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Abstract

In this paper we study the asymptotic behavior of a general class of product-form closed
queueing networks as the population size grows large. We first characterize the asymptotic
behavior of the normalization constant for the stationary distribution of the network
in exact order. This result then enables us to establish the asymptotic behavior of
the system performance metrics, which extends a number of well-known asymptotic
results to exact order. We further derive new, computationally simple approximations
for performance metrics that significantly improve upon existing approximations for
large-scale networks. In addition to their direct use for the analysis of large networks,
these new approximations are particularly useful for reformulating large-scale queueing
network optimization problems into more easily solvable forms, which we demonstrate
with an optimal capacity planning example.
Keywords: Closed queueing network; large population; asymptotic analysis; exact-order
asymptotics; approximation methods
2010 Mathematics Subject Classification: Primary 60K25

Secondary 68M20; 90B22

1. Introduction

Closed queueing networks are commonly used in many fields of science, engineering, and
business to model a variety of real-world systems, e.g. communication networks, computer
systems, transportation networks, and supply chains. In particular, closed queueing networks
whose stationary distributions have a product-form solution are quite popular because many
steady-state performance metrics of interest can be expressed in simple analytical forms. Such
networks are referred to as product-form closed queueing networks. These product-form
networks have been playing, and continue to play, an important role throughout the lifecycle of
many real-world systems in science, engineering, and business from the stages of design and
implementation through the stages of operational management and system capacity planning.

It is well known, however, that the computational effort of calculating exact values for the
steady-state performance metrics of interest becomes prohibitively expensive as the population
size grows large, even for relatively simple networks. The underlying difficulty concerns
the calculation of the normalization constant of the stationary probability distribution, which
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involves a sum that grows combinatorially in the population size. Given the ever-increasing
size and complexity of the real-world systems of today, as well as those expected to emerge
in the future, it is therefore a necessary undertaking to understand more fully the behavior
of these closed queueing network models as the customer population size grows arbitrarily
large. Such mathematical results are important both for the theoretical insights they provide
into system behavior and for their practical application in deriving improved approximations
for the analysis and optimization of large-scale queueing systems.

There is a vast research literature on the analysis of closed queueing networks. The previous
research that most closely relates to the present study primarily falls into three categories: exact
solution methods, approximations for performance metrics, and analysis of the normalization
constant. Exact solution methods consist of iterative algorithms that either calculate the
normalization constant (e.g. the convolution method [4] and the local balance algorithm for
normalizing constants (LBANC) [6]) or directly calculate the performance metrics of interest
(e.g. mean value analysis (MVA) [21]). Each of these exact methods typically improves the
computational cost over that of direct calculation but still often requires a large number of
computations for networks with large populations. The second category is comprised of
methods to derive bounds on the performance metrics in question [16, Chapter 5]. For example,
Muntz and Wong [18] derived asymptotic bounds on the server utilizations and mean response
times for a closed terminal network with only single-server and infinite-server stations. Zahorjan
et al. [23] and Kriz [13] derived balanced job bounds on utilizations and response times by
replacing the original network with a balanced network. Other studies seek to obtain increased
accuracy at the cost of increased computational effort (e.g. [1], [5], and [10]). The third category
focuses on analyzing the normalization constant and using such an analysis to formulate useful
approximations for performance metrics of interest. Most previous studies focused on either
closed-form expressions [22, Chapter 1] or asymptotic approximations [11], [12], [17] for the
normalizing constant under rather restrictive assumptions on network structure or parameter
values.

In this paper we directly study the exact-order asymptotic behavior of a general class
of product-form closed queueing networks as the population size grows large. The main
contributions of this paper are as follows. We first characterize the asymptotic behavior of
the normalization constant for the stationary distribution of the network in exact order as the
population size grows large. The asymptotics of the normalization constant are, in general,
rather difficult to analyze directly, and so we develop a novel proof technique that makes use
of the z-transform and associated limit theorems. We are then able to establish the exact-order
asymptotic behavior of various system performance metrics, including system throughput and
server utilization, and the stationary queue-length distribution, mean queue length, and mean
response time at nonbottleneck stations. Our asymptotic results extend the existing results
on the asymptotic behavior of closed queueing networks to exact order, yielding significant
insights into system performance as a function of population size. We further demonstrate
additional benefits of such exact-order asymptotics. Firstly, we combine our formulae with
existing approximation methods to derive new, computationally simple approximations for
system performance metrics. We show that these new approximations significantly improve the
accuracy of existing methods for large-scale closed queueing network applications, especially
when there are multiple bottlenecks in the network. Secondly, the simple mathematical forms
and asymptotic exactness of these new approximations make them particularly useful for
reformulating large-scale queueing network optimization problems into forms that are more
easily solvable. We demonstrate this with an optimal capacity planning application, which is
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representative of the optimization of user sessions in the network management of Internet-based
data center environments. The problems of optimal fleet sizing and vehicle availability in large-
scale vehicle rental systems, which we studied in [8], provide yet another interesting application
area for the results presented herein.

