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Abstract

In this paper, we introduce a generalization of the two-color multitype contact process
intended to mimic a biological process called allelopathy. To be precise, we have two
types of particle. Particles of each type give birth to particles of the same type, and die
at rate 1. When a particle of type 1 dies, it gives way to a frozen site that blocks particles
of type 2 for an exponentially distributed amount of time. Specifically, we investigate in
detail the phase transitions and the duality properties of the interacting particle system.
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1. Introduction

The model we introduce in this paper is a continuous-time Markov process in which the state
at time t is a function ξt : Z

d → {0, 1, 2, 3}. At time t , a site x ∈ Z
d is said to be occupied by

a particle of type 1 (a ‘type-1’) or type 2 (a ‘type-2’) if ξt (x) = 1 or, respectively, ξt (x) = 2,
and is said to be empty otherwise. We distinguish two types of empty site. Namely, at time t ,
a site x ∈ Z

d will be called a free site if ξt (x) = 0 and a frozen site if ξt (x) = 3. The evolution
rules are defined as follows.

1. Each type-1 or type-2 tries to give birth onto each of its neighboring sites at rate λ1 or
λ2, respectively. Here, the neighbors of a site x ∈ Z

d constitute the set of y ∈ Z
d such

that ||x − y|| ≤ R, where || · || is a norm and R a positive constant.

2. If the offspring of a type-1 is sent to a site in state 0 or 3, or the offspring of a type-2 is
sent to a site in state 0, the birth occurs. Otherwise, it is suppressed.

3. Both types of particle die at rate 1. Type-1s give way to frozen sites and type-2s give
way to free sites.

4. Frozen sites (state 3) become free (state 0) at rate γ > 0.

This process is a generalization of the multitype contact process (Neuhauser (1992)) in
which type-1s inhibit the spread of type-2s by freezing the sites they have just occupied.
Reciprocally, the multitype contact process is just the extreme case with γ = ∞, in which
the state transition 3 → 0 is instantaneous. The interpretation we have in mind is that of a
spatial model of allelopathy. In biology, allelopathy is defined as a process involving secondary
metabolites produced by plants, micro-organisms, viruses, and fungi that influence the growth
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1110 N. LANCHIER

and development of biological systems. In our case, type-1s are the individuals of an inhibitory
species and type-2s the individuals of a susceptible species. The reader especially interested in
this biological process may refer to Durrett and Levin (1997). Their stochastic spatial model
also is a generalization of the multitype contact process, but has only three states: 0 ≡ empty
site, 1 ≡ inhibitory species, and 2 ≡ susceptible species. Particles of type 1 die at rate 1 and
those of type 2 die at rate 1+c×(the number of neighbors in state 1), where c > 0 is a constant.
That is, the particles of type 1 increase the death rate of the neighboring particles of type 2.

This stochastic spatial process precisely models the competition of the colicin-producing
Escherichia coli bacterium and colicin-sensitive bacteria. The particle system we introduce
in this paper, on the contrary, is more appropriate to the investigation of plant competitions
involving inhibitory species such as Hieracium pilosella. In this case, the inhibitory species
produces toxic substances that prevent susceptible species from developing for a certain amount
of time.

To investigate our model, we first observe that if only type-2s are present, the process
reduces to the basic contact process with parameter λ2. In such a case, there exists a critical
value λc ∈ (0, ∞) such that if λ2 ≤ λc the process converges in distribution to the all-empty
state, while if λ2 > λc there exists a stationary measure µ2 that concentrates on configurations
with infinitely many type-2s (see, e.g. Liggett (1999)). If only type-1s are present, we have
almost the same result: if λ1 ≤ λc then the process converges in distribution to the all-empty
state, while if λ1 > λc there exists a nontrivial stationary measure ν1 that concentrates on
configurations with infinitely many type-1s and frozen sites. To construct this measure, we
start the process from a configuration with infinitely many type-1s, take the Cesaro average
of the distributions from time 0 to time T , and extract a convergent subsequence. Then, by
Proposition 1.8 of Liggett (1985), the limit ν1 is known to be an invariant measure. Moreover,
since the type-1s do not see the frozen sites, we obtain ν1(ξt (x) = 1) = µ2(ξt (x) = 2),
provided that λ1 = λ2. To avoid trivialities, we assume from now on that both λ1 and λ2 are
greater than λc and that ξ0, the configuration at time 0, contains infinitely many type-1s and
type-2s.

