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Abstract

New scientific knowledge is needed more urgently than ever, to address global challenges such as climate change,
sustainability, health, and societal well-being. Could artificial intelligence (AI) accelerate science to meet these
global challenges in time? AI is already revolutionizing individual scientific disciplines, but we argue here that it
could be more holistic and encompassing.We introduce the concept of virtual laboratories as a new perspective on
scientific knowledge generation and a means to incentivize new AI research and development. Despite the often
perceived domain-specific research practices and inherent tacit knowledge, we argue that many elements of the
research process recur across scientific domains and that even common software platforms for serving different
domains may be possible. We outline how virtual laboratories will make it easier for AI researchers to contribute to
a broad range of scientific domains, and highlight the mutual benefits virtual laboratories offer to both AI and
domain scientists.

Impact Statement

Artificial intelligence (AI) is transforming research across natural and engineering sciences, often in the form of
field-specific tools. We argue that by developing AI techniques for supporting the scientific discovery process
itself we can take the next step and enable efficient human-AI collaboration for seeking new knowledge. Inmany
cases, the AImethods can be applied across several scientific disciplines, but to encourage researchers to work on
general methods we need environments that make it easy and attractive. We introduce the concept of virtual
laboratories to facilitate research on domain-agnostic AI assistance for research and development and to make it
easy for other scientific disciplines to use these tools.

1. Introduction

Merriam-Webster defines a laboratory as “a place equipped for experimental study in a science or
for testing and analysis” or more broadly as “a place providing opportunity for experimentation,
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observation, or practice in a field of study.”1 The definition refers to a physical environment that exists for
the purpose of making new discoveries. While laboratory tasks are now frequently carried out on
computers, or more andmore automated synthesis andmeasurement devices, the laboratory itself remains
surprisingly similar to its 19th century form. In our increasingly digital world, we think it is time for a
paradigm shift to virtual laboratories (VLs), following a loose conceptual analogy to virtual machines in
computer systems. Continuing with the analogies, a VL is then a digital environment that enables users to
carry out research tasks and that encompasses the elements of a classical laboratory as its components.

The starting point for a virtual laboratory is the computational methods and tools that are already an
integral part of modern scientific practices. These include computational simulations, digital twins of
various instruments, robotic measurement devices, and methods for experimental design, data analysis,
and statistical estimation. In most scientific disciplines, physical laboratories already heavily use these
computational tools, and research combines computation and real-world experiments. The new digital
technologies already provide scale advantages and improve reproducibility and reliability.

In this point of view, we argue, however, that the current tools are not yet sufficient for building virtual
laboratories, and two aspects need to be addressed. First, the current toolkit needs to be expanded. The
current models and tools are typically field-specific and designed to address specific narrowly defined
tasks. What is missing today are tools that would help more efficiently, as well as serve the scientific
research process itself, by combining the isolated field-specific models to form a laboratory environment
that supports researchers in using the digital tools to address the needs of increasing workflow, tool, and
research complexity.

The second step required for reaching the full potential of virtual laboratories is to consider what can be
done differently now that the computational backbone exists in different disciplines. Could we develop
new types of tools (Figure 1) by thinking across laboratories, and in particular, could we benefit from
advances in AI methodology? If the tools were not developed independently in each field but would
instead pool the creativity, ingenuity, and resources from a variety of fields, progress would be faster and
VLs could become a reality sooner. Such general applicability and acceleration is precisely the promise
AI-based tools offer.

In this paper, we present a vision for AI-assisted virtual laboratories: Digitalization of research and
development will move from isolated digital twins to AI-assisted support of the scientific innovation

Figure 1. AI methods enable generalizing across field-specific virtual laboratories, each using a mixture
of field-specific and general methods.

1 https://www.merriam-webster.com/dictionary/laboratory (accessed 11 December 2023).
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process. In the future, new innovations are made in virtual laboratories, where researchers seamlessly
operate with physical and virtual measurements in close collaboration with AI, accelerating the pace and
improving the quality of research. The researchers would remain in charge andwould continue to develop
their research competences, but now assisted by personalized AIs that continuously learn to provide
context-dependent support. The virtual laboratories are ideally supported by a common software library
that combines field-specific digital twins with domain-agnostic tools for formalizing and assisting the
research process.

Virtual laboratories provide a conceptual frame of reference, and in this paper, we outline practical
directions for the transition from real to virtual laboratories. This paper is a call for both AI researchers and
domain scientists to join forces. Section 2 introduces the main concept of virtual laboratory and outlines the
high-level goals and challenges. In Section3,we present themain actionswe think should be taken bydifferent
parties. Lastly, Section 4 takes a close look at the current status, by discussing how soon we expect various
disciplines to benefit from the efforts and by reviewing the state of emerging VLs in three different fields,
outlining for instance how drug design is already largely done in a virtual realm but using field-specific tools.

2. Virtual laboratory concept

2.1. Virtual laboratory

Following our laboratory definition in the introduction, a virtual laboratory (VL) is the in silico
equivalent of a physical laboratory. A VL exists primarily in a virtual space, or at least mediates the
interaction of stakeholders with theVL remotely through a digital user interface. In practical terms, aVL is
a collection of interconnected digital twins and a digital user interface (see Figure 2), operated by a
scientist that remains in control but is assisted byAI. In our opinion, AI assistance is a critical VL element,
because it facilitates the navigation of the complex VL environment and enhances the research process.