The remainder of the paper is organized as follows. In Section 2 we discuss the details of the
class of queueing networks that we study. In Section 3 we give some preliminary mathematical
results on the z-transform. Section 4 presents our main exact-order asymptotic results. In
Section 5 we combine our asymptotic formulae with known performance bounds to obtain
improved approximations for networks with populations of arbitrary size. We demonstrate the
application of these results for optimization through an optimal capacity planning example. In
Section 6 we conclude and mention directions for future work.

2. Closed queueing network models

Consider a general class of closed queueing networks that consists of a fixed number, N, of
customers circulating among an arbitrary, but finite, number, M, of stations. We restrict our
attention to those closed queueing networks whose stationary distributions have a product-form
solution. Throughout the present paper, we will often refer to this general class of product-form
closed queueing networks more simply as a closed queueing network. Let M denote the set of
all stations, so that M = |M|. Let s; and u; be the number of servers and the mean service
rate of a server at station i € M, respectively. We categorize stations into three subsets with
M = SULU I, where S denotes the set of single-server stations (with s; = 1), L denotes the
set of multi-server stations (with 1 < s5; < N), and I denotes the set of infinite-server stations
(with s; > N). The service discipline at each station can be either first-come—first-served
(FCFS), processor sharing (PS), last-come—first-served (LCFS), or infinite server. Specifically,
we assume that S contains stations with PS, LCFS, and single-server FCFS disciplines, that L
contains stations with multi-server FCFS discipline, and that / contains stations with infinite-
server discipline. FCFS stations have exponentially distributed service times, while service
times for the remaining three service disciplines can be generally distributed.

Let p;; be the probability that a customer, upon completion of service at station i, moves
to station j. We assume that the routeing matrix P = [p;;] is irreducible. The solution to the
balance equations 7; = ) ; y 7 pji yields the relative throughput 7; of stationi foralli € M.
As these equations are linearly dependent, their solution is unique up to a multiplicative constant.

The queueing networks in which we are interested fall into the class of BCMP networks,
which are known to have product-form stationary distributions [2]. For a given population
size N, the continuous-time Markov process underlying the queueing network model has
state space §(N, M) = {(ny,na,...,ny): Zf‘il n; = N, n; > 0}. The stationary probability

P(n1, na, ..., ny) admits, for all (ny, ...,ny) € (N, M), the product-form expression [3]
| M
P(nl,...,nm:@gﬁ(no, )
where
yl.ni, ies,
! i el
- .V s 1 s
fitni) = { T min{j, 51} 2)
L, .
n_,'yl , iel,
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and T
Vi = L foralli € M. 3)
i
The term G(N) in (1) is the normalization constant chosen so that the stationary probabilities
sum to 1. Namely,

M
GNy= Y J]fitmo. “
Red(N,M)i=1

Once G(N) is obtained, many useful network performance metrics can be simply expressed
in terms of this normalization constant. For example, the actual throughput of station i, denoted
by A;(N), and the actual utilization of a server at station i, denoted by U; (N), can be written

as
G(N —1
Al(N) = ﬂiﬁ foralli e M, (5)
mi GI(N—-1) .
UiNy= 22 "D prallie SUL. ©6)
sii  G(N)

Unfortunately, the cardinality of the state space (N, M) defines the size of the sum in (4)
and it grows combinatorially as (M +A]/}/ _1), so calculating the normalization constant becomes

prohibitively expensive for large-scale networks.

3. Preliminaries on z-transforms

We now present some preliminary mathematical results on the z-transform, which is a
primary tool that we will use in our asymptotic analysis in Section 4. The z-transform of
a sequence is defined as follows.

Definition 1. For any sequence { f (n), n > 0}, its z-transform Z{ f (n)} is given by
(0.¢]
f@=) fmz", zeC
n=0

We present some important mathematical properties of the z-transform next, starting with
four well-known properties of the z-transform. For further details on these four results, we
refer the interested reader to [20].

Properties of the z-transform. Let {f(n), n > 0} and {g(n), n > 0} be two sequences
of real numbers with z-transforms f (z) and g(z), respectively. Then the following properties
hold.

Time shifting. If f(n) = g(n — k) for an integer k then f(z) = z"‘g(z).
Differentiation. If f(n) = ng(n) then f(z) = —zdg(z)/dz.

Convolution. If f(n) = g1(n) * g2(n) then f(z) =£12) - 8&(2).

First difference. If f(n) = g(n) — g(n — 1) then f(z) =((z—=1/2)g).

