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Abstract

Properties of the funnel boundary are investigated for multivalued dynamical systems defined
axiomatically in terms of attainability set mappings on complete, locally compact metric state
spaces. The set of regular boundary events is shown to be dense in the funnel boundary and
theorems of Fukuhara and Zaremba on peripheral attainability are generalized to the systems
considered here.

Subject classification (Amer. Math. Soc. (MOS) 1970): 34 C 35, 93 A 05.

1. Introduction

The topological properties of the set F(x0, t0) of all state-time events (xv t^) that
can be attained from an initial event (x0, t0) by a multivalued dynamical system,
called the funnel of the system through (JC0, t0), play a fundamental role in the
qualitative theory of multivalued dynamical systems and have been extensively
investigated for ordinary differential equations without uniqueness, ordinary
differential control systems, contingent equations and stochastic differential
equations. The properties of the funnel boundary #F(;t0, t0), notably the peripheral
attainability of funnel boundary events, are of particular interest, especially in a
control theoretic context in which the question of peripheral attainabiUty is closely
related to the existence of optimal controls with the bang-bang property.

The objective of this paper is to present a unifying account, with some new
results, of the properties of the funnel boundary, in particular the peripheral
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attainability property, of abstract multivalued dynamical systems. The systems
considered are denned axiomatically on complete, locally compact metric state
spaces in terms of the properties of their attainability sets A(x0, t0, tj), the ^-cross-
sections of the funnels F(x0, t0). They include the general dynamical systems (GDS)
of Barbashin (1948), the general control systems (GCS) of Roxin (1965) and the
general semidynamical systems (GSDS) of Kloeden (1974a), which diifer only in the
successive weakening of assumptions on their backwards extendability in time.
The axioms and basic properties of these systems are given in Section 2. In Section 3
the funnel F(x0, t0) is defined in terms of the attainability sets A(x0, t0, tj) and the
funnel boundary dF(x0, t0) is decomposed into the set R(x0, *„) of regular boundary
events and the set I(x0, t0) of irregular boundary events, where (xlt tj e 8F(x0, t0)
is a regular boundary event if xx e 8A(x0, t0, tj and an irregular boundary event if
not. Examples show that the set of irregular boundary events may be empty or
nonempty. The main result of the section is Theorem 3.1 which says that the
regular boundary events are dense in the funnel boundary.

In Section 4 a lemma required in the following section is proved for GDS for
which all attainability sets are connected. Section 5 is concerned with the question of
peripheral attainability and contains the main results of the paper. Theorem 5.1 is
a generalization of a theorem of Fukuhara (1929) to GDS and shows that peri-
pheral attainability, in fact a strong form of peripheral attainability, is implied by
the connectedness of all attainability sets of the GDS. An example shows that this
theorem does not hold for GSDS even though all nonempty attainability sets may
be connected. Theorem 5.2 is the converse of Theorem 5.1. It generalizes to GDS a
theorem of Zaremba (1935), which shows that the connectedness of all attainability
sets is implied by the strong form of the peripheral attainability, but not, as examples
verify, by the ordinary peripheral attainability property. Finally, Theorem 5.3
shows that no trajectory can lie in the set of irregular boundary events for a time
interval of nonzero length. The last section considers the relationship between
irregular boundary events and start events, that is, initial events from which the
system cannot be extended backwards in time, of GSDS. The primary conclusion
is that certain irregular boundary events, though not all, are caused by the presence
of nearby start events exterior to the funnel and conversely that certain irregular
boundary events imply the existence of nearby exterior start events.

2. Multivalued dynamical systems

The multivalued dynamical systems considered in this paper are denned axio-
matically in terms of set valued attainability mappings A: XxRxR->X on a
complete, locally compact metric state space {X, d). An attainability set A(x0, t0, tj
denotes the set of all possible states which can be reached at time rx from an initial
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state x0 at time /„. Such dynamical systems have been investigated in many papers
(for example, see Kloeden (1978) for a survey), with axioms based on the properties
of the attainability sets of ordinary differential equations without uniqueness,
ordinary differential control equations, contingent equations and stochastic
differential equations. The axioms used differ slightly from paper to paper, but the
following five are common to most:

AXIOM I. A(x0, t0, tx) is a nonempty, closed subset of Xfor all x0 e Xand t0 < t1 in R.

