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During the last decades, the structure of mod-2 cohomology of the Steenrod ring A
became a major subject in Algebraic topology. One of the most direct attempt in
studying this cohomology by means of modular representations of the general linear
groups was the surprising work [Math. Z. 202 (1989), 493–523] by William Singer,
which introduced a homomorphism, the so-called algebraic transfer, mapping from
the coinvariants of certain representation of the general linear group to mod-2
cohomology group of the ring A . He conjectured that this transfer is a
monomorphism. In this work, we prove Singer’s conjecture for homological degree 4.
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1. Introduction

Everywhere in the text of this article, we will be working over the field F2
∼= Z/2Z

of characteristic 2 and taking (co)homology with coefficients in F2. It is well-known
that the calculation of the stable homotopy groups of spheres πS

∗ (S0) is one of
the most central and intractable problems in Algebraic topology. Historically, in
the 1950s, Serre [24] used his spectral sequence to study this problem. In the late
1950s, Adams [1] constructed his celebrated spectral sequence that converges to
πS
∗ (S0), completed at prime 2. He claimed that E2-page of that spectral sequence

could be identified with

Extq
A (F2,F2) = {Extq,t

A (F2,F2) = Hq,t(A )}(q,t)∈Z2,q�0, t�0,

the bigraded cohomology algebra of the classical, singly-graded Steenrod alge-
bra A over F2. This cohomology has been explicitly computed by Adem [3] for
q = 1, by Adams [2] and Wall [31] for q = 2, by Adams [2] and Wang [32] for
q = 3, by Lin [12] for q = 4, by Lin [12] and Chen [6] for q = 5. However, it is
still largely mysterious for all q > 5. With an idea that we can study the struc-
ture of Extq

A (F2, F2) through the modular invariant theory, in 1989, W. Singer
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[25] introduced a ‘transfer’ homomorphism of rank q, which passes from coin-
variants of a certain representation of the general linear group GL(q) over F2

to mod-2 cohomology of A . It has been shown that this transfer is highly non-
trivial (see the works by Boardman [4], Minami [13], Bruner, Hà and Hu’ng [5],
Hu’ng [9], Hà [8], Nam [15], Hu’ng and Quỳnh [10], Cho’n and Hà [7], Sum
[29], the author [17–23], and others). In order to better understand it, we offer
some related issues. Let us denote by V ⊕q ∼= ∏

1�i�q(Z/2Z) a rank q elementary
abelian 2-group, which is considered as q-dimensional vector F2-space. It is known,
H∗(V ⊕q) ∼= S(V ⊕q

∗ ), the symmetric algebra over the dual space V ⊕q
∗ ≡ H1(V ⊕q)

of V ⊕q. Pick u1, . . . , uq to be a basis of H1(V ⊕q). Then, it has been shown that
Pq := H∗(V ⊕q) ∼= F2[u1, . . . , uq], the connected Z-graded polynomial algebra on
generators of degree 1, equipped with the canonical unstable algebra structure
over A . By dualizing, H∗(V ⊕q) ∼= Γ(a1, . . . , aq), the divided power algebra gener-
ated by a1, . . . , aq, each of degree one, where ai ≡ a

(1)
i is dual to ui. It is to be

noted that this algebra and the polynomial algebra Pq are not in general isomor-
phic as F2GL(q)-modules. Now, let us recall that the algebra A consists of the
Steenrod squaring operations Sqi for i � 0. The operations Sq0 and Sq2

i

, i � 0,
constitute a system of multiplicative generators for A (see also Walker and Wood
[30]). Emphasizing that these Sqi are the cohomology operations satisfying the nat-
urality property. Moreover, they commute with the suspension maps, and therefore,
they are stable. Let PAH∗(V ⊕q) ∼= Ext0A (Pq, F2) be the subspace of H∗(V ⊕q) con-
sisting of all elements that are annihilated by all Sqi for i > 0. The group GL(q)
acts regularly on V ⊕q and therefore on Pq and H∗(V ⊕q). This action commutes
with that of the algebra A and so acts F2 ⊗A Pq and PAH∗(V ⊕q). Singer [25] con-
structed a homomorphism from PAHn(V ⊕q) to Extq,q+n

A (F2, F2), which commutes
with two Sq0’s on PAHn(V ⊕q) and Extq,q+n

A (F2, F2) (see also [4, 14]). He shows
that this map factors through the quotient of its domain’s GL(q)-coinvariants to
give rise to the so-called algebraic transfer of rank q

Trq(F2) : F2 ⊗GL(q) PAHn(V ⊕q) −→ Extq,q+n
A (F2,F2).