We first choose rates γa and γb, γa < γb, and denote by ξ i
t the process with parameters

λ1, λ2, and γi , i = a, b. Then, if we think of the processes as being generated by Harris’s
graphical representation, we may run ξa

t and ξb
t simultaneously, starting from the same initial

configuration, in such a way that ξa
t has more type-1s and fewer type-2s than ξb

t , i.e. for any
x ∈ Z

d , if ξa
t (x) = 2 then ξb

t (x) = 2, and if ξb
t (x) = 1 then ξa

t (x) = 1. The same coupling
argument implies that the process is also monotone with respect to each of the parameters λ1
and λ2. These results are summarized in the following theorem.

Theorem 1. Let �i
t = {x ∈ Z

d : ξt (x) = i} be the set of sites occupied at time t by a particle
of type i. Then the survival probabilities P(�i

t �= ∅ for all t ≥ 0), i = 1, 2, are monotone
with respect to each of the parameters λ1, λ2, and γ .

In particular, if we set γa ∈ (0, ∞) and γb = ∞, then the process ξa
t will have more type-1s

and fewer type-2s than will ξb
t . Now, as explained above, ξb

t is the multitype contact process
with parameters λ1 and λ2. Theorem 1 of Neuhauser (1992) implies that if both λ1 > λ2 and
we start with infinitely many type-1s, then ξb

t

w−→µ1, the upper invariant measure of the basic
contact process. Here, ‘

w−→’ denotes weak convergence. In particular, we obtain the following
result.

Theorem 2. Assume that ξ0 contains infinitely many type-1s. If λ1 > λ2 and γ ∈ (0, ∞) then
ξt

w−→ν1.
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Figure 1: Phase diagram.

Consider the case λ1 = λ2. Since the evolution rules favor the type-1s, in this case we expect
that the processes with and without frozen sites exhibit different behaviors. The following
theorem tells us that if λ1 = λ2 and γ < ∞, the type-1s still ‘win’ in dimensions d ≥ 3, while
type-1s and type-2s coexist if γ = ∞ (see Theorem 3 of Neuhauser (1992)). We conjecture that
the type-1s win in any dimension, but our proof relies heavily on the transience of symmetrical
random walks in dimensions d ≥ 3.

Theorem 3. Assume that ξ0 contains infinitely many type-1s and is translation invariant. If
λ1 = λ2 and d ≥ 3 then ξt

w−→ν1.

The key to the proof of Theorem 3 is duality. The dual process starting at a space–time
location (x, t) is defined, from a so-called Harris graphical representation, by going backwards
in time, and allows us to keep track of the ancestors of the particle at site x at time t . Similarly
to the (basic) multitype contact process, the dual of the process with frozen sites exhibits a tree
structure that induces an ancestor hierarchy in which the members are arranged in the order
they determine the color of the particle at (x, t). To prove that the introduction of frozen sites
profoundly alters the limiting behavior of the process when λ1 = λ2, the basic idea is to show
that the number of frozen sites visited by the first ancestor on its way up to (x, t) tends to infinity
with t . This will imply that the probability that site x is occupied by a type-2 vanishes in this
limit.

If we now consider the case λ1 < λ2, it is not clear that the type-2s win. Theorem 4 tells us
that, for d = 2, the particles of type 2 win provided that γ is sufficiently large.

Theorem 4. Assume that ξ0 contains infinitely many type-2s. If d = 2 and λ1 < λ2 then there
exists a critical value γc ∈ (0, ∞) such that ξt

w−→µ2 for any γ > γc.