AXIOM II. A(x0,/„, t0) = {x0} for all xoeX and t0eR.

AXIOM III. For all xoeXand f0</x<f2 ' " R

A(x0, t0, t2) = A(A(x0, t0> tj), tlt t2) = U {A(xx, tt, t2); xxeA(x0, t0,rx)}.

AXIOM IV. A is upper semicontinuous in (x0, t0, tt) with respect to the Hausdorff
metric, that is given any e > 0 there exists a S = 8(x0, t0, tlt s) > 0 such that

for all yoeX and s0 < sx in R satisfying

d(yo,xo)<S, \so-t0\<8, | f 1 - f 1 | < 6 .

AXIOM V. A is continuous in ?x with respect to the Hausdorff metric for all xoeX
and tQs% tx in R, that is given any e>0 there exists a 8 = 8(x0,t0, tlt e)>0 such that

p(A(x0, t0, sj, A(x0, t0, tj) < e

for all t0 ^ st in R satisfying \s1—t1\<8.

In Axioms IV and V the Hausdorff metric p on nonempty closed subsets of AT is
defined by

p(A, B) = max {p*(A, B), p*(B, A)},

where

P*(A,B) = sup{p(a,By,aeA}

and

In Axiom I the attainability sets are assumed to be closed sets. In fact, as a
consequence of the local compactness of X and Axioms I, II and V they are compact
sets. See Roxin (1965), Theorem 4.1.
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Multivalued dynamical systems satisfying Axioms I-V were considered by
Kloeden (1974a-c) and called general semidynamical systems (GSDS) in view of
their being defined only for future times, which is a feature common to many
stochastic systems. Those satisfying the additional backwards extendability axiom:

AXIOM VI". For all xxeX and t^^ in R there exists and xoeX for which

were investigated by Roxin (1965) and called general control systems (GCS) as
they were based on control systems governed by ordinary differential equations.
With this backwards extendability axiom the domain of the attainability mapping
A can be extended to all of Xx R x R by defining A(x0, t0, Q for tx < t0 by

(2.1) xx e A(xQ, t0, tj if and only if x0 e A(xx, tx, t0).

Roxin showed that such a backwards extension of A for tx < t0 satisfies all of the
above axioms, except possibly Axiom V. See Roxin (1965), Section 5. Hence such
attainability sets are closed, but not necessarily compact.

A stronger backwards extendability axiom

AXIOM VI*. A(x, t, t) satisfies Axioms I-V for tx < t0 as well as for tx ̂  ta.

in addition to Axioms I-V were used by Barbashin (1948) and Szego and Treccani
(1969) to define general dynamical systems (GDS). The systems were based on
ordinary differential equations without uniqueness and, in view of Kneser's
theorem, their attainability sets were also assumed to be connected sets. However,
as the following example shows, the connectedness of attainability sets is indepen-
dent of the above axioms.

EXAMPLE 2.1. Let A be the GDS on I = R + x R + constructed by patching
together the straight line segments in Xx R

(t-to+xo,yo,t) for*0<0 and t<to-xo,

(-t+to+xo,yo,t) forx0>0 and t<to+xo,

(O,t-to+yo,t) for*0 = 0 and

(*(/),

See Fig. 1. Then for, say, (xo,yo) = (0,0) and t0 = 0, the attainabihty sets
A((0,0),0,t) = {-t, +t} for all t>0. See also Example 4.1 in Roxin (1965).

Connectedness of attainability sets will not be assumed as an additional axiom
here, but some of its consequences will be investigated in Sections 4 and 5. Note
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that the attainability sets of Zaremba's families completes de courbes satisfy the
axioms of a GDS on the finite time interval for which they are defined. See
Zaremba (1935).

Fro. 1.

Historically, GDS were considered before GCS, which in turn were considered
before GSDS. Roxin's justification for using a weaker backwards extendability
axiom for GCS was that in a control context it is the future evolution of the
system rather than its past evolution which is of primary interest. Even with the
omission of any backwards extendability axiom for GSDS, attainability sets
Mxo> to> *i) can be defined for tx < t0 in the same way, namely (2.1), as for GCS, but
for certain x0 and t0 they may be empty for all tx < t0. In this case (x0, t0) is called a
start event of the GSDS.

