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Abstract
Thanks to its outstanding performances, boosting has rapidly gained wide acceptance among actuaries.
Wüthrich and Buser (Data Analytics for Non-Life Insurance Pricing. Lecture notes available at SSRN.
http://dx.doi.org/10.2139/ssrn.2870308, 2019) established that boosting can be conducted directly on the
response under Poisson deviance loss function and log-link, by adapting the weights at each step. This is
particularly useful to analyze low counts (typically, numbers of reported claims at policy level in personal
lines). Huyghe et al. (Boosting cost-complexity pruned trees on Tweedie responses: The ABT machine for
insurance ratemaking. Scandinavian Actuarial Journal. https://doi.org/10.1080/03461238.2023.2258135,
2022) adopted this approach to propose a new boostingmachine with cost-complexity pruned trees. In this
approach, trees included in the score progressively reduce to the root-node one, in an adaptive way. This
paper reviews these results and presents the new BT package in R contributed by Willame (Boosting Trees
Algorithm. https://cran.r-project.org/package=BT; https://github.com/GiregWillame/BT, 2022), which is
designed to implement this approach for insurance studies. A numerical illustration demonstrates the
relevance of the new tool for insurance pricing.
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1. Introduction andmotivation
Boosting emerged from the field of machine learning and became rapidly popular among insur-
ance analysts. In each iteration, boosting fits a base, or weak learner that improves the fit of the
overall model so that the ensemble arrives at an accurate prediction. Thus, the score is not speci-
fied by the actuary and estimated at once, as in generalized linear models (GLMs) or generalized
additive models (GAMs), but it is built sequentially. In every boosting iteration, only the best-
performing weak learner and hence the best-performing feature is included in the final model.
Also, only a small amount of the fit of the best-performing base-learner is added to the current
additive score. This is achieved by multiplying the new effect entering the score with a shrinkage
coefficient (a typical value is 0.1). Boosting is particularly effective when weak learners are trees of
limited depth.

Boosting is often applied on gradients of the loss function, that is, on the gradients of the
deviance function in insurance applications. Instead of maximizing the log-likelihood associated
with the response, gradient boosting applies a least-squares principle on its gradients. In this form,
boosting has become very popular among data analysts since its introduction in Friedman (2001),
and several open-source packages implement highly effective boosting algorithms. There have
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been numerous applications of gradient boosting to insurance pricing in the last decade. We refer
the interested reader to Lee and Lin (2018) for an extensive review of the different boosting algo-
rithms that have been proposed so far. Let us just mention a few of them, to demonstrate the wide
applicability of this approach in this context. Guelman (2012) applied gradient boosted trees to
predict motor insurance losses. Liu et al. (2014) considered claim frequencies, using multiclass
AdaBoost trees. Yang et al. (2018) adapted gradient boosted tree algorithm to Tweedie models.
Pesantez-Narvaez et al. (2019) employed XGBoost to predict the occurrence of claims using telem-
atics data. Henckaerts et al. (2021) worked with random forests and boosted trees to develop full
tariff plans built from both the frequency and severity of claims.

However, gradient boosting beyond the normal case typically faces the same problem that leads
to the adoption of GLMs for insurance applications. In Poisson regression, gradient boosting
consists in fitting raw residuals (corresponding to numbers of claims minus the expected claim
frequencies) by least squares. Least-squares principle is known to be outperformed by Poisson
regression for low counts, as those encountered in pricing personal lines. Indeed, for low expected
claim frequencies, raw residuals are concentrated around integer values. This suggests that apply-
ing the least-squares principle on gradients is not effective and exposes actuaries to the same
deficiency that led to themassive adoption of GLMs in the 1990s, in lieu of Gaussian linearmodels.

Wüthrich and Buser (2019) established that likelihood-based boosting can easily be achieved
when trees are used as weak learners under Poisson deviance loss with log-link, provided the
responses are reweighted and rescaled at each boosting step. Hence, responses can be used directly,
and there is no need to replace them with gradients as long as Poisson deviance loss is adopted,
with log-link. This is the approach adopted in the present paper.

Standard boosting algorithm does not adapt along the sequence of scores produced by the
forward stagewise additive procedure. Instead of allowing for trees with constant interaction depth
at each iteration, it might be more powerful to let the complexity of the newly added tree adapt to
the structure remaining to be learned from the data. This is exactly the idea leading to the ABT
machine proposed by Huyghe et al. (2022), where trees added to the score progressively adapt
their complexity to the amount of information left to discover from the data. Here, ABT stands
for adaptive boosting trees. This new approach also comes with a great added benefit: the stopping
criterion is then built inside the ABT algorithm, since the score stops growing when the newly
added tree reduces to the root-node one. A small bag fraction can be used to avoid that the ABT
machine gets trapped in a suboptimal solution when this occurs too early (but this seems to be
needed only when interaction depth is kept small, which is not required with the ABT machine).

The current paper presents the new BT package in R, contributed by Willame (2022). This
package implements boosting trees for Poisson-distributed responses using log-link function, as
well as the adaptive version proposed byHuyghe et al. (2022). It allows actuaries to build predictive
models and explore the influence of different features on the response. The BT package in R is
now available from CRANwhere it can be downloaded through install.packages(‘BT’). See
cran.r-project.org/package=BT.