Digital twins are faithful computational representations of real-world entities or processes (Wright and
Davidson, 2020; Blair, 2021; Niederer et al., 2021). We here consider a wider definition of digital twins

Figure 2. In a virtual laboratory researchers or users perform virtual experiments using digital twins of
assets or processes, where the experiments generally refer to anymanipulation of the digital twin that may
involve also other functions of the rest of the laboratory. They are assisted by AIs, which use digital twins
of the researchers (user models) for interactive assistance. The process is grounded in the real world,

through use of the physical instruments or assets (called for on-demand by the AI assistants).
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than usual and distinguish between three types: (a) assets, (b) processes, and (c) human interactions. In (a),
physical assets is an umbrella term for scientific instruments, measuring devices, and equipment that
manufacture goods, fabricate materials, and synthesize substances. In (b), computational models and
simulators aim to capture physical or chemical processes. In (c), we refer to user models of human
behavior and human-machine interactions. Combined, these three types of digital twins transfer real-
world data into the virtual realm, where it is processed by simulators and AI methods.

As implied by the word virtual, one purpose of VLs is to transfer the experimentation and discovery
process from the real into the virtual realm. In this virtual mode, users interact with the digital twins instead
of their real-world manifestations to derive new knowledge, educate themselves, or receive assistance in
complex decision-making. This usually offers significant time and resource savings compared to directly
operating in a physical laboratory. The digital twins interact with the real world, when necessary, to stay
up-to-date and react to changing conditions. In the real mode, the VL has a direct physical outcome, for
example, a material or drug. The VL facilitates, accelerates, or even enables the design and development
of the physical outcome.

While digital twins for assets and processes are still largely specific to a field, or even a laboratory, user
models and human-machine interactions are already somewhat task-agnostic and more widely deploy-
able. We argue that a field-agnostic virtual laboratory concept should start from these user-related
components and develop generalized tools that can be quickly deployed across fields. For example,
the chemical models in digital twins for drug design differ from those in construction engineering, but the
cognitive models of human sequential decision-making and human biases, employed by collaborative AI
assistants, are the same. These models will be useful already in cases where some of the components are
not yet digitalized but involve physical measurements or manual work, often resulting in time or cost
savings. Similarly, much of the backend machinery (e.g., data passing, digital twin maintenance) is
general-purpose. A VL helps in delineating the field-specific components from those that generalize
across fields, and thus allows efficient and parallel tool development.

2.2. Elements of digital twins

Although each digital twin serves a specific purpose, current realizations of digital twins share several
aspects: (a) live coupling between the physical asset and its digital twin, via multiple streaming data
sources originating from live sensing of the physical process, (b) access to additional information about
the modeled process, such as geometry, topology, physical laws or 3-D characteristics for physical assets,
(c) AI models utilizing the aforementioned data sources and prior knowledge to accurately predict or
simulate future states of the physical twin from these, (d) some ability to perform what-if scenarios and
counterfactual reasoning over the process, and (e) a decision-makingmechanism (typically with a human-
in-the-loop) for acting on the asset/process given the model and any what-if reasoning abilities therein.

A digital twin can also be composed of several sub-twins. These sub-twins could be in different
physical locations, for example, different real-world laboratories. The VL would integrate (or aggregate)
all these sub-twins into one digital twin as illustrated in Figure 3. We are now moving to the realm of
decentralized/distributed inference and borrowing statistical and causal strength across experiments.
Methodological frameworks such as multioutput/multitask learning (Caruana, 1997), transportability and
data fusion (Pearl and Bareinboim, 2014; Bareinboim and Pearl, 2016), federated learning (Yang et al.,
2019), physics-informed ML (Mao et al., 2020), and semi-parametric statistics bridging to traditional
numerical methods (Girolami et al., 2021) are central for such Causal DTs and interconnected VLs.

These interconnections are graphically depicted in Figure 3 using the gemini symbol (♊) as a playful
abstraction of a digital “twin.” On the bottom hull, the true data-generating process of the real-world
component is generating data that is noisily sensed via multiple sensor networks with potentially different
characteristics. These are streamed upwards to the digital twin formodel-based inference. Themodel is by
construction an approximation of reality, but potential error or uncertainties can be characterized and
accounted for, for example, Kleijn and Van der Vaart (2012) and Dellaporta et al. (2022). In turn, the
posterior beliefs of the digital twin over the model and/or the model parameters are utilized to compute
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expectations of functions of interest with respect to these posteriors, and subsequent decision-making or
simulation of what-if scenarios is performed leading to actionable interventions back on the physical
asset.

2.3. A virtuous cycle of virtual laboratory development

Avirtuous cycle is a recurring chain of events with a positive outcome. If we can start such a virtuous cycle
in VL development, in which advances in AI and domain-specific knowledge benefit each other, we can
increase the pace, quality, and cost-efficiency of scientific research. In this cycle, the VLs are the catalysts
for facilitating the interaction and the research environment.

Once kick-started, the virtuous cycle will produce the first success stories. These will trigger an
increased interest from both AI researchers and VL users, which, as the cycle progresses, should then
result in a self-sustaining community effort.

2.4. Virtual laboratory library: a common software ecosystem

We argue that a key requirement for a successful, virtuous cycle is the increased use of common software
components across fields. Such a necessary software ecosystem should be built so that AI advances can be
developed independently in a modular fashion and taken immediately into use across many VLs with
minimal effort, while making it easy for VLs to include their field-specific digital twins for assets and
processes. A collection of modules and tools forms a virtual laboratory library (VLL), and open
interfaces allow anyone to either contribute new modules or re-use the existing modules to facilitate
concrete VLs in specific fields. The software ecosystem provides the technical realization of the VLs to
produce scientific and societal impact. We believe that the development of VLLs is necessary not only for
the permeation of VLs across fields, but also for incentivizing VL developers, VL users, and AI
researchers to join forces.

