H. Tanaka
Nagoya Math. J.
Vol. 61 (1976), 85-101

BOUNDARY VALUE PROBLEMS OF BIHARMONIC FUNCTIONS

HIDEMATU TANAKA

1. Introduction

Let 2 be a bounded domain of n-dimensional Euclidean space R™
(n>2). On 2 we consider the biharmonic equation

n az 2
(1) A%:(Z )u:O.
=1 g}

A function »# in C4®) is called biharmonic in Q if it satisfies the equa-
tion (1). In this note we shall deal with the following boundary wvalue
problems. Find a biharmonic function # in £ such that the following
couples of functions have boundary values given on the boundary of 2:

ou a(du)

@ S T

ou .

(b) du , %‘ s

© u 0(4u)
’ on

J. L. Lions [4] treated these problems for the operator 4° + I and
gave solutions in case that £ is a Nikodym domain. But in his method,
the boundary of £ or boundary functions are not referred to.

In this note we take as the boundary the Martin boundary M of 2
and define notations yy(u) and y,(u) for a function # on 2 as follows.
If u has a fine boundary function f on M we denote f by r,(u) and if
# has ¢, as generalized normal derivative of Doob [3] (in a slightly
modified sense), we denote ¢ by 7,(w) (c.f. Definitions 1 and 2).

Now our boundary value problems are described as follows. Find
a biharmonic function % in 2 such that the following couples of functions
are equal to boundary functions given on the Martin boundary M:
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(a) n@ , 7:(dw) ;
b)) 7dw, 7w ;
(C) To(u) ’ Tl(Au) .

Let K(xz,&) be the Martin kernel and 1 be the harmonic measure
on M. Define new measures g and zZ on M by di§) = k(&)du(€) and

diie) = —E(lg)—d,u(é), where k() = [ K(z, §)da.

Then we shall show that for any ¢ e L@ with Jgo(&)d,u(&) = 0, there

exists a square integrable harmonic function 2 on £ with D) < oo
such that r,(h) = ¢ if and only if 2 is a Nikodym domain (Lemma 8).
As an application of this fact we shall solve the above boundary value
problems as follows.

Assume that 2 is a Nikodym domain, then

(a) for any ¢ and v in L%z with I«,b(s)d/.z(s) = 0 there exists a
biharmonic function % such that y,(u) = ¢ and 7,(dw) = ;

() for any feLXs and peL¥@ with I HE)dp(E) = -fo(x)dx
there exists a biharmonic function u such that y(4uw) = f and r,(w) = ¢;

() for any feL'(y) and ¢e L@ with Igo(s)dp(é) = 0 there exists
a biharmonic function u such that y(w) = f and 7,(4w) = o.

Moreover the uniqueness of the above solutions will be shown.

2. Preliminaries

Let 2 be an arbitrary bounded domain of the n-dimensional Euclidean
space R*(n > 2) and G(x,y) be it’s Green function with respect to the
equation du = 0, that is (—4,)G(z,y) = ¢, in 2.

We shall mention the definition of the Martin boundary of 2.

We put

K@,9) = —(‘;"((Tw?)—

on 2 x Q if y + x, and K(x,x,) = 0 if x # x, and K(x,, z;) = 1, where ,
is a fixed reference point in Q.
We take a fixed exhaustion {2,} of 2 such that z,e £, and put
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= 1 K(z,x) K(z, )
d , 1 s A _
@y, @) 1;:1 Al xean 14+ Kz, x) 1+ K(zx, x,)

Then d defines a metric on 2. We denote by 2% the completion of £
by this metric. For a point £¢ Q* — 2, we can find a sequence {y,} in
2 such that d(¢,v,) — 0 and so we can define

K(z, &) = lim K(, ¥,) -

n—~rc0

We say that Q* is the Martin compactification of £ and the set M
= 0* — Q is called the Martin boundary of £. The function K(x,§&)
on 2 x Q* is called the Martin kernel. We denote by x the harmonic

measure on M with respect to the fixed reference point z,.