The remainder of this paper is organized as follows. Sections 2–4 review the methodology. The
new package is described in Section 5. A numerical illustration is proposed in Section 6 to demon-
strate the capabilities of this new tool. It is shown there that BT package is highly competitive for
analyzing claim counts.

2. Insurance pricing
Consider a response Y and a set of features X1, . . . , Xp gathered in the vector X. In this paper, Y
is the number of claims reported by a policyholder from the portfolio. The dependence structure
inside the random vector (Y , X1, . . . , Xp) is exploited to extract the information contained in X
about Y . In insurance pricing, the aim is to evaluate the pure premium as accurately as possible.
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Here, the target is the conditional expectation μ(X)= E[Y|X] of the number of claims Y given
the available information X, so that μ(X) only refers to one component of the pure premium. In
fact, working in the frequency-severity decomposition of insurance losses, μ(X) is the expected
number of insured events to be multiplied by the expected claim size, or severity to get the pure
premium.

The function x �→ μ(x)= E[Y|X= x] is unknown to the actuary and may exhibit a complex
behavior in x. This is why this function is approximated by a (working or actual) premium x �→
π(x) with a relatively simple structure compared to the unknown regression function x �→ μ(x).

Let
D = {(y1, x1, ν1), (y2, x2, ν2), . . . , (yn, xn, νn)} , (2.1)

be the training set, where yi corresponds to the observed response for the ith record, the vector xi
gathers the corresponding features, and νi is a known weight (the exposure to risk for claim fre-
quencies). The estimates, or fitted values π̂(x) for μ(x), are obtained by minimizing the empirical
loss on D.

3. Poisson deviance loss functions
In practice, actuaries often use the Poisson distribution together with the log-link function for
modeling claim counts. The log-link function is generally chosen because of the multiplicative
structure it produces for the resulting estimates. In boosting, this link function is retained because
it ensures π̂ ≥ 0. This also allows the actuary to re-express boosting as an iterative procedure
acting on re-scaled and reweighted responses. The Poisson deviance loss function is given by

L(y, π̂(x))= 2
(
y ln

y
π̂(x)

− (y− π̂(x))
)
. (3.1)

4. Boosting trees
4.1 Forward stagewise additive modeling
Ensemble techniques assume structural models of the form

π(x)= g−1 (score(x)) = g−1

( M∑
m=1

T(x; am)
)
, (4.1)

where g is the link function and T(x; am), m= 1, 2, . . . ,M, are usually simple functions of the
features x, typically referred to as weak learners (see, e.g., Friedman, 2001), characterized by
parameters am. In (4.1), the score is the function of features x mapped to π(x) by the inverse
of the link function g, that is,

score(x)=
M∑

m=1
T(x; am).

Consider the training set (2.1). Estimating score(x) appearing in (4.1) by minimizing the
corresponding training sample estimate of the generalized error

min
{am}M1

n∑
i=1

νiL

(
yi, g−1

( M∑
m=1

T(xi; am)
))

(4.2)

is in general infeasible. It requires computationally intensive numerical optimization techniques.
One way to overcome this problem is to approximate the solution to (4.2) by using a greedy for-
ward stagewise approach, also called boosting. This consists in sequentially fitting a weak learner
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and adding it to the expansion of prior fitted terms. Each fitted term is not readjusted as new
terms are added into the expansion, contrarily to a stepwise approach where previous terms are
each time readjusted when a new one is added.

To prevent overfitting, cross validation is used to stop the boosting algorithm when its predic-
tion capabilities start to deteriorate. Early stopping plays a central role to ensure a sparse model
with optimal performances on new data. The optimal stopping iteration is the one that leads to
the smallest average empirical loss on an out-of-sample test data or as measured by cross valida-
tion. The latter technique consists in randomly splitting the training data-set into several parts (or
folds). Each part is then held out of the analysis and the model is fitted on the remaining data to
predict the observed values of the response in the part set aside. Cross validation is a convenient
way to balance goodness of fit and model complexity: a model too close to the training set will
often be worse for predictions, as it reproduces noise in the data (or overfits the training data).
We refer the reader to Hastie et al. (2008) for more information on cross validation.

This leads to the following algorithm:

1. Initialization:
Initialize ŝcore0(x) to be a constant by

ŝcore0(x)= argmin
s

n∑
i=1

νiL(yi, g−1(s)).

2. Main procedure:
Form= 1 toM do

a) Compute âm by solving the subproblem

âm = argmin
am

n∑
i=1

νiL
(
yi, g−1 (ŝcorem−1(xi)+ T(xi; am)

))
. (4.3)

b) Update ŝcorem(x)= ŝcorem−1(x)+ βT(x; âm)
for some specified shrinkage coefficient β .

End for
3. Output:

π̂boost
D (x)= g−1 (ŝcorem�(x)

)
wherem� is the optimal iteration that can be selected for instance by cross validation.

Boosting is thus an iterative method based on the idea that combining many weak learners
should result in a powerful one.

4.2 Binary regression trees as weak learners
In this paper, we use binary regression trees as weak learners. This is the case in the majority of
applications of boosting to insurance. Let I[·] be the indicator function, equal to 1 if the condition
appearing in the brackets is fulfilled and to 0 otherwise. Trees only use binary features I[Xj < t]
for ordered features Xj, with arbitrary threshold t or I[Xj ∈ S] for unordered categorical feature
Xj with S an arbitrary subset of the levels. Precisely,

• for a quantitative feature Xj, candidate splits t1, t2, . . . , tmj , with t1 < t2 < . . . < tmj are con-
sidered. Thresholds tk are half-way between consecutive values of xj in the database. This leads
to binary features Bjk = I[Xj < tk], k= 1, . . . ,mj.