Figure 3. Schematic of digital twins depicting the key information flow and quantities of interest. Several
DTs could be aggregated in a VL. Each of the instances could be different instruments combined into one

digital twin or different realizations of a device in different labs around the world.
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3. Toward real virtual laboratories

In this section, we outline themain stepswe consider necessary, from a technical perspective, to build VLs
and to generalize the concept across disciplines.

3.1. Virtualization

Transferring key components of the scientific method, such as hypothesis generation, experimentation,
confirmation, and discovery, from the physical to the virtual setting is the central objective of VLs that
enables acceleration, reproducibility, and scalability of research. The primary vehicles for the virtualization
of such components are digital twins of assets, processes, and human interactions that are interlinked inside
the virtual lab and attempt to address the gap between simulation and real world through their live coupling
to the physical twin and emerging frameworks for mispecification, calibration, and interventional consist-
ency, for example, Kennedy and O’Hagan (2001) and Dellaporta et al. (2022). Significant resources are
already being dedicated to improving the quality and versatility of digital twins as components of theVL and
the transition will directly benefit from the results of these efforts, but dedicated research will be needed for
virtualization of the research process and the human elements of that.

Many key AI technologies and research areas are necessary for the virtualization process itself: from
simulators, emulators, artificial agents, and their data calibration and optimization, to reinforcement
learning and robotics for automated measurement devices. Some of these, such as robotics, target the
automation of physical measurements while other areas are necessary for exploring and optimizing virtual
measurements and for counterfactual reasoning. We note that a large body of AI research including
experimental design, Bayesian optimization, reinforcement learning, language models, generative
models, synthetic data, causal inference, domain adaptation, transfer learning, probabilistic modeling,
probabilistic numerics, uncertainty quantification, and physics-informed ML (Φ-ML) will be central in
enabling full virtualization. Any methodological advances will then directly benefit VLs.

3.2. Human in the loop

AI tools are predominantly used to automate tasks and supplement or replace human-derived insight with
data-driven models. The evolution toward “robot scientists” (Burger et al., 2020) has been invoked, but in
reality, human scientists remain involved, in two ways. They drive the scientific process, by instantiating,
designing, and applying AI methods, and they provide knowledge. Through human-in-the-loop machine
learning (Monarch, 2021), prior human knowledge could be directly integrated into VLs. Human-in-the-
loopmethods elicit knowledge fromhumanusers tomaximally improveAImodelswithminimal user effort.

Current human-in-the-loop methods are not compatible with the other reason humans are involved—
that they drive the research process. The current methods treat humans as passive data sources (e.g., in
knowledge elicitation; Mikkola et al. 2023) instead of active agents. For VLs, we need to develop human-
centric AIs and human-AI collaborations (Dafoe et al., 2021). Multi-agent modeling methods from
human-robot interaction (Hadfield-Menell et al., 2016) are a start, but work is still needed for formulating
assistants which are useful to human scientists while leaving them in full control (Celikok et al., 2022). For
this, the assistants will need to infer their user’s intentions, objectives, and goals and then recommend
actions in a way they understand—in other words, they would need models of human users to efficiently
collaborate with them. In Section 2, we referred to thesemodels as user models or digital twins for human-
machine interactions. With user models of scientists, AI assistants will be able to anticipate their actions
and aid them in the scientific discovery process.

While dedicated interfaces, for example, for analyzing and interpreting scientific measurements
remain the main form of interaction between humans and AIs, recent advances in large language models
(LLM) and their dialogue capabilities have made it possible to consider also natural language as the
interface. How LLMs can assist with the analysis of scientific literature and scientific writing remain hot
topics, but some studies already go further by incorporating LLMs into the scientific discovery process.
For instance, discipline-specific LLMs (Luo et al., 2022; Korolev and Protsenko, 2023) can, for example,
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find relationships betweenmolecules or predict material properties based onwritten descriptions, blurring
the line between a model and communication interface. Research on how to best use these tools for
scientific discovery is only starting now (Stokel-Walker and Van Noorden, 2023; Van Dis et al., 2023),
and fundamental questions on their capabilities and limits in supporting complex and long-term tasks
remain. VLs are ideal platforms for studying these questions, by providing data on long-term structured
interaction between teams of highly skilled human experts and dialogue systems.

In summary, VLs will be a fitting environment for mixed human-AI research teams. Before fully-
fledged AI assistants become available, AI tools that give better recommendations would already be
beneficial. To reach this point, advances in both AI and human-computer interaction are required.

3.3. Software layer

Building a common software layer for VLs will be critical. We only benefit from up-scaling if multiple
VLs can re-use the same underlying software modules, so that AI researchers can easily develop and
evaluate their methods for multiple use cases and VL hosts can easily integrate new AI elements.

The VL software layer mediates the scientific process in the virtual realm and provides the link to the
physical realm, but should not be specific to any particular laboratory type. The software layer needs to
represent digital twins, moderate data flows between digital twins (as well as their physical counterparts),
and enable human-AI collaboration. This requires a modular architecture that communicates with
domain-specific databases and models, so that all elements of AI assistance and DT operation are
provided as independent modules. Common interfaces will be critical, so that both open-source and
commercial tools for operating VLs will efficiently re-use the components.

