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1. Introduction

Let K be an algebraically closed field of characteristic p > 0. If G is a connect-
ed, simple connected, semisimple linear algebraic group defined over Kand ¢ an
endomorphism of G onto G such that the subgroup G, of fixed points of ¢ is finite,
Steinberg ([6], [7]) has shown that there is a complex irreducible character y of G,
with the following properties. x vanishes at all elements of G, which are not semi-
simple, and, if x€ G is semisimple, y(x) = +n(x) where n(x)is the order of a Sylow
p-subgroup of (Z;(x)), (Z;(x) is the centraliser of xin G). If Gis simple he has, in
[6], identified the possible groups G, ; they are the Chevalley groups and their twist-
ed analogues over finite fields, that is, the ‘simply connected’ versions of finite sim-
ple groups of Lie type. In this paper we show, under certain restrictions on the type
of the simple algebraic group G and on the characteristic of K, that y can be ex-
pressed as a linear combination with integral coefficients of characters induced from
linear characters of certain naturally defined subgroups of G,. This expression for

x gives an explanation for the occurence of n(x) in the formula for y(x), and also
gives an interpretation for the +1 occuring in the formula in terms of invariants
of the reductive algebraic group Z;(x).

I am very grateful to Professor T. A. Springer for making available to me a
preprint of [6].

2. Notation and preliminary lemmas

In this section, unless otherwise stated, G denotes a connected reductive
linear algebraic group defined over an algebraically closed field K of characteristic
p > 0, and ¢ an endomorphism of G onto G such that G, is finite. T'is a maximal
torus of G such that both 7 and a Borel subgroup contaning 7" are both fixed by
a; T is unique up to conjugacy by an element of G, (see [6]). N is the normaliser
of Tin G and N/T = W. Then ¢ induces an automorphism of the finite group W.
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The connected component of the identity of any closed subgroup H of G
will be denoted by H,. We refer to [1] for the relevant facts about algebraic
groups. For any finite group H, |H| denotes its order.

DEFINITION. Two elements n,, n, € N are said to be g-conjugate if there exists
an element n e N such that n, = nn,n™%. For any ne€ N let

Z(n) be the centraliser of nin N,
Z'(n) = [n' € N|n'nn’'"% = n]
and Z"(n) = [no € Ning 'nny = n°).

Z'(n)is a subgroup of N. Z''(n) may be empty, but if there is an element n, € Z"'(n)
then Z''(n) = Z(n) n,. Let

K(n) = [0’ € Z(n)|n’ centralises (Z(n) N T)ol.
If w e W, the subgroup Z’(w) and the subset Z”(w) of W are defined similarly as
Z'(w) = [w' e Wiw'ww' ™% = w]
and Z"(w) = [wo € Wlwg 'wwy = w].

Z(w) is the centraliser of w in W. K(w) is the subgroup of W of all elements of
Z(w) leaving elementwise fixed the connected component of the identity of the
subgroup of T of fixed points of w.

We first state a result of Steinberg [6] which is a generalization of a well-
known result of Lang [3].

LeMMA 1. (Steinberg) Let H be a connected linear algebraic group over K and
o an endomorphism of H onto H such that H_ is finite. Then the map x — xx~° of H
into H is surjective.

Our aim now is to define certain ‘Cartan subgroups’ of G, and to set up a
one-to-one correspondence between the G,-conjugacy classes of these subgroups
and o-conjugacy classes of W. This correspondence is known in the case when G
is defined and split over a finite field of g elements and & is the g™ power map, but
we have not been able to find a description of it in the literature.

LEMMA 2. If two elements n,, n, € N are o-conjugate modulo T, they are
o-conjugate in N.

ProOOF. Let n; = nngn= %t where ne N, te€ T. By Lemma 1 n; = aa™° where
a€ G. Hence
—a't-l o'-

(2.1) a ‘nnon %’ =a a

Since n, normalizes T, a °¢t 'a°ea™! Ta. Also a~'Ta is connected. Thus by
Lemma 1 we can write

~g,~1 ¢

a~°t™'a’ = a 't aa”"t]°

a® =a'tyn t{°a°

https://doi.org/10.1017/51446788700008247 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700008247

3] On the Steinberg character of a finite simple group of Lie type 3

for some ¢, € T. Together with (2.1) this yields n, = #; ! nnon~°t{, showing that
n,, ny are o-conjugate in N. This proves the lemma.