To find the implications of our results, we fix λ1 > λc and γ > 0 and denote by βc(γ, λ1)

the infimum of {λ2 ≥ 0} such that the type-1s die out, with the convention inf ∅ = ∞. A fairly
straightforward application of Theorems 1–4 then implies that the mapping λ1 	→ βc(γ, λ1) is
nondecreasing and βc(γ, λ1) ↓ λ1 as γ ↑ ∞. In conclusion, the phase diagram we obtain is
given by Figure 1, where our results are summarized.
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Unfortunately, we do not know the outcome of the competition when the particles evolve in
a spatial structure and λ1 and λ2 are such that λ1 < λ2 < βc(γ, λ1). To deal with this case,
we look at the mean field model (Durrett and Levin (1994)), that is, we pretend that all the
sites are independent and that the system is spatially homogeneous. The evolution can then be
formulated using the following ordinary differential equations, where ui denotes the density of
sites in state i:

u′
1 = λ1u0u1 + λ1u3u1 − u1,

u′
2 = λ2u0u2 − u2,

u′
3 = u1 − λ1u1u3 − γ u3.

Let

� = {u = (u0, u1, u2, u3) : u0 ≥ 0, u1 ≥ 0, u2 ≥ 0, u3 ≥ 0, u0 + u1 + u2 + u3 = 1}
be the collection of values we are interested in, and, for a fixed γ > 0, set

D1 = {(λ1, λ2) : λ1 > 1, (λ2 − λ1)γ < (λ1 − 1)λ1},
D2 = {(λ1, λ2) : λ2 > 1, λ2 > λ1}.

A straightforward calculation shows that the system of ordinary differential equations has a
nontrivial fixed point u, on the boundary u2 = 0, if and only if λ1 > 1 (where ‘nontrivial’
means that u �= (1, 0, 0, 0)). Moreover, by studying the eigenvalues of the linearization of
the equations at point u, we can prove that the equilibrium u is stable if (λ1, λ2) ∈ D1 and
unstable otherwise; that is, the linearization has an unstable direction that points into int �, the
interior of �. Similarly, if λ2 > 1 then there is a nontrivial equilibrium u, on the boundary
u1 = u3 = 0, that is stable if (λ1, λ2) ∈ D2 and unstable otherwise. Finally, the equations
have a fixed point belonging to int � if and only if

λ2 > λ1 > 1 and γ <
λ1 − 1

λ2 − λ1
λ1,

that is, (λ1, λ2) ∈ D1 ∩ D2. Our mean field model, however, exhibits the same property as
the mean field model introduced in Durrett and Levin (1997). That is, the interior fixed point
is not locally stable. See Figure 2 for a picture of the solution curves for γ = 1 and γ = 1.5
when λ1 = 2 and λ2 = 3. In words, if (λ1, λ2) ∈ D1 ∩ D2 then no particle of either species
can invade the other one in its equilibrium: if the density of particles of type 1 or type 2 is
close to the corresponding equilibrium value, and particles of type 2 or, respectively, type 1
are introduced with a low density, then the density of introduced particles shrinks to 0. In a
homogeneously mixing population, the outcome of the competition then depends on the initial
densities. Based on the instability of the interior fixed point, the author believes that, for the
particle system, given a set of parameters λ1, λ2 > λc, and γ > 0, there is a stronger species
that will win the competition, provided that ξ0 contains infinitely many type-1s and type-2s. In
conclusion, we summarize and complete Theorems 2–4 with the following conjecture.

Conjecture 1. For any λ1 > λc and λ2 > λc, there is a critical value γc such that if γ < γc
then ξt

w−→ν1, while if γ > γc then ξt
w−→µ2.

The rest of the paper is devoted to proving the stated results. In Section 2, we will investigate
in greater detail the duality properties of the process. Using the results of Section 2, we will
then prove Theorem 3 in Section 3. Finally, the proof of Theorem 4 will be carried out in
Section 4.
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Figure 2: Projections of the solution curves for the mean field model, with λ1 = 2, λ2 = 3, and
γ = 1 (left), and λ1 = 2, λ2 = 3, and γ = 1.5 (right).

