
ON THE STEINBERG CHARACTER OF A FINITE SIMPLE GROUP

OF LIE TYPE

BHAMA SRINIVASAN

(Received 4 March 1969; revised 16 July 1969)

To Bernhard Hermann Neumann on his 60th birthday

Communicated by G. E. Wall

1. Introduction

Let AT be an algebraically closed field of characteristic p > 0. If G is a connect-
ed, simple connected, semisimple linear algebraic group defined over K and a an
endomorphism of G onto G such that the subgroup Ga of fixed points of a is finite,
Steinberg ([6], [7]) has shown that there is a complex irreducible character % of Ga

with the following properties, x vanishes at all elements of Ga which are not semi-
simple, and, if x e G is semisimple, %{x) = ±n(x) where n(x) is the order of a Sylow
/^-subgroup of (Zc(jc))ff (ZG(x) is the centraliser of x in G). If G is simple he has, in
[6], identified the possible groups Ga; they are the Chevalley groups and their twist-
ed analogues over finite fields, that is, the 'simply connected' versions of finite sim-
ple groups of Lie type. In this paper we show, under certain restrictions on the type
of the simple algebraic group G and on the characteristic of K, that % can be ex-
pressed as a linear combination with integral coefficients of characters induced from
linear characters of certain naturally defined subgroups of Ga. This expression for
X gives an explanation for the occurence of n(x) in the formula for x(x)-> a n d also
gives an interpretation for the ± 1 occuring in the formula in terms of invariants
of the reductive algebraic group ZG{x).

I am very grateful to Professor T. A. Springer for making available to me a
preprint of [6].

2. Notation and preliminary lemmas

In this section, unless otherwise stated, G denotes a connected reductive
linear algebraic group defined over an algebraically closed field K of characteristic
p > 0, and a an endomorphism of G onto G such that Ga is finite. T is a maximal
torus of G such that both T and a Borel subgroup contaning T are both fixed by
a; Tis unique up to conjugacy by an element of Ga (see [6]). N is the normaliser
of T in G and N/T = W. Then a induces an automorphism of the finite group W.

l
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The connected component of the identity of any closed subgroup H of G
will be denoted by Ho. We refer to [1] for the relevant facts about algebraic
groups. For any finite group H, \H\ denotes its order.

DEFINITION. TWO elements « t , n2 e N are said to be ex-conjugate if there exists
an element neNsuch that n2 = nn^n~"'. For any neNlet

Z(n) be the centraliser of n in N,

Z'(n) = [n ' e JV |nW~' = n]

and Z"(n) = [n0 e N\rio lnn0 = n"].

Z'(n) is a subgroup of N. Z"{n) may be empty, but if there is an element n0 e Z"(n)
then Z"(n) = Z(n) n0. Let

K(n) = [«' e Z(«)|n' centralises (Z(n) n r ) 0 ] .

If w e PF, the subgroup Z'(w) and the subset Z"(w) of If are defined similarly as

Z'(vv) = [w'e W|wW~* = w]

and Z"(w) = [w0 e W|WQ xww0 = wff].

Z(w) is the centraliser of w in W. ^(w) is the subgroup of W of all elements of
Z(w) leaving elementwise fixed the connected component of the identity of the
subgroup of T of fixed points of w.

We first state a result of Steinberg [6] which is a generalization of a well-
known result of Lang [3].

LEMMA 1. (Steinberg) Let H be a connected linear algebraic group over K and
a an endomorphism ofH onto H such that Ha is finite. Then the map x -* xx~a of H
into H is surjective.

Our aim now is to define certain 'Cartan subgroups' of Ga and to set up a
one-to-one correspondence between the GCT-conjugacy classes of these subgroups
and <T-conjugacy classes of W. This correspondence is known in the case when G
is defined and split over a finite field of q elements and a is the ^th power map, but
we have not been able to find a description of it in the literature.

LEMMA 2. If two elements « 0 , nteN are a-conjugate modulo T, they are

a-conjugate in N.

PROOF. Let nt = nnon~"t where n e N, t e T. By Lemma 1 nt = aa~" where
a e G. Hence

(2.1) a~lnnon~"a' = a " T V .

Since nt normalizes T, a~<rt~1a° 6 a"1 Ta. Also a~1Ta is connected. Thus by
Lemma 1 we can write
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for some tt e T. Together with (2.1) this yields nt = t^1 nnon~"t\, showing that
nt, n0 are u-conjugate in N. This proves the lemma.

