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Abstract

Current fault diagnosis (FD) methods for heating, ventilation, and air conditioning (HVAC) systems do not
accommodate for system reconfigurations throughout the systems’ lifetime. However, system reconfiguration can
change the causal relationship between faults and symptoms, which leads to a drop in FD accuracy. In this paper, we
present Fault-SymptomBrick (FSBrick), an extension to theBrickmetadata schema intended to represent information
necessary to propagate system configuration changes onto FD algorithms, and ultimately revise FSRs. We motivate
the need to represent FSRs by illustrating their changes when the system reconfigures. Then, we survey FDmethods’
representation needs and compare them against existing information modeling efforts within and outside of the
HVAC sector. We introduce the FSBrick architecture and discuss which extensions are added to represent FSRs. To
evaluate the coverage of FSBrick, we implement FSBrick on (i) the motivational case study scenario, (ii) Building
Automation Systems’ representation of FSRs from 3HVACs, and (iii) FSRs from 12 FDmethod papers, and find that
FSBrick can represent 88.2% of fault behaviors, 92.8% of fault severities, 67.9% of symptoms, and 100% of grouped
symptoms, FSRs, and probabilities associated with FSRs. The analyses show that both Brick and FSBrick should be
expanded further to cover HVAC component information andmathematical and logical statements to formulate FSRs
in real life. As there is currently no generic and extensible information model to represent FSRs in commercial
buildings, FSBrick paves the way to future extensions that would aid the automated revision of FSRs upon system
reconfiguration.
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As a part of our research vision to create an adaptive fault diagnosis framework robust to system reconfiguration,
this article offers a generic and extensible information modeling approach to represent fault-symptom relation-
ships. Through this work, we (i) motivate the need for FSR representation from FD methods in the literature,
(ii) compare them against representations possible in current information models in and out of the HVAC sector,
(iii) offer a 25 entity and relationship extension to an existing information model, Brick, called FSBrick, and
(iv) evaluate its coverage against three case studies that span multiple real HVAC systems.
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1. Introduction

Faults in heating, ventilation, and air conditioning (HVAC) systems account for 20% of energy con-
sumption in buildings (Deshmukh et al., 2020), which corresponds to approximately 2.4% of the total
annual energy use of the United States, equivalent to approximately 2.4 quadrillion BTUs (United States
Energy Information Administration [EIA], 2023). However, detecting and diagnosing these faults has
proven difficult. A study led by Lawrence Berkeley National Laboratory found that while commercial
fault detection tools for HVAC systems reached 83% accuracy, fault diagnosis (FD) only achieved 66%
accuracy (Lin et al., 2020).

All FD methods learn the causal relationship between faults and symptoms, either explicitly or
implicitly, based on some system assumption (e.g., system configuration). For example, a rule-based
method, like air handling unit (AHU) performance assessment rules (APAR) (House et al., 2001), lists
known fault and symptom pairs (explicitly), and supervised learning methods listed in (Mirnaghi and
Haghighat, 2020) learn a function that maps symptoms to known faults (implicitly). These fault-symptom
relationships (FSR) can change as a result of system reconfiguration (Hwang et al., 2024) (e.g., a fault,
such as a fouled heating coil, may no longer be associatedwith a symptom,Rule 4, inAPAR), and having a
formal representation of them would facilitate the process of automatically updating the diagnosis
methods. However, partly due to not having formal representation, current FD methods do not automat-
ically adapt FSR to system configuration changes, and thus, are more susceptible to becoming inaccurate.
For example, in the aforementioned study (Hwang et al., 2024), FD accuracy improved 70% for one of the
actuator faults when the method was manually corrected to account for system reconfiguration. Once the
assumptions on which the FDmethod is based on change, the FDmethod should automatically propagate
changes to the relationship between faults and symptoms to maintain diagnosis accuracy.

Currently, subject matter experts (e.g., facility managers) manually modify FD tools in response to
system configuration changes (e.g., addition/removal of thermal zones). Within the HVAC domain, both
quantitative and qualitative model-based methods require an expert to intervene and change the model to
account for system reconfigurations (Zhao et al., 2015, 2017; Yan et al., 2018; Velibeyoglu et al., 2019;
Zhu et al., 2019; Qiu et al., 2020; Taal and Itard, 2020; Pradhan et al., 2021). The process history-based
methods require labeled data to train classification functions for the new system configuration (Yan et al.,
2019; Mirnaghi and Haghighat, 2020).