We will also use two well-known theorems for studying numerical sequences: the final value
theorem and the Stolz—Cesaro theorem. We present the precise statements of both theorems
next, referring the interested reader to [14, p. 581] and [19, p. 85], respectively, for additional
details.

https://doi.org/10.1239/jap/1339878801 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1339878801

Exact-order asymptotic analysis for closed queueing networks 507

Theorem 1. (Final value theorem.) Let { p, },>0 be a sequence of real numbers. Its z-transform
is given by p(z) = > ooy pnz". Thenlim,_c(1/n)Y "_y pi = lim,—1(z — 1) p(z) if either
one of the limits exists.

Theorem 2. (Stolz—Cesaro theorem.) Let {a,},° | and {b,},° | be real sequences, both tending
to 0o as n — 00, and suppose that {b,} is asymptotically strictly monotonic. Define Aa, =
a, — ap—1 and Ab,, similarly. Then

. dn . Aay
Iim — = lim —,
n—oo b, n—oo Ab,
provided that the limit on the right-hand side exists.

In addition, we obtain the following extension of the final value theorem, which will be
convenient for our proofs in Section 4.

Theorem 3. Let {f(n), n > 0} be a sequence of real numbers with z-transform as in Defini-
tion 1. For a fixed integer | > 1,

. S 1 @@=
nangO nl-1 - (-1 211_1)111 -1 f(@),

provided that the limit on the right-hand side exists.

Proof. Let the sequence { f)(n), n > 0} denote the jth order difference of the sequence
{f(n), n > 0}, defined as

fOm:=rm,  fPm:=ar9"Pw =90 - fU V@ -1 forall j = 1.
Upon applying the final value theorem to the sequence { =D (n), n > 0}, we have

> i—0 Fa) (z—D!
n

lim = lim(z — D) f'" V() = lim =—= f(2). (7)
z—1 z—1 Z

n— o0
where the second equality follows from a recursive application of the first-difference property
of the z-transform.

Applying the Stolz—Cesaro theorem, and using the facts that Af ) (n) = U+ (n) and
An™ =n"™ — (n — 1) ~ mn™! for large n, we have

- fOm D)
lim = lim ———
n—oo pl-1 n—oo (I — ])nl*2

A )

= lim ——

n—oo (I —1)!n
- lim 221=0 f(H)(i),
(I —1)!n>oo n

®)
where the last equality follows because Z?:o f (1_1)(1' )y=f (-2 (n), and we know that the

limit on the right-hand side exists and is given by (7). Since f Om) = fn), combining (7)
and (8) gives the desired result.
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4. Exact-order asymptotic results for closed queueing networks

‘We now apply the z-transform results presented in Section 3 to our closed queueing network
model. We first note that, for any M-station product-form closed queueing network, the
normalization constant G (N) has z-transform G(z) given by

M
G =[]/®. ©)
i=1

Equation (9) follows from the fact that the function G (N), by its structure, is the convolution of
the functions f;, and, hence, its generating function is the product of the generating functions
of the f; over all i € M [22, Chapter 1]. Here there are no assumptions on the form of the
fi, and, therefore, this is a general result which holds for any product-form closed queueing
network.

When the structure of the network is known, we can use (9) to write explicit forms for G(2).
As a specific example, for networks of the form described in Section 2, we can easily derive f;

from (2) as follows:
Z

, ies,
=Y
Fi(z) = {er/7, iel, (10)
F(ﬁ,si), icL.
Z
Here
M2 uk—l uk
Fu, k=11 — + . 11
(u, k) (+u+2!+ +(k_1)!+k!(1_u/k)> (11)

The derivation of the first two cases is obvious. For details on how to derive the third case, see
[9]. y

Note that in (10) the expression for the single-server and infinite-server cases of f;(z) can be
viewed as special cases of the multi-server case, obtained by setting s; = 1 or letting s; — 00,
respectively. We therefore rewrite (10) as

fi(z)=F(%,s,~> foralli € M, (12)

in which s; can take on values 1 and +o0.
We now present our exact-order asymptotic results for closed queueing networks of the form
detailed in Section 2. Formally, we say that G(N) ~ cf (N) if

G(N
im L = ¢ where c € (0, 00) is a constant.
N—oo f(N)
Thus, an exact-order asymptotic result gives us the rate at which G(N) grows as N becomes
large.
Define

T
pi = —L foralli e M,
SifLi

where p; is referred to as the relative utilization of station i. We next introduce the following
assumption to simplify the exposition.
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Assumption 1. Throughout the rest of the paper, we assume that the relative throughputs
{mi, i € M} are chosen so that max{p;, i € M} = 1 and that stations are labeled by their
relative utilizations such that 1 = p1 > pp > --- > ppy.

Note that p; = 0 for any infinite-server station i € /. To avoid the trivial case, we assume
that there exists at least one station i ¢ I with p; > 0. Define B := {i € M: p; = 1}, which
is the set of bottleneck stations. Clearly, |B| > 1.