• for an ordered categorical feature Xj with levels �1, �2, . . . , �mj ranked in ascending order,
lower levels are grouped to create

Bjk = I[Xj ∈ {�1, . . . , �k}] for k= 1, . . . ,mj − 1.
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• for an unordered categorical feature Xj with levels �1, �2, . . . , �mj , all strict subsets of levels
are considered to create

Bjk = I[Xj ∈ Sk] for every Sk ⊂ {�1, . . . , �m}, Sk �= ∅.
Considering all nonempty subsets Sk ⊂ {�1, . . . , �m} is effective for moderate m. For larger
m, some approximations are needed to keep computational time within reasonable limits.
Often, this amounts to considering the categorical feature as an ordered one through the
average response value in each level. Precisely, for an unordered categorical feature Xj with a
larger numberm of levels, it is turned into an ordered categorical feature Xj by ranking levels
�1, �2, . . . , �mj according to the mean value of the response in each level.

Trees are built sequentially and not optimized globally. Precisely, trees are grown by recur-
sive partitioning. This means that trees recursively partition the feature space in hyper-rectangles.
The estimated mean response is then taken as the average response for all data points falling
in the hyper-rectangle under consideration. The analyst starts with a large number of candidate
binary features Bjk for splitting the data. The score obtained from the preceding iteration is then
combined with new candidates Bjk and the binary split causing the largest drop in deviance is
integrated in the score.

This produces weak learners T(x; am) of the form

T(x; am)=
∑
t∈Tm

ctmI
[
x ∈ χ

(m)
t

]
, (4.4)

where
{
χ
(m)
t

}
t∈Tm

is the partition of the feature space χ induced by the regression tree T(x; am)
and {ctm}t∈Tm contains the corresponding predictions for the score in each terminal node.
For regression trees, am gathers the splitting variables and their split values as well as the
corresponding observed averages in the terminal nodes, that is,

am =
{
ctm, χ (m)

t

}
t∈Tm

.

We refer the reader to Denuit et al. (2020) for a presentation of tree-based methods applied to
insurance.

4.3 Boosting with Poisson deviance loss function under log-link
When we work with the log-link function and a response obeying Poisson distribution [and so
with a loss function of the form (3.1)], solving (4.3) amounts to build a single weak learner on the
working training set

D(m) = {
(r1,m, x1, ν1,m), (r2,m, x2, ν2,m), . . . , (rn,m, xn, νn,m)

}
replacing the initial training set D in (2.1), where adapted weights and ratios are given by

νi,m = νi exp (ŝcorem−1(xi)) and ri,m = yi
exp (ŝcorem−1(xi))

.

In fact, under the Poisson deviance loss function (3.1), (4.3) using the log-link function, that is,

âm = argmin
am

n∑
i=1

νiL
(
yi, exp

(
ŝcorem−1(xi)+ T(xi; am)

))
,

can be rewritten as

âm = argmin
am

n∑
i=1

νi,mL
(
ri,m, exp (T (xi; am))

)
. (4.5)
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A formal proof can be found in Proposition 3.1 in Hainaut et al. (2022). Boosting can thus be
performed on the responses, proceeding in an iterative way, by dividing the response ri,m with
exp (T(xi; am)) and multiplying νi,m with exp (T(xi; am)) at each step. This shows that gradient
boosting introduces an extra step, which is unnecessary and leads to an approximation that can
be easily avoided with boosting. This point was initially made by Wüthrich and Buser (2019).

This leads to the following algorithm:

1. Initialization:
Initialize ŝcore0(x) to be a constant by

ŝcore0(x)= argmin
s

n∑
i=1

νiL(yi, g−1(s)).

2. Main procedure:
Form= 1 toM do

a) Calculate weights
νi,m = νi exp

(
ŝcorem−1(xi)

)
and ratios

ri,m = yi
exp (ŝcorem−1(xi))

.

b) Calculate

âm = argmin
a

n∑
i=1

νiL
(
yi, exp

(
ŝcorem−1(xi)+ T(xi; a)

))
= argmin

a

n∑
i=1

νi,mL
(
ri,m, exp (T(xi; a))

)
.

c) Update ŝcorem(x)= ŝcorem−1(x)+ T(x; âm).
End for

3. Output:

π̂boost
D (x)= g−1 (ŝcorem�(x)

)
wherem� is the optimal iteration that can be selected for instance by cross validation.

Updating the weights each time together with the responses appears to be very intuitive for
actuaries. Responses ri,m at iteration m correspond to actual over expected ratios, or AE ratios
often used in insurance studies. Weights νi,m are estimated expected responses at the preceding
iterationm− 1.