Suppose noeN and n0 = aa~" (aeG). Then the maximal torus a~lTa
and its normaliser a" * Na are fixed by a. Conversely if the maximal torus a~1Ta
is fixed by a then aa~" e N. We investigate the Gff-conjugacy of such maximal tori
in the next lemma.

LEMMA 3. Let n0, n1 e N, n0 = aa~", nx = bb~°(a, b e G). Then a~xTa and
b~lTb are conjugate by an element of Ga if and only ifn0, nt are a-conjugate in
N (and hence, by Lemma 2, if and only ifn0 T and nt T are a-conjugate in W).

PROOF. If n0 = nn^n~' (neN) then a'^nb = geGa and g~ia~1Tag =
b~lTb. Conversely let g~x a'1 Tag = b~ * Tb where ge Ga. Then agb'1 = neN,
and «0 = nnxn~".

It follows from Lemma 2 and 3 that to each maximal torus aTlTa fixed by
a there corresponds the element (aa~°)To{ W which is unique up to c-conjugacy
in W. Furthermore there is a one-to-one correspondence between G^-conjugacy
classes of maximal tori of G fixed by a and cr-conjugacy classes of W. For these
maximal tori a'1 Ta we now consider the subgroups (a~x Ta)a ('Cartan subgroups'
of Ga) and the subgroups (a~l Na\.

LEMMA 4. Let a~xTa be a maximal torus fixed by a, and let aaT" = n0,
n0T = w o e W. Then

is isomorphic to Z'(w0).

PROOF. Let a'x na e (a~! Na)a (n e N) and consider the map a~lna -» nT = w

of (a"1 Na)a into W. Then \VWQW~" = w0 and hence (a"1 Na)a is mapped into
Z'(w0). By the proof of Lemma 2 (a'1 Na\ is actually mapped onto Z'(w0) and
this proves the lemma.

The next lemma is basic for our construction of the Steinberg character of Ga.

LEMMA 5. Let af1 Nat (i = 1, 2, • • •) be a set of representatives for the Ga-

conjugacy classes ofsubgroups a"1 Na ofG which are fixed by a. Let wi = a-^ "T,
so that {wi} is a set of representatives for the a-conjugacy classes of W. Then

r Ka^NatU \G.\

where s is the alternating character of W and pm is the highest power of p dividing

\G.\.

PROOF, a induces a linear transformation a* of the real vector space V
generated by the character group of T. We may regard W as acting on V. Let / be
the ideal of W-invariant elements without constant term in the algebra of polyno-

https://doi.org/10.1017/S1446788700008247 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700008247


4 Bhama Srinivasan [4]

mials on V, and / = J/I2. Steinberg ([6], 11.19) has shown, if G is semisimple, that

(2.2) det ((7?-I.,)"1 = -£—.
\G,\

We can extend this to the case when G is reductive, as follows. Let G' be the
derived group of G, so that G' is semisimple. Then {GjG'\ £ (T/T n G')a and,
as G' is connected, Gff/G; =* (G/G')ff ([6], 10.11). Hence (Gff : G;) = 1(7/7 n G')ff|.
Now F = C/© Fx where ^(Ft) isomorphic to the real vector space generated by
the character group of T/T n G' (T n (7), and PF acts trivially on U. Hence

det^j- l j )"1 = -^— det (ff*-1^)"x.

However, by duality det (ff* - li,) = 1(777 n G')\a and this yields the result.
Again, Steinberg ([6], 14.6) has shown that

(2.3) L
\W\ weW

Suppose a maximal torus a~lTa of G is fixed by a and let n0 = acT". Let
To = [?s7>o ^"o = t"]. Clearly ( a " 1 ^ ) , = a'xToa. Thus if n o r = w0 then
\T0\ = |Ker (a — wo)| where vv0 is regarded as acting on T. But |Ker (a — wo)| =
det (a* — w0) where vv0 is regarded on the right hand side as acting on V. Thus, by
(2.2), (2.3) and Lemma 4 we have

This proves the lemma.

REMARK. In the case when G is defined and split over a field of q elements and
a is the qtb power map, (2.3) follows from a classical formula of Molien (see eg [4]).
In that case \(a~1Ta)a\ =f(q) where/(x) is the characteristic polynomial of
w = aa~°Tacting on V. See also [5], p. 62.