2. Graphical representation and duality

The first step in proving Theorem 3 and Theorem 4 is to construct the process from a
collection of Poisson processes, in the case λ1 ≤ λ2. For x, y ∈ Z

d , ||x − y|| ≤ R, we let
{T x,y

n , n ≥ 1}, {Ux
n , n ≥ 1}, and {V x

n , n ≥ 1} be the arrival times of Poisson processes with
respective rates λ2, 1, and γ . At times T

x,y
n , we draw an arrow from x to y and, with probability

(λ2 − λ1)/λ2, label the arrow with a ‘2’ (making it a ‘2-arrow’). If at time T
x,y
n the site x is

occupied by a type-1, the site y is empty (that is, free or frozen), and the arrow is unlabeled,
then y becomes occupied by a type-1; while if x is occupied by a type-2 and y is free, then y

becomes occupied by a type-2. At times Ux
n we put a cross at x to indicate that a death occurs,

i.e. a type-1 gives way to a frozen site or a type-2 to a free site. Finally, at times V x
n we put

a dot at x to indicate that a frozen site becomes free. A result of Harris (1972) implies that
such a graphical representation can be used to construct the process starting from any initial
configuration ξ0 : Z

d → {0, 1, 2, 3} (see Figure 3 for an illustration).
With the graphical representation in hand, we are now ready to define the dual process. We

say that two points (y, s) and (x, t) in Z
d × R

+ are connected or that there is a path from
(y, s) to (x, t) if there exists a sequence of times s0, . . . , sn+1, s0 = s < s1 < s2 < · · · <

sn < sn+1 = t , and spatial locations x0, . . . , xn, x0 = y, x1, x2, · · · , xn = x, such that the
following conditions hold.

1. For i = 1, 2, . . . , n, there is an arrow from xi−1 to xi at time si .

2. For i = 0, 1, . . . , n, the vertical segments {xi} × (si, si+1) do not contain any crosses.

If there is a path from (y, t − s) to (x, t), we say that there is a dual path from (x, t) to
(y, t − s), and define the dual process starting at (x, t), as for the multitype contact process,
by setting

ξ̃ (x,t)
s = {y ∈ Z

d : there is a dual path from (x, t) to (y, t − s)}
for any 0 ≤ s ≤ t . Since it will sometimes be easier to work with a forward process rather than
a backward process, we also introduce the dual ξ̂

(x,0)
s , defined by

ξ̂ (x,0)
s = {y ∈ Z

d : there is a path from (x, 0) to (y, s)}.
The reader will note that the processes ξ̃

(x,t)
s and ξ̂

(x,0)
s have the same law. Observe that

{(ξ̃ (x,t)
s , s), 0 ≤ s ≤ t} exhibits a tree structure that allows us to equip ξ̃

(x,t)
s with an order
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Figure 3: Harris’s graphical representation. The black lines refer to type-1s, the pale gray lines to type-2s,
the dark gray lines to frozen sites, and the dotted lines to free sites.

relation by which the members are arranged in the order they determine the color of site x at
time t (see Neuhauser (1992); also, see the left-hand diagram of Figure 4 for an illustration of
ancestor hierarchy). From now on, the tree

	 = {(ξ̃ (x,t)
s , s), 0 ≤ s ≤ t}

will be called the upper tree starting at (x, t), and the elements of ξ̃
(x,t)
s the upper ancestors.

We let ξ̃
(x,t)
s (n) denote the nth member of the ordered ancestor set, and call the first upper

ancestor the distinguished particle.
The main difference with the multitype contact process is that type-1s now produce sites

in state 3 that are forbidden for the type-2s. In particular, the color of (x, t) does not depend
solely on the state of the upper ancestors at time 0. To determine from where the particle at site
x originates (and prepare for the proof of Theorem 3), the basic idea is to extend the notion of
path in the following way. If, instead of condition 2 holding,

3. the set
⋃n

i=0{xi} × (si, si+1) contains exactly one cross,

then we say that (y, s) and (x, t) are weakly connected. In such a case, the tree starting at (y, s)

will be called a lower tree and the elements of ξ̃
(y,s)
s the lower ancestors. We observe that,

unlike in the multitype contact process, the state of some sites (free or frozen) strongly depends
on the lower ancestors. That is, in view of the cross’s effect, if (y, s) and (x, t) are weakly
connected then a particle of type 1 at site y at time s can freeze the path of the distinguished
particle at some particular points; this prevents type-2s from determining the color of (x, t).