4.4 Adaptive boosting
The idea behind ABT for adaptive boosting trees is to fit cost-complexity pruned trees in an adap-
tive way at each boosting step. In this approach, larger trees are fitted at earlier stages and they
progressively simplify until reducing to the single-node tree where the ABT machine stops. The
stopping criterion is thus built within the ABT algorithm and no computationally intensive cross
validation step is needed. The cost-complexity measure of tree T(x; am) is defined as

Rα(T(x; am))=
n∑
i=1

νi,mL
(
ri,m, exp

(
T(xi; am)

))+ α|T(x; am)|,

where the parameter α is a positive real number and |T(x; am)| denotes the number of terminal
nodes of T(x; am), called the complexity of tree T(x; am). The cost-complexity measure is thus a
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combination of the in-sample deviance and a penalty for the complexity of the tree under consid-
eration (more terminal nodes result in a more flexible, and hence complex model). The parameter
α is referred to as the regularization parameter and shares the same unit as deviance. For ease of
interpretation, it is often normalized by the in-sample deviance of the root tree, denoted Droot,
which leads to the cost complexity parameter

cp = α

Droot
.

The cost-complexity measure Rα(T(x; am)) can thus be rewritten as

Rα(T(x; am))=
n∑

i=1
νi,mL

(
ri,m, exp

(
T(xi; am)

))+ cpDroot|T(x; am)|.

Note that rpart provides complexity parameters rather than regularization parameters. We refer
the reader to Huyghe et al. (2022) for an extensive presentation of this method.

5. Getting started with the BT package
5.1 Packages related to BT
The BT package implements the boosting approach reviewed in the preceding sections. Each tree
in the expansion is built thanks to the rpart package. See Therneau and Atkinson (2018) for
more information about this R package. The default tree.control parameter is set so to grow
the biggest tree possible. However, as in other boosting packages, it might happen that some of the
built trees do not reach the value of interaction.depth specified by users. As we fully rely on
rpart (we do not have full expansion control), in some specific cases, we emphasize that some of
the grown trees might not be able to meet the above requirement (i.e., the original rpart grown
tree contains less than interaction.depth internal nodes). Competitors to BT include gbm3,
xgboost, and lightgbm that are considered in the numerical illustration performed in the next
section.

5.2 Trees structure in BT
In the (adaptive) boosting tree R-package described in this section, each tree in the expansion is
built using the rpart R-package. The rpart wrapper is perfectly fitted for the adaptive approach
in the Poisson case. Indeed, at each iteration, the adaptive boosting tree algorithm relies on the
minimal cost-complexity pruning procedure widely used within the rpart package and among
users. Moreover, rpart supports the Poisson deviance loss (which is not the case for general
Tweedie deviance losses).

Since (A)BT acts as a rpart wrapper, some tree building parameters are directly managed
by rpart. For instance, the size of the trees can be controlled within rpart by the parameters
maxdepth and minbucket. Recall that a regression tree with maxdepth=D has 2D terminal nodes,
each terminal node having D ancestors. More precisely, each terminal node of a regression tree
with maxdepth = D belongs to generation D + 1, the first generation being the root node (node 0
in Figure 1), the second generation being the two child nodes of the root node (nodes 1 and 2 in
Figure 1), the third generation being nodes 3, 4, 5, and 6 in Figure 1, and so on. Note that rpart
does not allow the user to specify the number of terminal nodes J nor the interaction depth ID of
the tree.

In our package, the rpart parameters cp and xval are respectively forced to−∞ and 0, which
means that the complexity parameter cp is left unspecified and that no cross-validation is per-
formed during the learning process. Notice however that these parameters can be changed by the
user if necessary.
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Figure 1. Illustration of the construction of the BT tree for ID = 3 based on rpart output. At each step, the splitting
candidates are highlighted in green, and the chosen strategy (best improvement by splitting this node) is highlighted in
red.

Trees with interaction depth ID correspond to trees with J = ID + 1 terminal nodes such that
at most two terminal nodes have ID ancestors. Unlike a tree with maxdepth = D, which has J = 2D

terminal nodes, a tree with ID = D contains J = D + 1 terminal nodes. Therefore, any tree with an
interaction depth ID can be seen as a subtree of a tree with maxdepth = ID. That is why, at each
iteration, a tree with maxdepth = ID is first built with rpart without any other constraints. In
case ID = 1, the resulting tree corresponds to the selected interaction depth, so that the obtained
tree is returned without any other adjustments. Otherwise, when ID > 1,

• Either the tree contains more than ID internal nodes. In that case, which is the most likely
one, the size of the tree must be reduced in order to get ID internal nodes.

• Or the tree contains less than ID internal nodes, which means that the biggest tree that can be
built is smaller than expected. In that case, the tree will be returned as such, without any other
adjustments.

In the first aforementioned case, a subtree thus still needs to be selected in order to get ID internal
nodes. The selection of this subtree with ID internal nodes is explained next, in Section 5.3 for
the boosting trees procedure and in Section 5.4 for the adaptive version of the boosting trees
procedure.

This leads to the following update of the algorithm’s main procedure explained in Section 4.3:

Form= 1 toM do
a) Calculate weights

νi,m = νi exp
(
ŝcorem−1(xi)

)
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and ratios

ri,m = yi
exp (ŝcorem−1(xi))

.

b) Fit a regression tree T0(x; âm) with maxdepth = ID on the working training set

D(m) = {
(νi,m, ri,m, xi), i= 1, . . . , n

}
.

c) If ID = 1, then T(x; âm)= T0(x; âm).
If ID > 1, then prune T0(x; âm) (as explained in Sections 5.3 and 5.4)
to get T(x; âm), unless |T0(x; âm)| ≤ ID + 1 in which case T(x; âm)= T0(x; âm).

d) Update ŝcorem(x)= ŝcorem−1(x)+ T(x; âm).
End for

Notice that the tree T0(x; âm) originally developed is bigger than needed, increasing the com-
putation time. However, it is worth to mention that the tree process is fully handled by external
well-developed (and well-known) package, leading to full transparency and easier handling.