In fact, this transfer is induced over the E2-term of the Adams spectral sequence by
the geometrical transfer map Σ∞(B(V ⊕q)+) −→ Σ∞(S0) between the suspension
spectrum in stable homotopy category. Singer [25] demonstrated that the ‘total’
transfer {Trq(F2)}q�0 is an algebra homomorphism and that Trq(F2) is an iso-
morphism for q = 1, 2. Afterwards, Boardman [4] stated that Tr3(F2) is also an
isomorphism. Remarkably, in mostly all the decade 1980s, Singer believed that
Trq(F2) is an isomorphism for all q. However, in the rank 5 case, he himself claimed
in [25] that it is not an isomorphism by showing that the indecomposable element
Ph1 ∈ Ext5,14

A (F2, F2) does not belong to the image of the transfer homomorphism,
where P denotes the Adams periodicity operator. Thence, he proposed the following
yet-left open.

Conjecture 1.1 [25, Conj. 1.1]. Trq(F2) is a monomorphism for any q.

As shown above, Singer’s transfer is an isomorphism in ranks � 3, and so, con-
jecture 1.1 is true in these ranks. The rank 4 case is the subject of this paper.
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Remarkably, the investigation of the image of the algebraic transfer of rank 4 was
completed by the authors in [5, 8, 9, 15] and [10]. More precisely, in [5], Bruner,
Hà and Hu’ng proved that

Theorem 1.2 [5, Thm. 1.1]. For each s � 1, the non-zero element gs ∈
Ext4,12.2s

A (F2, F2) is not in the image of Tr4(F2).

This result refuted a prediction by Minami in [14] that the localization of the
algebraic transfer

(Sq0)−1Trq(F2) : (Sq0)−1
F2 ⊗GL(q) PAHn(V ⊕q) −→ (Sq0)−1Extq,q+n

A (F2,F2)

given by inverting Sq0 is an isomorphism. More explicitly, when q = 4 and n =
12 · 2s − 4, following [5, Cor. 1.2], the localization of the fourth transfer given by
inverting Sq0 is not an epimorphism. As a continuation of the work [5], Hu’ng
proved in [9] that

Theorem 1.3 [9, Thm. 1.9]. Any element in the Sq0-families {D3(s)| s � 0} and
{p′s| s � 0} does not belong to the image of Tr4(F2).

Theorems 1.2 and 1.3 imply that there are infinitely many degrees in which the
fourth algebraic transfer is not an isomorphism. Further, those theorems together
with the following establish a prediction in Hu’ng [9, Conj. 1.10].

Theorem 1.4 [8, 10, 15]. Every element in the following families belongs to the
image of the fourth algebraic transfer Tr4(F2):

(i) {ds| s � 0}, {es| s � 0} (see Hà [8, Thm. 1.1]);

(ii) {fs| s � 0} (see Nam [15, Thm. 1.4]);

(iii) {ps| s � 0} (see Hu’ng and Quỳnh [10, Thm. 1.1]).

Alternatively, since the total transfer {Trq(F2)}q�0 is a homomorphism of alge-
bras and Trq(F2) is an isomorphism for q = 1, 2, 3, all decomposable elements in
Ext4A (F2, F2) belong to the image of Tr4(F2).

Now, based on the results of [5, 8–10, 15] on the image of Tr4(F2), Singer’s
conjecture 1.1 for Tr4(F2) turns out to be equivalent to the following.

Conjecture 1.5 Stated by the referee.

dim F2 ⊗GL(4) PAHn(V ⊕4) =
{

dim Ext4,4+n
A (F2,F2) − 1 if n is bad,

dim Ext4,4+n
A (F2,F2) if n is not bad.

Here n is called bad if it equals to the stem of one element in the three families
{gs| s � 1}, {D3(s)| s � 0} and {p′s| s � 0}, whose every element is not in the image
of the algebraic transfer of rank four. Otherwise, n is said to be not bad.

Thus, by verifying this conjecture, we will get the answer for conjecture 1.1 on
the fourth transfer. This will be presented in the sequel.
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The algebraic transfer we are describing is closely related to the hit problem in
literature [16] of determination of a minimal generating set for the F2-algebra Pq,
considered as an unstable A -module. The reader is familiar with an event that if F2

is an A -module concentrated in degree 0, then solving the hit problem is equivalent
to finding a basis consisting of all equivalence classes of homogeneous polynomials
for the Z-graded vector space over the field F2 :

QPq := F2 ⊗A Pq = {(F2 ⊗A Pq)n}n∈Z, n�0 = Pq/
∑
i�0

Im(Sq2
i

) = TorA
0 (F2,Pq),

where the homogeneous components (QPq)n := (F2 ⊗A Pq)n of degrees n are
F2GL(q)-submodules of QPq. Usually, one would investigate this tensor product.
Its structure was systematically depicted by Peterson [16] for q = 1, 2, by Kameko’s
thesis [11] for q = 3, and by Sum [27, 28] for q = 4. So far it has been thoroughly
studied for more than three decades by many topologist (see also [4, 5, 11, 17–19,
21, 23, 26–28, 30, 33]), but it remains unanswered for q � 5. We also emphasize
that in general, it is not easy to compute or even estimate the dimension of QPq in
each positive degree. Most notably, in his thesis [11], Kameko conjectured that an
upper bound on the dimension of (QPq)n is the order of the factor group of GL(q)
by the Borel subgroup Bq, i.e.,

dim(QPq)n � ord(GL(q)/Bq) =
2q(q−1)/2

∏
1�j�q(2

j − 1)

2q(q−1)/2
=

∏
1�j�q

(2j − 1),

for any n � 0. However, in 2010, the famous work [26] of Sum refuted the above
prediction. In order to reduce the process of the calculation of QPq in each certain
degree, one considers the arithmetic function μ : N → N, which is defined by

μ(n) = min{k ∈ N|n =
∑

1�i�k

(2di − 1), di > 0,∀i, 1 � i � k}, for all n ∈ N.