3. Preparatory results

In this section our aim is to consider certain characters of the subgroups
{a^lNa^)a defined in Lemma 5 and the characters of Ga induced from them.
The results given below are preparatory to computing the values of these induced
characters.

Until the end of Lemma 7, G satisfies the same assumptions as in § 2. Let
neN, then ne (a~1Na)IT if and only if aa~" e Z"(n). Suppose Z"(n) ^ <f> and
let n0 be a fixed element of Z"(n), so that Z"(n) = Z(n)n0. If now «' e Z{n) and
«! e Z"(n) then n'n1 n'~"e Z"{n) showing that Z(n) acts on Z"(«) by ^-conjugation.
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Consider the equivalence relation R on Z"(n) given by

(3.1) («j n2) 6 R if and only if nt = n2t ((n1,n2)e Z"(n)xZ"(n)),

where ten7 1(Z(n) n T)ono. It is easy to see that the action of Z(n) on Z"(n)
by ^-conjugation induces an action of the finite group U = Z(n)/(Z(n) n T)o on
the finite set B which is the quotient of Z"{n) by the relation R.

LEMMA 6. The number of orbits of U acting on B is equal to the number of
(Z(n), a)-conjugacy classes of Z"(n) i.e. the number of orbits of Z(n) acting on
Z"(n) by a-conjugation.

PROOF. Suppose n1, n2 e Z"(n) are such that for some n' e Z(n) we have
(n2, «'«i n'~")e R. Then we show that nt and n2 are tr-conjugate by an element of
Z(«). We have n2 = n'n1n'~"t where t en7l (Z(») n T)ono. If n2 = cc~" (c e G)
then c~Txc° = c~1n'n1ri~''ca. Now n2n7l eZ{n) and hence c~ f f ?~Ve
c " 1 ^ ^ ) n r ) o c . By arguing as in Lemma 2 we see that n2 = t~[1rinlri~''tl for
some tt e (Z(M) n T)o and this proves the lemma.

We now suppose that the subgroups aj"1 Nat (i = 1, 2, • • •) are chosen as in
Lemma 5.

LEMMA 7. Let n e N and suppose that Z"(n) # 0. Then there exists a one-to-one
correspondence between (Z(n), a)-conjugacy classes ofZ"(n) and conjugacy classes
of the (tf;~1 Nai) containing elements of the form of in'~i nn'a{ (n' e AQ. Furthermore,
if a^7" = «;, the order of the centraliser of arln'~inn'ai in (a7lNa^)a is \

|Z(n)nZ'(«'»j»'"")l-

PROOF. We note that a,~1«a, e (afJ Wa;),, if an only if c r ^ f e Z"(n). Thus, by
replacing the subgroups af1Nai by conjugates by elements of Ga if necessary, we
see that to each (N, <r)-conjugacy class of Z"(n) there corresponds a unique sub-
group (af l Na^ which contains a7l nat. Choose a fixed such i, let at = a and let
aa~a = n0 e Z"(n). We show that each (Z(n), cr)-conjugacy class of Z"(«) con-
tained in the (N, ff)-conjugacy class of n0 gives rise to a conugacy class of (a~1 Na)a

containing an element of the form a"xn'~1nn'a (n' e N) and conversely. Let
«! e Z"(n) be such that «t = n'non'~" where n' e N, Since nt eZ"(n) we have
n71nnl = «", but this is equivalent to a~1n'~1nn'ae (a'1 Na)a. Suppose « l 5

«2 e Z"(«), «j = n,'non,'~" (H/ e N,i = 1,2) and that «t = n'n2n'~a where n' e Z(n).
Then x = a~ * «'x"

x «'«2'a e (a~x Na)a and a" * n2"x nn 2
a = x~1a~1 n'7~l nn[ a x.

Conversely if a~in'2~
1nn2a = a~1y~1ril~

1nrilya where a~1yae (a"1 Na)a

then «! = n'n2n'~° where «' = n'ljw^1 e Z(n). This proves the first part of the
lemma.