For differential systems attainability sets are usually defined in terms of the
solutions or trajectories of the differential equations, whereas for multivalued
dynamical systems trajectories are defined in terms of the attainability sets.
Following Barbashin (1948) and Roxin (1965) a trajectory <p of a multivalued
dynamical system A is defined as a single-valued mapping <p: [t0, tj]-*X such that
<p(t)eA(<p(s),s,t) for all to^s^t^tv Continuity of such trajectories follows from,
Axioms II and IV (see Roxin (1965), Lemma 6) and their existence from the follow-
ing theorem (see Barbashin (1948), Section 3, Theorem 1 for GDS; Roxin (1965)
Theorem 6.1 for GCS and Kloeden (1974a), Theorem 4.1 for GSDS).

THEOREM 2.1. If xxeA(x0, t0, tj for some x0,xxeX, to< tt in R and multivalued
dynamical system A, then there exists a trajectory <p: [t0, tx] -±X of A with <p{t^ = x0

= xv
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For GSDS all trajectories can be extended for all future times and for both GDS
and GCS they can be extended for all future and all past times. Let O(JC0, t0) denote
the set of all such extended trajectories with <p(x0) = x0 for a given multivalued
dynamical system. By the following theorem of Barbashin this set is sequentially
compact (see Barbashin (1948), Theorem 2 for GDS; Roxin (1949), Theorem 6.2
for GCS and Kloeden (1974a), Theorem 4.2 for GSDS).

THEOREM 2.2. Let Kbe a nonempty compact subset of X, let

{?n}<=®(K,t0) = \J{<S>(xo,to); xoeK}

for some multivalued dynamical system A and let [a, b] be a compact interval {with
to^a if A is not a GDS). Then there exists a subsequence {<pn\ and a trajectory
<poe<t>(K,to) such that PnW^PoW asj-*00 uniformly in

3. The funnel boundary

In the sequel let A denote a fixed, but otherwise arbitrary multivalued dynamical
system, which satisfies at least Axioms I-V, and also the condition that

(3.1) dA(xo,to,t^0

for all (x0, /„, tj) in the domain of definition of A.
For such a multivalued dynamical system A and any event (x0, t0) in the state-time

space XxR, the subset F(XQ, t,) of Xx R defined by

*"(*<»'«) = U {̂ (*o> 4» <i) x {'i>; h e»>

is called the funnel of A through (x0, t0). This name is due to Kamke (1932), Seite 66
for ordinary differential equations without uniqueness. An alternative name used
sometimes is the zone of emission of A from (xe, t0). The funnel F(x0, t0) through
(x0, *„) represents the totality of all state-time events attainable from (x0, tQ) in
either time direction by the multivalued dynamical systems and, by Axioms I and V,
is a nonempty, closed and connected subset of Xx R.

The funnel boundary dF{xo,t^ is the boundary in XxR of the funnel F(xo,to)
through (x0, t0) and is a nonempty and closed, but not necessarily connected, subset
of X x R. It plays an important role in multivalued dynamical systems, particularly
those arising from a control situation in which it is desired to control the system
from the initial event (x0,t0) to a nonempty, closed target set Q^XxR and to
optimize a specified cost functional in doing so. In such situations the optimal
terminal events lie in the (supposedly nonempty) intersection 3F(x0, t0) n 0 and
for sufficiently regular, nondegenerate control problems (y>*(0> 0 e dF{x0, t0) for all
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intermediate times t where <p* is an optimal trajectory, a property called the
principle of optimal evolution by Halkin (1964). See also Bushaw (1963) and Roxin
(1963). A similar property holds for ordinary differential equations without
uniqueness, for which Fukuhara (1929) has shown that all events on the funnel
boundary are peripherally attainable, that is attainable by trajectories f for which
($?(/), i) lies entirely on the funnel boundary for all intermediate times t. This same
property also holds for contingent equations. See Davy (1972). For control
systems governed by ordinary differential equations this is closely related to the
optimal controls satisfying the bang-bang property, that is taking values only in the
boundary of the constraint set, which gives them a particularly simple and easily
implementable form.