As shown in Figure 1, we propose a vision where an FD method can continuously adapt to system
configuration changes. To fulfill this vision, a semantic model and a corresponding reasoning engine need

Figure 1. An illustration of the vision for automatically incorporating system configuration information
in the FD method (classification function). We will specifically focus on FSBrick, which is a part of the

information model.
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to be developed to conjecture how a change in the system configuration will affect the existing FSR (e.g.,
will the relationship between existing FSR still hold?). Towards this vision, we survey the needs of
information representation from existing FD methods, draw inspiration from existing semantic models
both in and out of the HVAC sector, and build an extension toBrick, which can already represent elements
necessary for FSR codification, unlike others. Themain contribution of this paper is an extension toBrick,
called Fault-Symptom Brick (FSBrick): a semantic model for commercial HVAC systems to represent
part of the information necessary (i.e., FSR) to adapt FD algorithms to system configuration changes.

The rest of the paper is organized as follows. First, in Section 2, we introduce amotivational case study,
followed by a literature review on the needs of different FD methods in representing fault-symptom
relationships and how existing information models fall short in representing necessary FSR information
(Section 3). In addition, FSBrick (source code), the proposed extension to one of the existing information
models (Brick), ismotivated by the needs identified inHVACFDand general informationmodel literature
and case study (Section 4). FSBrick is then tested for coverage across FSRs from (i) the case study, (ii) 3
AHUs and their Building Automation System (BAS) points, and (iii) 12 FD papers (Section 5). Finally,
we have a summary of findings from the analyses and a discussion for future improvements (Section 6).

This paper builds upon previous research (Hwang et al., 2023) by providing (i) a more thorough
synthesis of the FSR information requirement through literature review of FD methods (culminating in
Table 1), (ii) 5 additional entities and ontological relationships to represent additional needs identified
from the synthesis (e.g., grouped symptoms and probabilities for FSRmapping detailed in Section 4), and
(iii) an expanded coverage analysis in Section 5 to further demonstrate the applicability and range of
FSBrick.

2. Motivating case study

To better understand the requirements for the semantic model representing FSRs, we study various system
reconfiguration scenarios and the resulting changes to specific faults and their symptoms in these systems.
Specifically, we study a simplified thermal resistance-capacitance (RC) networkmodel of a roomwith one
cooling and one heating source calibrated with winter month data from Carnegie Mellon University’s
(CMU) PhD student room AHU in Porter Hall. Thermal RC network models are commonly used in
HVAC system behaviormodeling literature (Hazyuk et al., 2012;Kircher andZhang, 2015; Brastein et al.,
2019; Boodi et al., 2020). Additionally, we consider three types of reconfigurations (i.e., addition,
deletion, modification) at three different granularity levels (i.e., component level, subsystem level, system
level), whichwere identified to be common system reconfigurations for HVAC systems (ASHRAE, 2018;
Hwang et al., 2024).

Many commercial HVAC systems are composed of an AHU, which handles the preparation and
distribution of conditioned air for the building, and a Variable Air Volume (VAV) (a terminal unit), which
takes the air from the AHU and adjusts the zone temperature to the occupants’ liking. However, some FD
algorithms (e.g., House et al., 2001; Yan et al., 2018) intended to work on AHUs do not account for the
VAV’s behavior. Since applying the FD algorithm in the presence of theVAVmay violate the assumptions,
we are considering this as a system reconfiguration (specifically, a subsystem addition). Upon surveying
common system reconfigurations on CMU campus, we concluded that subsystem level addition was the
most common, and therefore, wewill focus on this case. Another example of amore “physical” subsystem
level addition can include multiple terminal units, such as Fan Coil Units and VAVs, working in the same
zone due to zone-separating wall demolition, which occurred in Porter Hall three times, and twice in one
year (Akcamete, n.d.).