Now let a~1n'~1 nn'ae (a'1 Na)a and suppose n'non'~" — bb~" (beG).
Then b~1n'a = geGa and ga~in'~1nn'ag~i e {b~lNb)a. Thus the centraliser
of a~ln'~1nn'a in (a~lNa)a is conjugate in Ga to the centraliser of b~lnb in
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(b~xNb)a, and it is sufficient to show that the order of the centraliser of a~lna
in (a"1 Na)a is |Z(n) n Z'(«o)|. But this is clear and the lemma is proved.

For the rest of this section we will assume that G is simply connected and
semisimple. For each subgroup a~lNa of G which is fixed by a our aim is to
define a certain linear character of (a~l Na)a which is trivial on (a~1Ta)a. Since
each such subgroup is conjugate by an element of Ga to one of the af1 Nat, it is
sufficient to define such characters of the (tff* Nat)a. For this it is sufficient, by
Lemma 4, to define a linear character tj/w of Z'(w) for each w in a set of represen-
tatives for the cr-conjugacy classes of w.

Assume for the moment that we have chosen a linear character i^w. of Z'(w{)
(where, as before, wt = a^^'T) and denote the corresponding character of
(a,~ * Na^a also by ij/w.. Let

(3.2) (4
where \j/*. is the character of Ga induced from \\iWi.

In order that 4> is the Steinberg character of Ga the characters i//Wt should
satisfy certain conditions which will be stated in Lemma 8. Finally the characters
will be defined under certain assumptions on G in § 4 and 4> will then be proved to
be the Steinberg character of Ga.

LEMMA 8. Let p be prime to \W\. Suppose we have, for each w e W, a linear
character \jjw of Z'(w) such that these characters have the following properties.
If w2 = w'w^w' — a for some w' e W (and hence Z'(w2) = w'Z'(u'1)w'~1) then
^•wi{w) = ^w2(H''~1 ww')for any w in Z'{wx). Furthermore

(3.3) IfneN- T, Z"(n) = Z(n)n0, Z(n) T/T = Y £ W and

K(n) TIT = Y' s Y, then for each coset Y'c of Y' in Y,

(3-4) £ ^w(z)£(w) = 0,
weY'cwo

where nT = z, n0T = w0.
Using these characters let 4> be defined as in (3.2). Then the contribution to <f>

from the elements of the (af1 Nat)a which lie outside (af 1Taj)(T is zero.

PROOF. Let n e N- T and let no,wo, Y, Y' be as in the statement of the lemma.
We will consider all the conjugacy classes of each (af1 NatX which contain ele-
ments of the form afx n'~in n'a, for some n' e N. Since p is prime to | W\ these
elements are semisimple. Hence, since these elements are all conjugate in G and G
is simply connected they are conjugate in Gff([6], 12.5) to, say, xeGa. We show
that the contribution to (j>{x) from all such classes is zero. Since the set of all
conjugacy classes of the (af1 No,), which are contained in the conjugacy class of
x in G is a union of sets of classes of this type, the lemma will then be proved.
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We have the formula

J>(x) = | Z G » | I e(w;) I — * - _ ^,(ny)

where the second sum is over a set of representatives of conjugacy classes of
(a^Na,),, containing elements conjugate to x in Ga. Thus the contribution to
(j)(x) from a class of (aj~ * Na^ containing an element of the form of1 n'~l rrn'cii is

s(Wi)\ZG (x) , , _ , , _ , , .

|Z(n)nZ'(n'«<«""')!

where n; = «;«;""> by Lemma 7.
Furthermore, let n'T = w'. Then \I/Vt(af1n'~1nn'ai') = ^ ( ^ " ' i f i v ' ) =

•Aw'wiw--"̂ ). since w'"1 Z'(w'wiw'~")w' = Z'(Wi). We note that in the one-to-one
correspondence given by Lemma 7, the class of (aj~x Nat)a containing
af1 n''1nn'ai corresponds to the (Z(n), cr)-class of Z"(n) containing n'n.n'""7.
Thus the required contribution to 4>(x) from the classes of the (aj"1 Ar«j)<r c o n"
taining elements of the form af 1n'~1 nn'af is

(3-5) \oM Z 7_, ^ „„ M*)
n- |Z(n) n Z(n )\

where the summation is over a set of representatives of the (Z(«), cr)-conjugacy
classes of Z"(n), and n 'T = w".

