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Melting and solidification in periodically time-modulated thermal convection are relevant
for numerous natural and engineering systems, for example, glacial melting under periodic
sun radiation and latent thermal energy storage under periodically pulsating heating. It is
highly relevant for the estimation of melt rate and melt efficiency management. However,
even the dynamics of a solid–liquid interface shape subjected to a simple sinusoidal
heating has not yet been investigated in detail. In this paper, we offer a better understanding
of the modulation frequency dependence of the melting and solidification front. We
numerically investigate periodic melting and solidification in turbulent convective flow
with the solid above and the melted liquid below, and sinusoidal heating at the bottom
plate with the mean temperature equal to the melting temperature. We investigate how
the periodic heating can prevent the full solidification, and the resulting flow structures
and the quasi-equilibrium interface height. We further study the dependence on the
heating modulation frequency. As the frequency decreases, we found two distinct regimes,
which are ‘partially solid’ and ‘fully solid’. In the fully solid regime, the liquid freezes
completely, and the effect of the modulation is limited. In the partially solid regime, the
solid partially melts, and a steady or unsteady solid–liquid interface forms depending on
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the frequency. The interface height can be derived based on the energy balance through
the interface. In the partially solid regime, the interface height oscillates periodically,
following the frequency of modulation. Here, we propose a perturbation approach that
can predict the dependency of the oscillation amplitude on the modulation frequency.

Key words: Bénard convection, sea ice, convection in cavities

1. Introduction

Periodic thermal modulations are common in our daily life (Berger & Wille 1972; Davis
1976), from low frequencies (in geophysical applications, e.g. daily and seasonal sunlight
cycles) to high frequencies (in industrial applications, e.g. electrical pulses). Periodic
thermal modulation with phase transitions also plays an important role in this broad range
of problems, in both nature and industrial applications, such as sea ice melting with tidal
warm current and melt ponds with sun radiation (Perovich & Polashenski 2012; Kim
et al. 2018; Popović et al. 2018; Yang et al. 2023a), tidal heating in Enceladus (Meyer
& Wisdom 2007), seasonal heating and cooling, and phase change materials (PCMs)
with cycles of storing and releasing energy (Sharma et al. 2009). Understanding this
frequency-dependent nonlinear thermal response to time-periodic boundary conditions
is necessary for evaluating the heat transport in these systems and dynamics of the
melting front, which are critical to e.g. estimate the glacier melt rate in the geophysical
context and the optimization of PCM-based thermal management systems in industrial
applications.

The effect of periodic thermal boundary conditions on single-phase flow has been
studied in depth (Jin & Xia 2008; Yang et al. 2020; Urban et al. 2022). Contrary to
the general thought that the time-averaged global quantities are unchanged by modulation
because the net force averaged over a cycle vanishes, a significant enhancement (up to
25 %) of heat transfer was found with a moderate period of thermal oscillation (∼100
free-fall time units) from the bottom wall, due to the perturbation of the thermal boundary
layers. Due to the significant effect of modulation, different ways of modulation are also
studied, such as temporally modulated temperature at the boundary (Jin & Xia 2008; Yang
et al. 2020; Urban et al. 2022), modulated rotation (Geurts & Kunnen 2014; Sterl, Li &
Zhong 2016) and modulated gravity (Gresho & Sani 1970; Rogers et al. 2000), which all
have important effects on the heat transport.

With a solid–liquid phase transition, the problem of periodic heating and cooling is
substantially more complicated due to the presence of a freely moving phase boundary
(Stefan problem). It becomes a two-way coupled problem, i.e. the interface shape changes
due to the flow beneath while such change of shape has feedback to the flow structures.
Previously, phase change problems with steady forcing have been studied both numerically
(Favier, Purseed & Duchemin 2019; Purseed et al. 2020; Couston et al. 2021; Ravichandran
& Wettlaufer 2021; Yang et al. 2023b,c) and experimentally (Davis, Müller & Dietsche
1984; Dietsche & Müller 1985), where the focus was on the interface height and the
roughness evolution. Similar to the modulation effect on single-phase flow, thermal
modulations also have a significant and relevant influence on phase evolution, but they
have hardly been explored so far.