Suppose n,e N and n, = aa~° (a€ G). Then the maximal torus a™'Ta
and its normaliser a~* Na are fixed by 6. Conversely if the maximal torus ™' Ta
is fixed by o then aa™? € N. We investigate the G;-conjugacy of such maximal tori
in the next lemma.

LEMMA 3. Let ny, n, € N, ny = aa™°, ny = bb™°(a, b€ G). Then a™ ' Ta and
b~ 'Tb are conjugate by an element of G, if and only if ny, ny are o-conjugate in
N (and hence, by Lemma 2, if and only if ny T and n, T are o-conjugate in W).

PRrOOF. If ny = nny;n~° (ne N) then a~'nb=geG, and g~ 'a ' Tag =

b~ Tbh. Conversely let g~*a ' Tag = b Tbh where g€ G,. Then agb™' = ne N,
and ny = nn,n"°,

It follows from Lemma 2 and 3 that to each maximal torus @' 7a fixed by
o there corresponds the element (aa™?)T of W which is unique up to g-conjugacy
in W. Furthermore there is a one-to-one correspondence between G,-conjugacy
classes of maximal tori of G fixed by ¢ and o-conjugacy classes of W. For these
maximal tori a~ ! Ta we now consider the subgroups (a~ ' 7a), (‘Cartan subgroups’

of G,) and the subgroups (@~ ' Na),.

a

LemMa 4. Let a”'Ta be a maximal torus fixed by o, and let aa”
nyT = wye W. Then

= Ry,

_ (a”'Na),/(a™ ' Ta),
is isomorphic to Z'(wy).

PROOF. Let a"'na e (a™* Na), (n € N) and consider the mapa™'na —» nT = w
of (a”! Na), into W. Then wwow™® = w, and hence (¢~ ! Na), is mapped into
Z'(w,). By the proof of Lemma 2 (a~* Na), is actually mapped onto Z’(w,) and
this proves the lemma.

The next lemma is basic for our construction of the Steinberg character of G,.

LEMMA 5. Let a; *Na; (i = 1,2, - ) be a set of representatives for the G,-
conjugacy classes of subgroups a~* Na of G which are fixed by 6. Let w; = a;a; °T,
o that {w,} is a set of representatives for the a-conjugacy classes of W. Then

S O
i l(ai_lNai)al ‘Go'l

where ¢ is the alternating character of W and p™ is the highest power of p dividing

|G,

PrROOF. ¢ induces a linear transformation o* of the real vector space V
generated by the character group of 7. We may regard W as acting on V. Let I be
the ideal of W-invariant elements without constant term in the algebra of polyno-
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mials on ¥, and J = I/I*. Steinberg ([6], 11.19) has shown, if G is semisimple, that

22 det(oF—1,)"' = -2,

2.2) (o715 T

We can extend this to the case when G is reductive, as follows. Let G’ be the
derived group of G, so that G’ is semisimple. Then (G/G’), = (T/T n G'), and,
as G’ is connected, G,/G, =~ (G/G’), ([6], 10.11). Hence (G, : G,) = |(T/T n G'),l.
Now V =U@® V,; where U(V,) isomorphic to the real vector space generated by
the character group of T/T n G’ (T n G’), and W acts trivially on U. Hence

m
det (6t —1,)""! = 'g—,‘det (6% —1,)".

However, by duality det (65— 1,) = [(T/T n G’)|, and this yields the result.
Again, Steinberg ([6], 14.6) has shown that

(2.3) LS det(c*w—1)"" = det (o3 —1,)"".
‘W‘ weW
Suppose a maximal torus a~!7a of G is fixed by ¢ and let n, = aa™°. Let
Ty = [teTing 'tng = t°). Clearly (a~'Ta), = a”*Tya. Thus if nyT = w, then
ITo| = |Ker (6 —wg)| where w, is regarded as acting on 7. But |Ker (6 —wy)| =
det (6* —w,) where wy is regarded on the right hand side as acting on V. Thus, by
(2.2), (2.3) and Lemma 4 we have

R () NP
Gl = % iz T = 2 Ny,

This proves the lemma.

REMARK. In the case when G is defined and split over a field of g elements and
o is the ¢** power map, (2.3) follows from a classical formula of Molien (see eg [4]).
In that case |(a™'Ta),| = f(q) where f(x) is the characteristic polynomial of
w = aa” ° T acting on V. See also [5], p. 62.