We are not aware of any general VL software development even though many libraries for the
individual VL components and the automation of data analysis workflows (Singh, 2019; Mölder et al.,
2021) already exist (see also Section 4.4). Besides a modular architecture, an emerging software layer
should:

• allow re-use existing (or future) libraries and help avoid the need to replicate general-purpose
algorithms (e.g., machine learning tools or language models).

• run on standard cloud architectures and databases.
• be free and open-source, but licensed to enable commercial support for broad use in industry and
research.

• be designed from the start as shared community effort, and eventually establish new standards for
information transfer between digital twins and laboratories.

• actively support the FAIR (Findable, Accessible, Interoperable, and Reusable) data principles
(Wilkinson et al., 2016), required for community development and reliable operation.

• support compartmentalization of public and private data and models, so that sensitive data and
proprietary simulators and digital twins can be excluded from externalized AI development.

• make it easy to run virtual instances with no direct connection to the physical laboratory, for external
AI research.

3.4. Enabling and encouraging VL research

VLs generate added value from the synergy between AI and research in other domains. To create this
synergy, the barrier for contributions from AI researchers and VL domain scientists should be lowered.
The common software layer is necessary but not yet sufficient for this. Numerous examples demonstrate a
clear benefit from lowering the contribution barrier: ImageNet data (Deng et al., 2009) revolutionized
computer vision and MuJoCo (Todorov et al., 2012) and OpenAI gym (Brockman et al., 2016)
reinforcement learning. We need similar success stories for VLs.

A key difference between VLs and the above examples is that VLs are linked also with physical reality
and many of the interesting research questions involve humans, as explained in Section 3.2. This
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introduces additional challenges but we have not identified any immediate show-stoppers that could not
be overcome by combining different approaches. Many AI elements can be developed in purely digital
laboratories, using simulated human activity if needed. For example, ChemGymRL (ChemGymRL:
Chemistry Laboratory Environment)2 offers a reinforcement learning environment for a purely virtual-
ized chemical laboratory, Trubucco et al. provide a virtual environment for design problems (Trabucco
et al., 2021), and some cognitive models of researchers can be trained with non-experts in crowd-sourcing
experiments, for instance, models of working memory and decision-making (Brown et al., 2014).

We believe the most important step toward realizing our vision will be the activation of the research
community. Providing computational platforms, theoretical concepts, and individual AI modules is a
community effort, both in terms of sufficient resourcing, but also to ensure open standards and broad
applicability across different fields. This transformation is best driven by a global open initiative, and we
will work toward establishing one. The initiative will bring AI researchers and domain scientists together
to design and develop the software platform, to determine incentive structures and fundingmodels for VL
hosts, for example, by extending the practices currently in place for data releases, and to work toward key
standards. It will also have an important role in increasing awareness of the concept, via a workshop series
organized alongside one of the leading AI conferences and challenges designed for steering the efforts of
AI researchers, motivated by, for example, the effect the Netflix prize had on recommendation engine
research (Bennett et al., 2007). Besides accelerating the pace of scientific research, we also expect
educational synergies, for instance in the form of masters programs centered around the key aspects of
VLs, bringing together students working in different disciplines to share knowledge.

4. Current status and future outlook

No fully operational VLs exist today, but significant progress is being made. To make the concept more
concrete and to highlight ongoing research and potential outcomes, we first inspect different scientific
disciplines from the perspective of how easy the VL concept is to apply in supporting their progress and
discuss potential barriers also from non-technical perspectives in Sections 4.1 and 4.2.

Section 4.3 outlines one concrete example of domain-agnostic tools we expect to become available
first, and in Section 4.4, we discuss three examples of ongoing research toward VLs in three different
scientific disciplines. Each one showcases progress in digital twins of assets and processes, validating that
the tools for constructing VLs are starting to be in place, while also revealing that the work toward
incorporating AI within the process is happening separately within each field. This is wasteful and limits
opportunities for AI research contributions, and highlights how there are clear differences between
disciplines in how effectively the digital tools are being integrated into the core discover process. For
ease of communication, we use examples from the authors’ research domains, but emphasize that the VL
concept is applicable for considerably broader range of fields.

4.1. Which domains will seize the opportunity?

TheVL concept aims for maximal generality, but naturally, disciplines will vary in howmuch they benefit
from incorporating external AI development. Table 1 provides a high-level categorization of various
domains into four groups in terms of their potential for adopting VLs. The easiest conceptual mapping
from current practices to VLs lies within the natural sciences, where empirical or computational
observations drive the scientific method. Here we find the early adopters that already use computational
simulations and hence will likely drive the development of VLs in the early years (see Section 4.4 for two
examples), as well as the stable followers that will be able to re-use many of the same tools, but for whom
the transition will take longer due to digitalization being more laborious.

In the other two groups, we anticipate disciplines for which it is less clear how they can best benefit
from VLs. These disciplines or deployment areas do not necessarily adhere to the natural science

2 https://github.com/chemgymrl/chemgymrl (accessed 11 December 2023).
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paradigm, but will still benefit from the broad range of domain-agnostic AI tools once the conceptual
mapping is clear. We foresee individual examples of future virtual laboratories emerging already in
relatively near future; for instance, some formal workflows using computational models for behavioral
modeling already exist (Oulasvirta et al., 2022), and Section 4.4 discusses digital twins in engineering
from this perspective. The unexplored opportunities group will likely not benefit from a large proportion
of the VL tools, but will in the future be using more AI technologies and is likely to skip the phase of
developing field-specific VL tools.