Some previous work investigated melting and solidification under modulated
temperature boundary conditions, for situations with pure conduction (Shamberger et al.
2020) and with weak convection (Mazzeo et al. 2015). These previous studies focus mainly
on the phase change without turbulent flow. However, the coupling dynamic between the

998 A10-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

65
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.656


Melting in modulated convection

solid–liquid interface and the turbulent convection has been shown to have a significant
effect on the melting and solidification processes (Favier et al. 2019; Couston et al. 2021),
as well effects on fluid properties, such as density anomalies (Wang et al. 2021c,d; Wang,
Calzavarini & Sun 2021b; Yang et al. 2022) and salinity (Du et al. 2023; Yang et al.
2023b). A comprehensive review of phase change with flows can be found in a recent
study (Du, Calzavarini & Sun 2024). Moreover, the evolution of the solid–liquid interface
over different thermal modulation frequencies is even less explored.

In order to better understand the solid–liquid interface dynamics for modulated
heating and cooling, and give a full picture of the parameter space, we select turbulent
Rayleigh–Bénard convection (RBC) as a model system, where a fluid is heated from below
and cooled from above. The RBC is a paradigmatic example in the study of global heat
transport in thermally driven turbulent flow (Ahlers, Grossmann & Lohse 2009; Lohse
& Xia 2010; Chillà & Schumacher 2012; Xia 2013; Shishkina 2021; Lohse & Shishkina
2023, 2024), as it shares characteristics common to many systems of interest for natural
and industrial applications, and is also widely applied to investigate the dynamics of
multiphase flow (Zhong, Funfschilling & Ahlers 2009; Lakkaraju et al. 2013; Wang,
Mathai & Sun 2019; Liu et al. 2022a,b) and phase changes driven by convective heat
transfer (Davis et al. 1984; Dietsche & Müller 1985; Favier et al. 2019; Purseed et al.
2020). We add a simple harmonic heating temperature boundary condition at the bottom
plate and a constant cooling temperature boundary condition at the top plate. We model
the melting and solidification process with the phase-field method, which is used widely
for phase-change problems (Favier et al. 2019; Purseed et al. 2020; Couston et al. 2021;
Ravichandran & Wettlaufer 2021). The objective of this paper is to show how a pre-existing
fluid layer resists full solidification while periodically receiving or losing heat through the
bottom boundary, and to quantify the solid–liquid interface height.

The paper is organized as follows. The set-up and numerical methods are described in
§ 2. The main results are presented in §§ 3–5. The flow and solid–liquid interface structure,
and their temporal evolution under different modulation frequencies, are discussed in § 3.
The dependence of the average solid–liquid interface height and the heat transfer on the
modulation frequency is discussed in § 4. The oscillation amplitude of the solid–liquid
interface is discussed in § 5. The paper ends with the conclusions and an outlook
in § 6.

2. Governing equations and control parameters

The flow in RBC is confined between two parallel plates separated by a distance H, with
gravitational acceleration g acting vertically to these plates. We numerically solve the
velocity field u and the temperature field θ in the liquid phase from the Navier–Stokes
equations within the Oberbeck–Boussinesq approximation with the direct numerical
simulations solver AFiD, which is a second-order staggered finite difference, open-source
code from our research group (Verzicco & Orlandi 1996; van der Poel et al. 2015a). It
has already been validated extensively, and applied to studies of turbulent flows (van
der Poel et al. 2015b; Yang, Verzicco & Lohse 2016; Yang et al. 2020; Wang, Lohse
& Shishkina 2021a). To simulate the phase transition process, we use AFiD and the
phase-field method presented by Favier et al. (2019). In this method, the phase-field
variable φ is continuous in time and space, and transitions smoothly from value 1 in the
solid to value 0 in the liquid. The applied phase-field model was initially derived based on
entropy conservation, which guarantees the thermodynamic consistency, and also satisfies
the Gibbs–Thompson relation (Wang et al. 1993; Favier et al. 2019). The implementation
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and validation of the phase-field model are shown in previous work (Liu et al. 2021; Yang
et al. 2022).