Now let G,(x,y) be the Green function of £ with respect to the
equation (4 — Du =0, that is (—4, + DG(x,y) =, in 2. For ze
and £e M, we put

(2) @8 = K@) — [ G, K@, Ody .
We set for fe L'(s),

(3) H@) = [ K@, 8@ du@

and

(4) Hy@) = [ K@, 97@du@) .

Denote by D(u) the Dirichlet integral of # on 2. For measurable
functions f and g on M, we put

(5) D(f,9) = —I I (f&) — SI9E) — 9O, Pdp(§)duly)

and D(f) = D(f, f), where 6(¢,7) is the Naim kernel (c.f. [7]).

The following lemma is obtained by Doob [3].

LEMMA 1. If u is a harmonic function with D(u) < oo, then u has
a fine boundary function w and D) = D(u). Conversely if f is an
arbitrary measurable function on M with D(f) < oo, then fe Ly and
D(H;) = D()).
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Put k() = IK(x, &dx, and k(&) is a strictly positive lower semi-

continuous function on M and so inf k(€) = ¢ > 0. Since
EEM

[r©aue = [ ([ K@ 0due)az =12 @rea of 2,

we see that k(&) € L'(p).
Define new measures 7 and Z# on M by dp®) = k(€)du(&) and daé)

= -—l——dp(S) respectively, and we have the following relations

k(&)
(6) B(M) C L¥(p) € L(w) C L@ C L'(y)

where B(M) is the space of all bounded measurable functions on M.
We also see that

0 1S sty < % 1 Nl < %nfnmm

for any f e L*j).
By the Fubini theorem, J‘H r(@dx < o for any f e L*(#). Hence we

know

fH,f((x)H,‘ql(x)dx < IH,,,(x)Hw,(x)dx
< ([ @n@yds- | @ @ras)”
< (J' Hf,(x)dx-jﬂa,(x)dx)'" < oo

for any f and ¢ in L*p).
LEMMA 2. Let f and g be in LXg). Then

(8) f H () HY(2)de = j H,(#)Hi(z)d
and
(9) f H () Hy(#)dew < I(H,(x)ydx <¢- I H () H(x)dae

for some constant ¢’ > 1.

Proof. By the definition of K,(x,&) and the resolvent equation,
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(10) Hy@) = H,(@) — | G, )H,@)dy
and

(a1 H (@) = Hy(@) + | GG, By w)dy .
Hence

IHg(x)H}(x)dx - ng(x)(H,(x) - f Gy(a, y)H,(y)dy)dx
= [ B,@H,@ds - IHf(y)( Gy, y)Hg(x)dx)dy
= [ H@H @iz — [ H,()H,w) - Bw)dy
- f H (o) Hi(2)dw
and
(12) J(Hf(x))zdx - IH,(x)H}(x)dx = f H (@) (H (%) — Hi(@))dz
- f H,(x)( j Gy, y)H,(y)dy)dx
= f J Gy(, ) H () H (y)dady > 0 .
By (11)
[@ @yds — [ B@H @ = | Hf(x)( [ 6@, y)H;(y)dy)dx
and hence
(j (H (z))'dz — IH,(m)H}(x)dx)z
< [ @@ @yde-([([ 6@ vay- [ 6@, nazayay)is)

< o[ @ @)de- [ Ey@)de
where ¢, = suij(m, Ydy. Similarly to (12), we know
ZENR

fﬂf(x)H;(x)dx - ‘[(H}(x))zdx >0,
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and so we have an inequality

j(Hf(x))de — IHf(x)H}(x)dx
< (j (H,(x))zdx)m( H,(x)H}(x)dx)llz .
Hence
I H ())de < c'-f H () H(w)das

for some constant ¢/ > 1. This completes the proof.
Now we set

13) HM) = {f; f e LX) and D(f) < o},

and define two inner products on H(M) by

(14) (f, 9 = D(f> ) + jHAx)H,,(x)dw
and
(15) ) 9 = D(f> 9) + f H () Hi(2)dw

for functions f and ¢ in H(M). By the above lemma, we know that
(-, ), is an inner product on H(M). We put || f|f = (f, f): and ||f|} =
(f, f), for fe H(M). Then we have

LEMMA 8. Norms | - ||, and || - |, are equivalent and H(M) is o Hilbert
space with respect to these norms.