‘We now present our main theorem that characterizes the asymptotic behavior of the normal-
ization constant G (N) in exact order.

Theorem 4. For any M-station product-form closed queueing network, the normalization
constant G(N), defined as in (1)—(4), satisfies the exact-order asymptotics

G(N) ~ CpN'BI7,
where Cp is a constant given by

Si

=

M
H Fi.

|B|
Cr= (|B|—1> 1:[

Proof. Letl = |B]|. Using the multi-server form (12) for f, , the z-transform for the sequence
{G(n), n > 0} can be written as

si—1

M
~ Vi —(si— )/l 5i x
6@ = Hff(” H( o e ) T

i=1 j=l+1
Applying Theorem 3 to the sequence {G(n), n > 0}, we have
. M
Gm)y 1 (-1 v ~
nILOO nl=1 "~ (=1 lml 71 G() = (- 1)| 1_[ s;! 1_[ fi ).

i=1 j=I+1

The desired result follows immediately.

Qualitatively, Theorem 4 states that, as N grows large, the rate at which G(N) grows is on
the order of N'BI=1 which is closely related to the number of bottleneck servers. With this
result we can now derive the asymptotic behavior of a number of system performance metrics
in exact order.

The following corollary is immediate from Theorem 4 and (5) and (6).

Corollary 1. For stationi € M, the actual throughput A;(N) and actual utilization U; (N),
as defined in (5) and (6), satisfy the following exact-order asymptotics:

1\ /BI-1
A;(N) ~n,-(1 - ﬁ) foralli € M, (13)

1\/BI-1
Ui(N)Np,-<1—N) foralli e SUL. (14)
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Note that by letting N — oo in (13) and (14) we have limy o0 A;(N) = m; foralli € M
and limy_ o U;(N) = p; foralli € S U L. Both limits agree with results that have been
previously established in the literature (see, e.g. [18]). Our results in (13) and (14) demonstrate
that the convergence is at the rate of (1 — 1/N)!BI=1 where the larger the bottleneck station set
B, the slower the convergence rate.

Let (XN,...,X 11:’,1) denote a random vector that represents the number of customers at the
stations in steady state when the closed queueing network has a total population size N. Let
X gc (X , I € B®) be the subvector on the number of customers at all nonbottleneck stations.
We can further characterize the asymptotic behavior of the stationary distribution of X, ge for
all nonbottleneck stations as follows.

Corollary 2. For a nonbottleneck station i ¢ B and a fixed integer m > 0, the marginal
queue-length distribution at station i satisfies the exact-order asymptotics

) [B|-1
PXY = m) ~ M(l — ﬂ) foralli ¢ B. (15)
Ji(D) N
Consequently, given an integer vector xge = (X|B|+1, - - ., Xm) = 0, we have
filxi) ( xi>'3‘
P(X. = xpe) ~ - — . (16)
g l_B[ i\ N
Proof. We can express P(X;(N) = m) as (see [15, Chapter 3])
Gpu—ir)(N —m)
POXGIN) = m) = fim) == 5= (17)

where G y—((x) is the normalizing constant for the stationary distribution of the closed
queueing network with station i removed and a total population size x. Applying Theorem 4,
we have, for large N,

Gu—iy(N —m) ~ CO (N —m)!BI1, (18)
where
o 1 |B| ys M
ch=—" TJI% (D).
5= B—nt Ly [T 7o
J=IB|+1, j#i

Combining (17) and (18), we then have (15).
Finally, we can easily establish (16) based on the product-form distribution and (15).

Note that by letting N — oo in (15) we obtain the limiting behavior

lim P(X;(N) =m) = M
Plugging in the values of f; and f; for each station in different categories, it is readily verified
that
(1 —pi)pi", i€s,
y!"
lim POX;(N)=m)={€ "+ iel,
N—o00 :
1 n
el
F(yi,si) Hj:l min{j, s;}
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where 1/ F (y;, si), defined asin (11), gives the steady-state probability of having zero customers
in an M/M/s; queue. Namely, as N — oo, the distribution of X; (N) converges to the queue-
length distribution of station 7 in a corresponding open BCMP network that has the bottleneck
stations removed. This coincides with a previous result that has been established in the literature
(see, e.g. [1]). We refer the reader to, e.g. [22, Chapter 1] for the proof of a special case in the
setting of a closed Jackson network.

The next corollary further characterizes the exact-order behavior of the mean queue length
and mean response time at nonbottleneck stations.