3. Preparatory results

In this section our aim is to consider certain characters of the subgroups
(a; ' Na,), defined in Lemma 5 and the characters of G, induced from them.
The results given below are preparatory to computing the values of these induced
characters.

Until the end of Lemma 7, G satisfies the same assumptions as in § 2. Let
ne N, then ne (a”' Na), if and only if aa™° € Z''(n). Suppose Z"(n) # ¢ and
let ng be a fixed element of Z''(n), so that Z''(n) = Z(n)ny. If now n’ € Z(n) and
ny € Z"(n) thenn'n,n'~° € Z''(n) showing that Z(n) acts on Z"’(n) by o-conjugation.
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Consider the equivalence relation R on Z'’(n) given by
3.1) (nyn,) € Rif and only if n; = nyt ((ny, ny) € Z"’(n)x Z"'(n)),

where 1€ ng '(Z(n) N T)ony. It is easy to see that the action of Z(n) on Z''(n)
by o-conjugation induces an action of the finite group U = Z(n)/(Z(n) n T), on
the finite set B which is the quotient of Z"’(n) by the relation R.

LeEMMA 6. The number of orbits of U acting on B is equal to the number of
(Z(n), o)-conjugacy classes of Z'"(n) i.e. the number of orbits of Z(n) acting on
Z"(n) by o-conjugation.

PrROOF. Suppose n,, n, € Z''(n) are such that for some n' € Z(n) we have
(ny, n'nyn’~?) € R. Then we show that n, and n, are g-conjugate by an element of
Z(n). We have n, = n'nyn’~“t where teng ' (Z(n) n T)ong. If n, = cc™° (¢ € G)
then ¢ 7t '¢” = ¢ 'n'nyn'"°¢°. Now nyny'e€Z(n) and hence ¢ °t '€
¢~ 1(Z(n) » T)oc. By arguing as in Lemma 2 we see that n, = ¢; 'n'nn' "¢, for
some ¢, € (Z(n) n T), and this proves the lemma.

We now suppose that the subgroups a; * Na; (i = 1, 2, -+ -) are chosen as in
Lemma 5.

LeMMA 7. Let n € N and suppose that Z''(n) # (. Then there exists a one-to-one
correspondence between (Z(n), 6)-conjugacy classes of Z''(n) and conjugacy classes

of the (a; ! Na;) containing elements of the form a; 'n’ ' nn'a; (n’ € N). Furthermore,
if a;a”° = n;, the order of the centraliser of a7 'n'~*nn'a; in (a; * Na;), is |

|Z(n) N Z'(n'n;n’ ~°)|.

PrOOF. We note that a; ' na; € (¢, ! Na;), if an only if a;a; ® € Z"'(n). Thus, by
replacing the subgroups a; ! Na; by conjugates by elements of G, if necessary, we
see that to each (N, o)-conjugacy class of Z''(n) there corresponds a unique sub-
group (a; ! Na;), which contains a; * na;. Choose a fixed such i, let a; = a and let
aa”° = ny € Z"'(n). We show that each (Z(n), o)-conjugacy class of Z’'(n) con-
tained in the (N, o)-conjugacy class of n, gives rise to a conugacy class of (¢! Na),
containing an element of the form a™'n'~"'nn'a (n’ € N) and conversely. Let
ny € Z''(n) be such that n, = n'ngn’~? where n’ € N, Since ny € Z''(n) we have
ny'nn, = n° but this is equivalent to a”'n’"'nn'ae (a” ' Na),. Suppose n,,
ny,€Z"(n),n;=ningn;~° (n\ € N,i = 1, 2)and thatn, = n'n,n'~° wheren’ € Z(n).

Then x = a™*ny"'n'nyae(a”*Na), and a 'ny 'nnya = x"'a 'n"'nnjax.

Conversely if a™'ny 'nnya=a 'y *n"'nniya where a 'yae(a 'Na),
then n, = n'nyn’~° where n’ = nyyn, ' € Z(n). This proves the first part of the
lemma.

Now let ¢ 'n'"'nn'ae (a”' Na), and suppose n'nyn’~° = bb™° (be G).
Then b 'n'a = ge G, and ga~'n'"'nn'ag™' € (b~ ! Nb),. Thus the centraliser

of a™'n’"'nn'a in (a”!Na), is conjugate in G, to the centraliser of 5~ 'nb in
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(b~' Nb),, and it is sufficient to show that the order of the centraliser of a™'na

in (a~! Na), is |Z(n) n Z'(n,)|. But this is clear and the lemma is proved.