Now let U, B be as in Lemma 6, and for n" e Z"(M) let 6" e 5 be the residue
class of n" and C(6") ^ U the stabilizer of 6" under the action of U on B.
We show that the natural map of Z(«) n Z'(n") into C(Z>") is surjective. Indeed,
let nl e Z(n) be such that n" = n1 n"nl" t for some t e (Z(«) n T)o. An argument
similar to that of Lemma 2 yields that n" = t^nxn"ri[°'t\ and hence that
f^1/?! e Z(n) n Z'(«") for some rt e (Z(«) n T)o. Thus (3.5) can be written as

|ZJX)I I t|<JX)I I |(Z(n)nT)otz'(n")||C(Z,")|
Since, by Lemma 6, the number of (Z(n), cr)-classes of Z"(n) is also the number
of orbits of U acting on B, this expression is equal to

\ZQSX)\ S(W")

\U\ ^ |(Z(n) n T)o n Z'(n"

where now the summation is over a set of representatives from the equivalence
classes of Z"(n) given by (3.1). Since (Z(n) n T: (Z(n) n T)o) is finite we can
rewrite this expression as
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£ ^ ( z )
\Y\ £ |(Z(n) n T)o n Z'(«")l

where the sum is over a set of representatives for Yw0 in Z"(n).
For any two elements nx, n2 e Z"(n), (Z(n) n Do ^ z ' ( « i ) = (z(n) n r ) o

n Z'(n1) if and only if ^ ( M ) « ! = K(n)n2 • Hence the above expression will be zero
if for each coset Y'c of Y' in Y

£ E(w>Aw(z) = 0.
weJ"cwo

But this is the assumption of the lemma, and the lemma is proved.
The next lemma is concerned with elements of the (a[1 Na^)a which lie in

LEMMA 9. Let a~LTa be a maximal torus of G fixed by a, let s e (a"1 Td)a and
H = ZG(s). Then there exists a one-to-one correspondence between the conjugacy
classes of(a~1Na)tT which contain elements of(a~iTa\ that are conjugate to s in
Ga and the Ha-conjugacy classes of maximal tori of H which are fixed by a and are
Ga-conjugate to a~1Ta.

PROOF. Since G is simply connected, H is a connected reductive group by a
theorem of Steinberg ([6], 8.2). The maximal tori of/fare precisely those maximal
tori of G which contain s. It follows then that the element g'1 sg (g e Ga) lies in
{a~1Ta)a if and only if ga~xTag~l = H. Furthermore, two elements g^sgt
and gl1 sg2 (gt, g2 e Ga) are conjugate in (a"1 Na)a if and only if gx a~i Tag^1

and g2a~1Tag2
1 are conjugate by an element of Ha, as was to be shown.

4. The main theorem

We now state the main theorem. The notation is that of § 2.

THEOREM. Let G be simply connected and semisimple. Suppose p does not
divide \ W\ and let the subgroups af * Na} (i = 1, 2, • • •) be chosen as in Lemma 5.
For each w s W suppose we have a linear character \j/w of Z'(w) such that these
characters have the properties described in Lemma 8, and let <j) be then defined by
(3.2). Then <j) is the Steinberg character ofGa. Thus, ifs is a semisimple element of
Ga and H = ZG(s) then <j)(s) = e(s) n(s) where n(s) is the order of a Sylow p-sub-
group of Ha and e(s) = +1 has the following interpretation. Let Q be a maximal
torus of H such that Q and a Borel subgroup of H containing Q are both fixed by a.
Regard Q as a maximal torus of G, and suppose the element w(s) of W corresponds
to Q (in the sense of the remarks following Lemma 3). Then e(s) = e(w(s)).

PROOF. Let s be a semisimple element of Ga. By Lemma 8 it is sufficient to
consider the contributions to (f>(s) from elements of the form g~lsg e (a^yTat)a

(g e Ga). The order of the centraliser of g~1sg in (af1 Na^ is
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{(a^NciiX n ZG(g~1sg)\ = Ifoflf ^ i f f ) * n H\ = {(ga^Naig n i/)ff|

Hence

<A(s) =\Ha\le(Wi)l

where the second sum is over a set of representatives of the conjugacy classes of
{a^iNai)B containing elements of the form g~^sg (geGa). Under the corre-
spondence mentioned in Lemma 9, the conjugacy class of g~xsg in (a^lNat)a

corresponds to the if^-conjugacy class of the maximal torus g~1a^'1Talg of H.
Using this correspondence we see that

where the sum is over a set of representatives of the i7ff-conjugacy classes of
maximal tori of H fixed by a.