To show how system reconfiguration affects FSR changes, we now parse the subsystem level addition
example. To represent the AHU (system configuration before changes), we kept the RC networkmodel of
a roomwith one cooling and one heating source. Six faults were selected based on the cooling and heating
manipulations possible in the RC network model. These six faults (i.e., Cooling Coil Valve Stuck Open,
Cooling Coil Valve Stuck Closed, Cooling Coil Valve Leaking 20%, Heating Coil Valve Stuck Open,
Heating Coil Valve Stuck Closed, Heating Coil Valve Leaking 20%) were inserted to the existing RC
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networkmodel to generate the symptoms.We defined a Supply Air Temperature Alarm to be our symptom
for when the internal temperature of the RC network model fell below 59°F or above 61°F. Threshold-
based alarms, such as the one defined here, are commonly used in rule-based methods, such as in House
et al. (House et al., 2001).Cooling Coil Valve Stuck Open andHeating Coil Valve Stuck Closed faults both
triggered the Supply Air Temperature Alarm in the existing, unreconfigured system. To generate FSRs for
the reconfigured system, we inserted one more heating source in the RC network model to represent the
addition of a VAV with a reheat subsystem. This time, when the same faults were injected to the
reconfigured system, we found that the Cooling Coil Valve Stuck Open and Heating Coil Valve Stuck
Closed faults did not trigger the Supply Air Temperature Alarm. Therefore, we found that 2 out of 6 FSRs
were altered by reconfiguration.

The case study example shows us that FSRs change with system reconfiguration and tracking this
change automatically is crucial in maintaining FD accuracy. Having FSR representation would facilitate
the process of automatically updating the FD diagnosis methods. In the next section, we will review the
literature to find information models that may help us represent these FSRs more formally.

3. Literature review

In the case study section, we focused on how rule-based FD methods (which fall under the qualitative
model-based FD methods) fell in diagnosis accuracy when system reconfiguration occurred. In this
section, we will explore (i) the different types of FD methods in the HVAC sector and the common
information requirements for representing faults, symptoms, and fault-symptom relationships; and
(ii) how current information modeling sectors represent faults, symptoms, and fault-symptom relation-
ships. The sectionwill wrap upwith a discussion surrounding the gaps that still exist in representing faults,
symptoms, and fault-symptom relationships in Table 1.

3.1. HVAC fault diagnosis methods

FD methods for the HVAC sector can be classified into the following three categories: (i) qualitative
model-based, (ii) quantitative model-based, and (iii) process history-based methods with grey-box or
hybrid method extensions for each category (Katipamula and Brambley, 2005a, 2005b; Kim and
Katipamula, 2018). The summary of all methods reviewed can be seen in Figure 2.

3.1.1. Qualitative model-based FD methods
Qualitative model-based FD methods involve encoding information about the system’s behavior in a
knowledge base to refer to when isolating the fault (Chi et al., 2022). Among inductive reasoning
methods, which are bottom-up approaches that derive conclusions based on individual observations,
are case-based reasoning (Xu et al., 2018) and knowledge-graphs (Chen et al., 2020; Chi et al., 2022)
(and their extension into providing causal graphs for grey-box fault diagnosis (Velibeyoglu et al.,
2019; Zhu et al., 2019)). Another type of qualitativemodel-based FDmethod, the deductive reasoning
methods, which are top-down approaches that conjecture about specific cases from general axioms
stored in the knowledge base, includes rule-based reasoning (House et al., 2001; Delgoshaei and
Austin, 2017) (and their extension into providing causal graphs for bayesian networks (Zhao et al.,
2015; Zhao et al., 2017; Taal and Itard, 2020; Pradhan et al., 2021) and ontology-based reasoning
(Zhou et al., 2015; Chen et al., 2015) methods. The shared foundation of these methods is their
reliance on a knowledge base, which uses a unified taxonomy and ontology for information reuse and
reasoning.