For any (JC0, f0) e X x R the funnel boundary #F(x0, t0) can be decomposed into two
disjoint components

(3.2) R(x0, /o) = U {8A(x0, t0, tj x {tj; tx e R}

and

(3.3) I(x0, /„) = 8F(x0, t0) \ R(x0, tj,

called, respectively, the sets of regular and irregular boundary events of .F(x0, t9)
(Bushaw (1963) calls the latter conjugate events, a term not used here to avoid
confusion with their unrelated namesakes in differential geometry). In view of
(3.2) and (3.3) an equivalent definition for the set of irregular boundary events is

Ifro, to) = [J {int A(x0, t0, tj x {tj}; tt e R} n dF(x0, t0).

By Axiom II the set R(XQ, t0) of regular boundary events is nonempty for all
(x0, t0) e X x R, whereas the set I(x0, t^ of irregular boundary events may be empty
or nonempty. The former occurs, for example, whenever O(x0, tQ) consists of only
one trajectory. The following example shows that the latter may occur.

EXAMPLE 3.1. Let X = R+ have the relative topology from R and let A be the
GDS defined graphically in Fig. 2. Then Oeint,4(1,0,1) and (0, l)edF(l,0), so
(0,1) e 7(1,0). A similar example where Zis a circle can be found in Bushaw (1963).

, 1

r

0 1

FIG. 2.
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The regular boundary events are, however, always dense in the funnel boundary.
In the proof of this and elsewhere in the paper the product metric D on XxR
defined by

£((*i» 'i)» (** Q) = max {dfo, x£, \h~h\)

will be used.

THEOREM 3.1. R(x0, t0) is dense in dF(x0, t0) for all (x^t^eXxR and any multi-
valued dynamical system A, that is

PROOF. Suppose that I(xo,to) is nonempty, for otherwise there is nothing to
prove, and let e > 0 and 00, s0) el(xo, t0).

For so>to, let 8 = B(x0, t0,s0,e/3) be the S of Axiom V corresponding to e/3.
Without loss of generality it can be assumed to be less than both e/3 and so—tQ,
so for \s—so\<8

(3.4) p(A(x0, tQ, s), A(x0, t^ So)) < e/3.

Also as (yo,so) e dF(x0, t^) there exists at least one event

(3.5) 0*, s*)e S^Oo, so) n ext

where St/3(y0,s0) denotes the open sphere of radius e/3 about (yo>
so) m

Now y*$A(x0, to,s*) and since this set is compact there exists a z*eBA(x0, to,s*)
such that

< p(y*, A(x0, t0, s0))+p*(A(x0, t0, SQ), A(x0, t0, s*))

< d(y*,yo)+P*(4(xo, to,So),A(x0, to,s*))

<2e/3

in view of (3.4) and (3.5). Hence (z*,s*)eR(xo,to) and

£K(.z*,s*),(yo,So))<d(z*,y*)+D((y*,s*),(yo,so))

For s0 < t0 an analogous proof is valid for GDS but not for GCS nor GSDS as the
attainability sets A(xo,to,s) need not be continuous in s and compact for $</0-
For them the proof proceeds as follows. Let e>0 be sufficiently small so that
B — SJ/JCFO) is a compact neighbourhood of y0 in Jfand is contained in A(x0, to,so).
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This is possible since X is locally compact and y0 is an interior point of A(x0, t0, s0).
Then by Axiom IV there is an 0 < 17 < e such that the compact sets

B(s) = A(xo,to,s)nB

are nonempty for |s—so\ <ij. (Note for GSDS the sets A(x0, tQ,s) are nonempty for
sQ—i) < s < s0 and 17 sufficiently small since not all events in B x (s0—17, s0] n 8F(x0, t0)
can be start events, for if they were the continuity of the attainability sets A(xv tvs)
ins>t1 for (xvti)eBx(s0—17,s0]next8F(xQ,t0) would be violated.)

By definition of 8F(x0, t0) there exists at least one event

(y*,s*) e Sv(y0, s0) n 8F(x0, tj.

Hence y*eB\B(s*) and as B(s*) is compact there exists a

2*6 8A(x0, tQ, s*) n B<= 8B(s*).