Proof. By the above lemma,

(16) IF1l: < 11flk < (max (L, NV 11, »

and so these norms are equivalent. Let f be in H(M). Then by the
Riesz decomposition of —(H,)? we have

H,) =Hp— j G(-, W)y, ) .

Since D(H;) = %Idu > We have
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an 1/ = | B
= [ @@ + [ 6@, v, nis
< [ @ @yds + o [ v,
< max (1, 26)( [ (A @yde + D(H))
= max (1,2(,-0)( (H (@)y'de + D( f)>
= max (1,2¢) || /12 -

Hence we see that H(M) is a Hilbert space.

3. Definitions of 7,(z) and 7,(«x) for a function % en 2

We shall define y,(#) and 7,(u) for a function » on £ as follows.

DEFINITION 1. If a function 4 on £ has a fine boundary function
f on M, we denote f by r,(u).

The definition of y,(u) is a slight modification of the definition of
the generalized normal derivative of u (c.f. Doob [3]).

DEFINITION 2. Consider the function w(x) = H(x) + u,(x), where f
is a measurable function on M with D(f) < co and u, is a potential of
a measure v on 2. We assume that for any ge H(M),H, is integrable
on £ with respect to the absolute variation of v. If there exists a

function ¢ on M such that I o(©)g(©)du(®) < +oco and
(18) D(f,9) = — f WO @) + | Hy@du(a)

for any g e H(M), we denote ¢ by r,(w).
We shall show the following

LEMMA 4. Let ¢ be in L*(f). Then there ewists a unique function
f e HM) such that y,(w) = ¢, where

u(x) = Hy(x) — IG(x, WH (y)dy .

Proof. In the Hilbert space H(M) with the norm | - |;, the mapping
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g— —f 9(&)p(&)du(&) is a linear functional. By the Schwarz inequality

and (17), we have

]—-j 9'({:)99(5)al/vt(&‘)]Z < |9©®)| k@) "—— |¢(§)|dy(§))

k(&)" ?

< el - 119 zagn
< max (1, 2¢)) llplzec - 191IE -

Hence the above mapping is bounded on H(M). Therefore there exists

a unique function f e H(M) such that (f,9), = —f p(£)9(&)du(g), namely
D(7,9) = — [ ¢©9@du® + [ H,@)(—H,@)da

for any g ¢ HM). If we put u(z) = H,(x) — I G(z, WH ;(y)dy, then from

the definition we have 7,(w) = ¢.
Similarly we have

LEMMA 5. Let ¢ be in L¥@). Then there exists a unique function
S e HM) such that y,(HY) = o.

Proof. By Lemma 3, the mapping g — —I 9(&)e(8)du(®) is a bound-

ed linear functional on the Hilbert space H(M) with the norm | - |,.
Hence there exists a unique function fe H(M) such that

D(f,9) = — j A g(Odu(®) + j H,(@)(— Hy(@)da

for any g € H(M). Since H: “(x) = Hy(x) — J.G(x YHY(y)dy, we have y,(H))

—7 SD,
We set

HQID = {f ¢ HM); there exists 1(H,) € LX)} .

Then we have similarly to Folgesatz 17.27 in [1] and Theorem 6 in [6]
the following

LEMMA 6. If(l\ll) is dense in H(M).
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Proof. Let f, be in H(M) and (f,,9), = 0 for any ge H(M). Then
we have

(19) D(fo9) + [ Hp@H @z = 0.

Since f, is in L*@), by Lemma 4 there exists f; ¢ H(M) such that
(20) n(Hy — [ 6C.0H,@av) = 7,.