Theorem 1.6. For each non-negative integer n, the following assertions are true:

(i) (QPq)n = 0 if and only if μ(n) > q (see Peterson’s conjecture [16], Wood
[33]);

(ii) (QPq)n
∼= (QPq)(n−q)/2 if and only if μ(n) = q (see Kameko’s thesis [11]).

The statement (i) is given by Peterson’s conjecture. Peterson himself confirmed
it for q � 2. Afterwards, Wood proved the general case under a stronger form.

To close this section, we recall the already known results on Extq,∗
A (F2, F2) for

q � 4.

Theorem 1.7 [2, 3, 12, 31, 32]. The following hold:

(i) Ext1,∗
A (F2, F2) is generated by hi for i � 0 (see Adem [3]);

(ii) Ext2,∗
A (F2, F2) is generated by hihj for j � i � 0 and j �= i+ 1 (see Adams

[2] and Wall [31]);
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(iii) Ext3,∗
A (F2, F2) is generated by hihjh�, ct for t � 0; � � j � i � 0, and subject

only to the relations hihi+1 = 0, hih
2
i+2 = 0 and h3

i = h2
i−1hi+1 (see Adams

[2] and Wang [32]);

(iv) Ext4,∗
A (F2, F2) is generated by hihjh�hm, hucv, dt, et, ft, gt+1, pt, D3(t), p′t

for m � � � j � i � 0, u, v, t � 0, and subject to the relations in (iii)
together with h2

ih
2
i+3 = 0, hv−1cv = 0, hvcv = 0, hv+2cv = 0 and hv+3cv = 0

(see Lin [12]).

2. A solution to Singer’s conjecture on the rank 4 transfer

As mentioned above, the goal of this section is to verify Singer’s conjecture for
the algebraic transfer of rank four. To make this, we prove conjecture 1.5. Firstly,
let us recall that the domain of Tr4(F2) is isomorphic to the GL(4)-invariants
space (QP4)

GL(4)
n as vector spaces for all n. By this and theorem 1.6, we shall

compute the dimension of the domain of Tr4(F2) in the internal degrees n satisfying
μ(n) < q = 4. In these cases, due to Sum [27], n is of the following ‘generic’ forms:

(i) n = 2s+1 − t, t ∈ {1, 2, 3};
(ii) n = 2s+t+1 + 2s+1 − 3;
(iii) n = 2s+t + 2s − 2;
(iv) n = 2s+t+u + 2s+t + 2s − 3,

(2.1)

whenever s, t, u are the positive integers. We are now in a position to present our
main result.

Main Theorem. Let us consider generic degrees in (2.1). Then, conjecture 1.5 is
true in these degrees. Further, Tr4(F2) is an isomorphism in these internal degrees,
except item (i) with (s, t) ∈ {(6, 2), (5, 3)}, item (ii) with (s, t) = (2, 3) and item
(iii) with (s, t) ∈ {(4, 3), (1, 7)}. In these items, Tr4(F2) is a monomorphism, but
it is not an epimorphism.

The theorem has been proved by Bruner, Hà and Hu’ng [5, Prop. 4.4] for
item (iii) with (s, t) = (1, 2), by Hu’ng [9, Thm. 7.3] for item (iii) with (s, t) ∈
{(1, 7), (4, 3)}, by Sum [29, Thm. 4.1] for item (i) and by the present author for
items (ii), (iii) where t �= 3 (see [20, 21]) and item (iv) (see [22]). It is remarkable
that in [20, 21], we have proved the theorem for the cases (s, t) ∈ {(1, 2), (1, 7)}
by another method. Thus, we need only to prove the theorem for items (ii) and
(iii) with t = 3. Note again that the case (s, t) = (4, 3) has been proved by Hu’ng
[9]. However, it will be proved in this paper using other techniques. Before going
into detail, the known results will be briefly presented as well for the reader’s
convenience.

We first discuss the theorem for item (i), which has been proved by Sum [29].
Case n := ns, t = 2s+1 − t, 1 � t � 3, s � 1. According to Sum [29], the dimen-

sion of the domain of Tr4(F2) in degree ns t is determined by

https://doi.org/10.1017/prm.2022.57 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.57


1534 Đ. V. Phúc

dim F2 ⊗GL(4) PAHns, t
(V ⊕4) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if t = 1, and s = 1,
1 if t = 1, and s � 2,
0 if t = 2, and 1 � s � 2,
1 if t = 2, and s � 3,
0 if t = 3, and s � 1.