For the rest of this section we will assume that G is simply connected and
semisimple. For each subgroup a™ ! Na of G which is fixed by ¢ our aim is to
define a certain linear character of (¢~ Na), which is trivial on (a~'Ta),. Since
each such subgroup is conjugate by an element of G, to one of the a; ! Na,, it is
sufficient to define such characters of the (a; ' Na;),. For this it is sufficient, by
Lemma 4, to define a linear character y,, of Z’(w) for each w in a set of represen-
tatives for the o-conjugacy classes of w.

Assume for the moment that we have chosen a linear character ¥, of Z'(w;)
(where, as before, w; = a;a; °T) and denote the corresponding character of
(a7 ' Na;), also by y,,,. Let

(3.2) $ = Z WV,

where wfji is the character of G, induced from ¥, .

In order that ¢ is the Steinberg character of G, the characters v, should
satisfy certain conditions which will be stated in Lemma 8. Finally the characters
will be defined under certain assumptions on G in § 4 and ¢ will then be proved to
be the Steinberg character of G, .

LemMMA 8. Let p be prime to |W|. Suppose we have, for each we W, a linear
character \,, of Z'(w) such that these characters have the following properties.
If w, = w'w,w —a for some w € W (and hence Z'(w,) = w'Z'(wy)w'™") then
Yo (W) = ¥, (W~ ww’) for any w in Z’'(w,). Furthermore

(3.3) Ifne N-T, Z'"(n) = Z(n)ny, Zn) T/T =Y < W and
K(n)T|T = Y' < Y, then for each coset Y'c of Y' in Y,

(3-4) Y. ¥u(2)e(w) = 0,

weY cwo
where nT = z, n, T = wy.
Using these characters let ¢ be defined as in (3.2). Then the contribution to ¢
from the elements of the (a7 * Na;), which lie outside (a; ' Ta;), is zero.

PROOF. Let n e N—T and let ny, wy, Y, Y’ be as in the statement of the lemma.
We will consider all the conjugacy classes of each (a; ' Na;), which contain ele-
ments of the form a; ' n’~'n n’a; for some n’ € N. Since p is prime to |W| these
elements are semisimple. Hence, since these elements are all conjugate in G and G
is simply connected they are conjugate in G,([6], 12.5) to, say, x € G,. We show
that the contribution to ¢(x) from all such classes is zero. Since the set of all
conjugacy classes of the (a; ' Na;), which are contained in the conjugacy class of
xin G is a union of sets of classes of this type, the lemma will then be proved.
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We have the formula

85) = 126, o) 5 L

|1 Z (0, 1napo(1i)]
where the second sum is over a set of representatives of conjugacy classes of
(a; ! Na,), containing elements conjugate to x in G,. Thus the contribution to
¢(x) from a class of (a;” * Na;), containing an element of the form a; 'n’'~'nn'a; is

ewilZs,(x)

lz(a.-lzva.),(a n'” 1nn,ai)l

e(w,)IZ o X - 7- ’
— / G,( )l,-a !pm(ai ln lnn ai)’
|Z(n) n Z'(n'n;n' 7))

¥ (n:5)

Yo lai 'n'" nn'a;)

where n; = a;q; °, by Lemma 7.

Furthermore, let n'T = w'. Then ¥, (a7 'n' " nn'a)) = ¢, (W~ ww') =
Vsrwew -o(W), since w1 Z'(w'w;w' ~%)w’ = Z'(w;). We note that in the one-to-one
correspondence given by Lemma 7, the class of (a7 ! Na;), containing
a7 'n'"'nn'a; corresponds to the (Z(n), 6)-class of Z"’(n) containing n'n;n’~°.
Thus the required contribution to ¢(x) from the classes of the (a; ' Na;), con-

taining elements of the form a; 'n'~'nn'a, is

35 B -

(3.5) 1Z6.( )lZlZ() Z(,,)ll//w()

where the summation is over a set of representatives of the (Z(n), o)-conjugacy
classes of Z''(n), and n"'T = w"