On the other hand

n([ 6¢. 0B W) = [ K, HH s

and

lUK(.’X}, -)Hf‘;(w)dx“u(l:‘) < NS ey < o0

Hence 7r,(H;) e L) and fy is in If@l) By (19), we have
D(fo 1) + | Hy@H a)ds = 0
and by (20),
Do /§) = = [ F2€)dp® — [ H,(@)H,(w)dn
therefore we know that f, = 0. This completes the proof.

4. Nikodym domain
In this section we shall treat the problem whether we are able to

find f e A(M) such that y,(H,) = ¢ for any ¢ e L@ with Igo(é)d‘u,(&) — 0.

DEFINITION 3. (Deny-Lions [2]) We shall say that 2 is a Nikodym
9 p e L)) (1<i<n)is in LA(D).

K3

domain if every distribution T with

We set €L.(Q) = {u; we L¥Q) and aa we Q) 1<i< n)} .
X.

2

A necessary and sufficient condition for £ to be a Nikodym domain is
given by the following inequality of Poincaré: there exists a constant
P(2) such that
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f(u(x)ydx _ l_flzl—‘ j w(@)dz r < P(O)D(w)

for any ue &L(2) (c.f. [2]).
Deny-Lions [2] gives another characterization of a Nikodym domain
by setting

ueéi(); due LX) and (—4u, v) o = DU, v)
for any v e €L(Q) )
LEMMA 7. (Deny-Lions) For any F ¢ LX) with J.F(x)dx =0 we can

find u in N (unique up to an additive constant) such that —Au = F if
and only if 2 is a Nikodym domain.

The following lemma gives an answer to our above problem and it
gives a characterization of a Nikodym domain.
LEMMA 8. For any ¢e L¥@g) with Igo(é)d,u(é) =0 we can find f in

H(M) (unique up to an additive constant) such that y,(H,) = ¢ if and
only if Q is a Nikodym domain.

Proof. Assume that 2 is a Nikodym domain. Let ¢ be in L*(%) with
f¢(§)dp(§) = 0. Then by Lemma 4 there exists a unique function f, ¢ H(M)

such that
n(H — [ 60, 0H, @) =
Hence
@) D(f09) = — [ ¢©9@d® + [ H@(—H,@)ds

for any ge HM). We put g =1 in (21), then IH s@dx =0 from the

condition f P(&)du@ = 0.

Since f, is in HM), H 1, € LX) and D(H;) = D(f) < oco. Therefore
by Lemma 7, we can find # in N (unique up to an additive constant)
such that —4u = H,. Hence we know that fu =0, u e LX(2) and D(w)
< oo and so by the uniqueness of the Royden decomposition of u, we
have
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u(@) = hz) — j G(x, ) du(y)dy
= x) + IG(x, WH; (y)dy

for some harmonic function i e L*(2) with D(h) < co. From (17), h has
a fine boundary function 7’ in L%#) and so h = H, with »’ e HOD.
Since u is in N and {H,; g € HM)} C &1.(2), we have

IHg(x)(—Au(x))dx — D(u, H,)
for any g € H(M). Hence we have
D, 9) — [ Hy(@)H @)

— D(h, H,) — IHg(x)(—Au(x))dx

= D(h', Hq) - D(’I/L, Hg)
— D(h — u, H,)

= ([ 6C, ) tutpay, H,) = 0

for any g e H(M) and so y,(u) = 0.
Now we put f = f, + I/, then f is determined (uniquely up to an
additive constant) in H(M) and we have

nHy) = rn(H; + )
=n (Hf., - fG(-,y)Hfo(y)dy + u)
=0.

Conversely assume that for any ¢ e L*(@) with Jgo(&)dy(é) =0 we can
find f in H(M) such that 7,(H, = ¢. We shall show that for any v
e LX) with Iv(x)dx =0, we can find # in N (unique up to an additive
constant) such that —4u = ». Then by Lemma 7 we conclude that 2

is a Nikodym domain. Let v be in L*Q) with Iv(m)dw = 0. Since
J.lv(x)l-]Hg(x)l de < oo

for any g € H(M), we know
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rl(—f G(., y)v(y)dy> = -—j K(z, Yv(@)dz .
Put ¢, = T‘(_I G(-, y)v(y)dy), and we know

fsoz(e)dﬁ(e) = %?ﬁ(&)dﬂ(@

< %&) (| K@ 0ds- | K@, err@ran)dne
= [|VLaay < o0

and
[ @ = [(~[ K@, ero@)ds)due = ~[ oz =0

Hence we can find f in H(M) (unique up to an additive constant)
such that r,(H;) = ¢,. We put

w(x) = H () + f Gz, Yow)dy

thus % is determined (uniquely up to an additive constant) in &£%.(9Q),
—4du = v and du e LY(9Q).