4.2. Challenges

We propose a vision of a feasible transformation and hence focus on the technological enablers and the
need for a cultural transformation, and to raise awareness of the opportunities offered by VLs. Naturally,
there will be significant challenges as well, spanning across different technical and societal dimensions.
Some already identified challenges are briefly discussed below.

Table 1. Categorization of VL application domains and their potential

Early adopters with high conceptual and technical readiness
Disciplines with high digitalization rate, extensive use of simulations and computational models, or fields

with automated and reliable but costly experimentation
State: Currently wasting resources in developing field–specific AI for common problems. Will drive the

early development of VLs and domain–agnostic AI for scientific discovery
Actions: Use more unified interfaces, specify problems for AI community, and ensure data availability
Examples: Drug discovery, material science, computational biology
Stable followers with high conceptual readiness but technical challenges
Disciplines follow the scientific method but with challenges in collecting and/or using reliable data, for

example, due to laborious human experimentation, sparse passive observations, or sensitive personal
data that cannot be easily shared

State: Currently implementing digitalization. Will benefit from AI methods and AI–driven experiment
design. Likely to have the largest economic benefits

Actions:Ensure comprehensive data collection, use data–efficient AImethods, focus on the role of human
as information source, follow the best practices of early adopters

Examples: Physics, process engineering, ecology, neuroscience, industrial R&D
Future VLs with high technical readiness but less clear mapping to the VL concept
Disciplines that use digital twins, computational models, or machine learning techniques for analysis, but

do not follow the natural science paradigm
State:Currently using computational models, for example, to answer qualitative research questions or for

confirmative validation, but typically not for discovery.Will benefit from having data andmodels more
tightly integrated into the research process

Actions: Formalize the use of computational models, ensure reliability and repeatability of computational
experiments, consider human as information source, focus on design problems

Examples: DTs in engineering, cognitive science, digital humanities, e–commerce
Unexplored opportunities with both technical and conceptual open challenges
Disciplines that focus primarily on qualitative research or creation, not considering their source material

(interviews, historical texts, etc.) primarily as data
State: Currently mostly not using computational models, but may already be exploring generative AI as

means of creativity or collaborative assistance. Will benefit from general VL tools, but likely need new
conceptualization

Actions: Follow the capabilities of more formally framed VLs, focus on human–AI collaboration
Examples: Architecture, social sciences, business strategy
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4.2.1. Sensitive and personal data
Many VLs need to handle sensitive data, either because of the research subject (e.g., medical research) or
because data is collected on the behavior of researchers to improve AI assistance. Running the VL tools in
standard secure computing environments is sufficient for ensuring data protection, but explicit effort will
be required in ensuring ethical and legal use of the interaction data and the user models; see Sartor et al.
(2020) for a discussion on the European legislation.

4.2.2. Legal aspects, IPR
The complex landscape of AI and intellectual property rights is currently being primarily studied from the
perspective of copyright (Samuelson, 2023). VLs will need to adhere to the established regulation, but
additionally, provide opportunities to study, for example, ownership of innovation. Bymaking the roles of
different entities (researchers, AI, and data) more systematic and transparent, VLs will play a role in
developing responsible innovation practices (Tekic and Füller, 2023).

4.2.3. Computational and energy cost
Digital twins and computational models can save cost and human time in physical experimentation, but in
some cases, the cost of simulations or AI model training is a major factor. However, ML proxies and AI
tools for selecting maximally efficient experimental protocols (see Section 4.3) directly address this, and
hence VLs are inherently designed to minimize also the energy cost.

4.2.4. Proprietary and legacy components, technical debt
Onemajor technical challenge is support for software andmeasurement devices with prohibitive licenses.
Many important devices, intentionally or unintentionally, only provide a fixed interface and lack support
for efficient reading andwriting of data. Disciplines, in which the central tools operate in this fashion, may
drop down to the stable followers category (Table 1). Any use of AI in these disciplines will require case-
specific workarounds or software robotics solutions, resulting in technical debt and high maintenance
cost. This problem is particularly apparent for VL integration of such assets. Note, however, that dedicated
AI methods, for example, quantifying the uncertainty of black-box models (Sudret et al., 2017) can help
with integrating such legacy components into VLs.

4.2.5. Societal acceptance
Researchers are sometimes conservative and may raise objections on AI involvement, either because of
focusing on qualitative conclusions that should be made by humans or because of hesitating on the use of
approximations in place of solid evidence. More generally, we often set higher standards for autonomous
systems than humans, best exemplified in the case of autonomous cars (Shariff et al., 2021). These aspects
highlight the need for dedicated studies of how the human-AI collaboration is carried out, detailed in
Section 3.2. The general public is right now rapidly being exposed to chat-based AI assistance in daily
tasks with emerging research on how this transforms the society, and VLs will be an environment to study
similar questions in the context of scientific research.

4.3. What generalizes across fields?

The added value of VLs hinges on a sufficiently broad set of components that are usable across fields, that
is, can be generalized to new fields. DTs for assets and processes will to a large degree remain domain-
specific and we should not expect them all to generalize, but we argue that almost everything else does.
First, this holds for the tools needed for creating and maintaining the DTs which are general, as explained
in Section 3.1, and it will be important to build on the common advances in these AI technologies. For
instance, developing domain-specific solutions for addressing concept drift in measurement data would
waste significant effort and the tools would soon get outdated. Second, the DTs for the researcher and the
core tools for AI assistance are largely field-independent as explained in Section 3.2, and solutions for
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helping researchers to interact with the AI assistants would be better developed directly to be general-
izable. The VL concept is a necessary enabler for their development and evaluation.