(2.2)

On the other side, by theorem 1.7, one gets

Ext4,4+ns, t

A (F2,F2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t = 1, and s = 1,
〈h3

0hs+1〉 if t = 1, and s � 2,
0 if t = 2, and 1 � s � 2,
〈d0〉 if t = 2, and s = 3,
〈h2

0h
2
s〉 if t = 2, and s � 4, s �= 6,

〈h2
0h

2
6,D3(1)〉 if t = 2, and s = 6,

〈D3(0)〉 if t = 3, and s = 5,
0 if t = 3, and s � 6.

(2.3)

We see that ns, t is bad for (s, t) = (6, 2), (5, 3) and that by the equalities (2.2),
(2.3), conjecture 1.5 holds for the degrees ns, t for 1 � t � 3 and arbitrary positive
integer s.

Notice that the non-zero elements h3
0hs+1, h

2
0h

2
s, and h2

0h
2
6 are decomposable in

the fourth cohomology groups Ext4,4+ns, t

A (F2, F2), and so they are in the image of
Tr4(F2). It is well-known that by Hu’ng [9], the indecomposable elements D3(0)
and D3(1) are not in the image of Tr4(F2) (see also theorem 1.3) and that by Hà
[8], the indecomposable element d0 is in the image of Tr4(F2) (see also theorem
1.4(i)). These results together with the equalities (2.2) and (2.3) show that Tr4(F2)
is an isomorphism in degrees ns, t, except the degrees n6,2 and n5,3. In the degrees
n6,2 and n5,3, the fourth transfer is a monomorphism, but it is not an epimorphism,
since

dim F2 ⊗GL(4) PAHn6, 2(V
⊕4) = 1 < 2 = dim Ext4,4+n6, 2

A (F2,F2),
dim F2 ⊗GL(4) PAHn5, 3(V ⊕4) = 0 < 1 = dim Ext4,4+n5, 3

A (F2,F2).

Next, we discuss the theorem for items (ii), (iii) where t �= 3 and item (iv). In
item (iii), the cases (s, t) = (1, 2) and (1, 7) have been proved by Bruner, Hà and
Hu’ng [5] and Hu’ng [9], respectively. The remaining cases have been proved by
the present author in [20–22]. More precisely, with item (ii), we have the following
case.

Case n := ns, t = 2s+t+1 + 2s+1 − 3, t � 1, t �= 3, s � 1. Our previous works
[20, 21] have shown that

dim F2 ⊗GL(4) PAHns, t
(V ⊕4) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if t = 1, and s = 1,
1 if t = 1, and s � 2,
1 if t = 2, and s = 1,
0 if t = 2, and s � 2,
1 if t � 4, and 1 � s � 2,
2 if t � 4, and s � 3.

(2.4)
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On the other hand, from theorem 1.7, we get

Ext4,4+ns, t

A (F2,F2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈h1c0〉 if t = 1, and s = 1,
〈h0h

3
s+1〉 if t = 1, and s � 2,

〈e0〉 if t = 2, and s = 1,
0 if t = 2, and s � 2,
〈h0hs+1h

2
s+t〉 if t � 4, and 1 � s � 2,

〈h0h
2
shs+t+1, h0hs+1h

2
s+t〉 if t � 4, and s � 3.

(2.5)
Then, the equalities (2.4) and (2.5) show that ns, t is not bad and conjecture 1.5
also holds for the degree ns, t whenever t � 1, t �= 3, and s � 1.

As is well known, {hj | j � 0} ⊂ Im(Tr1(F2)) (see Singer [25]), {cj | j � 0} ⊂
Im(Tr3(F2)) (see Boardman [4]), {ej | j � 0} ⊂ Im(Tr4(F2)) (see Hà [8] and
theorem 1.4(i)), and the ‘total’ transfer {Trq(F2)}q�0 is an algebra homomorphism
(see Singer [25]). So, together with the equalities (2.4) and (2.5), we assert that
Tr4(F2) is an isomorphism in degrees ns,t for each t � 1, t �= 3 and all s � 1.