Corollary 3. For a nonbottleneck station i ¢ B, the mean queue length L;(N) and the mean
sojourn time R;(N) at station i respectively satisfy the following exact-order asymptotics:

f:/(l) 1 ‘B|—1 )
L,(N)"’-m(l—ﬁ) fOVCllll ¢B, (19)
£l .
Ri(N) ~ ————— ) B. 20
(N) Fm foralli ¢ (20)

Proof. Given the queue length distribution P(X;(N) = m) form = 0,1, ..., N, we can
compute the expected queue length as

L) = 3 PG = my = 3 mfs oy SH=@ W = m)
i( )-Em (Xi( )_m)_n;mf’(’")w
1 N-—1
= — C+Dfit+ DGy (N—-1-1)
G(N) ;
oy
= &G u—nH(N—1—1)
G(N) =
H(N -1
zﬁ, 1)

where g;(t) = (t + 1) f; (¢ + 1), and H (n) is the convolution of the two sequences {g;(n)} and
{G m—(i)(n)}. Hence, the z-transform of H (n) is given by the product

H(@) = Z{gi M) Z{Gu—i) ()} = §2)Gu—i)(2).

Using the time-shifting and differentiation properties of the z-transform, we have

2(2) = Z{gi(m)} = Z{(n + D) fi(n + D} = 2Z{nfi ()} = =2 f{ 2).

Applying Theorem 3 to the sequence {H (n), n > 0} with / = | B|, we obtain

. H(n) 1 - l)l i
nlggo nl—] = (l — 1)' Zﬁl Zl—l H(Z)
1 -1 I )
“a-oih (ZZH) Gu-i@D(=2"f (2))
= —Cy' [ (. o
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Then (19) follows immediately because

HN=1) —CYRmW-=niE-t <1 | )|B|—1

G(N) CpNIBI-T - i\ N

For the asymptotic result on the mean response time at station i, we apply Little’s law to
obtain

LiN)  HWN-1
~ A{N)  GWN-Dm’
where the second equality comes from (5) and (21). Applying Theorem 4 and (22), we then
have the desired result (20).

Ri(N)

Note that by letting N — oo in (19) we obtain the limiting behavior

£l )
fi(hy’

lim L;(N)=—
N—oo

Plugging in the values of f/ and fl for each station in different categories, it is readily verified
that

pi ,
, ield,
(I—p)
TTi el
: (N = 1 —, i€l
N
I L, s s-|: 8i pi }
[ n—y' + Lp.’ + , ielL.
F(yi, si) ,;O nt"t s 1= (1= pi)?

Namely, as N — oo, L; (N) converges to the mean queue length of station i in the corresponding
open BCMP network that has the bottleneck stations removed, which again coincides with a
previous result that has been established in the literature (see, e.g. [1]). Our result in (19) shows
that the convergence of the mean queue length at each nonbottleneck station is again at rate
1-1/N )IBI=1 " Note from (20) that the mean response time at each nonbottleneck station,
however, converges to the limit at a constant rate.

Remark 1. We will refer to (13), (14), (15), and (19) as asymptotically exact (AE) performance
approximations.

5. Performance approximations and optimization

We now combine our exact-order asymptotic results from Section 4 with existing bounding
methods to obtain new, improved approximations for the mean performance metrics of a closed
queueing network with arbitrary population size. In Sections 5.1 and 5.2, we present two
new approximations that arise when combining our exact-order asymptotic formulae with
the bounding methods of asymptotic bound analysis (ABA) [18] and balanced job bounds
(BJBs) [13], [23], respectively, two of the most widely used methods for approximating
throughput and response time in closed queueing networks. In Section 5.3 we demonstrate
the usefulness of these new approximations for optimization applications through an optimal
capacity planning example.
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5.1. Improving ABA bounds

ABA was developed by Muntz and Wong [18] to provide a computationally simple method
for determining bounds on throughput and response time in closed queueing networks. These
bounds require only the assumption that the service time of a customer does not depend on
the number of customers in the system, or at which stations the other customers are located.
ABA bounds are thus applicable to a wide variety of closed queueing networks, including the
networks we defined in Section 2.

System throughput, denoted by A(N), is equivalent to the throughput of the bottleneck
station(s), which is given by A1 (/N) under our labeling. The ABA bounds on system throughput
are derived by considering the two asymptotically extreme cases of light and heavy loads. When
inlightload, queueing effects are minimal and system throughput grows linearly with population
size. When in heavy load, system throughput is constrained by the maximum service rate of
the bottleneck station(s). Hence, the ABA upper bound on system throughput is given by

A(N) < mi N
< min D

, =: AABA(N), 23
i Slm} (N) (23)

where D =Y, g wi/mipi and Z =), ; i /mi ;. Intuitively, D corresponds to the ex-
pected total service time spent at single-server (SS) and multi-server (MS) stations, and Z
corresponds to the expected total time spent at infinite-server (IS) stations, and, therefore,
D + Z yields a lower bound on the cycle time obtained by ignoring queueing effects. The
upper bound in (23) is a piecewise-linear function of N, which reduces to the flat horizontal
line at sy for N greater than the ‘saturation point’. This saturation point is defined as the
population size at which the bottleneck station(s) reaches 100% utilization.