Faults in this area of literaturewere describedwith respect to their location and behavior.Location is the
equipment in the system (e.g., a descriptive string) that is causing the anomalous behavior, while the
behavior describes how the equipment is malfunctioning (e.g., a descriptive string). For example, House
et al. (House et al., 2001) cite “Leaking heating coil valve” as a fault, where “heating coil valve” refers to the
fault location and “leaking” refers to the fault behavior. Similarly, in the built environment, qualitative
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Table 1. Needs identified for HVAC faults, symptoms, and fault-symptom relationships from FD methods literature review in comparison with
what current information models can represent. The horizontal line delineates between FD method needs and information model capabilities
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model-based FDmethod works, location (e.g., equipmentComponent—Zhou et al., 2015; faultEquipment
—Xu et al., 2018; Fault_name—Chen et al., 2015) and behavior (e.g., failureCause—Zhou et al., 2015;
faultCause—Xu et al., 2018) are included in the fault description.

Similarly, symptoms were described with respect to their sensed value and behavior. The sensed
value is the observed variable from sensors deployed in the HVAC system (e.g., a descriptive
string) and the behavior is the description of the anomaly (e.g., a descriptive string). For example,
in Taal and Itrad (Taal and Itard, 2020), a symptom “high CO2” is associated with the CO2 (sensed
value) and a higher than nominal measurement (a behavior of the CO2 concentration with a
threshold in mind). In the built environment qualitative model-based FD method works, measured
value (e.g., sensed state variables—Velibeyoglu et al., 2019), vibration measurements (Chen et al.,
2015) and behavior (e.g., vibration characteristics—Chen et al., 2015) are present in the symptom
description.

Fault-symptom relationships were explicitly represented in qualitative model-based FD methods in
various ways. House et al. (2001) used a table with faults and symptoms on the axes with check marks to
indicate the relationships between them, Zhu et al. (2019) used graphical representation of arrows in
between faults and symptoms with probability values associated with them, and Zhou et al. (2015), Chen
et al. (2015), and Xu et al. (2018) used ontological relationships, such as “becauseOf/theEffectIs,”
“causeIs/toEffect,” and “hasReason/isReasonOf.” Therefore, the fault-symptom relationships can be
described by the connection between faults and symptoms (e.g., resource description framework [RDF]
predicate or web ontology language [OWL] object property), the one to many nature of the connection
(e.g., unified modeling language [UML] association), and probability values associated with the
connection (e.g., a float value).

3.1.2. Quantitative model-based FD methods
Quantitative model-based FD methods involve modeling the system and comparing the model’s com-
ponents, such as outputs, internal states, or unknown inputs, with sensor values from the real system to
discern the presence of anomalous behavior, and finally isolate the fault cause (Venkatasubramanian et al.,
2003). This comparison between the system model and the system itself can be realized through residual
generation. There are different categories of residual generation methods, which is a concept thoroughly
explored in the control theory space: (i) parity equations for system output estimation (Qiu et al., 2020),
(ii) state observers and also input observers (Zhang et al., 2017; Naderi and Khorasani, 2018; Yan et al.,
2018), (iii) frequency domain residuals (Frisk, n.d.), and (iv) parameter estimation (Isermann, 2005;
Turner et al., 2017).

Figure 2. FD method classification for the HVAC sector and built environment adapted and extended
fromKatipamula and Brambley (2005a, 2005b), Kim andKatipamula (2018), Venkatasubramanian et al.

(2003), and Mirnaghi and Haghighat (2020). The bolded works are HVAC specific.

e33-6 Min Young Hwang, Burcu Akinci and Mario Bergés

https://doi.org/10.1017/dce.2024.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.26


To contextualize residual formulation, we define a Linear Time Invariant (LTI) model, Σ0, of the
system, Σ:

_x tð Þ=Ax tð Þ+Bu tð Þ+Fw tð Þ
y tð Þ=Cx tð Þ+ n tð Þ (3.1)

The systemmodel,Σ0, hasA as the dynamicsmatrix,B as the control matrix,C as the sensormatrix, and
F as the fault relationmatrix. The variables x∈ℝk represent the state vector, y the output vector,w∈ℝj the
faulty input vector, u∈ℝi the input vector, and n the measurement noise. Constant actuator faults,
especially, were described with a fault severity value, f s, from time t0 to tT (Frisk, n.d.; Xu and Zhang,
2004; Qiu et al., 2020):

w t; f s, t0, tTð Þ= f s for t0 ≤ t≤ tT (3.2)

Therefore, faults, for this method class, are defined by their associated input variable to the system
via actuator equipment (e.g., a descriptive string), fault severity (e.g., a float value), and time duration
(e.g., reference (string) to a multi-dimensional array with timestamps and corresponding values). For
example, in Qiu et al. (2020) the stuck actuator fault is described with n, the actuator to the system
(associated input variable to the system), which can take a fixed value, R (fault severity) for time
duration t≥ T .