The first demonstrations of added value will come from the early adopters (Table 1) and already active
research areas, best exemplified by AI assistance in experimental design that generalizes for all empirical
sciences. A significant gap remains between the AI advances and the practical needs of a VL, with no
general solutions, for example, for guiding how to best interleave approximate virtual experiments and
(often high-cost) empirical experiments while ensuring the user remains in full control, and virtually no
research on how to best utilize multiple alternative measurement technologies. Already rudimentary AI
assistance for general empirical research setups would be a significant improvement. It would steer the AI
development to directions that matter in practice, while opening opportunities for new types of AI, by
providing the first systematic and field-agnostic source of data about human interaction in research, kick-
starting the virtuous cycle.

4.3.1. Example: AI assistance in optimization
Consider the common task of a researcher iteratively optimizing the parameters of a process tomaximize a
task-specific quality measure. For instance, a chemist would seek reaction conditions to maximize the
yield, or a material scientist would explore the design space to find a material with desired properties. In
many cases—especially in the stable follower disciplines—the results of the experiments depend
significantly on the competence and practices of the researcher, and irrespective of the field we can
develop AI assistance for improving the reliability of experimentation, both on the level of individual
measurements and the overall process.

In its simplest form, this task is described in a VL as an iteration that combines a human decision on the
next configuration to try with a measurement device or its digital twin to quantify the quality of the
configuration, continued until the human decides to terminate the optimization. A natural mode of AI
assistance is to supplement the iteration with recommendations for the next configuration (De Peuter and
Kaski, 2023), as illustrated also in Figure 4, and typically also for when to terminate. However,
formulating the process in a VL enables a much broader form of assistance without notable additional
effort from the VL host. For example, the following tasks could all be assisted by stand-alone AI
functionality that generalizes for all VLs:

• Education and training. AI monitors the choices of the researcher and explains afterward which of
the configurations they tried were not ideal, or creates personalized training tasks for a student-
centered learning process.

Figure 4. Left: Conceptual illustration of AI-guided materials synthesis and characterization. The Aalto
Materials Digitalization (AMAD) Platform (https://www.aalto.fi/en/services/aalto-materials-digitiza
tion-platform-amad) facilitates data transfer and collection. Right: Biomaterials example, in which AI
guided the extraction and characterization of lignin from birch wood with Bayesian optimization. With

very few data points (black and green squares and stars) lignin properties (here the yield) can be
correlated to the experimental control variables (here temperature and reactor severity (P-factor).
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• Identification of human biases. Humans search like search algorithms do (Borji and Itti, 2013;
Sandholtz et al., 2023). Deviations from algorithmic recommendations can reveal two kinds of
human biases: harmful biases preventing efficient work, and useful prior information the
researcher uses to solve the problem more efficiently. Both can be used for person-specific
assistance.

• Evaluation and comparison. Human choices can be analyzed to detect, for example, differences
between laboratories or temporal patterns, as a basis for more unified work practices for the field.
Data coming from different laboratories can be better combined for meta-analysis or future model
training by accounting for the differences.

• Teamwork.AIs can recognize situations in which expertise of a single researcher is not sufficient for
making an optimal decision, and recommend, for example, an additional evaluation of the current
decision, or assist in combining the expertise of several researchers involved in the process (Song
et al., 2019; Mikkola et al., 2023).

• From repeated experimentation to DT. Information accumulates throughout the optimization
processes and AIs can effectively use this history (Swersky et al., 2013). Accumulated data is
needed for building DTs and AI can assist by identifying a minimal set of required additional
measurements.

Formany of the tasks in this list, no tools currently exist and research into such tools is only just beginning.
VLs would provide a unifying framework to join presently disjoint research and to combine independent
data sources for developing methods that generalize across domains.

4.4. Examples of progress toward VLs

4.4.1. Materials science
While no fully-fledged virtual laboratories have emerged in materials science yet, the components are in
place and the field is a clear early adopter example. The earliest databases date back to 1965. Their
number has risen exponentially since the Materials Genome initiative3 was launched in the United States
in 2011 (Himanen et al., 2019). Databases evolved via data centers into materials discovery platforms by
incorporating data analysis andmachine learning tools. TheMaterials Project (Jain et al., 2013), theNovel
Materials Discovery (NOMAD) laboratory (Ghiringhelli et al., 2017), and Citrine Informatics (O’Mara
et al., 2016) are prominent examples of such materials discovery platforms and could be viewed as virtual
laboratory incubators.

Digital twins are more common in engineering and industry (see Section 4.4.3). They are slowly
emerging in materials science, too, with battery development leading the way (Ayerbe et al., 2021).
Ngandjong et al. recently proposed a digital twin of a Li-ion battery manufacturing platform that
combines modeling approaches at different scales (Ngandjong et al., 2021). Thomitzek et al. added a
battery cell production digital twin based on digitalization and mechanistic modeling (Thomitzek
et al., 2022). Regarding scientific instruments, Passananti et al. developed a digital twin of a chemical
ionization atmospheric pressure interface time-of-flight mass spectrometry (CI-APi-TOF-MS)
that facilitates the analysis of molecular cluster formation events in the atmosphere (Passananti
et al., 2019).