5.3 Boosting trees
Thanks to rpart outputs, one can implement a greedy strategy starting from the root node
of the tree, as illustrated in Figure 1 for ID = 3. The initial rpart object is thus a tree with
maxdepth = ID > 1. The root node 0 is first split into two children nodes 1 and 2, so that the
subtree after one split has terminal nodes 1 and 2 and hence ID = 1. Then, node 1 is in turn split
into two children nodes 3 and 4, and node 2 is split into nodes 5 and 6. Among those two splits,
we select the one that maximizes the decrease of the Poisson deviance, say node 2 as in Figure 1,
so that the subtree after two splits has terminal nodes 1, 5, and 6 and ID = 2. Again, nodes 1, 5,
and 6 are in turn split into children nodes 3 and 4 for node 1, 11 and 12 for node 5, and 13 and
14 for node 6. The third split is then selected among those three splits as the one that maximizes
the decrease of the Poisson deviance, say node 5 as in Figure 1. The resulting tree has thus now
an interaction depth ID = 3 with internal nodes 0, 2, and 5. This process is continued until we
get the selected ID. In the example of Figure 1, we stop the procedure here since we achieved the
selected ID.

Notice that all this process is made possible thanks to the snip.rpart function in rpart.
From an initially built tree, this allows the user to create a subtree by specifying the branches to
be trimmed out. In addition, we emphasize that this function can also be interactively used by
clicking on particular nodes within the graphics window.

5.4 Adaptive boosting trees
The rpart outputs enable us to get the sequence of subtrees corresponding to the minimal cost-
complexity pruning procedure recalled in Huyghe et al. (2022) thanks to the cptable object.
Then, we select among these subtrees the largest one with at most ID internal nodes, i.e., the largest
subtree satisfying the inequality J ≤ ID + 1. Compared to boosting trees, the obtained subtree can
have this time less than ID internal nodes as explained in Huyghe et al. (2022). Moreover, it is
interesting to notice that even if the selected tree has exactly ID internal nodes, it can be different
from the one that would have been obtained with the boosting trees algorithm. Indeed, while the
boosting trees procedure uses a greedy strategy, the ABT approach improves this greedy strategy
by assessing the goodness of the splits by also looking at those deeper in the tree.
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5.5 Main arguments of BT
The user needs to define the following parameters:
formula: a symbolic description of the model to be fit, similar to what is required by other
R functions performing regression analyses. We emphasize that offsets are not supported but
that weights are used instead (that are the risk exposures) in line with the approach presented
in the preceding section. Moreover, it is worth noticing that the response variable is not the
number of claims but the claim frequency (number of claims divided by the exposure-to-
risk).

data: the database on which the computations will be performed.

tweedie.power: Tweedie power parameter for the response under consideration, which must
be set to 1 for the Poisson distribution. Moreover, only the latter distribution is currently
available.

ABT: boolean value to define whether we fit a Boosting Tree (=FALSE) or an Adaptive Boosting
Tree (=TRUE).

n.iter: number of iterations.

train.fraction: percentage of the data used as training set. The remaining part will be used as
validation set.

interaction.depth: maximum number of splits in each tree.

shrinkage: acts as regularization for additional iterations – the smaller the shrinkage generally
the better the performance of the fit. However, smaller shrinkage implies that the number of trees
may need to be increased to achieve a certain performance.

bag.fraction: fraction of the training observations randomly subsampled to fit a tree in each
iteration. This has the effect of reducing the variance of the boosted model.

colsample.bytree: number of variables randomly sampled that will be used to build the next tree
in the expansion.

cv.folds: number of cross-validation folds to create. If set to 1 (by default), no cross-validation
is performed.

n.cores: in case of cross-validation, the number of cores used to perform the parallelization.
Please note that in the cross-validation context, a call to the parLapply function is made. This
parameter is generally set to cv.folds -1.

tree.control: the proposed algorithm is based on the rpart package. This parameter will be
used to originally build each tree in the expansion. We emphasize that if interaction.depth is
set to NULL, each tree in the expansion will be built thanks to this parameters with no further
treatment. We recommend this parameter usage for advanced user only.

weights: a vector representing the weight given to each observation. By default, the same weight
(=1) is assigned to each observation.

seed: some of the parameters bring randomness during the algorithm. This parameter allows
the user to replicate the results.
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We emphasize that performing cross-validation produces a first global model trained on the full
training set as well as different cv related BT models. The former is generally further used while
the latter helps to assess performances, for instance.

The BT_perf function allows the user to determine the best number of iterations that has to
be performed. This one also depends on the type of errors that are available/have been computed
during training phase. The training.error is automatically computed. In case bagging is used, this
corresponds to the in-bag errors (i.e., a random subselection of the original training set). Also,

- If a train.fraction has properly been defined, a validation.error will be computed on the
validation set.

- If a bag.fraction has properly been defined, an oob.improvement vector will be computed.
- If cross-validation parameters have been filled, a cv.error will be computed.

These values are stored in the BTErrors object.
The optimal number of iterations can be selected in a number of ways, by specifying method

which can be set to validation, OOB, or cv depending on whether the user wants to use vali-
dation.error, oob.improvement or cv.error as previously explained. We emphasize that without
specifying the method argument a best-guess approach will be performed. If desired, the BT_perf
function plots the computed errors alongside returning the optimal iteration.