Now let U, B be as in Lemma 6, and for n'' e Z"(n)let b’ € B be the residue
class of n" and C(b"’) = U the stabilizer of 4" under the action of U on B.
We show that the natural map of Z(n) n Z'(n’") into C(b"’) is surjective. Indeed,
let n, € Z(n) be such that #”" = n, n''n; ° ¢ for some te (Z(n)"T)o. An argument
similar to that of Lemma 2 yields that #”" = t; 'n,n"”n;°¢] and hence that
t;'ny€ Z(n) n Z'(n”) for some t; € (Z(n) n T),. Thus (3.5) can be written as

o) .
Ze ) 2, (Z(n) A T)o 0 Z'(n")|C(5")| Volz)

Since, by Lemma 6, the number of (Z(n), a)-classes of Z'/(n) is also the number
of orbits of U acting on B, this expression is equal to

|Z¢.(%)] &(w'’) .
1| 2 (Z(n) A T)o n Z(n")| ¥ 2)

where now the summation is over a set of representatives from the equivalence
classes of Z"(n) given by (3.1). Since (Z(n) n T : (Z(n) N T)o) is finite we can
rewrite this expression as
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IZGa(x)l g(w") ’
IYI w” |(Z(n) N T)O A Z'(n")] 'I’w”( )

where the sum is over a set of representatives for Yw, in Z"'(n).

For any two elements ny, n, € Z''(n), (Z(n) n T)y N Z'(ny) = (Z(n) n T),
N Z'(n,) if and only if K(n)n, = K(n)n,. Hence the above expression will be zero
if for each coset Y'cof Y'in Y

> Wi (z) =0.
weY cwg

But this is the assumption of the lemma, and the lemma is proved.

The next lemma is concerned with elements of the (a; ! Na;), which lie in
(a; ' Ta;),-

LeMMA 9. Let a~ ' Ta be a maximal torus of G fixed by a, let s € (a~* Ta), and
H = Z(s). Then there exists a one-to-one correspondence between the conjugacy
classes of (a~* Na), which contain elements of (a~'Ta), that are conjugate to s in
G, and the H,-conjugacy classes of maximal tori of H which are fixed by o and are
G,-conjugate to a~ Ta.

Proor. Since G is simply connected, H is a connected reductive group by a
theorem of Steinberg ([6], 8.2). The maximal tori of H are precisely those maximal
tori of G which contain s. It follows then that the element g~ 'sg (g € G,) lies in
(a™'Ta), if and only if ga~!Tag™* < H. Furthermore, two elements g; 'sg,
and g5 'sg, (94, 9, € G,) are conjugate in (a~* Na), if and only if g,a™ ' Tag;!
and g,a"'Tag;! are conjugate by an element of H,, as was to be shown.

4. The main theorem

We now state the main theorem. The notation is that of § 2.

THEOREM. Let G be simply connected and semisimple. Suppose p does not
divide \W| and let the subgroups a;* Na; (i = 1,2, - - -) be chosen as in Lemma 5.
For each we W suppose we have a linear character \,, of Z'(w) such that these
characters have the properties described in Lemma 8, and let ¢ be then defined by
(3.2). Then ¢ is the Steinberg character of G. Thus, if s is a semisimple element of
G, and H = Zy(s) then ¢(s) = &(s) n(s) where n(s) is the order of a Sylow p-sub-
group of H, and ¢(s) = +1 has the following interpretation. Let Q be a maximal
torus of H such that Q and a Borel subgroup of H containing Q are both fixed by o.
Regard Q as a maximal torus of G, and suppose the element w(s) of W corresponds
to Q (in the sense of the remarks following Lemma 3). Then ¢(s) = e(w(s)).

PrOOF. Let s be a semisimple element of G,. By Lemma 8 it is sufficient to
consider the contributions to ¢(s) from elements of the form g~ *sg € (a; ! Ta;),
(g9 € G,). The order of the centraliser of g~ !sg in (a; ' Na,), is
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|(a; 'Nay), 0 Zo(g™*sg)l = I(ga; 'Na,g), 0 H| = l(ga; 'Na;g 0 H),|

Hence
1

ga; 'Na,g n H),|

¢(s) = |H,| Zi:S(Wi); M

where the second sum is over a set of representatives of the conjugacy classes of
(a7 * Na,), containing elements of the form g~ 'sg (g € G,). Under the corre-
spondence mentioned in Lemma 9, the conjugacy class of g~ 'sg in (a; ! Na;),
corresponds to the H,-conjugacy class of the maximal torus g~ 'a; ! Ta,g of H.
Using this correspondence we see that

&(cc™°T)
4.1 s) = |H,| _—
(@1 ¢(5) =1 c—zl:rc |(c"*Nc n H),|
where the sum is over a set of representatives of the H_ -conjugacy classes of
maximal tori of H fixed by o.