Now we shall show that » is in N, that is D(u, w) = (—4u, W) e,
for any w in &£%.(92).

We have the following decomposition of &3.(2):

1(Q) = {HY; ge HM)} ® L*D(DQ) ,

where L:D,(2) is the closure of Cy(2) with respect to the norm D(.)
+ | - lzseye In case w = H} for some g e H(M), we have

D(u, w) = D(u, HY)
= D(H,, H,) — D(j G(-, Wo)dy, j G(-, y)Hz(y)dy)

= (7,9) — [ v@)([ 6 REW)d
Since 7,(W) = n(H,) + IK(x, W(@)dE = gy — g, = 0, We know

D(f,9) = f V(@ H (#)dw
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for any g e H(M). Hence we have
D, Hy = [ v@)(H, @) — [ 6@, nH@dy)de
~ ~I M) HY(z)dz .
In case w is in Cy(2) we know that
w@) = [ G, v)(—dw@)dy .
Hence
DG, w) = D([ G, wdy, [ G-, v)(~ wtdy)
= [v@([ Gt w(— aw@dy)da
= —j Ju@w@)de .

For any w in L*D\(2), we can find a sequence {w,} in C3(2) such that

w, —w in L:D(Q). Since D(u,w,) = ——f Adu(x)w,(x)dz, letting 7 — oo,
we have D(u, w) = ——I Au(x)w(x)dx. Therefore we know

D(u, w) = (— du, W) 2,

for any we 61.(2) and so u is in N. This completes the proof.

5. Boundary value problems

In this section we shall solve the boundary value problems de-
scribed in section 1 as an application of Lemma 8. We put

& ={ueC(2); v and du are in EL(D)},
F,={ueC(D); uis in 6L.(2) and du is in LY(2)}

and
Fy={ueC(Q); du is in &L(D} .

Then we shall show
THEOREM. Assume that 2 is a Nikodym domain, then

(@) for any ¢ and + in LY@ with Iw(&)dy(é) = 0, there exists u in
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&, unique up to an additive constant such that Au =0, r,(w) = ¢ and

r(du) = +;
() for any f in L@ and ¢ in LY@ with

©22) jgo(é)dy@ = —j H(z)de ,

there exists u in &, unique up to an additive constant such that Au
=0, To(Au) = f and Tl(u) = @,
(¢) for any f in L'(p) and ¢ in L@ with jgp(&)dp(&) =0, there

exists u in L5 such that Au =0, y(u) = f and r,(du) = o.

Proof. (a) For any ¢ and + in L*z) with I«]p(&)dy(&) =0, by
Lemma 8 there exists f in H(M) such that r(Hy) =+ and

23) [ (#® + [ K@ 0B @dz)due) = 0.
Since ¢ + ‘fK(x, )H (x)dx is in L*(@) and (23), there exists f, in HM)
such that 1(H,) = ¢ + IK(x, OH J(z)dz.

We put

u@) = Hy,@) — [ G, nH,wdy .

Then we know that # is in &), 44 =0, r,(w) = ¢ and 7,(4u) = .

Next we shall show the uniqueness of the solution. Let w be in
&, such that £w =0, r,(w) =0 and 7,(dw) = 0. By the uniqueness of

the Royden decomposition of w, there exists f, and g, in H(M) such
that

w=H, — j G(-, ») dw(y)dy
and 4w = H,,. Since y,(w) =0, we have
(24) D®H,, H,) + IAw(x)Hg(x)dx =0

for any g in H(M). Hence
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@5  D(w,w) = DH,, H,) + ” G, y) dw(z) Aw(z)dedy
- _J dw@H , (x)de + wa(@( Gz, y)Aw(y)dy)dx
- f dw(@)w()ds .