The complete governing equations of the flow include the continuity equation, the
momentum equation and the heat transfer equation:

∂ui

∂xi
= 0, (2.1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ θδiz +

√
Pr
Ra

∂2ui

∂x2
j

− (1 − φ)2ui

η
, (2.2)

∂θ

∂t
= −ui

∂θ

∂xi
+ (1 + (λ− 1)(1 − φ))

√
1

Ra Pr
∂2θ

∂x2
j

− 1
St

dQ(φ)
dφ

dφ
dt
, (2.3)

where δiz is the Kronecker delta function.
The phase change process is modelled by the phase-field equation

∂φ

∂t
= M ∇2φ + St

αM
ε
(θ − θm)

dp
dφ

− M
4ε2

dG(φ)
dφ

. (2.4)

The independent control parameters in these equations are the Rayleigh number Ra
(measuring the strength of the thermal driving), the Prandtl number Pr (intrinsic material
property of the liquid), the Stefan number St (ratio of sensible heat and latent heat), and
the dimensionless cooling temperature at the top plate −θc:

Ra = βg(Th − Tm)H3

νκl
, Pr = ν

κl
, St = cp(Th − Tm)

L , θc = Tm − Tc

Th − Tm
, (2.5a–d)

where β is the thermal expansion coefficient, ν is the kinematic viscosity of the liquid,
κl is the thermal diffusivity in the liquid phase, cp is the specific heat capacity, and L is
the latent heat. Here, Th, Tm and Tc are the magnitudes of the heating temperature at the
bottom plate, the melting temperature (which may be variable due to e.g. pressure effects;
Couston 2021), and the cooling temperature at the top plate, respectively.

In the governing equations, the length is rescaled by the domain height H, the
temperature θ is a dimensionless representation of temperature T , relative to the melting
point at atmospheric pressure and scaled by the temperature difference Th − Tm across
the liquid phase, and the velocity is rescaled by the associated free-fall velocity Uf =√

gβH(Th − Tm) and corresponding free-fall time tf = H/Uf . Note that the free-fall time
scale is much shorter than the diffusive time scale td, with the relation tf = td/

√
Ra Pr,

so the modulation period in our parameter space is always shorter than the diffusive
time scale. The dimensionless melting temperature of the solid is set as θm = 0. For
the periodically modulated thermal boundary condition, we take a sinusoidal modulation
signal to the dimensionless bottom temperature as

θh = sin(2πft), (2.6)

where we introduce the modulation frequency f non-dimensionalized by the free-fall time
unit, as an additional control parameter. Equation (2.6) implies that the actual temperature
difference between the bottom and the solid–liquid interface varies sinusoidally between
−(Th − Tm) and (Th − Tm). Note that the bottom boundary can go below the freezing
point without solidification because solidification cannot occur directly at the bottom plate
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H

Liquid

θh(t) = sin(2πft)

θm = 0

–θc

Solid

h–

Figure 1. Illustration of the two-dimensional set-up and the boundary conditions. The black curve shows a
qualitative temperature profile.

where there is only the liquid phase (φ = 0) in the method that we use. Physically, this can
be regarded as the undercooling effect, where no nuclei formation and phase transition
occurs, in spite of being below the freezing point. This also has relevance to the natural
environment (e.g. the temperature of cold polar waters sometimes drops below the freezing
point; Haumann et al. 2020) as well as industrial applications such as the PCMs, where the
undercooling effect is also widely observed (Zahir et al. 2019; Shamseddine et al. 2022).

In (2.4), the phase-field method includes the dimensionless mobility M, the
dimensionless measurement of the interface thickness ε, the coupling parameter α, and the
penalty parameter η. The function G(φ) = φ2(1 − φ)2 is a double-well potential function,
and Q(φ) = φ3(10 − 15φ + 6φ2) is a smoothing function to ensure a smooth transition
between the solid and liquid phases. The choices of these parameters are M = 1 and
α = St/ε, ε is proportional to the grid size, and η is equal to the time step, which is
the same as in the previous study (Favier et al. 2019).

Our main focus in this paper is the effect of the modulation frequency f and the
dimensionless undercooling temperature θc on the melting and solidification dynamics.
We will vary 10−5 < f ≤ 1, following the range in a previous study of thermal modulated
convection (Yang et al. 2020), and 0.1 ≤ θc ≤ 1.4, which is a common temperature ratio
for ice and PCM (Dietsche & Müller 1985). Frequency f is typically low in geophysical
contexts due to factors like ocean currents and seasonal sunlight, while the heating
frequency of PCM can span across various frequency regimes (Sharma et al. 2009),
making the range of f explored in this study applicable to different scenarios. If θc = 0,
then the solid will finally melt completely, and θc → ∞ means that the liquid will finally
freeze completely. We fix Ra = 108, Pr = 10 and St = 10, which represents water at
approximately 8 ◦C. The thermal diffusivity ratio is λ = κs/κl = 7 for ice (James 1968).
When the modulation is absent, one would expect that for any θc > 0, the system will
finally freeze completely.