Consider the maximal torus Q of H and let Q = x™'Tx(x € G). Let & be
the alternating character of x™!Nx/x~!Tx; thus if y e N then &'(x"'yxQ) =
¢(yT). By Lemma 5 applied to the connected reductive group H we have

’ -a
(4.2) g'(bb™°Q) _ nls)

»“Tgp |(b”'x"'Nxb n H),| |H,|

where again the sum is over a set of representatives of the H, -conjugacy classes of
maximal tori of H fixed by 6. Now

e(xbb™ x7°T) = &'(bb™°x"°x Q) = &'(bb™° Q) ¢'(x”°xQ)
=& (bb™°Q) e(xx™°T) = &'(bb™° Q) e(w(s)).
By (4.1) and (4.2) we than get ¢(s) = e(w(s))n(s) as required.

Finally, ¢ is zero at elements of G, which are not semisimple. For any semi-
simple element s the absolute value of ¢(s) is the absolute value of the value of
Steinberg character of G, at s. This shows that ¢ is irreducible. Since the degree of
¢ is the order of a Sylow p-subgroup of G,, ¢ 1s the Steinberg character of G,.
This proves the theorem.

REMARKS

1. We note that the condition that p does not divide | W| was used in Lemma
8 to derive the following result. '

4.3) Let ne N—T be such that Z"(n) # ¢.

If o 'n'~'nn'a;e (a7 ' Na;), and a; 'n" " 'nn"a;€ (a; ' Na;), for some i, jand ',
n" €N, then ¢ 'n’ 'nn'a; and a; 'n"’"'nn"a; are conjugate in G,. Thus the

condition that p does not divide | W| can be dispensed with if (4.3) is satisfied in G, .
2. Suppose G is defined and split over k = GF(g) and ¢ is the g'® power map.
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Then T is a k-split maximal torus of G. In this case, for a semisimple element s,
w(s) is the element of W corresponding to a maximal torus of H containing a
maximal k-split torus of H, when regarded as a maximal torus of G. If 5 is regular
then H is a maximal torus of G and w(s) is the element of W corresponding to H.

3. The characters we have defined of the subgroups (@~ ! Na), are all trivial
on (a~!Ta),. It is likely that this can be modified as follows. Take any character
n of T'and let N’ be the subgroup of N which fixes #. If characters of the subgroups
(a” ! N'a), can be defined which have properties similar to (3.3) and which take
the value n(¢) at an element a™ 'ta of (a™' Ta), then these could be used to construct
characters of G, analogous to ¢. For example, suppose # is a character of 7' which
is not fixed by any w # 1 of W. For each we Wchoose a€ Gsuchthataa™°T = w
and let 5, be the character defined by n,(a”'ta) = y(t) of (a~'Ta),. Let
x = Z,cw e(W)ny. Then y is a character of G, of degree |W| n(1). In this case we
need not put any restriction on p as Lemma 8 is not used. It seems likely that the
characters of G obtained in this way are some of the principal indecomposable
characters (for p) of G,. -

5. Construction of certain characters of subgroups of W

In this section we give illustrations of when the main theorem can be applied,
by actually constructing the characters ¥, in certain cases.
Assume that G is simple. We have the following possibilities for G, [6]:

(1) Gisof type A;, B,, C, -+, Eg and G, is a Chevalley group.
(2) (i) Gisof type A,(122), D,(I = 4) or Eg and G, is a twisted analogue
of a Chevalley group.
(ii) G is of type D, and G, is a ‘triality form® of G.
(3) (i) Gisoftype B,,p = 2 and G, is Suzuki group.
(i) Gis of type G, andp = 3 or G is of type Fyand p = 2 and G, is a
Ree group.