Now (z*,s*)eR(xo,to) and a z*eB*, d(z*,yo)^e/2<e. Also \s*-rso\<rj<e.
Hence

D((z*,s*),(y0>s0))<e.

The following corollary will be used in Section 5. In it the set 8F(K, t0) denotes
the boundary of F(K,t0) i n l x R , not the set LK^-fWo); xoeK}.

COROLLARY 3.1. If K is a nonempty compact subset of X, then the set R(K, *„) of
regular boundary events of F{K, t0) is dense in 8F(K, t0).

PROOF. The proof is the same as for Theorem 3.1 using the fact that A(K, t0, t^)
is a closed subset of X, which is continuous in tx (and hence compact) whenever
A(xo,to,t1) is continuous in tt for all xoeK. This follows from Theorems 4.3 and
4.4ofRoxin(1965).

4. A lemma on connected attainability sets

The following lemma is valid for those GDS for which every attainabihty set is
connected, as for example in those GDS governed by ordinary differential equa-
tions without uniqueness. It will be required in the next section. The proof is in
part based on that of Lemma 3.1 of Zaremba (1932).

LEMMA 4.1. Let A be a GDS for which A(xo,to,t1) is connected for every
(x,f, tqyt^e XxRxR. IfK is a nonempty compactum (that is compact connected set)
in X, then A(K, t0, tj) is a nonempty compactum in Xfor all t0 and tx in R.
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PROOF. A(K,t0,^) is nonempty because K and the sets A(x0,to,t^) for all
(*o> t&tje XxRxR are nonempty. It is compact because K and the sets A(x0, t0, t^
for all (x0,t0,tj)eXxRxR are compact and because A is upper semicontinuous
in its first variable. See Roxin (1965), Theorem 4.2.

Suppose A(K,ta,tx) is not connected. Then there exist nonempty, closed and
disjoint subsets Ax and A2 in X such that A(K,to,t^) = AxuAz. Moreover since
A(K, t0, tj) is compact, so are the sets Ax and A2. Hence

(4.1) y = inf{d(ax,a^); axeAx, a2eA2}>0.

Let Kt = {x0 e K; A(x0, t0, tj <= At) for i = 1 and 2. Then by connectedness of the
sets A(x0, t0, tj for all (x0, t0, tj), the sets Kx and K2 are nonempty and disjoint.
Also K=K1uKi.

Now let {XJ} be a sequence in Kt converging to x0 and suppose that xo$Kv

Then x0eK2 and so A(xo,to,tj)<=A2 and

P*(A(Xi, t0, tj), A£ < p*(A(Xi, t0, Q, A(x0, t0) Q) + p*(A(x0, t0, t^), A£

= p*(A(xit t0, tj, A(x0, t0, tj)

<y/2

for all / sufficiently large since A is upper semicontinuous in its first variable.
This, however, contradicts the fact that

p*(A(xit t0, t^, A£ > p*{Ax, A^y

for all / since A(xi710, t^Ax for all /. Hence xoeKx and so Kx is closed. Similarly
K% is closed.

This shows that K is the union of two nonempty, disjoint and closed subsets Kx

and K2, which contradicts the assumption that K is connected. Hence A(K, t0, tj is
connected.

The above proof is generally not valid for GCS as their attainability sets need
not be compact for tx < t0. Also the connectedness of attainability sets of GCS for
t0 < tx does not imply their connectedness for tx < t0. See Example 2.1.

5. Peripheral attainability

The peripheral attainability of funnel boundary events of multivalued dynamical
systems was first established by Fukuhara (1929) for ordinary differential equations
without uniqueness and later by Roxin (1963), Theorem 3.1 for ordinary differential
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control systems. In both cases the result depended on the connectedness of attain-
ability sets. In fact a stronger form of peripheral attainability follows from the
connectedness of attainability sets. This was shown by Kamke (1932), Satz 5 for
ordinary differential equations without uniqueness, by Zaremba (1935), Thdoreme
5.4 for his families completes de courbes and by Davy (1972), Theorem 7.3 for
contingent equations. The following theorem shows that it holds for any GDS for
which all attainability sets are connected.