We conduct two-dimensional simulations in a domain with aspect ratio Γ = W/H = 2,
where W and H are the horizontal and vertical lengths of the domain, respectively,
as shown in figure 1. Note that in the RBC for Pr � 1, there are close similarities
between two- and three-dimensional RBCs (van der Poel, Stevens & Lohse 2013).
We impose no-slip boundary conditions for the top and bottom plates, and periodic
boundary conditions in horizontal directions. Initially, the velocity field is set to u = 0,
the temperature field θ in the liquid is set as a linear profile with some random fluctuations
to trigger the convective flow, and we have a flat solid–liquid interface at H/2, as shown in
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Figure 2. (a) The averaged melt front h̄ evolution as a function of time for different resolutions N in the vertical
direction at Ra = 108, f = 0.01, θc = 0.1. (b) The averaged melt front height as a function of N. One can see
the convergence of h̄, and our final choice of resolution is N = 192.

figure 1. We also conducted a resolution dependence check of our simulation at Ra = 108,
f = 0.01, θc = 0.1, as shown in figure 2.

One of the key response parameters in the system is the interface height h. The
dimensionless local interface height h(x, t)/H is defined by the location φ = 1/2. In this
paper, we focus mainly on the temporal evolution of the horizontally averaged interface
height h̄(t) = (1/W)

∫ W
0 h(x, t) dx. Another key response is the dimensionless heat flux

Nu, defined as

Nu = Qh̄
θh − θm

, (2.7)

where Q is the dimensionless vertical temperature gradient at the bottom plate.

3. Flow structures with temperature oscillation

In figure 3, we show the representative series of temperature field variations during
one period of sinusoidal heating temperature oscillations for different frequencies and
θc = 0.1. Two distinct flow regimes can be identified, as follows.

(i) The ‘fully solid’ regime for high frequencies (e.g. f = 1 as shown in figure 3a i–iv).
Here, the influence of the modulation is negligible because it is too fast to be sensed
by the system. Given that the temperature at the top is lower than the melting
temperature, the system freezes completely in the final state.

(ii) The ‘partially solid’ regime for low frequency (e.g. f = 10−2 as shown in
figure 3b i–iv). In this regime, the heating time in one period is long enough to
initiate convective flow, which breaks the symmetry between heating and cooling.
There are two stages in one period: one is the heating phase (figure 3b ii) when
θh > 0, and the other is the cooling phase (figure 3b iv) when θh < 0. In the heating
phase, frequent plume emissions are observed near the bottom plate, while in the
cooling phase, there is no plume emission from the bottom plate due to the stable
stratification. Although there is still convective flow in the cooling phase, it is
much weaker than that in the heating phase. Therefore the solid partially melts.
The ‘partially solid’ regime can be further distinguished in two sub-regimes: one
with convection always active for intermediate frequency (see figure 3(b); another
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1

–1

θ

(a)

f = 1

f = 10–2

f = 10–4

(b)

(c)

T0/4 T0/2 3T0/4 T0

(i) (ii) (iii) (iv)

(i) (ii) (iii) (iv)

(i) (ii) (iii) (iv)

Figure 3. (a) Snapshots of the temperature field in the liquid phase for f = 1 (note that tf = √
Ra Pr td) as

time evolves (i–iv). The system finally freezes completely. (b,c) Snapshots of the temperature field in the liquid
phase corresponding to four different phases of the sinusoidal period, for (b) f = 10−2, (c) f = 10−4, once a
statistical steady state is achieved. The colour map ranges from θ = −1 to θ = 1. The solid phase is represented
in white, and the black solid line represents the interface.

with intermittent convection, i.e. switching on and off with the heating and cooling
phases, for low frequency (see figure 3c).