To conclude this section, we describe an algorithm to determine the color of (x, t) in the
case λ1 ≤ λ2. We say that an arrow from x to y is bad for the type-2s if its target site y is
frozen. First, we determine whether the site that the distinguished particle lands on at time 0
is (i) in state 1, (ii) in state 2, or (iii) in state 0 or 3. In case (i), the distinguished particle will
‘paint’ (x, t) the color 1 if it does not cross a 2-arrow. Otherwise, we follow the path of the
distinguished particle on its way up to (x, t) until a 2-arrow is first encountered, look backwards
in time starting from the point where this arrow is attached, and discard all the ancestors of
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Figure 4: The dual process.

this point. We discard these ancestors because they are now blocked on their way up to (x, t)

by a particle of type 1. In case (ii), the distinguished particle will paint (x, t) the color 2 if it
does not cross any arrow bad for the type-2s. Otherwise, we similarly discard all the ancestors
of the point where the first bad arrow is attached, since these ancestors are now blocked by a
particle of type 2. Finally, in case (iii), the distinguished particle cannot paint (x, t) any color.
If, after the first trial, the distinguished particle has not painted (x, t) any color, we repeat the
same procedure with the first upper ancestor that is left after discarding, and so on.

We refer the reader to the left-hand diagram of Figure 4 for an illustration of this algorithm.
The distinguished particle lands on a type-2 (case (ii)), but crosses the arrow bad for the type-2s
that points from x − 2 to x − 3 before reaching (x, t), so we discard all the ancestors of this
arrow. Since the only such ancestor is the distinguished particle, we now focus on the second
ancestor of the hierarchy. The second ancestor lands on a type-1 (case (i)), but crosses the
2-arrow that points from x to x −1. Since the ancestors of this 2-arrow are the second and third
ancestors, we look at the fourth ancestor. The fourth ancestor lands on a type-2 (case (ii)) and
does not cross any arrow bad for the type-2s, so (x, t) will be of type 2. The reader will note
that, due to the dot under its tip, the 2-arrow on the right-hand side of the tree is not bad for the
type-2s.

3. Proof of Theorem 3

To establish Theorem 3, our strategy is to prove that if the upper tree, 	, lives forever, then
with probability 1 the distinguished particle will jump infinitely often to a frozen site. To do this,
we will focus on the structure of the lower trees and show that the number of lower ancestors
that freeze the sites visited by the distinguished particle tends to infinity as t → ∞. We will
then conclude by showing that there exists an upper ancestor that will bring a type-1 to (x, t).

From now on, we denote by λ the common value of λ1 and λ2, and suppose that 	 lives
forever. The reader will observe that such an event occurs with positive probability, since
λ > λc. For more convenience, in this section we use the dual process ξ̂

(x,0)
s starting at (x, 0).

The main objective is to prove that the number of frozen sites visited by the distinguished
particle tends to infinity as t → ∞. We follow the path of the distinguished particle, starting
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from (x, 0), and denote by αn, n ≥ 1, the nth arrow we cross (see the right-hand diagram of
Figure 4). We let zn and sn respectively be the arrival site and the temporal location of the
arrow αn, and denote by Nt the number of arrows αn that by time t point to a frozen site, i.e.

Nt = card{n ≥ 1 : ξsn(zn) = 3 and sn ≤ t}.
By construction, Nt also denotes the number of frozen sites visited by the distinguished particle
by time t . The main result we have to prove is the following proposition.

Proposition 1. If d ≥ 3 then limt→∞ Nt = ∞ almost surely.

The intuitive idea of the proof is that the lower ancestors provide enough type-1s to freeze
the path of the distinguished particle at infinitely many points. We denote by σn the arrival time
of the first cross located under the tip of αn, i.e.

σn = min{Uzn

k : U
zn

k ≥ sn},
and let 	n be the lower tree starting at (zn, σn), i.e.

	n = {(y, s) ∈ Z
d × [σn, ∞) : there is a path from (zn, σn) to (y, s)}

(see Figure 4). We say that 	n is good if the following two conditions are satisfied.

1. 	n lives forever.

2. The vertical segment {zn} × (sn, σn) does not contain any dots.

As we will see, these conditions will allow us to freeze the site zn at time sn. Let Gn be the
event that the nth lower tree is good.

Lemma 1. We have P(lim supn→∞ Gn) = 1.