Since 7,(4dw) = 0, we have
(26) D(dw,H,) =0

for any g in HM). We put g = g, in (24) and g = f,, in (26), then we
know that 4w = 0 and so w = constant by (25).

(b) First we shall remark that the condition (22) is necessary for
the existence of the solution. Let # be a solution, then

u(x) = H,(2) — j G, ) du(y)dy

for some f, € H(M). Since 7,(du) = f and 7,(u) = ¢, we know du = H,
and

@0 DH,, H,) = — j P(©)g@du®) + ng(x)(~Au(x>)dx

for any ge H(M). Put g =1 in (27) and we have (22).
For any f in L*#) and ¢ in L¥#%) we know that IK(x, OH j(x)dx is
in L*(#) and by (22)

f(so(f) + jK(x, OH f(x)dac)dp(s) =0.
Hence there exists f, in H(M) such that
) = ¢ + [ K@ H,@do .
We put
u(@) = H (@) — j G, WH,dy .

Then u is in &, £u =0, y(duw) = f and 7, () = o.

The uniqueness of the solution is shown in a similar manner to (a).
Let w be in &, such that fw =0, y(dw) =0 and y(w) =0, then we
have
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D(w, w) + f Aw@w@)ds = 0 .

Since 4w is harmonic and y,(4dw) =0, we know dw =0 and so w =
constant.
(¢ Put

u(®) = H (x) — j Gz, WH,(W)dy ,

where f, is in H(M) such that y,(H,) = ¢, and u is the desired solution.
This completes the proof. '

Remark 1. In the case of (¢) the uniqueness of the solution is
interpreted as follows. If u, is a solution of (¢), then every solution is

given by u, + ajG(-,y)dy, where o is some constant.
In fact if w is in &5, Lw =0, y(w) =0 and y,(dw) =0, then h(x)
= w) + fG(x, yAw(y)dy is harmonic and y«(h) = 0. Hence we have

w(x) = -J G(z, y)dw(y)dy. Since r,(dw) = 0, we know w(x) = a,J‘ Gz, y)dy

for some constant a.

Remark 2. Lemma 8 asserts that if one of the above boundary
value problems has always a solution, then 2 is necessarily a Nikodym
domain. Hence the above problems are solved if and only if £ is a
Nikodym domain.

REFERENCES

[1] C. Constantinescu and A. Cornea, Ideale Réinder Riemannscher Flichen. Spriger
Verlag (1963).

[2] J. Deny and J. L. Lions, Les espaces du type de Beppo Levi. Ann. Inst. Fourier,
5 (1953-4), 305-370.

[ 8] J. L. Doob, Boundary properties of functions with finite Dirichlet integrals. Ann.
Inst. Fourier, 12 (1962), 573-621.

[ 4] J. L. Lions, Sur quelques problémes aux limites relatifs a des opérateurs différen-
tiels elliptiques. Bull. Soe. Math. France, 83 (1955), 225-250.

, Problémes aux limites en théorie des distributions. Acta Math. 94 (1955),
13-153.

[6] F.-Y. Maeda, Normal derivatives on an ideal boundary. J. Sci. Hiroshima Univ.
Ser. A-1, 28 (1964), 113-131.

[7] L. Naim, Sur le rdle de la frontiére de R. S. Martin dans la théorie du potentiel.
Ann. Inst. Fourier, 7 (1957), 183-281.

[5]

https://doi.org/10.1017/50027763000017311 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017311

BOUNDARY VALUE PROBLEMS 101

[ 8] M. Nakai, Dirichlet finite biharmonic functions with Dirichlet finite laplacians.
Math. Z., 122 (1971), 203-216.

Department of Mathematics
Saitama University

https://doi.org/10.1017/5S0027763000017311 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017311