For the heating phase, when the convective heat flux is strong and the solid undergoes
significant melting, the conductive heat flux within the solid also intensifies. This is
described by the conduction relation θc/(1 − h̄), where h̄ increases as the solid melts.
Consequently, a balance is achieved between the increased heat flux in both the liquid
and the solid. For the cooling phase, when the heat flux is weak and the solid undergoes
more freezing, the conductive heat flux within the solid weakens. This results in another
balance of heat flux between the liquid and the solid. Therefore, in the final equilibrium
stage, the total amounts of melting and freezing during the heating and cooling phases
become equal, leading the solid–liquid interface to reach an equilibrium height.

As the frequency decreases further (e.g. f = 10−4 as shown in figure 3c i–iv), with
very long heating and cooling times in one period, we found the solid–liquid interface to
become more unsteady, i.e. the interface height increases in the heating phase (figure 3c ii)
and then decreases in the cooling phase (figure 3c iv). During the heating phase, larger
temperature differences result in stronger convective flow and thus a higher solid–liquid
interface. Moreover, multiple plumes merge into a single strong plume near the bottom
plate, which significantly deforms the solid–liquid interface. During the cooling phase,
smaller temperature differences suppress the convective flow, and the height of the
solid–liquid interface becomes lower. Thus flow is completely damped out, and only purely
diffusive heat flux remains.

In figure 4, we show the temporal evolutions of the mean temperature profile for different
frequencies, where we can see the layer movement in the ‘partially solid’ regime. In
figures 4(a,b), the interface is independent of time. When the modulation frequency f
decreases (figures 4c,d), the oscillation magnitude of the interface gradually grows, and
the oscillation period of the interface stays the same as that of the thermal modulation at
the bottom plate. We can also see the asymmetric solid–liquid interface evolution: as the
temperature of the bottom plate increases in the heating phase, the solid–liquid interface
rises quickly due to strong convective heat flux, while as the temperature of the bottom
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1T0 2T0 3T0 4T0 5T0 6T0

1T0 2T0 3T0 4T0 5T0 6T0

1
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1

h

0

1

h

0

1

h

Time

(a)

(b)

(c)

(d )

1

–1

θ

Figure 4. Temporal evolutions of mean temperature profiles for (a) f = 10−2, (b) f = 10−3, (c) f = 4 × 10−4,
(d) f = 10−4 at θc = 0.1. The horizontal axis represents time, with total length 6T0, where T0 is the time of one
period in each case. The colour map ranges from θ = −1 to θ = 1. The solid phase is represented in white. One
can see that the period of the solid–liquid interface matches the period of thermal modulation at the bottom
plate, and the oscillation amplitude of the solid–liquid interface increases as f decreases.

plate decreases in the cooling phase, the solid–liquid interface moves downwards slowly
due to the weak convective heat flux. In figure 5, we show the temporal evolutions of
the mean temperature profile for different θc, where we can see that θc affects mainly the
equilibrium layer height.

In figure 6, we present the explored parameter space (in the parameter space spanned
by f and θc) and classify two different regimes, which again we identify qualitatively. The
‘fully solid’ regime exists for high f and high θc because the convective heat transfer is
limited under fast modulation, and high undercooling temperature at the top plate also
tends to freeze the liquid. The ‘partially solid’ regime exists for low f and low θc, where
convective heat transfer is strong enough to break the symmetry between the heating phase
and the cooling phase so that the net heat melts the solid instead of it being completely
frozen. For very low f , when the period is long enough, the solid–liquid interface oscillates
within one period. When f is low enough, the solid can freeze completely in one cooling
phase, which requires a much lower f than that explored in our parameter range.
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Figure 5. Temporal evolutions of mean temperature profile for (a) f = 10−2, θc = 0.1; (b) f = 10−2, θc = 0.4;
(c) f = 4 × 10−4, θc = 0.1; (d) f = 4 × 10−4, θc = 0.4. The horizontal axis represents time, with total length
6T0, where T0 is the time of one period in each case. The colour map ranges from θ = −1 to θ = 1. The solid
phase is represented in white.

Partially solid

10–5
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100
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10–1 100
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0

1

h–

Figure 6. Explored parameter space in the f versus θc parameter plane, displaying the different flow regimes.
These are indicated by different colours: the ‘fully solid’ regime is black, and the ‘partially solid’ regime
colours represent the mean height h̄.
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Figure 7. (a) Mean equilibrium solid–liquid interface height h̄ as a function of the modulation frequency f at
different θc. The shaded regions represent the region between the maximum height and minimum height of
the solid–liquid interface during one period. Two regimes are classified: ‘fully solid’ and ‘partially solid’ as f
decreases. (b) Plots of Nu at the bottom plate as a function of the modulation frequency f at different θc. Here,
Nu is calculated based on (2.7). In all cases, Nu( f ) shows a pronounced maximum at medium frequencies.