This sections only summarizes the main features of the package. An extensive presentation of
the BT package can be found in Willame (2022).

6. Numerical illustration
Now that the BT package has been presented, let us perform a numerical illustration to assess its
performances on a typical insurance data set. After having presented the database, we compare the
results obtained with the help of the BT package to competitors gbm3, xgboost, and lightgbm.
All these computations have been performed using R.

6.1 Descriptive statistics
The numerical illustration uses the freMTPLfreq database contained in the CASDatasets pack-
age contributed by Dutang and Charpentier (2020). It comprises features collected for 413,169
motor third-party liability insurance policies together with the number of claims reported to the
insurer. This database has often been used to illustrate insurance pricing methods.

The considered data set contains the following information:

PolicyID: The policy ID (used to link with the claims dataset).

ClaimNb: Number of claims during the exposure period.

Exposure: The period of exposure for a policy, in years.

Power: The power of the car (ordered categorical).

CarAge: The vehicle age, in years.

DriverAge: The driver age, in years (in France, people can drive a car at 18).

Brand: The car brand divided in the following groups:

- Renault Nissan or Citroen.
- Volkswagen, Audi, Skoda, or Seat.
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- Opel, General Motors or Ford.
- Fiat.
- Mercedes, Chrysler or BMW.
- Japanese (except Nissan) or Korean.
- Other.

Gas: The car gas, Diesel or Regular.

Region: The policy region in France (based on the 1970–2015 classification).

Density: The density of inhabitants (number of inhabitants per km2) in the city where the
policyholder lives.

The claim frequency defined as ClaimFreq= ClaimNb
Exposure has been computed and added to the

database. Before running the BT package, some records have been dropped: records with an expo-
sure larger than 1 year have been deleted, only drivers below the age of 90 are considered, and
only cars with vehicle age below 30 years are considered. Applying these choices, we ended up
with 411,305 records which represents 99.55% of the original number of records.

The working database’s total exposure and claim number, respectively, amount to 230,319 years
and 16,128 with a claim frequency of around 7%. Descriptive statistics are displayed in Figure 2.
Notice that the barplot represents the total exposure in the considered segment and should be
read on the left axis. The curve represents the claims frequency and its value can be read on the
right axis. Some observations can be drawn from these plots:

CarAge: As already mentioned, majority of cars have less than 30 years. The exposure above
20 years is quite limited. Regarding the claims frequency, it seems relatively stable up
to 12 years. A slight decrease can however be seen from this point on but should be
tempered by the low exposure observed above 20 years old.

DriverAge: Drivers are mainly aged between 30 and 55 years old. A clear trend is visible in the
claims frequency where younger drivers appear to be the most dangerous ones. This
observation can also be made for older drivers but has to be balanced by the low
exposure in that category.

Brand: Almost all the cars in the database are either Renault, Nissan, or Citroen. This fact
can easily be explained as the database gathers information from French insurers. On
the claims frequency side, no specific effect is visible.

Power: As this variable is ordered categorical, one can interpret the categories higher than
“k” as the most powerful cars. We can observe that this specific segment is not the
most represented in the database. Moreover, the claims frequency tends to increase
with the car power.

Density: Largest exposures correspond to small density values, showing that a large part of the
database is coming from rural areas or small cities. One can also underline a clear
increasing trend in the claim frequency.

Region: Most of the policyholders are coming from the “Centre” region, the most populated
area in France. It is followed by the “Ile de France” and “Bretagne” ones. The largest
claims frequency is observed for the “Ile de France” region, corresponding to Paris
area.

Gas: The database is well balanced between Diesel and Regular car gas. A slightly better
claim frequency can be noted for the Regular car gas.
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Figure 2. Univariate descriptive analysis. (a) CarAge. (b) DriverAge. (c) Brand. (d) Power. (e) Density. (f) Region. (g) Gas.

Now that the database has been thoroughly presented, let us continue with model fitting. To
this end, we split the database in three parts:

- a full training set that contains 80% of the randomly sampled records, further split into:
- a training set containing the 80% first full training set’s records.
- a validation set containing the 20% last records.

- a testing set that contains the remaining 20% records.

The testing set is reserved to model comparison. The claims frequencies observed in these three
sets are, respectively, of 6.99%, 7.11%m and 6.97%.
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6.2 Comparison
We now aim to compare the performances of competitor models, namely BT with and without
adaptive approach, gbm3, xgboost, and lightgbm. To this end, a grid search has been applied
for each competitor model. A set of possible parameters combination (so-called grid precisely
defined below) has therefore been created. In each case, every competitor model has been fitted,
and its performances have been assessed using either validation set or cross-validation approach.
Moreover, the test set performances have also been computed for each fitted model using the
optimal number of iterations obtained with the two approaches. Notice that the same predefined
grid has been used for all competitors. In other words, we looked for the best models inside this
grid of parameters only; all the othermodels’ specific parameters were therefore left to their default
values. We acknowledge that allowing for a deeper and/or competitor specific grid of parameters
might have led to better models and to different models comparison’s conclusion. The following
grid of parameters has been used for the present application:

- The interaction depth varies between 1 and 7. When possible, this parameter has been
interpreted as in BT package, that is, the number of nonterminal nodes. In particular,
- the lightgbm package does not have such parameter, but we rather used the number of

terminal leaves.
- in the same way, the xgboost package had to be tweaked to match with other approaches.