In the case when W = W, we have Z'(w) = Z(w) = Z"(w) for each we W.
Then we have to define characters y,, of Z(w) for each w € W having the property
(3.3) where we may take wy = 1. In Case 1, W = W,. In Case 2 we make the
following remark. Suppose there is an element w’ in W such that w'~'ww’' = w°
for all we W. This means that Z'(w’) = W. By Lemma 4 there is a maximal
torus ¢~ ' Ta of G fixed by o such that (a~* Na),/(a” ' Ta), is isomorphic to W.
Let T'=a 'Ta, N'=a"'Na, N'/T' = W', so that W’ = W,. Suppose we
replace T'by 7", and N by N’ and define the required characters y,, on subgroups
Z'(w)of W’ (we W’). Then the expression on the left side of (3.4) will be replaced
by the same expression where the elements are now taken form W', possibly
multiplied by —1 since 7" corresponds to the element aa™ °T of W. Hence in this
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case we can assume that W = W_ and define the characters i, as in Case 1. We
remark that W contains such an element w’ if G is of type 4,, D, (/ odd) or Ej.

In Case 3 the characteristic of K divides | W] and so Lemma 8 cannot be used.
However, in the case of types B, and G,, if we suitably define the characters
Y, and then define ¢ as in (3.2), we can check directly using the results of Suzuki
[8] and Ward [9] that ¢ is the Steinberg character of G,.

(5.1) The subgroup Y in Lemma 8 depends on the choice of n and not merely
on z = nT € W. However, suppose z lies in a direct product W’ of reflection
subgroups of W, each subgroup being generated by reflections corresponding to
a closed set of roots (with respect to T') of G. For a root a let Z, be the centraliser
in G of the connected component of the kernel of «. As « runs over the roots
considered above, let H be the reductive subgroup of G generated by the Z,. Then
W' is the Weyl group of H and n € H. From the structure of H ([1], 17) it follows
that if z = z,z, - - - according to the decomposition of W”, there exist elements
Hy, Ry, - in Z(n) such that n, T = z;, n, T = z,, - - -. Hence Y contains at least
the cyclic groups generated by z,, z,, - - -. This fact will be used later.

In order to define the characters y,, we consider in turn the possible types for
W. The groups W for each of the possible types for G are described in ([1], 19).
In Cases (i), (ii) and (iii) o is the identity automorphism of W.

(i) Type A,. W is the symmetric group S, .. Let z € W be written as a product
of disjoint cycles. Then K(z) is the direct product of the cyclic groups generated by
these cycles. By applying the argument of (4.1) we see that K(z) = Y. Hence it is
sufficient to show (3.4) with Y’ = K(z). The structure of Z(z) is well known and
can be described as follows. Let z = w,w, -+ where w, = (b1b - b;)
(B3B3 - - - bZ) - - - (b, b - - -bL,) is the product of those cycles occuring in z which
are of length m. Let T, be the group V, V, - - - V, M where V; is the cyclic subgroup
generated by b; = (b} b, - - - b},), and M is generated by elements of W of the form
¢y Cy * * * ¢, where ¢, is a permutation of b7, - - - b} and ¢; is got from ¢, by replacing
b} by bj. The Z(z) = Ty x T, x* -+ x T, x---. Define the character y, of Z(z)
by putting y,(y) = 1 for all y in M, and defining it on T, by ¥,(b;) = 0, where,
if m = 2°k (k odd) then 0 is a primitieve k™ root of unity.

It can then be verified that these characters satisfy (3.4).

(ii) Types B, (I 2 2), C, (I = 3). W is a semidirect product of a normal sub-
group P which is elementary abelian of order 2' generated by reflections a,
a,, " a;, with a subgroup W, which is generated by reflections (17) (i = 2, - -+, ).
W, is isomorphic to S; and we have

a; if j #1i,1
(1i)a,1i) = { a, if j = i
ai lf] = 1
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The conjugacy classes of W are described, e.g. in [10].

As in (i) we can show that if z € W then K(z) < Y. Suppose z € W, is of the
form

(52) (BB - by) -~ (BB - - B)

as in (i). Then we define the character ¥, of Z(z) by defining ¥, on Z(z) n W, as
in (i) and by stipulating that y,(¥) = 1 for y in Z(z) n P. Now suppose

(53)  z=ay(Biby e bag(blby cc B2) - ag (B by B,

where o; = b} . Let V; be the cyclic group generated by b; = a,, (b, 6} - - - b,) and
M the subgroup of Z(z) defined as in (i). Definey,on 4, 4, - - - A, Mbyy,(y) = 1
for y in M and y,(b;) = 0 where 0 is a primitive m™ root of unity.

We can then define the characters ¥, for a general element z, and it can be
verified that they have the required property.