4. Quasi-equilibrium interface height

To distinguish the two regimes quantitatively, we plot the equilibrium solid–liquid
interface height h̄ as a function of f at different θc in figure 7(a). The dependence of h̄ on
f shows a similar trend for different θc. When f is large, h̄ = 0 because the liquid freezes
completely (‘fully solid’ regime). As f decreases to a certain value, h̄ starts to increase
after reaching equilibrium (‘partially solid’ regime). With f decreasing further, the mean
heating h̄ reaches a local maximum and then starts to decrease again. For frequencies
slightly smaller than the optimal one, the solid–liquid interface starts to oscillate obviously
within the period. The oscillation amplitude of the solid–liquid interface is shown as the
shaded region, which is the region between the maximum and minimum h in one period.

Based on the Stefan boundary condition, the solid–liquid interface is related directly
to the heat flux through the interface. Note that in this section, we consider only the
time-averaged interface height and heat flux; the temporal oscillation of the interface and
the heat flux will be considered in § 5. In figure 7(b), we plot the time-averaged heat flux
Nu (averaged over the whole simulation time) at the bottom plate as a function of the
frequency f for different top plate temperatures θc. For all these θc, Nu shows a trend
similar to that of h̄: Nu keeps constant at high f ; as f decreases, Nu increases and reaches
an optimal point, after which Nu decreases again. The trend of Nu versus f obtained here
behaves similarly to that of single-phase modulated thermal convection in Yang et al.
(2020) because of the same mechanism of perturbing the boundary layers by the temporal
modulation. The effect of modulation can be explained by introducing the Stokes thermal
boundary layer (Yang et al. 2020), which affects Nu by disturbing the thermal boundary
layer and velocity boundary layer. Depending on the thickness of these boundary layers,
different regimes of modulation frequency can be classified; see again Yang et al. (2020).

Another explanation for the observed different regimes can be attributed to the
separation of time scales. The equations governing the motion are normalized by the
free-fall time scale tf , where the characteristic velocity is determined by the buoyancy
difference between the melt temperature and the bottom temperature, and the total depth
of the domain. It can be inferred that when modulation is faster than the free-fall time scale,
the frequency of boundary layer oscillations is on the same time scale as the free-fall time

998 A10-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

65
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.656


Melting in modulated convection

h–

θc = 0.1

θc = 0.2

θc = 0.4

θc = 0.6

θc = 1.0

101

Nu/θc
102100

0

0.2

0.4

0.6

0.8

1.0

Figure 8. Mean equilibrium solid–liquid interface height h̄ as a function of Nu/θc at different θc. The dashed
line represents the derived model from the steady energy balance equation (4.2), which agrees well with
the simulation data in the ‘partially solid’ regime. The hollow circles represent the cases where an obvious
oscillation of interface in one period is observed, e.g. the case in figure 3(c).

scale. When this occurs, the boundary condition is evolving too fast for the convective
plumes to fully develop, thus the system enters the ‘solid’ regime, where the bottom
boundary condition is effectively zero by a separation of time scales. When the modulation
is slower than the diffusive time scale (

√
Ra Pr tf ), there can be an obvious movement of

the front over a long enough time in one period. For modulation periods falling between the
free-fall time scale and the diffusive time scale, modulation influences heat transfer and
results in melting, yet there is insufficient time for the melt front to adequately respond
within a single period.

The relation between heat flux and the equilibrium height can be derived based on the
non-dimensionalized Stefan boundary condition:

St
dh
dt

= 1√
Ra Pr

(Ql − Qs) = 1√
Ra Pr

(
Nu

θh − θm

h
− λ θm − (−θc)

1 − h

)
, (4.1)

where Ql and Qs represent the heat flux through the liquid phase and the solid phase,
respectively. We have set the melting temperature as θm = 0. At equilibrium state, i.e.
dh/dt = 0, (4.1) is reduced to

Nu
1
h̄

= λ θc

1 − h̄
. (4.2)

From (4.2), we can obtain the expression for the equilibrium height h̄:

h̄ = Nu/θc

λ+ Nu/θc
. (4.3)