In the Finnish Center for Artificial Intelligence (FCAI), we are developing AI-guided experimen-
tation and synthesis techniques (Jin et al., 2022; Löfgren et al., 2022). An example is presented in
Figure 4. A Bayesian optimization-based AI requests data from scientists who synthesize and
characterize materials. The example shows the extraction of the biopolymer lignin from birch wood
and the characterization of the structural properties with 2D nuclear magnetic resonance (NMR)
spectroscopy. The data is returned to the AI, which updates its surrogate model of the process and
subsequently issues new data requests. Data transfer is mediated by the Aalto Materials Digitalization

3 https://www.mgi.gov/ (accessed 11 December 2023).
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(AMAD) Platform4 that acts as local data back-end for future virtual laboratories at Aalto University.
The lower panel of Figure 4 demonstrates that with relatively few datapoints (i.e., time-consuming
synthesis steps), the lignin yield can be maximized. In addition, the surrogate model provides an
insightful visualization to the operating scientists of the relation between the extraction (or synthesis)
conditions and the lignin (or materials) properties. Such AI-guidance tools are not only the first step
toward autonomous experiments or fabrication, and thus the corresponding digital twins, but they also
facilitate the collection of data that has traditionally been difficult to digitize due to its acquisition cost
(e.g., human, process or computational time and instrument cost).

Bayesian optimization also forms an integral part of self-driving laboratories (SDLs). Such SDLs
usually combine robotics, machine learning, and materials chemistry to autonomously synthesize
compounds and make materials (Stein and Gregoire, 2019; MacLeod et al., 2020; Abdel-Latif et al.,
2021; Rooney et al., 2022; Seifrid et al., 2022). SDLs accelerate materials design and exploration and are
an important component of future virtual laboratories. SDL concepts and software are already deployed
across different materials science domains (Stein and Gregoire, 2019; Stein et al., 2022), medicine, and
drug design (Hickman et al., 2023; Nigam et al., 2022) and thus are an excellent example of the potential
for generalization and a common virtual laboratory framework.

Increasingly, software for materials characterization and design is released as open source, such as
ChemOS (Roch et al., 2020), ChemSpectra (Huang et al., 2021), LiberTem (Clausen et al., 2020),
elabFTW (A Free and Open Source Electronic Lab Notebook),5 FINALES (Vogler et al., 2023), or
Chemotion (Electronic Laboratory Notebook &Repository for Research Data)6. These components have
yet to be cast into a generalized software and ontology framework (Scheffler et al., 2022) for virtual
laboratories as advocated in this article or by Brinson et al. in their recent call for community action on
FAIR data (Brinson et al., 2023). In this context, Deagen et al. proposed a materials–information twin
tetrahedra (MITT) (Deagen et al., 2022). The term “digital twin” is here used as an analogy between
concepts in materials and information science and does not refer to a component of a virtual laboratory.
WithMITT they advocate a holistic, data-driven approach tomaterials science, whichwe believe could be
further extended across scientific domains. In a similar vein, Suzuki et al. recently promoted a knowledge
transfer from AI applications in pharmaceutical science to materials science through an automated
machine learning framework (Suzuki et al., 2022).

4.4.2. Drug design
Applying AI to drug design has become very popular in the last 5 years, triggered by the innovations in AI
(Chen et al., 2018). Common application areas are molecular de novo generation, synthetic route
predictions, and molecular property predictions. In drug design a starting molecule with typically poor
properties is iteratively optimized until a molecule with properties suitable to start clinical trials is
identified. The iterative cycle is usually called the Design-Make-Test-Analyze (DMTA) cycle
(Figure 5; Plowright et al., 2012). Due to both clearly defined iterative innovation processes and the
growing use of computational experiments drug design is an early adopter.

The virtual drug design laboratory will consist of digital twins for the different components in the
DMTA cycle. Several of the necessary digital twins are under development. Digital twins are developed
for the design part through deep learning-based molecular generation, for the make part through
designing synthetic routes by deep learning, and for the test part through developing digital twins
for the assays that are used to test the molecules. These aspects are often studied in isolation, and
advances in one task sometimes reveal limitations in others. For example, improved generative AI
methods for molecule generation (Sadybekov and Katritch, 2023) call for better screening tools of the
resulting, vast candidate sets (Gangwal et al., 2024). An outstanding important research task is to find

4 https://www.aalto.fi/en/services/aalto-materials-digitization-platform-amad (accessed 11 December 2023).
5 https://www.elabftw.net/ (accessed 11 December 2023).
6 https://chemotion.net/ (accessed 11 December 2023).
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out how implicit knowledge residing with the scientists can be modeled through human-in-the-loop
modeling, so that it can be included in the digital twins of the design and analysis steps. A recent
concrete example (Sundin et al., 2022) infers implicit user goals from their interaction with the results of
a drug synthesis model, providing means for learning the user model agnostic to the specific synthesis
model used.

It is important to keep in mind that the virtual laboratory is an approximation of a real drug design
laboratory. Virtual molecules are optimized in the virtual laboratory and then actually synthesized and
tested in a real laboratory in an iterative manner. An optimal laboratory would combine a virtual
laboratory with a fully automated real laboratory. There are several efforts ongoing to create autonomous
automation systems for synthesizing and optimizing molecules (Coley et al., 2019) (see also Sec-
tion 4.4.1). Thus for drug design, virtual and real laboratories need to exist in close collaboration, where
as good compounds as possible are proposed by the virtual laboratory, the molecules are then synthesized
as efficiently as possible in the laboratory, and the resulting data is fed back to the virtual laboratory. It
should be noted that there are components describing the interactions between atoms that would be
common for all VLs describing molecules like a material science VL. Examples are molecular dynamics
software and atomic force field parameters.