THEOREM 5.1. Let A be a GDS for which A(xo,to,tj) is connected for all
(*o> t0, tj) e Xx R x R. If K is a nonempty compactum in X and if

(x1,t1)eR(K,t0)^8F(k,t0)

with to<tx (respectively tx<t^, then there exists a trajectory <p0e0>(K,t0) with
9>o('i) = *i and (<po(t), t) e R(K, t0)for all t0 < f < tx (respectively *x < r < /„).

PROOF. Let tQ<t1; the proof for tt < t0 is analogous. The first step is to show that
there exists a trajectory tpe<b(dK,t0) with <p(t1) = x1. Since there is nothing to
prove if K has empty interior, suppose that K has nonempty interior and that no
such trajectory exists. As (xlf tj) e R(K, t0), then x1e8A(K,t0,t1) and so there
exists a nonempty compactum L in X with

LnA(K,to,t1) = {x1} and LncxtA(K,to,tJ)^0.

Hence A(L, tx, t0) n K^ 0 , A(L,t1,to)nextK^0 and A(L,tvto)n8K= 0, that
is, AiLjt^t^intKuextK. This, however, contradicts the connectedness of
A(L, tv t0), which holds on account of Lemma 4.1. Hence there exists at least one
trajectory <p e <b(dK, t0) with <p(tj = xv

The next step is to construct a sequence of trajectories {<pk} in ®(xv t^) satisfying

(5.1) 9k(skidedA(K,t0,sk^

for / = 0, \,...,k where ski = t+i^-t^/k for i = 0,1, ...,k and k = 1,2,.... To
do this, let A: =1,2, . . . be fixed. Then x1edA(A(K,t0,skk_1),skik_1,ti) and by
Lemma 4.1 A(K,to,skk_^) is connected. Hence by the same argument as in the
first step there exists a trajectory <pktk-x with fkjc-i(skik_^)edA(K,t0,sktk_^) and
9?fc,fc-i('i) = xi- Repeating this successively for / = k—2, ...,2,1 with

, h, skpi),

there exists a trajectory fki with

> t0, skii) and <P
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[12] Funnel boundary of multivalued dynamical systems 119

Then

pk,i(t) for sw s£ t < skA+1 and i = 1,2,..., k - 2,

defines a trajectory g ^ e O ^ , 4) which satisfies (5.1).
The final step is to use Theorem 2.2 on the sequence {?>*}<= $(*!, tj to extract a

convergent subsequence ?>*,->• ?>oG<^(xi>'i)- 1° y i e w °f (5-0> the continuity of $?0

and the fact that the set {ski: i = 0,\,...,k and k = 1,2,...} is dense in [fo>'iL it
follows that this trajectory p0 satisfies <po(t)e8A(K,t0,t) for all to^t^tv that is,
(?0(t), t) eR(K, t0) for all to^t^ tv

Under the same conditions of the above theorem, the irregular boundary events
of F(K, <„) are also peripherally attainable, though not necessarily via irregular
boundary events.

COROLLARY 5.1. If (xt, tj e J(K, t0) <= 8F(K, t0) with t0 < tx {respectively tx < tj,
then there exists a trajectory <p0eO(8K,t^) with <po(t^) = xx and (<po(t),t)edF(K,Q
for all t^t^t! (respectively t^t^ *„).

PROOF. Let to<t1> the proof for ^< / 0 is similar. By Corollary 3.1 there exists a
sequence {(zA.,jJfc)}c:.R(Ar,/0) converging to (x^tj. Hence by Theorem 5.1 for
each k = 1,2,... there exists a trajectory <pk£<&(dK, t0) with 7>k(sk) = zk aQd
(<pk(t), t) e R(K, t0) for all t0 < t < sk. Then by Theorem 2.2 there exists a subsequence
{pjj and a trajectory cpoe<t>(dK,t^ such that lPk(t)->?o(t) uniformly for
For this trajectory <po(t^ = xt and (<po(t), i) e R(K,t0) = 8F(x0, t0) for all t0

There is no guarantee that (<po(i),i) remains on the funnel boundary once
(JC^/J) has been reached. In Example 3.1 the single trajectory joining (1,0) to
(0,l)edf{l,0) has (??(/), f)eintF(l,0) for all t>\. Another example of this
involving an ordinary differential equation without uniqueness was constructed by
Digel (1935).