We plot h̄ versus Nu/θc in figure 8. The numerical data show good agreement with (4.3).
There are some deviations at large h̄, corresponding to very low modulation frequency. The
reason is that in this regime, the time-dependent term dh/dt cannot be neglected. However,
most of the simulation data, especially for high frequency, follow the steady solution quite
well.
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5. Dependence of interface oscillation amplitude on control parameters

To obtain a relation between the oscillation amplitude A of the solid–liquid interface and
the control parameters f and θc in the ‘partially solid’ regime, we look into (4.1) with the
fluctuation of h taken into account. The solid–liquid interface height can be expanded as

h(t) = h̄ + h1(t), (5.1)

where h1(t) 	 h̄. We assume that the modulation of the heat flux follows the thermal
modulation at the bottom plate with a certain phase delay ψ , so that we can represent
the heat flux modulation by a sinusoidal function Ql(t) = Q̄(1 + ε sin(2πft + ψ)), where
Q̄ = 〈∂nθ〉t,S is the time-averaged normal heat flux over the melt front and time. Then by
applying (5.1) and the full equation of heat flux (4.1), we obtain

St
(

dh̄
dt

+ dh1(t)
dt

)
= 1√

Ra Pr

(
Ql(t)− θcλ

(
1

1 − h̄
+ h1(t)
(1 − h̄)2

+ O(h2
1(t))

))
. (5.2)

If we cancel out the time-independent terms using (4.2), then the equation for h1 can be
obtained as

√
Ra Pr St

dh1

dt
= εQ̄ sin(2πft + ψ)− Q̄2

θcλ
h1, (5.3)

which can be rewritten as

dh1

dt
= B1 sin(2πft + ψ)− B2h1, (5.4)

where B1 = εQ̄/(
√

Ra Pr St) and B2 = Q̄2/(θcλ
√

Ra Pr St) are both independent of t. By
solving (5.4), and substituting the analytical solution for h1(t) into (5.1), we can obtain the
full analytical solution for h(t):

h(t) = h̄ +
(

B1

B2
2 + (2πf )2

(B2 sin(2πft + ψ)− (2πf ) cos(2πft + ψ))+ c e−B2t

)
+ O(ε2), (5.5)

where c is a constant and depends on the initial condition. Since we focus only on the
equilibrium state, t → ∞ implies e−B2t → 0. Based on (5.5), the oscillation amplitude of
h(t) is

A(θc, f ) = B1√
B2

2 + (2πf )2
∼ 1

f
. (5.6)

Thus for f � B2/2π, we obtain the scaling relation A ∼ f −1, independent of θc. A
rough estimate from our simulation results gives B2 ∼ 10−4; therefore the assumption
f � B2/2π is valid for the large f in our simulations. We plot A as a function of f at
different θc from our simulations, and compare them to the scaling relation (5.6), as shown
in figure 9. The amplitude from simulations shows good agreement with the prediction.
The difference between simulation results and model prediction at low f < 10−4 is because
f is close to B2. As f decreases further, we expect that A will reach the asymptotic value
A = B1/B2, which is independent of f , but depends on θc. Note that the assumption that
Ql is sinusoidal with a phase lag relative to the bottom plate temperature as well as the
dependence of ε on f remains to be validated for even lower frequencies where asymmetry
is observed, e.g. figure 4(d).
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Figure 9. The oscillation amplitude A = (hmax − hmin)/2 of the solid–liquid interface as a function of the
modulation frequency f at different θc. The dashed line represents the model prediction from the perturbation
solution (5.6) as A = B1f −1 with fitting B1 = 7.9 × 10−6, since ε cannot be determined theoretically, which
agrees well with the simulation data.

6. Conclusion and outlook

In conclusion, this study presents a two-dimensional numerical investigation of the
dynamics and thermal responses of an oscillating melt–solidification front under simple
harmonic heating at the bottom plate. In general, we classified two regimes (‘fully solid’
and ‘partially solid’) for the thermal response of the melting front at different modulation
frequencies f and different θc at the upper plate. We also quantify the equilibrium interface
height h̄ based on the energy balance in the system, where Nu follows a trend similar to
that of Nu in single-phase modulated Rayleigh–Bénard convection (RBC) (Yang et al.
2020). We further derived a solution for the oscillation amplitude of the solid–liquid
interface from a perturbation solution, which shows good agreement with the simulation
data. Finally, we identified the two regimes in the f –θc plane: ‘fully solid’ and ‘partially
solid’.