We therefore used the approx method to build the tree along with the maximum leaves
parameter.

- A bagging fraction of 50% has been applied with a bagging frequency of 1.
- A shrinkage of 1% has been used across all models.
- The minimal number of observations in a node has been set to 2.
- When cross-validation was performed, three folds were used.
- For all fitted model, 5,000 boosting iterations have been performed.

For each competitor, seven combinations of parameters have been tried out, and multiple per-
formances have been assessed. As one can notice, these possibilities only differ in the interaction
depth parameter. In the following, we refer to “run x” to mean that the parameters set corre-
sponds to the interaction depth x. In particular, the fourth BT fitted model can be reproduced
thanks to the following pseudo code (its Adaptive Boosting counterpart is easily obtained by
setting ABT = TRUE):

BT(
formula = (ClaimFreq ∼

Power + CarAge + DriverAge + Brand + Gas + Region + Density
),
data = full training set,
tweedie.power = 1,
ABT = FALSE,
weights = Exposure,
keep.data = FALSE,
cv.folds = 3,
train.fraction = 0.8,
n.iter = 5000,
interaction.depth = 4,
shrinkage = 0.01,
bag.fraction = 0.5

)
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Before diving into the results, the following technical aspects have to be stressed:

- As already mentioned, the BT package does not support offset. However, in our specific
framework, considering offset is equivalent to normalizing the response variable by the corre-
sponding weight value. Thus, it corresponds to working with ClaimFreq as response variable
and weights equal to Exposure. This approach has also be retained for xgboost as well as
lightgbm. In the gbm3 case, usual offsetting has been applied.

- For this example, the idea was to compute validation set performances as well as cross-
validation ones. We, however, emphasize that the former is not needed once the latter is used.
Moreover, it reduces the training set size to 64% of the working database rather than 80% (i.e.,
no split of the full training set). That being said, the size of the training set is deemed accept-
able to provide meaningful results. Depending on the package, either the full training set with
a training fraction of 80% (meaning that the first 80% records are used as train set and the
remaining as validation set) or the previously defined sets have been used. In any case, every
model fitting was performed so that the underlying sets remain similar.

- As described in the previous section, Adaptive Boosting does not necessarily need to perform
cross-validation. This conclusion is rather interesting to limit the computational cost. To keep
everything comparable, the single-root convergence has not been used as stopping criterion,
but we applied the same cross-validation process for all the competing models.

- We emphasize that the xgboost package required one-hot encoding for categorical vari-
ables. This approach has also been tested for the lightgbm package. In the latter case, the
retained option was however to use sparse matrix and point out the categorical variables to
the algorithm.

- Model performances were assessed thanks to Poisson deviance. Nonetheless, the Poisson loss
function used across the different competitor packages is not fully identical. For example,
it often uses the negative Poisson log-likelihood. To make graphs comparable, we therefore
needed to re-scale the furnished outputs to obtain the Poisson deviance.1 We also mention
that the represented total set deviance is obtained as the sum of the individual deviances
divided by the number of records within the considered set.

In Figure 3 (resp. Figure 4), the validation set errors (resp. cross-validation errors) are shown
for each competitor model across the seven parameters combination. The vertical dotted line rep-
resents the iteration which minimizes the error across all the seven runs. For clarity, the minimal
validation set and cross-validation errors are also summarized on Figure 5. As one can note, the
performances shown by the Adaptive Boosting and classical Boosting tend to outperform its com-
petitors for the cross-validation assessment. The results are obviously a bit more volatile using the
validation errors.

Using the validation set (resp. cross-validation) criterion, the optimal number of iterations
is obtained for each fitted model. Thanks to this information, the test set predictions as well as
the total set deviance are computed for every model under consideration. These deviances are
displayed in Figure 6. This assessment tends to show that the Adaptive Boosting is globally bet-
ter generalizing than its boosting competitors. That being said, if one solely sticks with the best
models obtained via cross-validation, i.e., fifth run for ABT, seventh run for BT, second run for
xgboost, . . .the lightgbm model is slightly better. Using the validation criterion, the xgboost
model seems a bit better. We finally note that the three competitors generalization performances
are basically almost equivalent. It furthermore demonstrates the relevance of BT package for
Poisson distributed response variable.

While deviance is one of the most used criteria, it might be interesting to look at other per-
formance measures. For clarity purpose, only the test set predictions obtained with the optimal

1In the lightgbm and xgboost cross-validation plots, it corresponds to a small proxy which supposes that the total
exposure within each fold is equal.

https://doi.org/10.1017/S174849952300026X Published online by Cambridge University Press

https://doi.org/10.1017/S174849952300026X


16 Gireg Willame et al.

Figure 3. Validation set deviance. (a) BT. (b) ABT. (c) gbm3. (d) xgboost. (e) lightgbm.

number of iterations in the cross-validation case are considered. Sometimes, only the results for
the best run are displayed to avoid increasing the number of results.

The left-hand side of Figure 7 displays histograms for predictions according to each best model.
Please note that the twenty bins have been obtained by uniformly dividing the intervals contain-
ing all the predictions. As the predictions are concentrated on the lower tail, a zoom on the first
five bins is performed on the right-hand side of Figure 7 where these five initial bins are divided
into twenty equidistant bins. It clearly seems that the predictions’ distributions are similar for all
models.