Proof. We denote byAn the event that	n lives forever, and byBn the event that {zn}×(sn, σn)

does not contain any dots. The first step is to prove that, for any n ≥ 1, there almost surely
exists an integer m ≥ n such that Am occurs. To do this, we set 	n1 = 	n and, while 	nk

is bounded, we denote by 	nk+1 the first lower tree that is born after 	nk
dies. Note that if

Ank
does not occur, then 	nk+1 is well defined and the event Ank+1 is determined by parts of

the graph that succeed the death of 	nk
, meaning that Ank

and Ank+1 are independent. More
generally, since the trees 	n1 , 	n2 , . . . , 	nk+1 are disjoint, the events An1 , An2 , . . . , Ank+1 are
independent. Moreover, the probability that Ank

occurs is given by the survival probability
p(λ) of the basic contact process with parameter λ, starting from one infected site. Hence,

P(Ac
n ∩ Ac

n+1 ∩ · · · ) ≤ lim
k→∞ P(Ac

n1
∩ Ac

n2
∩ · · · ∩ Ac

nk
)

≤
∞∏

k=1

P(Ac
nk

)

= lim
k→∞(1 − p(λ))k = 0

for λ > λc. In particular,

P
(

lim sup
n→∞

An

)
= lim

n→∞ P(An ∪ An+1 ∪ · · · ) = 1.
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This proves that, with probability 1, there exist infinitely many lower trees 	n that live forever.
Furthermore, since σn − sn is exponentially distributed with parameter 1, we have

P(Bn) = P(σn − sn ≤ V
zn

1 ) = γ −1(1 + γ )−1 > 0.

By independence, we can finally conclude that P(lim supn→∞ An ∩ Bn) = 1.

To complete the proof of Proposition 1, we now consider, for any n ≥ 1 and s ≥ σn, the
time translation dual process

ξ̂ (zn,σn)
s = {y ∈ Z

d : there is a path from (zn, σn) to (y, s)},
and denote by ζs(n) the associated distinguished particle, namely the first ancestor of (zn, σn).
Observe that if the lower tree 	n lives forever, then ζs(n) is well defined for any s ≥ σn.
Moreover, if we suppose that 	n is good and that ζs(n) lands on a type-1 then, in view of
condition 2 above, the site zn will be frozen at time sn. In particular, if 	nk

is a subsequence of
good trees given by Lemma 1, the proof of Proposition 1 can be completed with the aid of the
following result.

Lemma 2. Let �s = {ζs(nk) : σnk
≤ s} and �1

s be the set of sites occupied at time s by a type-1.
If ξ0 is translation invariant and d ≥ 3, then, starting from infinitely many type-1s, we have

lim
t→∞ card(�t ∩ �1

0) = ∞ almost surely.

Proof. By Proposition 2.1 of Neuhauser (1992), the path of ζs(nk) can be broken into
independent and identically distributed pieces in such a way that the process ζs(nk) is transient
in dimension d ≥ 3 (see Neuhauser (1992, Sections 4 and 5) for a proof). This, together
with Lemmas 7 and 8 of Lanchier (2005), implies that card(�t ) → ∞. Finally, since ξ0 is
translation invariant, Lemma 9.14 of Harris (1976) tells us that, with probability 1,

card(�t ∩ �1
0) → ∞ as t → ∞.

To conclude the proof of Theorem 3, we now use the dual process ξ̃
(x,t)
t and construct a

sequence of upper ancestors η
(x,t)
t (k), k ≥ 0, that are candidates to paint (x, t) the color 1.

The first member of the sequence will be the distinguished particle. Next, we renumber the
sequence of frozen points (zk, sk), k ≥ 1, visited by the distinguished particle by going forward
in time, and denote by nt the number of frozen points encountered. For each k, 1 ≤ k ≤ nt ,
we look backwards in time, starting from the location where the arrow αk is attached, and
discard all the ancestors of this particular point; we then define η

(x,t)
t (k) to be the first upper

ancestor that is left after discarding. Let ηt = {η(x,t)
t (k), 0 ≤ k ≤ nt }. Proposition 1 tells us

that limt→∞ nt = ∞ with probability 1. This, together with Lemmas 7 and 8 of Lanchier
(2005), implies that the cardinality of ηt can be made arbitrarily large by choosing t to be
sufficiently large. In particular, a new application of Lemma 9.14 of Harris (1976) yields

lim
t→∞ P(ηt ∩ �1

0 = ∅) = 0.