4.4.3. Data-centric engineering
Engineering has recently witnessed a proliferation in data-centric techniques and digital twin develop-
ment. In many cases constructing the DT is a significant investment and has been a central research focus,
whereas the question on how they are best used for scientific or R&D advances remains more open,
making the field a future VL example (Table 1). Limited forms of interaction and underuse of AI
technologies in DTs have been identified as challenges (Tao et al., 2024), but the necessary components

drug design in virtual laboratory

operation

design

analyse 

learning

iterative DMTA cycle

multiple virtual rounds
per each real round

AI-assistant learns over
rounds and drugs

continuous updating
of digital twins

drug target

starting
molecule

candidate
drug

make

test

make

test
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Figure 5. Drug design is based on iterative cycles of Design-Make-Test-Analyze (DMTA). Within each
round, several iterative cycles can be performed in a virtual laboratory (bottom cycle).
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for considering engineering DTs as part of a VL are starting to emerge. For example, recent open software
tools for DTs (Tao et al., 2024) pave way for domain-agnostic DT operations and human-in-the-loop
models are already considered in design use cases (Batty, 2024).

VLs that enable rapid deployment of DTs will offer tools that generalize across domain-specific
instances. Themain generalization areas lie at three boundary interfaces: (a) between sensing systems and
the DT (e.g., optimal sensor placement and dataset shift tools), (b) between the DT and machine-assisted
human decision-making (e.g., AI-assistant interfaces and sequential decision-making tools, and
(c) between DT instances (e.g., federated learning and evidence synthesis tools) in a VL that integrates
an ecosystem ofDTs. Progress in common tools for these aspects will form the basis ofVLs that efficiently
leverage engineering DTs.

Figure 6. Left: The 3D-printed steel bridge currently installed in Amsterdam, Netherlands, and its
multiple sensing arrays that are streaming live data into the corresponding digital twin in the Turing,
UK. Images by Joris Laarman Labs, Thea van den Heuvel, MX3D, and AutoDesk Research. Right: The
underground farm in Clapham, London, and its multiple sensing arrays that are streaming live data flows
into the corresponding digital twin in The Turing and the University of Cambridge, UK. Images by

Rebecca Ward, Flora Roumpani, and Zero Carbon Farms Ltd.
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We showcase here two examples of recent engineering DTs developed at the Alan Turing Institute
with academic and industrial partners, demonstrating the maturity of the technical enablers and
outlining the opportunities a VL would open. The first one is the world’s first 3-D printed steel bridge
(MX3D bridge) depicted in Figure 6 (left) and currently situated in Amsterdam, Netherlands. Various
sensor networks on the bridge, such as cameras, accelerometers, and load cells, stream live data to its
digital twin at the Turing Institute in the UK. The underlyingDTmodel has been developed based on the
StatFEM methodology that was recently introduced (Girolami et al., 2021) to formally synthesize
observational data and numerical models of its structure, and could be further developed to become a
common tool for engineering DTs. Such DTs when embedded in the envisioned VL framework would
benefit from evidence integration across physical structures; in this particular case rapidly improving
our understanding of 3-D printed steel structures and their stress–strain response under load across
environmental and loading conditions.

The second example, from the CROP project,7 is a digital twin of an underground farm in a tunnel
situated in Clapham, London, UK, depicted in Figure 6 (right). This is a hydroponics system with
2 aisles running in parallel in 23 zones and 2 meters long. The underlying DT model utilizes particle
filtering for model calibration (Ward et al., 2021) and data synthesis, while various environmental
measurements and camera footage are live-streamed from sensor networks to monitor crop health,
environmental conditions, and yields. The DT already enables the study of a broad range of research
questions, from forecasting yields and future conditions to optimizing the placement of crops and the
environmental conditions. Within a VL it could be considered more generally as a digital experimen-
tation tool that integrates into the overall research process, likely bringing scientific advantages
beyond speed gains such as scenario testing. However, compared to standard measurement devices
a DT is considerably more complex in its offering, making the best way of embedding it into a VL an
open research question.

5. Conclusion

We introduced the virtual laboratory concept to amalgamate scientific research and R&D in industry with
AI technology andAI assistance.We highlighted the benefits of VLs for both research laboratories andAI
researchers and outlined key requirements of a common software layer and various research directions to
proceed toward VLs. In our opinion, VLs are a community effort and we seek to bring AI researchers and
scientists of other domains together to raise awareness for the VL concept and to work together toward
realizing VLs.

The goal of transforming researchwithAI is ambitious and the transformationwill not happen fast. The
domain scientists are already working toward this direction, as highlighted by the examples in this paper,
and hence we conclude our work with words of encouragement for the AI researchers. In short, VLs
provide AI researchers means and incentives to contribute to the scientific efforts for solving the grand
challenges we are facing. It is hard to think of a subarea of AI that would not be useful for VLs, and hence
VLswill provide unique opportunities and cross-fertilization already within AI itself. In many areas, from
reinforcement learning to constrained optimization and probabilistic modeling, the current techniques are
already clearly sufficient for becoming core elements of VLs. In others, such as causal inference,
probabilistic numerics, and domain-agnostic models of researchers, the VLs will provide concrete cases
for testing the current solutions and identifying future research directions.
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