Incorporating our AE formula for A (N) from (13) should then improve the accuracy of (23)
near and beyond the saturation point. The AE-based approximation for system throughput is
then given by

N 1\/81-1

We note that in the case of a network with a single bottleneck, (24) reduces to the previous
ABA bound. In particular, we see that our proposed approximation provides the greatest
improvements in accuracy for networks with a larger number of bottleneck stations.

System response time, denoted by R(N), is related to system throughput via Little’s law and
is given by the equation (see [7])

N

R(N) = A Z. (25)
This definition of the response time is particularly common in the modeling of computer systems
[51, [7], [13], [16] in which users submit jobs to a network of computers for processing, where the
‘think time’ in between job submissions is modeled by IS stations. In this setting, Z corresponds
to the expected time that users spend in between job submissions, and R(N) corresponds to the

expected response time of submitted jobs through the network of computers.
Combining (23) and (25), we obtain the ABA lower bound on the system response time as

R(N) > max{D, - z} =: RABA().

ST

Similarly, combining (24) and (25), we obtain the AE-based approximation for the system
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FIGURE 1: Comparison of the ABA and AE-based approximations for networks with (a) four MS stations
and (b) 10 MS stations.

TaBLE 1: Error comparison for the ABA and AE-based approximations for MS network examples.

Average error (%) Maximum error (%)
ABA AE ABA AE

Throughput 4 MS stations 5.04 1.19 25.30 14.18
10 MS stations ~ 8.65 2.29 32.40 16.35

Response time 4 MS stations 4.53 1.11 20.19 12.42
10 MS stations ~ 7.55 2.18 24.47 14.05

Network

response time as

N
R(N)NmaX{D, (= /AT —Z}. (26)

Finally, noting that A;(N) = (m;/m1)A(N), we obtain an AE-based approximation for the
throughput of an arbitrary stationi € M as

N 1B
Ai(N)Nn—lmln{D+Z,s1M1<l—N> }

We illustrate and quantify the accuracy improvements of these approximations with two
examples. First, consider a four-station network where each station has three identical servers.
Each server at station i € {1, 2, 3} operates atrate u; = 15 customers per unit time. The servers
at station 4 each operate at rate ;4 = 20 customers per unit time. Routeing is symmetric,
ie. pjj = 025 for all i, j € {1,2,3,4}. In Figure 1(a) we plot the system throughput
obtained from different methods as a function of N. The solid line represents the exact solution
values obtained from MVA, the dotted line corresponds to the ABA bound, and the dashed line
corresponds to the AE-based approximation (24). Note that our AE-based approximation and
the ABA approximation overlap for N less than the saturation point.

In addition, consider a second, larger sample network with 10 stations. Once again, each

station has three identical servers. Each server at stationi € {1, ..., 6} operates at rate yu; = 7
customers per unit time. Each server at station i € {7, ..., 10} operates at rate u; = 12
customers per unit time. Routeing is symmetric, i.e. p;; = 0.1 forall i, j € {1,...,10}. In

Figure 1(b) we plot the system throughput obtained via the same three methods above as a
function of N.

In Table 1 we summarize the error percentages associated with the AE-based and ABA
methods for calculating system throughput and system response time. For each of the four
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scenarios, in Table 1 we give each method’s average and maximum percentage away from
the exact, MVA-obtained solution. Specifically, we find the average and maximum errors
of each method for N in {0, 5, 10, ..., 145} for the four MS station scenario and for N in
{0, 5,10, ..., 170} for the 10 MS station scenario. Note that if we continue further to the right
of either of these intervals, the error for both methods decreases.

In both examples, the ABA bounds provide a tighter approximation for small N over the AE
(second) terms in (24) and (26), but as N moves closer to the saturation point and then beyond,
the AE terms provide greater accuracy over the ABA bounds. This is as expected, since our AE-
based approximations are asymptotically exact. Our new AE-based approximations (24) and
(26) therefore provide tighter approximations than the ABA bounds in all cases, as demonstrated
by both Figure 1 and Table 1.

5.2. Improving BJBs

BIJBs are bounds on the throughput and response time of a network derived by considering
related networks that are ‘balanced’ in the sense that all stations have equal relative utilizations.
The performance metrics of these related balanced systems are used to provide bounds on the
performance of the original system. These bounds were first derived by Zahorjan et al. [23]
for product-form closed queueing networks with SS stations and were then extended in [13]
to include IS stations. Thus, BJBs are applicable to a smaller class of networks than the ABA
bounds. For the networks to which they are applicable, however, BJBs always provide a tighter
bound than the ABA bounds, at the cost of additional computational effort.