Hence, there exists at least one candidate that lands on a type-1. We denote by η
(x,t)
t (k0) the first

upper ancestor belonging to ηt . Since the arrow αk0 is bad for the type-2s, the upper ancestor
η

(x,t)
t (k0) will finally paint (x, t) the color 1. This completes the proof of Theorem 3.
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4. Proof of Theorem 4

In this section, we assume that d = 2, set λ1 < λ2, and prove that there is a γc < ∞ such
that, for any γ > γc, the type-2s win. In view of the evolution rules, the survival of type-2s is
not clear, and tools such as coupling and duality cannot be used to prove Theorem 4. We will
instead rely on the rescaling argument described in Durrett and Neuhauser (1997, Section 3),
which is valid in the case γ = ∞, and then prove that taking γ > 0 to be sufficiently large
does not affect the process too much. We start by introducing suitable space and time scales.
We let L be a positive integer and, for z = (z1, z2) in Z

2, set


(z) = (Lz1, Lz2), B = [−L, L]2, B(z) = 
(z) + B.

Moreover, we tile B(z) with L1/10 × L1/10 squares by setting

π(w) = (L1/10w1, L
1/10w2),

D = (− 1
2L1/10, 1

2L1/10]2, D(w) = π(w) + D,

Iz = {w ∈ Z
2 : D(w) ⊆ B(z)}.

We say that B(z) is good if B(z) is devoid of type-1s and has at least one particle of type 2
in each of the squares D(w), w ∈ Iz. For z = (z1, z2) ∈ Z

2, with z1 and z2 both even for
even k, and z1 and z2 both odd for odd k, we say that (z, k) is occupied if B(z) is good at time
kT , where T is an integer to be picked later. Moreover, we require this event to occur for the
process restricted to the region 
(z) + [−ML, ML]2. We start by assuming that γ = ∞.

Proposition 2. (Durrett and Neuhauser (1997).) If λ2 > λ1 and T = L2 then, for any ε > 0,
the parameters L and M can be chosen so that the set of occupied sites dominates the set of
open sites in an M-dependent oriented percolation process with parameter 1 − ε.

See Durrett and Neuhauser (1997, Proposition 3.1 and Lemma 3.7). To generalize the
comparison to sufficiently large γ > 0, we only need to prove that, with probability close to 1,
the process behaves like the multitype contact process (i.e. none of the type-2s is blocked by a
frozen site) inside the space–time box

J (z) × [0, T ] where J (z) = 
(z) + [− 1
3ML, 1

3ML]2

(see Lemma 3.7 of Durrett and Neuhauser (1997)). The event we are interested in occurs if and
only if each site x ∈ J (z) pointed to by an arrow by time T is not in state 3. To ensure that this
occurs, we follow the line {x} × [0, T ] forwards in time, and, each time we encounter a cross,
put a dot at x before meeting the next arrow tip. Let K(x, t) be the number of arrows that point
to site x by time t . By decomposing according to whether or not K(x, T ) > 2λ2T , we obtain

P(any of the type-2s is blocked) ≤
∑

x∈J (z)

P(K(x, T ) > 2λ2T ) + 2λ2T
∑

x∈J (z)

P(Ux
1 < V x

1 )

≤ ( 2
3ML)2(Ce−αT + 2λ2T γ −1(γ + 1)−1)

≤ 1
3ε

for T and γ sufficiently large and appropriate constants C < ∞ and γ > 0. By this point,
we have proved that if λ1 < λ2 and γ is sufficiently large, then there exist an L and an M

such that the set of occupied sites dominates the set of open sites in an M-dependent oriented
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percolation process with parameter 1 − ε. This almost proves Theorem 4. Our last problem is
that oriented site percolation has a positive density of unoccupied sites. To prove that there is a
region devoid of type-1s expanding in all directions, we apply a result of Durrett (1992) which
shows that unoccupied sites do not percolate when ε is sufficiently close to 0. Since particles of
neither type can appear spontaneously, once a region is devoid of one type, this type can only
reappear in the region through invasion from the outside. This implies that our process has the
desired property, and completes the proof of Theorem 4.
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