Moreover without the connectedness of all attainability sets, the conclusion of
Theorem 5.1 need not hold. In Example 2.1 the GDS has the peripheral attainability
property, but not the stronger peripheral attainability property of Theorem 5.1
and in Example 5.2 of Zaremba (1932) the GDS which can be constructed from the
complete family of curves does not have even the peripheral attainability property.
In both examples there are attainability sets which are not connected. The following
example shows that the conclusion of the theorem does not hold for GSDS even
though all nonempty attainability sets are connected.
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EXAMPLE 5.1. Let X = R+ have the relative topology in R and let A be the
GSDS defined graphically in Fig. 3, with (0,0 a start event for all t>2. All
nonempty attainability sets are connected, but none of the regular boundary
events (2 - 1 , t) for 2 < t < 3 in R(\, 0) are peripherally attainable.

, 1

r

\ / / /

\ / / /
1

FIG. 3.

For GDS the converse of Theorem 5.1 is true. This was first shown by Zaremba
(1935), Theoreme 5.5 for his families completes de courbes.

THEOREM 5.2. Let Abe a GDS such that for any nonempty compaction K in X and
any {xx,t^eR{K,t^dF(K,t^ with to<tx (respectively tx<t0) there exists a tra-
jectory <p0 £ <&(BK, tQ) with <po(tj) = xx and (po(t), t) e R(K, tjfor all t0 < t < tx (respec-
tively t^t^ t0). Then A(x0, t0, t±) is connected for all (x0,

PROOF. Suppose that A(x0, t0, tj) is not connected. Then there exist nonempty,
compact and disjoint subsets Ax and A2 of X such that A(x0, t0, tj = Ax u A2.
Hence by Condition (4.1) and the local compactness of X there exists a nonempty
compactum B in X such that Axc:B, A2n B = 0 and Ax n dB = 0 .

Let to<t1; the case t1<t0 is handled similarly. As AX^B and A1<^A(x0,t0,t1),
then F(A1,t1)<^F(B,tx) and there exists a trajectory }?1eO(Ar0,/0) with ^(t^eA^
and (^(rX^eRiBjj) for some to<r<tv Hence there exists another trajectory

with <p2(r) = <PX(T) and (<p2(t),t)eR(B,t1) for all r^t^tv Then

(<px(t) ioxt^r,

\<p2(t) tO

defines a trajectory 9?oe <£>(&/?,/^nOfc,,,^). This, however, contradicts the fact
that A(x0, t0, tx) n dB = 0 . Hence /4(x0, f0, /^ is connected for all

Example 2.1 shows that the conclusion of the above theorem need not hold if
only peripheral attainability and not the strong form of peripheral attainability is
assumed.

The final theorem for this section shows that the events (<p(t), t) can never remain
on the irregular part of the funnel boundary for a nonzero time interval for any
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trajectory and any multivalued dynamical system. Hence if as in Corollary 5.1
an irregular boundary event is peripherally attainable the corresponding trajectory
arc must contain regular boundary events as well as irregular boundary events.

THEOREM 5.3. There exists no multivalued dynamical system A with a trajectory
f e4>(JC0, t0)such that (p(f),/)eI(x0, t0) for tx<f < t2for any xoeXandt0, tx<t2 in R.

PROOF. Suppose on the contrary that A is a multivalued dynamical system with a
trajectory <p e $(x0, t0) such that dp(f), i) e I(x0, t0) for tx < t ̂  t2 for some x0 e X and
'o> *i < '2 m R- Then for each tx < / «S t2 there exists an e(t) > 0 such that

and

(5.2) e(?(),)(o,o)

for all 0 < s < e(t). Now the set O1=[J {StU)(<p(t), t); tx < t < t%} is an open subset of
XxR containing the compact set Mt = [J{(<p(t),t); ^^t^t^. As X is locally
compact there thus exists (Kloeden (1974a), Lemma 5.3.1) an 17 >0 such that
MxcSyiMJc Ov Clearly 0< 17< e(t) for each tx< r< t2. Moreover 17 can be chosen
so 0<r)<(t2—tj)/5. Then the open set

}; t1 + 7}<t<t1—

contains the compact subset M2 = \J{(<p(t),t); tj^+lrj^t^ti—2TJ} of Mx and so
again by Lemma 5.3.1 of Kloeden (1974a) there exists a 0<j8<^ such that
M2c:Sfi(M2)^O2c:F(x0,t0). Hence for any (<p(t),t)eM2 and

S.(? (t), t) n e x t ^ 0 , g = 0

contradicting (5.2) which holds since M2<^M^I(XQ, t0).