We presented a comprehensive investigation of phase transition dynamics under a
harmonic thermal modulation coupled with turbulent thermal convection. Our work
expands upon the recent numerical study of melting/freezing with steady forcings
(Couston et al. 2021; Ravichandran & Wettlaufer 2021) to unsteady forcing. The frequency
regime of the thermal modulation is crucial and depends on specific applications. For
high-frequency applications such as pulsed electronic devices (Yang, Khandekar & Groll
2009), the regime is expected to be fully solid or partially solid with a steady layer
due to the rapid pulsing frequency ( f ). In geophysical contexts such as melt ponds and
glacier melting influenced by factors such as ocean currents (Ding, He & Xia 2022)
and seasonal sunlight (Perovich & Polashenski 2012), the modulation frequency is much
lower, placing basal melting in the partially solid regime with an unsteady layer. In this
regime, the quasi-equilibrium solid–liquid interface undergoes deformation and oscillation
within each period. Phase change material finds applications across various frequency
regimes (Sharma et al. 2009), making the framework developed in this study applicable to
different scenarios. The framework can also be extended to investigate other free-boundary
problems, including dissolution (Davies Wykes et al. 2018; Mac Huang et al. 2020)
and erosion (Ristroph et al. 2012; Amin et al. 2019), where the free-boundary condition
depends on the concentration gradient and the tangential velocity.
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Numerous open questions remain. A theoretical relation describing the dependence
of the regime transitions on f and θc is currently lacking, considering the complexity
of turbulent convection with changing heating temperature and deformable solid–liquid
interface. Exploring the flow dynamics in three dimensions and comparing it to
two-dimensional RBC (van der Poel et al. 2013) would be of interest. However, conducting
three-dimensional direct numerical simulations remains computationally demanding. The
impact of Ra, Pr and domain aspect ratio on the melting topography and the equilibrium
statistics is still unclear and warrants further investigation; see the Appendix for a
preliminary test. Note that Purseed et al. (2020) found multi-stability in RBC with a
melting boundary, which has implications for the choice and impact of initial conditions
(here H/2). We ran a series of simulations with different initial heights from 0.1H to 0.9H
at Ra = 108, f = 0.1, θc = 0.1. In our results, we did not see multiple flow states, which
could be because the choice of Ra in our case is too large for the existence of the state of
pure conduction. Multiple equilibrium states could appear for larger θc, which decreases
the interface height and the effective Ra. Moreover, with different starting phases of the
heating force (start with heating or cooling), and initial temperature profiles (start with a
dynamical state, with convection active, or with a static stable bottom boundary layer),
the results can be different. Answering these questions will require a thorough exploration
with simulations of different initial conditions with different control parameters. Future
studies should also consider multi-component liquids such as seawater, where both
temperature and salinity play significant roles in the flow structure and phase change
process. The effect of fluid properties and salinity effect is also explored by a series of
studies (Wang et al. 2021c,d; Wang, Calzavarini & Sun 2021b; Du et al. 2023), considering
the density anomaly and mushy-layer-induced convection. Additionally, variations in
salt concentration alter the temperature corresponding to the density maximum, thereby
influencing flow structures substantially.
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Appendix. Effect of Ra on the interface evolution

To show the dependency of Ra further, we run preliminary simulations at different Ra
(Ra = 107, 4 × 107) while fixing top temperature θc = 0.1 and modulation frequency f =
0.1, as shown in figure 10. However, it is not feasible to construct the full phase diagram for
various Ra due to the computational constraint. Although two-dimensional simulations are
relatively inexpensive, they require a long-time simulation when considering temperature
modulation. For instance, at least 60 000 free-fall time units are required to reach the
equilibrium state. Nonetheless, our simulations indicate that Ra indeed influences regime
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Figure 10. Mean layer height evolution with Ra = 107, 4 × 107, 108, with other parameters fixed ( f = 0.1,
θc = 0.1).

transitions. Specifically, as Ra decreases from 108 to 107, the system transitions from the
‘partially solid’ regime to the ‘fully solid’ regime. A full exploration of the Ra values, as
well as other initial conditions mentioned in the main part, is worth future work.
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