Consider the maximal torus Q of H and let Q = x~1Tx(xe G). Let e' be
the alternating character of x~* Nxfx~1Tx; thus if y e N then e'(x~1yxQ) =
s(yT). By Lemma 5 applied to the connected reductive group H we have

(4 2) V s'ibb-'Q) _ n(s)
t-'QtKb-'x-'NxbnH^ \H.\

where again the sum is over a set of representatives of the 7/,,-conjugacy classes of
maximal tori of H fixed by a. Now

e(xbb~'x-"f) = e.'{bb-'x-'x Q) = e'{bb-"Q) e'(x~'xQ)

= e'(bb~''Q) s(xx-"T) = e'(bb-'Q) s(w(s)).

By (4.1) and (4.2) we than get (j)(s) = e(w(s))n(s) as required.
Finally, <f> is zero at elements of Ga which are not semisimple. For any semi-

simple element s the absolute value of <j)(s) is the absolute value of the value of
Steinberg character of Ga at s. This shows that <j) is irreducible. Since the degree of
4> is the order of a Sylow /^-subgroup of Ga, <f> is the Steinberg character of Ga.
This proves the theorem.

REMARKS

1. We note that the condition that p does not divide | W\ was used in Lemma
8 to derive the following result.

(4.3) Let n e N-T be such that Z"(n) # <j>.

If af ln'~l nn'ai E (afx Na^ and a]ln"~1 nri'dj e (aj1 Naj)a for some i, j and ri,
n" e N, then af1n'^inn'ai and aj1n"~1nn"aj are conjugate in Ga. Thus the
condition that/; does not divide | W\ can be dispensed with if (4.3) is satisfied in Ga.

2. Suppose G is defined and split over k = GF{q) and a is the qlb power map.
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Then T is a £-split maximal torus of G. In this case, for a semisimple element s,
w(s) is the element of W corresponding to a maximal torus of H containing a
maximal A>split torus of H, when regarded as a maximal torus of G. If s is regular
then if is a maximal torus of G and w(s) is the element of W corresponding to H.

3. The characters we have defined of the subgroups (a~1Na)a are all trivial
on (a~1Ta)a. It is likely that this can be modified as follows. Take any character
n of T and let N' be the subgroup of N which fixes r\. If characters of the subgroups
(a~1 N'a\ can be defined which have properties similar to (3.3) and which take
the value n(t) at an element a~1ta of{a~1Ta)a then these could be used to construct
characters of Ga analogous to <j). For example, suppose n is a character of T which
is not fixed by any w =£ 1 of W. For each w e W choose a e G such that aa~"T = w
and let nw be the character defined by r}w(a~1ta) = r\(t) of {a~lTd)a. Let
X = IweW e(w)»f*. Then % is a character of Ga of degree | W\ «(1). In this case we
need not put any restriction on p as Lemma 8 is not used. It seems likely that the
characters of G obtained in this way are some of the principal indecomposable
characters (for p) of Ga.

5. Construction of certain characters of subgroups of W

In this section we give illustrations of when the main theorem can be applied,
by actually constructing the characters \j/w in certain cases.

Assume that G is simple. We have the following possibilities for Ga [6]:

(1) G is of type At, Bt, C, • • •, E8 and Ga is a Chevalley group.

(2) (i) G is of type A, (/ 2; 2), Dt (I ;> 4) or E6 and Ga is a twisted analogue
of a Chevalley group.

(ii) G is of type D4 and Ga is a 'trialityform' of G.

(3) (i) G is of type B2, p = 2 and Ga is Suzuki group.
(ii) G is of type G2 and p = 3 or G is of type F4 and p = 2 and Ga is a

Ree group.

In the case when W = Wa we have Z'(w) = Z(w) — Z"(w) for each w e W.
Then we have to define characters\jiw of Z(w) for each we Whaving the property
(3.3) where we may take w0 = 1. In Case 1, W = Wa. In Case 2 we make the
following remark. Suppose there is an element w' in W such that w'"1 ww' = w"
for all we W. This means that Z'(w') = W. By Lemma 4 there is a maximal
torus a'1 Ta of G fixed by a such that (a'1 Na)J(a~lTa)a is isomorphic to W.
Let T = a'1 Ta, N' = a'1 Na, N'/T' = W, so that W = W'a. Suppose we
replace T by T', and N by N' and define the required characters î w on subgroups
Z'(w) of W (w e W). Then the expression on the left side of (3.4) will be replaced
by the same expression where the elements are now taken form W, possibly
multiplied by — 1 since T" corresponds to the element aaT^T of W. Hence in this
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case we can assume that W = Wa and define the characters \]/w as in Case 1. We
remark that W contains such an element w' if G is of type Al,Dl(l odd) or E6.