Next, for item (iii) with t �= 3, we have the following case.
Case n := ns, t = 2s+t + 2s − 2, t � 1, t �= 3, s � 1. By theorem 1.7, we obtain

Ext4,4+ns, t

A (F2,F2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t = 1, and 1 � s � 4, s �= 3,
〈h2c1〉 if t = 1, and s = 3,
〈h1h

3
s〉 if t = 1, and s � 5,

0 if t = 2, and s = 1,
〈h2

0h2h4, f0〉 if t = 2, and s = 2,
〈h2

0h3h5, e1〉 if t = 2, and s = 3,
〈h2

0hshs+2〉 if t = 2, and s � 4,
〈d1〉 if t = 4, and s = 1,
〈h3

1h6〉 if t = 4, and s = 2,
〈h2

0h3h7, h1h3h
2
6〉 if t = 4, and s = 3,

〈h1h4h
3
7〉 if t = 4, and s = 4,

〈h1h
2
s−1hs+4, h1hsh

2
s+3〉 if t = 4, and s � 5,

〈h2
1h

2
t 〉 if t � 5, t �= 7, and s = 1,

〈h2
1h

2
7,D3(2)〉 if t = 7, and s = 1,

〈h3
1ht+2〉 if t � 5, and s = 2,

〈h1h3h
2
t+2, h

2
0h3ht+3〉 if t � 5, and s = 3,

〈h1h3h
2
t+3, h

2
0h4ht+4〉 if t � 5, and s = 4,

〈h1hsh
2
s+t−1, h

2
0hshs+t,

h1h
2
s−1hs+t〉 if t � 5, and s � 5.

(2.6)
Based upon the results in Bruner, Hà and Hu’ng [5, Prop. 4.4], Hu’ng [9, Thm.
7.3] and our previous papers [20, 21], the dimension of the domain of Tr4(F2) in
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degree ns, t is determined by

dim F2 ⊗GL(4) PAHns, t
(V ⊕4) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if t = 1, and 1 � s � 4, s �= 3,
1 if t = 1, and s � 3, s �= 4,
0 if t = 2, and s = 1 (see [5, Prop. 4.4]),
2 if t = 2, and 2 � s � 3,
1 if t = 2, and s � 4,
1 if t = 4, and 1 � s � 4, s �= 3,
2 if t = 4, and s � 3, s �= 4,
1 if t = 7, and s = 1 (see [9, Thm. 7.3]),
1 if t � 5, t �= 7, and s = 1,
1 if t � 5, and s = 2,
2 if t � 5, and 3 � s � 4,
3 if t � 5, and s � 5.

(2.7)
From the equalities (2.6) and (2.7), the only degree n1, 7 is bad and conjecture 1.5
is true for the degree ns, t whenever t � 1, t �= 3 and s � 1.

Based on theorems 1.3, 1.4, the equalities (2.6), (2.7) and the facts that {hs| s�0}
⊂ Im(Tr1(F2)) and the total algebraic transfer {Trq(F2)}q�0 is a homomorphism
of algebras (see Singer [25]), we may claim that Tr4(F2) is an isomorphism in
degrees ns, t for all t � 1, t �∈ {3, 7}, and any s � 1. When s = 1 and t = 7, it has
been shown in the proof of theorem 7.3 in Hu’ng [9] that the fourth transfer is a
monomorphism, but it is not an epimorphism in the internal degree n1,7.

Case n := ns, u, t = 2s+t+u + 2s+t + 2s − 3, s � 1, u � 1, t � 1. From theorem
1.7 and our previous work in [22], we have the following results:

dim F2 ⊗GL(4) PAHns, u, t
(V ⊕4) =

⎧⎪⎪⎨
⎪⎪⎩

1 if s = 1, u = 2, and t � 2,
1 if s = 2, u � 1, and t = 1,
1 if s � 2, u � 2, and t � 2,
0 otherwise.

(2.8)

Ext4,4+ns, u, t

A (F2,F2) =

⎧⎪⎪⎨
⎪⎪⎩

〈h0ct〉 if s = 1, u = 2, and t � 2,
〈hu+3c0〉 if s = 2, u � 1, and t = 1,
〈h0hths+ths+t+u〉 if s � 2, u � 2, and t � 2,
0 otherwise.

(2.9)

We should note that the remaining cases of s, u, t where dim F2 ⊗GL(4)

PAHns, u, t
(V ⊕4) = 0 = dim Ext4,4+ns, u, t

A (F2, F2) are described as follows: s = 1,
u = 1 and t � 1; s = 2, u = 1 and t � 2; s � 3, u = 1 and t � 1; s = 1, u = 2 and
t = 1; s = 1, u � 3 and t � 1; s � 3, u � 2 and t = 1. It is straightforward to see
that ns, u, t is not bad for all s, t, u and that by the equalities (2.8), (2.9), conjecture
1.5 holds in the degree ns, u, t for every s � 1, u �= 1 and t � 1.

Because {hs| s � 0} ⊂ Im(Tr1(F2)) (see Singer [25]) and {cs| s � 0} ⊂
Im(Tr3(F2)) (see Boardman [4]) and the total transfer {Trq(F2)}q�0 is a homo-
morphism of algebras, by equalities (2.8) and (2.9), we may assert that Tr4(F2) is
an isomorphism in the degrees ns, u, t whenever s � 1, u � 1, t � 1.
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We now prove the main theorem for items (ii) and (iii) with t = 3. Note that the
method of calculation used is similar to our previous works in [20–22].