6. Irregular boundary events and start events

For GSDS the occurrence of some irregular boundary events is closely related
to that of start events. In Example 5.1 the GSDS has start events in every e-neigh-
bourhood in XxR of the irregular boundary event (0,2) of the funnel F(l,0).
Moreover these start events all belong to extF(l,0). This motivates the following
theorem.
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THEOREM 6.1. Let A be a GSDS and let {(yk, $*)}<= ext.FTC
start events converging to (y^s^, wherey^e'miAix^t^s^. Then

[15]

be a sequence of

PROOF. AS (yhtsh)-*(yo>sa)> f°r every e>0 there exists a k(e) such that
Cytos^)eSt(yots^ for all k^k(e) and as O^^eextFCxo,*,,) for all k, then

•S.Oo.*o)nextF(x0,Itf / 0 .

Hence CFo»*o)ea/'(jfo,ro) and as ̂ 06int^(x0,r0, Jo), then C

The next example shows that the conclusion of the above theorem need not hold
if the assumption that the start events belong to ext F(x0,*„) is omitted.

EXAMPLE 6.1. Let A be the GSDS on X = R defined graphically in Fig. 4, with
(0,0 start events for 0 < f ^ l . Then (0,0-KO,0)eF(0,2) as f->-0+ and
0eint/4(0,2,0), but (0,0)^/(0,2). Indeed all of the start events and their limit
events are contained in int/7(x0,/0).

Fro. 4.

The converse of Theorem 6.1 does not hold, as can be seen from Example 3.1
of a GDS with an irregular boundary event and no start events. A partial converse
does however hold. For this let

I(x0, fo) = /+(*o. 'a) u /-(*„> 'o)»

where (y0, sj e I+(x0, tj if

(6.1) S/>CFo.-

and O>o»-Sb) e / " ( x 0 , tj if

for every c>0.
In Example 5.1, (0, l )e J-(l,0) and (0,2)e/+(l,0). Also for th«» GSDS obtained

from Fig. 3 by deleting the segment Arx(l,2), the event (0, l)e/+(l,0)n/-(l,0),
so these two sets may have points in common. The following theorem is a partial
converse of Theorem 6.1.
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THEOREM 6.2. Let A be a GSDS and let (y0,s0)el+(x0,t^. Then there exists a
sequence {(yk, s£}<=extF(x0, tj of start events converging to

PROOF. Suppose for some e>0 there exist no start events in (6.1) and that
St(y^c:intA(x0,t0,s^. Then for any sequence (zk,rk) in (6.1) which converges to
O'o.Jo), the backwards attainability sets A(zk,rk,s) are nonempty as long as they
remain in St(y^) and \s—so\<e. Now A(yo,s0,s^) = {s^ is compact and so by
Roxin (1965), Theorem 5.1

piA^fr rk, s), A(yo, s0, sj) < e

for sufficiently large k and *0 < s ̂  rk. Hence A(zk, rk, s) is nonempty for sufficiently
large k and

Thus by Axiom III and Definition (2.1) of the backwards attainability sets,
zk e.«4(xo,fo,.yfc) and so (zfc,Tfc)e.F(jc0,f0) for all sufficiently large k. This, however,
contradicts the choice of (Z*,TJJ) belonging to (6.1).

COROLLARY 6.2. If A is a GDS or GCS, then I+ix^tJ is empty for all

For the irregular boundary events in J-(jco,fo), Example 3.1 shows that the
conclusion of Theorem 6.2 need not hold, though it is not difficult to construct
examples in which it does hold. For the irregular boundary events in 7+(xo,/o)
there are nearby regular boundary events which are not peripherally attainable at
all or at least not peripherally attainable via regular boundary events.
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