Let us consider a network consisting of only SS and IS stations, since BJBs are not applicable
to networks with MS stations. The BJB formula for system throughput is given by

N
D+Z+ (N -1DD/[|IS|A+ Z/D)]

A(N) < min{ ,m} =: ABB(w). (27)

This upper bound is a piecewise function of N, which reduces to the flat horizontal line at 1
for N greater than the saturation point. Hence, as with the ABA bound, we can incorporate our
AE formula for A1(N) from (13) to improve accuracy near and beyond the saturation point.
The new AE-based approximation is given by

. N 1\ B
A(N)Nmm{0+z+(/v—1)D/[|S|<1+Z/D)]’“‘<1_N> } )

Note that our approximation given in (24) can still be used for this case. However, it is obvious
that since the BJBs are always tighter than the ABA bounds, (28) will always provide a better
approximation than (24), at the cost of slightly more computational effort.

Analogous to Section 5.1, we use (25) and (27) to obtain the lower bound for the system
response time as

(N—1)D N

R(N) zmaX{D+—|S|(1+Z/D)’E

— z} =: RBB(N),

and use (25) and (28) to derive the AE-based approximation for the system response time as

(29)

{ (N-1D N }
R(N) ~ max{ D + VA

IS|(1+ Z/D)" ui(1 — 1/N)IBI=T
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FIGURE 2: Comparison of the ABA, BJB, and AE-based approximations for networks with (a) 50 SS and
50 IS stations and (b) 100 SS and 100 IS stations.

TABLE 2: Error comparison for the BJB and AE-based approximations for SS + IS network examples.

Average error (%) Maximum error (%)

BJB AE BIB AE

Network

Throughput 50 SS+50 IS stations 4.11 1.38 22.44 10.76
100 SS+4-100 IS stations ~ 8.35 4.86 23.94 18.72

Response time 50 SS4-50 IS stations 541 2.24 30.98 17.70
100 SS+100 IS stations 19.63 13.78 58.07 52.52

Again, noting that A;(N) = (m;/m1)A(N), we obtain an AE-based approximation for the
throughput of an arbitrary stationi € M as

T N 18!
A;j(N) ~ — min a1l —— .
T D+Z+ (N -1)D/[|SI(1+ Z/D)] N
We illustrate and quantify the accuracy improvements of these approximations with two
examples. First, consider a network with 50 SS stations and 50 IS stations labeled (as in

Section 4) such that S = {1,..., J} are the SS nodes and I = {J + 1,..., M} are the IS

nodes. Station i € {Il,...,20} operates at rate u; = 20 customers per unit time, station
i € {21,...,50} operates at rate i; = 30 customers per unit time, and station i € I operates
at rate u; = 10 customers per unit time. Routeing is symmetric, i.e. p;; = 0.02 for all

i,j € {l,...,100}. In Figure 2(a) we plot the system throughput obtained from different
methods as a function of N. The solid line represents the exact solution values obtained from
MVA, the dotted line corresponds to the ABA bound, the dash—dot line corresponds to the BJB,
and the dashed line corresponds to the AE-based approximation (28). Note that the AE-based
and BJB approximations overlap for N less than the saturation point.

In addition, consider a second network with 100 SS stations and 100 IS stations labeled as
above where S = {1,...,J} (SSnodes) and I = {J + 1,..., M} (IS nodes). Stationi € S
operates at rate «; = 50 customers per unit time, and station i € [ operates at rate u; = 5
customers per unit time. Routeing is symmetric, i.e. p;; = 0.005 for all i, j € {1, ..., 200}.
In Figure 2(b) we plot the system throughput obtained via the same four methods above as a
function of N.

In Table 2 we summarize the error percentages associated with the AE-based and BJB
methods for calculating system throughput and system response time. For each of the four
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scenarios, in Table 2 we give each method’s average and maximum percentage away from the
exact, MVA-obtained solution. Specifically, we find the average and maximum errors of each
method for N in {0, 100, 200, ..., 2000} for the network with 50 SS and 50 IS stations and
for N in {0, 100, 200, ..., 3400} for the network with 100 SS and 100 IS stations. Again, note
that, if we continue further to the right of either of these intervals, the error for both methods
decreases.

In both examples, the BJBs provide a tighter approximation for small N over the AE (second)
terms in (28) and (29), but as N moves closer to the saturation point and then beyond, the AE
terms provide increased accuracy. Our new AE-based approximations (28) and (29) therefore
provide tighter approximations than the ABA bounds and BJBs in all cases, as demonstrated
by Figure 2 and Table 2.

5.3. Optimization-based application

We now apply our approximations developed in Sections 5.1 and 5.2 to the optimization of
closed queueing networks. In particular, we use the motivating problem of determining optimal
session capacity for a terminal computer network, though the methodology is applicable to a
variety of problems concerned with optimization based on closed queueing networks. We
first provide the mathematical formulation of the problem and then present the results of a
corresponding set of numerical experiments.