Proof of main theorem. We first consider item (ii) with t = 3, i.e., degree
n := ns, 3 = 2s+4 + 2s+1 − 3 for all s � 1. Let us recall that due to Sum [27], the
dimension of (QP4)ns, 3 is given by the following table:

ns, 3 s = 1 s = 2 s � 3
dim(QP4)ns, 3 136 180 195

A monomial basis of (QP4)ns, 3 is also given in the same paper [27]. Taking this
basis, together with a computational technique similar to that of our works in [21,
22], we obtain that the GL(4)-invariant space (QP4)

GL(4)
ns, 3 is trivial if s = 2 and

is 1-dimensional if s �= 2. As it is known, F2 ⊗GL(4) PAHns, 3(V
⊕4) ∼= (QP4)

GL(4)
ns, 3 ,

the dimensions of the domain of Tr4(F2) in degrees ns, 3 are determined by

dim F2 ⊗GL(4) PAHns, 3(V
⊕4) =

{
0 if s = 2,
1 otherwise. (2.10)

On the other hand, from the result by Lin [12], it follows that

Ext4,4+ns, 3
A (F2,F2) =

⎧⎨
⎩
〈p0〉 if s = 1,
〈p′0〉 if s = 2,
〈h0hs+1h

2
s+3, h0h

2
shs+4〉 = 〈h0h

2
shs+4〉 if s � 3.

(2.11)

So, by the equalities (2.10) and (2.11), we deduce that ns, 3 is bad for s = 2 and
that conjecture 1.5 holds for the degrees ns, 3 = 2s+4 + 2s+1 − 3 for s � 1.

Since h0h
2
shs+4 ∈ Im(Tr4(F2)), by theorems 1.3, 1.4 and the equalities (2.10),

(2.11), the fourth transfer

Tr4(F2) : F2 ⊗GL(4) PAHns, 3(V
⊕4) −→ Ext4,4+ns, 3

A (F2,F2)

is an isomorphism for s �= 2, and that Tr4(F2) is a monomorphism, but not an
epimorphism for s = 2.

Finally, we consider item (iii) with t = 3, i.e., degree n := ns, 3 = 2s+3 + 2s − 2
for all s � 1. Notice that ns, 3 is an even degree, and so, the Kameko map

(Sq
0
)ns, 3 := Sq

0
: (QP4)ns, 3 → (QP4)(ns, 3−4)/2 ≡ (QP4)2s+2+2s−1−3

is an epimorphism of F2GL(4)-modules. This leads to an estimate

dim F2 ⊗GL(4) PAHns, 3(V
⊕4) � dim[(Ker((Sq

0
)ns, 3))

GL(4)]∗

+ dim F2 ⊗GL(4) PAH2s+2+2s−1−3(V ⊕4).
(2.12)

Here [(Ker((Sq
0
)ns, 3))

GL(4)]∗ denotes the dual of (Ker((Sq
0
)ns, 3))

GL(4). Following
Sum [29] and the equality (2.10), the coinvariant F2 ⊗GL(4) PAH2s+2+2s−1−3(V ⊕4)
is trivial if s = 1, 4 and is 1-dimensional otherwise. We need to compute the dimen-
sion of the GL(4)-invariant (Ker((Sq

0
)ns, 3))

GL(4). By Sum [27, 28], the dimension

of the kenel of (Sq
0
)ns, 3 is determined as follows:
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ns, 3 s = 1 s = 2 s � 3
dim Ker((Sq

0
)ns, 3) 49 90 105

Using this result and a similar computation as in [20, 22], we claim that
(Ker((Sq

0
)ns, 3))

GL(4) is trivial if s = 1, 2 and has dimension 1 if s � 3. From these
data, the inequality (2.12) implies that

0 � dim F2 ⊗GL(4) PAHns, 3(V
⊕4) �

⎧⎨
⎩

0 if s = 1,
1 if s = 2, 4,
2 otherwise.

(2.13)

On the other side, due to Lin [12], we find that

Ext4,4+ns, 3
A (F2,F2) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈h2
1h

2
3〉 = 0 if s = 1,

〈h2
0h2h5, h1h2h

2
4〉 = 〈h3

1h5〉 if s = 2,
〈h2

0h3h6, p1〉 if s = 3,
〈h2

0h4h7, p
′
1〉 if s = 4,

〈h2
0hshs+3, h1h

2
s−1hs+3〉 if s � 5.

(2.14)

It is known, the non-zero elements h3
1h5, h2

0hshs+3, for s � 3, and h1h
2
s−1hs+3 for

s � 5 are detected by the fourth transfer. In fact, this could also be directly proved
as our previous works [20–22] by using E1-level of Tr4(F2). For instance, a direct
computation shows that

Tr4(F2)([a
(1)
1 a

(2s−1−1)
2 a

(2s−1−1)
3 a

(2s+3−1)
4 ]) = [ψ4(a

(1)
1 a

(2s−1−1)
2 a

(2s−1−1)
3 a

(2s+3−1)
4 )]

= [λ1λ
2
2s−1−1λ2s+3−1] = h1h

2
s−1hs+3,

where the elements a(1)
1 a

(2s−1−1)
2 a

(2s−1−1)
3 a

(2s+3−1)
4 belong to PAHns, 3(V

⊕4), while
the linear transformation ψ4 viewed as a representation in the lambda algebra of
Tr4(F2) and determined as in [7]. The above equality implies that h1h

2
s−1hs+3 ∈

Im(Tr4(F2)) for every s � 5. Hence, combining with (2.14) and theorems 1.3, 1.4
gives

dim F2 ⊗GL(4) PAHns, 3(V
⊕4) �

⎧⎨
⎩

0 if s = 1,
1 if s = 2, 4,
2 otherwise.