In Case 3 the characteristic of A" divides | W\ and so Lemma 8 cannot be used.
However, in the case of types B2 and G2, if we suitably define the characters
i//w and then define 4> as in (3.2), we can check directly using the results of Suzuki
[8] and Ward [9] that (j) is the Steinberg character of Ga.

(5.1) The subgroup Y in Lemma 8 depends on the choice of n and not merely
on z = nTe W. However, suppose z lies in a direct product W of reflection
subgroups of W, each subgroup being generated by reflections corresponding to
a closed set of roots (with respect to T) of G. For a root a let Zx be the centraliser
in G of the connected component of the kernel of a. As a runs over the roots
considered above, let H be the reductive subgroup of G generated by the Za. Then
W is the Weyl group of H and ne H. From the structure of H ([1], 17) it follows
that if z = zxz2 • • • according to the decomposition of W, there exist elements
«!, «2 >' ' ' m Z(«) such that ny T = zt, n2 T = z2, • • •. Hence Y contains at least
the cyclic groups generated by zx, z2, • • •. This fact will be used later.

In order to define the characters ij/w we consider in turn the possible types for
W. The groups W for each of the possible types for G are described in ([1], 19).
In Cases (i), (ii) and (iii) a is the identity automorphism of W.

(i) Type At. Wis the symmetric group Sl + 1. Let z e Wbe written as a product
of disjoint cycles. Then K{z) is the direct product of the cyclic groups generated by
these cycles. By applying the argument of (4.1) we see that K(z) <= Y. Hence it is
sufficient to show (3.4) with Y' = K(z). The structure of Z(z) is well known and
can be described as follows. Let z = w1 w2 • • • where wm = (b\ b'2 • • • b'm)
(b\b\ • • • b^) • • • (b\ br

2 • • -br
m) is the product of those cycles occuring in z which

are of length m. Let Tm be the group Vt V2 • • • VrM where Vt is the cyclic subgroup
generated by bt = (b\ b'2 • • • b'm), and M is generated by elements of W of the form
ci C2 ''' cm where cx is a permutation of b\, • • • b\ and cf is got from ct by replacing
b[ by b\. The Z(z) = 7\ x T2 x • • • x Tm x • • •. Define the character \J/Z of Z(z)
by putting ^z{y) = 1 for all y in M, and defining it on Tm by iAz(6;) = 9, where,
if m = 2"k (k odd) then 6 is a primitieve ktb root of unity.

It can then be verified that these characters satisfy (3.4).

(ii) Types Bt (I ^ 2), C, (/ ^ 3). W is a semidirect product of a normal sub-
group P which is elementary abelian of order 2' generated by reflections a1 ;

a2, • • • au with a subgroup Wo which is generated by reflections (1/) (i = 2, • • •, /).
Wo is isomorphic to 5, and we have

( cij if j i= i, 1

«i if j = i

at if j = 1
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The conjugacy classes of W are described, e.g. in [10].

As in (i) we can show that if z e W then K(z) c Y. Suppose z e Wo is of the
form

(5.2) (b\b'2---b'm)---(b\b'2-••?„,)

as in (i). Then we define the character i//z of Z(z) by defining \j/z on Z(z) n PF0 as
in (i) and by stipulating that ipz(y) = 1 for y in Z(z) n i>. Now suppose

(5.3) z = « . , (&; fe'2 • • • b'jajbl b1---bi)--- ajb\ b\ • • • b'm),

where a; = b\. Let K; be the cyclic group generated by bt — aXi (b\ b2 • • • &L) a n d
Mthe subgroup of Z(z) defined as in (i). Define^ on AtA2 • • • ArMbyi//z(y) = 1
for y in M and \jiz{b?) = 8 where 9 is a primitive mth root of unity.

We can then define the characters tyz for a general element z, and it can be
verified that they have the required property.