Following Tevert (2013), simple lift charts are represented in Figure 8. These plots are easily
obtained via the following process:

1. Compute the model predictions on the test set.
2. Sort the test set according to the obtained predictions (from lowest to highest).
3. Split the ranked observations into 10 buckets so that each band has the same exposure.
4. For each bucket, compute the average of observed ClaimNb and average of predicted values.

The results are globally similar. The models overestimate the highest frequencies and underesti-
mate the lowest ones, with a breaking point around the fourth decile. Notice that this may suggest
the need for an additional auto-calibration step. We refer the interested reader to Ciatto et al.
(2023).

The concentration curve and the Lorenz curve have also been investigated. More precisely,
we focused on two resulting metrics, namely the area bBetween the curves (ABC) and the
integrated concentration curve (ICC). The former is defined as the area between the two perfor-
mance curves, while the latter is defined as the area under the concentration curve. According to
Denuit et al. (2019), the Lorenz curve at a given level α represents the share of predicted claims
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Figure 4. Cross-validation deviance. (a) BT. (b) ABT. (c) gbm3. (d) xgboost. (e) lightgbm.

Figure 5. Minimal deviance for each run. (a) Validation set. (b) Cross-validation.

corresponding to the α% of policies from the portfolio with the lowest predicted values. The con-
centration curve at this level gives the corresponding share of the true claims that should have
been predicted from this sub-portfolio. The ABC and ICC metrics can therefore be interpreted as
follows:
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Figure 6. Minimal test set deviance for each run. (a) Validation set. (b) Cross-validation.

Figure 7. Predictions’ histogram – Min. predicted value= 7.52× 10−5, band length= 0.025 for the left graph (0.006 on the
right graph). (a) All bands. (b) Zoom on first five bands.

- A large difference between the two curves suggests that the considered predictor poorly
approximates the observation. We therefore want to minimize the ABC metric, which is the
area contained between the concentration curve and the Lorenz curve.

- The more convex the concentration curve, the better. In fact, a convex curve will result in
a better classification (lower risk will be less charged compared to higher ones). Due to its
properties, this is equivalent to minimize the ICC.

One can observe in Figure 9 that there is no model jointly minimizing the two metrics. In fact,
the BT package appears to be better in terms of ICC, while gbm3 has a lower ABC. If we ignore
the latter package that previously showed the worst performances, the BT models along with
lightgbm tend to be a good trade-off. In particular, the third Adaptive Boosting run appears to be
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Figure 8. Simple lift chart for best CV-runs. (a) BT. (b) ABT. (c) gbm3. (d) xgboost. (e) lightgbm.

Figure 9. Rank performances. (a) ICC/ABC. (b) Kendall Tau’s.

an appropriate candidate. Kendall’s rank correlation coefficients have also been computed. This
well-known metric allows the user to measure the concordance between observations and predic-
tions. Obviously, this assessment is closely related to previous metrics. The results are displayed
on the right-hand side of Figure 9. This computation seems to heavily favor the BT approach. As
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Table 6.1. Variable importance (in %)

Variable BT ABT gbm3 xgboost lightgbm

Brand 6 7 6 6 7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CarAge 8 8 5 9 9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Density 25 24 22 28 25
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DriverAge 41 39 39 41 40
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gas 4 4 3 4 4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Power 11 12 14 8 10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Region 6 7 11 4 5

pointed out byWüthrich (2023), it is worthmentioning that ICC andABC are not consistent scor-
ing rules for the mean. In the class of autocalibrated predictors, ICC is a consistent scoring rule
and ABC is always zero. However, the models considered in our illustration are not necessarily
autocalibrated.

We finally end up this comparison by discussing the so-called variable importance. To that
end, the one-hot encoded importance has been summed up for the xgboost package. The results
are displayed in Table 6.1. Importances are globally similar across the different competitors.
Moreover, it clearly seems that the Density and the DriverAge are way more important compared
to the other ones. This observation is aligned with the descriptive analysis where clear trends were
observed for these features. One can also underline the fact that these two variables are continuous
and that the tree-based approach typically favors such features.

7. Discussion
As shown in the numerical illustration, the performances obtained with the help of the BT package
are among the most powerful ones for all considered metrics. Of course, these findings relate to a
specific database, and different results could be obtained with other ones. Also, creating different
testing set and/or using other seeds across runs might have led to different ranking. We refer to
Denuit et al. (2020) for a thorough explanation. We acknowledge that the numerical illustration
has been performed with a rather limited grid of parameters and that the BT computational time
was the longest one.

The BT package is still under development. In its current version, NA values are automatically
dropped from the input database. In the future, we could rely on the NA treatment given by the
rpart package which is based on surrogate variables. Moreover, the convergence to a root node
seems to be the natural stopping criterion for the Adaptive Boosting, and this approach still has
be implemented. Finally, an extension of the package to all members of the Tweedie family would
be highly relevant to actuarial science applications. In particular, such an extension would require
modifications to the rpart package to enable it to handle Tweedie distributions. We are currently
working on such an extension to our BT package.

Data availability statement. To replicate the results, the BT package used in this article can be downloaded via
the DOI link https://doi.org/10.5281/zenodo.10071474 as well as via the Comprehensive R Archive Network (CRAN)
https://cran.r-project.org/package=BT (version v0.4).
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