(2.15)

Noting that by (2.13) and (2.15), the coinvariant space F2 ⊗GL(4) PAHn4, 3(V
⊕4) is

1-dimensional and has been computed by Hu’ng [9, Thm. 7.3] using other tech-
niques. So, his result showed that conjecture 1.5 holds for the degrees n4, 3 =
24+3 + 24 − 2. It is easy to see that the only degree n4, 3 is bad. These data together
with the inequalities (2.13), (2.14) and (2.15) imply that conjecture 1.5 is true for
the degrees ns, 3 = 2s+3 + 2s − 2 for every positive integer s.

It is well-known that by Hu’ng [9], the indecomposable element p′1 is not in the
image of Tr4(F2) (see also theorem 1.3) and that by Hu’ng and Quỳnh [10], the
indecomposable element p1 is in the image of Tr4(F2) (see also theorem 1.4(iii)).
At the same time, as shown above, the decomposable elements h3

1h5, h2
0hshs+3, for
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s � 3, and h1h
2
s−1hs+3 for s � 5 are in the image of Tr4(F2). So, combining with

the inequalities (2.13), (2.14) and (2.15), we conclude that the fourth transfer

Tr4(F2) : F2 ⊗GL(4) PAHns, 3(V
⊕4) −→ Ext4,4+ns, 3

A (F2,F2)

is an isomorphism for s �= 4, and that Tr4(F2) is a monomorphism, but not an
epimorphism for s = 4. The proof of the theorem is complete. �

Based on the main theorem and the results in Bruner, Hà and Hu’ng [5], Hu’ng
[9], Hà [8], Nam [15], Hu’ng and Quỳnh [10], we obtain the following corollaries.

Corollary 2.1. Let us consider the following generic degrees:

n := n
(1)
s = 2s+4 + 2s+1 − 4,

n := n
(2)
s = 2s+4 + 2s+2 + 2s − 4,

n := n
(3)
s = 2s+4 + 2s+2 + 2s+1 − 4,

n := n
(4)
s = 2s+5 + 2s+2 + 2s − 4,

where s is an arbitrary positive integer. Then, conjecture 1.5 holds true in these
degrees and Singer’s transfer is an isomorphism in the bidegree (4, 4 + n

(j)
s ) for

1 � j � 4 and all s > 0.

It is to be noted that in each degree n
(j)
s , we do not consider the case s = 0

since it has been discussed in the proof of the main theorem. Remark that by the
previous works in Hà [8], Nam [15], Hu’ng and Quỳnh [10], Singer’s transfer is
an epimorphism in the bidegree (4, 4 + n

(j)
s ) for 1 � j � 4 and all s > 0. Indeed,

following theorem 1.7, for each positive integer s, we have

Ext4,4+n(j)
s

A (F2,F2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈ds〉 if j = 1,
〈h2

s−1hs+2hs+4, es〉 if j = 2,
〈h2

s−1hs+1hs+3 = h3
shs+3, fs〉 if j = 3,

〈h2
s−1hs+2hs+5, ps〉 if j = 4.

(2.16)

By Singer [25], the decomposable elements h2
s−1hs+2hs+4, h

2
s−1hs+1hs+3 and

h2
s−1hs+2hs+5 are detected by the fourth transfer, Tr4(F2) for any s > 0. On

the other hand, by theorem 1.4, {ds| s � 0} ⊂ Im(Tr4(F2)) (see Hà [8]), {es| s �
0} ⊂ Im(Tr4(F2)) (see Hà [8]), {fs| s � 0} ⊂ Im(Tr4(F2)) (see Nam [15]) and
{ps| s � 0} ⊂ Im(Tr4(F2)) (see Hu’ng and Quỳnh [10]). So, the degrees n(j)

s are
not bad and Tr4(F2) is an epimorphism in those degrees for 1 � j � 4 and any
s > 0. Thus, to prove that Tr4(F2) is an isomorphism in degrees n(j)

s , we need only
to show that conjecture 1.5 holds true in these degrees n(j)

s . The proof is presented
as follows.