(iii) Type Dt (I ^ 4). The Weyl group W in this case is the subgroup of
index 2 of the group W of (ii) consisting of all elements of the form a^'a^2 • • • a\'y
(y e Wo) where Idf is even. If two elements of Ware such that the corresponding
elements y in Wo fix at least one symbol from 1 to / they are conjugate in W if
and only if they are conjugate in W. However, if x = a\* • • • a*'y and y moves
all the symbols from 1 to / then the conjugacy class of x in W splits into two
classes in W. For any element zeWwe now define a character \j/z of its centraliser
in W.Ifze W, the required character of its centraliser in W is defined to be the
restriction of this character. If z is of the form (5.2) we define t/r, as in (ii). If z is
of the form (5.3) define i//z(y) = 1 for y e M and \//z(bt) = 0 where 8 is a primitive
(2m)th root of unity.

We remark that in this case it is not clear whether we always have, for
zeW, K(z) £ Y. However, using the remarks (5.1) we can again verify that the
characters \j/z have the required properties.

(iv) Type D, (/ ^ 4), with a the automorphism of W which interchanges (12)
and at a2 (12). By the remarks at the beginning of the section we can assume that
/ is even. We regard W as a subgroup of the Weyl group W of the type Dl + 1 in
the obvious way. Since /+1 is odd there is an element woe W (in fact w0 =
a2a3 • • • fl;+1) such that w^lww0 = w" for all we W. Then for any we W,
Z'(w) = Z{ww~l). Thus if ze W, Z'(z) n W £ Z{zw^1). In order to define
the character \j/z of Z'(z) n W we define it on Z(Z\VQ1) as in (iii) and restrict it
to Z'(z) n W. These characters again have the required properties.

(v) Type DA, with a the automorphism of W which maps (12) -* o1a2(12),
ala2(l2) -> (34), (34) -> (12). The c-conjugacy classes of W can be calculated.
We give in the colums of table 1 from left to right, representatives z of the classes,
Z'(z), and the characters to be chosen. We put x = aia2aiaA.
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TABLE 1

1

X

(12)
fl2fl3(12)
0304(123)
(123)
fl,fl2(123)

{aia2(234), (23)}
{aia2(234), (23)}
{*,a3a*(34)}
{x, (12)}
{(123),aia4(12)(34)}
{aia4(12)(34)}
{(123),a1a4(12)(34)}

Trivial Character
Trivial Character
Trivial Character
Trivial Character
(123) ^-w, o1a402)(34)^-l

a i a 4 (12) (34) -* - l
(123) -> co, a,a4(12)(34) -> 1

Here, and in the rest of the section, co and i denote a primitive cube root and a
fourth root of unity respectively.

(vi) Type G2. W is generated by reflections b and c such that a = be is of
order 6.

1. a is the identity. Let \j/a be the character a -> a> of Z(a) = {a}. For the
centralisers of elements of W not conjugate to a we take the trivial character.

2. <r is the automorphism which interchanges b and c. We have Z'(l) = {a3},
Z'{b) = Z'(a26) = Z'(a3b) = {a}. We choose the trivial character of Z'(l)
Z'(b) and the character a -> co of Z'(a2b) and Z'(a3b).

(vii) 7>/?e fi2. W is generated by two reflections b and c such that a = be
is of order 4. Let a be the automorphism interchanging b and c. We have Z'(l) =
{a2}, Z'(b) = Z'(a2b) = {a}. Choose the character a2 -> - 1 of Z'(l) and the
character a -> / of Z'(Z?) and Z'{a2b).

(viii) 7)>pe F 4 . H îs a group of order 1152, the conjugacy classes and charac-
ters of which are given in [2]. a is the identity automorphism of W. It can be
shown, by a lengthy computation, that there exist characters ij/w of Z(w) for
we Wsuch that i/v(w) = ij/w(w') for any pair w, w' e W. These characters have
the required properties.

In the case of the Weyl group of type E6 we can define characters ij/w having
properties (3.3) provided Y' = K(z) in (3.4). However, we have not been able to
show that Y' = K(z) holds for each z.

Summarizing, the main theorem is valid in the following cases.
(1) G is of type Au Bt, C,, D,, G2, F^ and Ga is a Chevalley group.
(2) G is of type At, D, and Ga is a twisted form of a Chevalley group.
(3) G is of type D4 and Ga is a triality form of G.
(4) Ga is a Suzuki group or a Ree group of type G2 •
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