u = 0$, $\gamma_0(\Delta u) = f$ and $\gamma_1(u) = \varphi$;

(c) for any f in $L^1(\mu)$ and φ in $L^2(\tilde{\mu})$ with $\int \varphi(\xi) d\mu(\xi) = 0$, there exists u in \mathcal{S}_3 such that $\Delta^2 u = 0$, $\gamma_0(u) = f$ and $\gamma_1(\Delta u) = \varphi$.

Proof. (a) For any φ and ψ in $L^2(\tilde{\mu})$ with $\int \psi(\xi) d\mu(\xi) = 0$, by Lemma 8 there exists f in $\tilde{H}(M)$ such that $\gamma_1(H_f) = \psi$ and

(23)
$$\int \left(\varphi(\xi) + \int K(x,\xi)H_f(x)dx\right)d\mu(\xi) = 0.$$

Since $\varphi + \int K(x, \cdot) H_f(x) dx$ is in $L^2(\tilde{\mu})$ and (23), there exists f_0 in $\tilde{H}(M)$ such that $\gamma_1(H_{f_0}) = \varphi + \int K(x, \cdot) H_f(x) dx$.

We put

$$u(x) = H_{f_0}(x) - \int G(x, y) H_f(y) dy.$$

Then we know that u is in \mathscr{S}_1 , $\Delta^2 u = 0$, $\gamma_1(u) = \varphi$ and $\gamma_1(\Delta u) = \psi$.

Next we shall show the uniqueness of the solution. Let w be in \mathcal{S}_1 such that $\Delta^2 w = 0$, $\gamma_1(w) = 0$ and $\gamma_1(\Delta w) = 0$. By the uniqueness of the Royden decomposition of w, there exists f_w and g_w in $\tilde{H}(M)$ such that

$$w = H_{f_w} - \int G(\cdot, y) \Delta w(y) dy$$

and $\Delta w = H_{q_w}$. Since $\gamma_i(w) = 0$, we have

(24)
$$D(H_{f_w}, H_g) + \int \Delta w(x) H_g(x) dx = 0$$

for any g in $\tilde{H}(M)$. Hence

(25)
$$D(w, w) = D(H_{f_w}, H_{f_w}) + \iint G(x, y) \Delta w(x) \Delta w(x) dx dy$$
$$= -\int \Delta w(x) H_{f_w}(x) dx + \int \Delta w(x) \left(\int G(x, y) \Delta w(y) dy \right) dx$$
$$= -\int \Delta w(x) w(x) dx .$$

Since $\gamma_1(\Delta w) = 0$, we have

$$(26) D(\Delta w, H_g) = 0$$

for any g in $\tilde{H}(M)$. We put $g = g_w$ in (24) and $g = f_w$ in (26), then we know that $\Delta w = 0$ and so w = constant by (25).

(b) First we shall remark that the condition (22) is necessary for the existence of the solution. Let u be a solution, then

$$u(x) = H_{f_u}(x) - \int G(x, y) \Delta u(y) dy$$

for some $f_u \in \tilde{H}(M)$. Since $\gamma_0(\Delta u) = f$ and $\gamma_1(u) = \varphi$, we know $\Delta u = H_f$ and

(27)
$$D(H_{f_u}, H_g) = -\int \varphi(\xi)g(\xi)d\mu(\xi) + \int H_g(x)(-\Delta u(x))dx$$

for any $g \in \tilde{H}(M)$. Put g = 1 in (27) and we have (22).

For any f in $L^2(\tilde{\mu})$ and φ in $L^2(\tilde{\mu})$ we know that $\int K(x,\cdot)H_f(x)dx$ is in $L^2(\tilde{\mu})$ and by (22)

$$\int \Big(\varphi(\xi) + \int K(x,\xi)H_f(x)dx\Big)d\mu(\xi) = 0.$$

Hence there exists f_0 in $\tilde{H}(M)$ such that

$$\gamma_1(H_{f_0}) = \varphi + \int K(x, \cdot) H_f(x) dx$$
.

We put

$$u(x) = H_{f_0}(x) - \int G(x, y) H_f(y) dy.$$

Then u is in \mathcal{S}_2 , $\Delta^2 u = 0$, $\gamma_0(\Delta u) = f$ and $\gamma_1(u) = \varphi$.

The uniqueness of the solution is shown in a similar manner to (a). Let w be in \mathcal{S}_2 such that $\Delta^2 w = 0$, $\gamma_0(\Delta w) = 0$ and $\gamma_1(w) = 0$, then we have

$$D(w,w) + \int \Delta w(x)w(x)dx = 0.$$

Since Δw is harmonic and $\gamma_0(\Delta w) = 0$, we know $\Delta w = 0$ and so w =constant.

(c) Put

$$u(x) = H_f(x) - \int G(x, y) H_{f_0}(y) dy ,$$

where f_0 is in $\tilde{H}(M)$ such that $\gamma_1(H_{f_0}) = \varphi$, and u is the desired solution. This completes the proof.

Remark 1. In the case of (c) the uniqueness of the solution is interpreted as follows. If u_0 is a solution of (c), then every solution is given by $u_0 + a \int G(\cdot, y) dy$, where a is some constant.

In fact if w is in \mathcal{S}_3 , $\Delta^2 w = 0$, $\gamma_0(w) = 0$ and $\gamma_1(\Delta w) = 0$, then $h(x) = w(x) + \int G(x,y) \Delta w(y) dy$ is harmonic and $\gamma_0(h) = 0$. Hence we have $w(x) = -\int G(x,y) \Delta w(y) dy$. Since $\gamma_1(\Delta w) = 0$, we know $w(x) = a \int G(x,y) dy$ for some constant a.

Remark 2. Lemma 8 asserts that if one of the above boundary value problems has always a solution, then Ω is necessarily a Nikodym domain. Hence the above problems are solved if and only if Ω is a Nikodym domain.

REFERENCES

- [1] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen. Spriger Verlag (1963).
- [2] J. Deny and J. L. Lions, Les espaces du type de Beppo Levi. Ann. Inst. Fourier, 5 (1953-4), 305-370.
- [3] J. L. Doob, Boundary properties of functions with finite Dirichlet integrals. Ann. Inst. Fourier, 12 (1962), 573-621.
- [4] J. L. Lions, Sur quelques problèmes aux limites relatifs a des opérateurs différentiels elliptiques. Bull. Soc. Math. France, 83 (1955), 225-250.
- [5] —, Problèmes aux limites en théorie des distributions. Acta Math. 94 (1955), 13-153.
- [6] F.-Y. Maeda, Normal derivatives on an ideal boundary. J. Sci. Hiroshima Univ. Ser. A-1, 28 (1964), 113-131.
- [7] L. Naïm, Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel. Ann. Inst. Fourier, 7 (1957), 183-281.

[8] M. Nakai, Dirichlet finite biharmonic functions with Dirichlet finite laplacians. Math. Z., 122 (1971), 203-216.

Department of Mathematics Saitama University