A terminal network is a type of computer system in which a fixed number of user sessions
each submit jobs to be processed by a network of computer resources. In Figure 3 we illustrate
a general terminal computer network. Such terminal computer networks have been used, for
example, to model the performance impact and optimization of the number of user sessions in
the network management of Internet-based data center environments. These systems are often
modeled as closed queueing networks with one IS station (station 1) representing connected
user sessions and an arbitrary number of SS or MS stations (stations {2, ..., M}) representing
the pool of computer resources. When a user submits a job, it is processed by the resource
stations in a probabilistic order given by the routeing matrix of the network. Returning to the
IS station represents completion of the job. The delay time at the IS station represents the
think time of a user between job submissions. Thus, the model is a closed queueing network
with a population of size N. A critical decision in designing such a system is: How many
simultaneous user sessions should be allowed in the system?

In the closed queueing network model of this system, these operational decisions are
equivalent to asking for the optimal population size N. Let r; be the processing reward
per customer for station i € {2,..., M}. Let m; be a utilization threshold for station i €
{2,..., M}. For example, if a station overheats or slows down past 95% utilization, we place
a constraint on the utilization of that station. Let ¢ be an overhead-type cost incurred for

Computer system

©

@ resources
Station 1
(terminal) Stations 2, ..., M

FIGURE 3: A general terminal network.

https://doi.org/10.1239/jap/1339878801 Published online by Cambridge University Press


https://doi.org/10.1239/jap/1339878801

518 D. K. GEORGE ET AL.

maintaining a session per unit time. We can formulate a system-profit maximization problem

as
M

max riAi(N) —cN suchthat U;(N) <m; fori=2,...,M. (30)
NeZy iz
The exact solution to (30) can be obtained with an iterative algorithm, but this becomes
computationally expensive for large N due to the calculation of A;(N) and U;(N). Using
our approximations from Section 5.2, we formulate an approximate optimization problem as

M

max E rigi —cN
NeRy,geR? 155

such that

|B|—1
C]iSmin{A?JB(N),JT,(l—N) } fori=2,..., M, (31)

1

. NCE
miZmin{ui_lA?JB(N),n—l(l—ﬁ) } fori =2,.... M. (32)

Constraints (31) and (32) provide our approximations for A; (N) and U; (N), respectively. Note
that we have also relaxed the integrality requirement on N since our solution method no longer
requires N to be discrete. Thus, our problem can now be solved using common nonlinear
programming methods.

We illustrate our approximate optimization solution with the following example. Consider
a terminal network with 100 SS computer stations. The think time between job submissions
for each session is exponentially distributed with a mean of 13 seconds. After service at station
i, a job completes with probability p;; = 0.05. Otherwise, it is routed to another station
in the server pool, with each station being equally likely. The service time at each station is
exponentially distributed with a mean of 10 seconds. Let r; = $30 for all stations and ¢ = $0.2.

In Figure 4 we show a plot of profit versus N for our proposed AE-based approximation,
a BJB-only optimization, and an exact MVA solution. In Table 3 we summarize the solutions
found by each method. In this example, the exact solution is N* = 3759 with an optimal
profit value of $28 477. The BJB-only approximation gives N* = 2778, which yields a 26.1%

29500 o

29000 T
28 500 i

28000 -

Profit

27500 F !
27000

26500 -

0 1000 2000 3000 4000 5000
N

FIGURE 4: Comparison of solution methods for a 100-station terminal network.
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TABLE 3.

N* % of relative error

Exact 3759 0
AE based 3804 1.2
BJB 2778 26.1

error margin. Our proposed AE-based approximation gives N* = 3804, which renders only a
1.2% error. Thus, our proposed AE-based approximation very clearly offers greatly improved
accuracy over the widely used BJB approximation.

6. Conclusion

In this paper we derived the exact-order asymptotic behavior of a general class of product-
form closed queueing networks as the population size grows large. We first derived the exact-
order asymptotic behavior of the normalization constant of the stationary distribution, obtained
through a novel proof technique that makes use of the z-transform and final value limit theorems,
and used this to further establish the exact-order asymptotic behavior of a number of perfor-
mance metrics, including system throughput and server utilization, and the stationary queue-
length distribution, mean queue length, and mean response time at nonbottleneck stations. As
we established in Sections 4 and 5, our exact-order asymptotic results significantly improve
upon the quality and accuracy of existing bounds and limits for large-scale networks, thus
providing great benefit for practitioners. In addition to their direct use for the analysis of large
networks, the simple mathematical forms and asymptotic exactness of our new approximations
makes them particularly useful for reformulating large-scale queueing network optimization
problems into more easily solvable forms, which we demonstrated with an optimal capacity
planning example.

For future work, we plan to extend our analysis to study the exact-order asymptotics of closed
queueing networks with multiple routeing chains, which allow a different routeing matrix for
each different type of customer flow in the network.
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