(iii) Type D, (I z 4). The Weyl group W’ in this case is the subgroup of
index 2 of the group W of (ii) consisting of all elements of the form a§'a3*- - - a'y
(v € W,) where £4; is even. If two elements of W’ are such that the corresponding
elements y in W, fix at least one symbol from 1 to / they are conjugate in W' if
and only if they are conjugate in W. However, if x = a®* - - - al'y and y moves
all the symbols from 1 to / then the conjugacy class of x in W splits into two
classes in W’. For any element z € W we now define a character y, of its centraliser
in W. If z e W’, the required character of its centraliser in W' is defined to be the
restriction of this character. If z is of the form (5.2) we define ¥, as in (ii). If z is
of the form (5.3) define y,(y) = 1 for y € M and y,(b;) = 6 where 6 is a primitive
(2m)™ root of unity.

We remark that in this case it is not clear whether we always have, for
ze W, K(z) < Y. However, using the remarks (5.1) we can again verify that the
characters ¥, have the required properties.

(iv) Type D, (I 2 4), with o the automorphism of W’ which interchanges (12)
and a, a, (12). By the remarks at the beginning of the section we can assume that
I is even. We regard W’ as a subgroup of the Weyl group W of the type D,,, in
the obvious way. Since /41 is odd there is an element w, € W (in fact wy, =
a,das '+ a,,) such that wy*ww, = w for all we W. Then for any we W,
Z'(w) = Z(wwy !). Thus if ze W', Z'(z) n W’ < Z(zwy*). In order to define
the character ¥, of Z'(z) n W’ we define it on Z(zwg ') as in (iii) and restrict it
10 Z'(z) ~ W'. These characters again have the required properties.

(v) Type D,, with ¢ the automorphism of W’ which maps (12) — a,a,(12),
a,a,(12) - (34), (34) - (12). The o-conjugacy classes of W’ can be calculated.
We give in the colums of table 1 from left to right, representatives z of the classes,
Z'(z), and the characters to be chosen. We put x = a,a,a34a,.
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TABLE 1

1 {a,a,(234), (23)} Trivial Character

x {a,a;(234), 23)} Trivial Character

12) {x, azay (34)} Trivial Character

asa;(12) {x, (12)} Trivial Character

aszas(123) {(123), a,a,(12)(34)} (123) > w, a;a4(12)(34) = 1
(123) {a,a,(12)(34)} aja,(12)(34) - —1
a,a,(123) {(123), a; a,(12)(34)} (123) - w, a;a4(12)(34) - 1

Here, and in the rest of the section, @ and i denote a primitive cube root and a
fourth root of unity respectively.

(vi) Type G,. W is generated by reflections b and ¢ such that a = bc is of
order 6.

1. o is the identity. Let ¢, be the character a > w of Z(a) = {a}. For the
centralisers of elements of W not conjugate to a we take the trivial character.

2. o is the automorphism which interchanges b and c. We have Z'(1) = {a*},
Z'(b) = Z'(a*b) = Z'(a®b) = {a}. We choose the trivial character of Z'(1)
Z'(b) and the character a - @ of Z'(a*b) and Z'(a>b).

(vii) Type B,. W is generated by two reflections b and ¢ such that @ = be
is of order 4. Let ¢ be the automorphism interchanging b and ¢. We have Z'(1) =
{a*}, Z'(b) = Z'(a*b) = {a}. Choose the character a> » —1 of Z’(1) and the
character a — i of Z'(b) and Z'(a*b).

(viii) Type F,. W is a group of order 1152, the conjugacy classes and charac-
ters of which are given in [2]. ¢ is the identity automorphism of W. It can be
shown, by a lengthy computation, that there exist characters ¥, of Z(w) for
w e W such that y,,.(w) = ¢,,(w’) for any pair w, w’ € W. These characters have
the required properties.

In the case of the Weyl group of type E¢ we can define characters y,, having
properties (3.3) provided Y’ = K(z) in (3.4). However, we have not been able to
show that Y’ = K(z) holds for each z.

Summarizing, the main theorem is valid in the following cases.

(1) Gis of type A, B, C;, Dy, G,, F, and G, is a Chevalley group.

(2) Gisof type A,, D, and G, is a twisted form of a Chevalley group.

(3) G is of type D, and G, is a triality form of G.

(4) G, is a Suzuki group or a Ree group of type G, .
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