Proof. It is straightforward to check that μ(n(3)
s ) = 4 for every s > 0 and μ(n(j)

s ) = 4
for every s > 1 and j �= 3. Then, one has the following isomorphisms, which are
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special cases of a result in Hu’ng [9, Cor. 6.2]:

F2 ⊗GL(4) PAHn
(3)
s

(V ⊕4) ∼= F2 ⊗GL(4) PAHn
(3)
0

(V ⊕4), for all s � 1,
F2 ⊗GL(4) PAHn

(j)
s

(V ⊕4) ∼= F2 ⊗GL(4) PAHn
(j)
1

(V ⊕4), for all s � 2 and j �= 3.
(2.17)

Due to the equality (2.7) and the inequalities (2.13), (2.15) in the proof of the main
theorem, we get the equalities of dimensions in (2.18) below (except the concrete
values 1 or 2), which is also a special case of Hu’ng [9, Cor. 6.2]:

dim F2 ⊗GL(4) PAHn
(3)
0

(V ⊕4) = dim F2 ⊗GL(4) PAHn2, 2(V
⊕4) = 2,

dim F2 ⊗GL(4) PAHn
(j)
1

(V ⊕4) =

⎧⎨
⎩

dim F2 ⊗GL(4) PAHn1, 4(V
⊕4) = 1 if j = 1,

dim F2 ⊗GL(4) PAHn3, 2(V
⊕4) = 2 if j = 2,

dim F2 ⊗GL(4) PAHn3, 3(V
⊕4) = 2 if j = 4.

(2.18)
Thus, the equalities (2.16), (2.17) and (2.18) indicated that conjecture 1.5 is true

in degrees n(j)
s for 1 � j � 4 and all s > 0. The corollary follows. �

Corollary 2.2. Let us consider the following generic degrees:

n := n
(5)
s = 2s+3 + 2s+2 − 4,

n := n
(6)
s = 2s+6 + 2s+3 + 2s − 4,

n := n
(7)
s = 2s+6 + 2s − 4,

where s is an arbitrary positive integer. Then, conjecture 1.5 also holds true in these
degrees and Singer’s transfer is a monomorphism, but it is not an epimorphism in
the bidegree (4, 4 + n

(j)
s ) for 5 � j � 7 and arbitrary s � 1.

We remark that by the previous works in [5] and [9], Singer’s transfer is not an
epimorphism in the bidegree (4, 4 + n

(j)
s ) for 5 � j � 7 and all s > 0. Indeed, due

to theorem 1.7, for each positive integer s, one gets

Ext4,4+n(j)
s

A (F2,F2) =

⎧⎪⎨
⎪⎩
〈gs〉 if j = 5,
〈h2

s−1hs+3hs+6, p
′
s〉 if j = 6,

〈h2
s−1h

2
s+5, D3(s)〉 if j = 7.

(2.19)

We see that for each integer s > 0, the decomposable elements h2
s−1hs+3hs+6 and

h2
s−1h

2
s+5 are detected by the fourth transfer, Tr4(F2). However, by theorem 1.2,

gs �∈ Im(Tr4(F2)) (see [5]), and by theorem 1.3, p′s �∈ Im(Tr4(F2)) (see [9]) and
D3(s) �∈ Im(Tr4(F2)) (see [9]). So, the degrees n(j)

s are bad and Tr4(F2) is not an
epimorphism in those degrees for 5 � j � 7 and any s > 0. Thus, to prove that
Tr4(F2) is a monomorphism in degrees n(j)

s , we shall show that conjecture 1.5
holds true in these degrees n(j)

s . Note that the case j = 5 was proved by Bruner, Hà
and Hu’ng [5]. More explicitly, in [5], the authors show that the coinvariant space
F2 ⊗GL(4) PAHn

(5)
s

(V ⊕4) is trivial for any s > 0. This together with (2.19) imply

that conjecture 1.5 is true in the degree n(5)
s for every positive integer s.

We now prove the corollary for the cases j = 6 and 7.
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Proof. It is easy to check that μ(n(6)
s ) = 4, for every s > 1, and μ(n(7)

s ) = 4, for every
s > 2. So, we get the following isomorphisms, which are special cases of corollary
6.2 in Hu’ng [9]:

F2 ⊗GL(4) PAHn
(6)
s

(V ⊕4) ∼= F2 ⊗GL(4) PAHn
(6)
1

(V ⊕4), for any s � 2,

F2 ⊗GL(4) PAHn
(7)
s

(V ⊕4) ∼= F2 ⊗GL(4) PAHn
(7)
2

(V ⊕4), for any s � 3. (2.20)

On the other hand, from the proof of theorem 7.3 in Hu’ng [9], we have

dim F2 ⊗GL(4) PAHn
(6)
1

(V ⊕4) = 1 = dim F2 ⊗GL(4) PAHn
(7)
2

(V ⊕4). (2.21)

Then, by the equalities (2.19), (2.20) and (2.21), it may be concluded that conjecture
1.5 is also true in the degree n(6)

s and n(7)
s for any s > 0. The corollary is proved. �

By the main theorem and corollaries 2.1, 2.2, we see that

Corollary 2.3. Conjecture 1.5 is true for all n and so is, conjecture 1.1 for
Tr4(F2).
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