An example of a residual generated for system, Σ, specifically for the parity equations that compare
system output, can be described with the following equation:

r tð Þ= y tð Þ�by tð Þ (3.3)

where y tð Þ is the system output andby tð Þ is the predicted system output generated from the system model,
Σ0. Similarly for state observer, input observer, frequency domain, and parameter estimation methods, the
residual generation process involves a comparison of a vector from the real system v tð Þwith a vector from
the system model bv tð Þ, with a predefined threshold, ε for time no earlier than when the fault enters
the system (t1 > t0) to time T (tT ). The comparison vectors, v tð Þ andbv tð Þ, can be compared individually, for
N vectors (i.e., v tð Þ∈ℝT ×N) with ε∈ℝT ×N , or in groups, for M groups with ε∈ℝT ×M .

Therefore, symptoms, for this method class, are defined by their associated system output variable
(e.g., a descriptive string), possibly grouped and simultaneous nature (e.g., a list of strings (grouped
system output variables)), predefined threshold for nominal behavior (e.g., a float value), and time
duration (e.g., reference (string) to amulti-dimensional arraywith timestamps and corresponding values).
For example, in Yan et al. (2018) the difference between the supply air temperature (associated system
output variable) and its set-point (predefined threshold for nominal behavior) is considered for a time
window (time duration).

Additionally, some quantitative model-based methods design residuals specifically for each fault (Jain
et al., 2019), but others construct “influence structures” or “structured residuals” to classifywhich faults are
present in the system based on the produced set of residuals (Venkatasubramanian et al., 2003; Frisk, n.d.;
Svärd, n.d.). These influence structures are tables,much like the one used byHouse et al. (2001),with faults
and symptoms on the axes with 0 or 1 to indicate the presence of relationships between them. Therefore,
fault-symptom relationships for quantitative model-based FD methods, when represented, require the
connection between faults and symptoms (e.g., a dictionary with key and value pairs) and the one to many
nature of the connection (e.g., list of strings for the value in a dictionary).

3.1.3. Process history-based FD methods
Process history-based FD methods use data from the system to either train a model to recognize fault-
symptom relationships (e.g., model-based, supervised methods) or determine a pattern in data (e.g.,
statistical, unsupervised methods) (Mirnaghi and Haghighat, 2020). Supervised methods, such as ones
that use support vector machines (SVMs) or Neural Networks (NN) (Yan et al., 2019), train a diagnostic
classifier with labeled fault and symptom pairs, and expect the trained classifier to identify the fault from
real system outputs. Semi-supervised methods train a classifier with a limited number of fault training
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samples and pull from techniques, such as generative adversarial networks (GANs) (Li et al., 2021),
active learning (Fan et al., 2024), and similarity learning (Chen et al., 2023) to also learn from unlabeled
data sets. Finally, unsupervised methods require no labeled data, and only generate fault diagnosis
results based on patterns in data using methods, such as clustering and associative rule mining (ARM)
(Yu et al., 2012).

Among the process history-based methods that use labeled data (supervised and semi-supervised
methods), the input to training the classifiers were matrices of system output variables, or features, that
were labeled with fault classes. The faults were labeled with location, which is the affected system input
via the actuator equipment to the system (e.g., descriptive string), behavior, which is the description of
how the equipment is malfunctioning (e.g., a descriptive string), and intensity, which adds a numeric
description of the degree of malfunctioning (e.g., a float value). In Yan et al. (2019), one of the labeled
faults is “Cooling coil valve stuck (partially open - 15%)”. The “cooling coil valve” is the location, “stuck”
is the behavior, and “15%” is the intensity. The symptom, or the description of anomalous behavior in the
system output variables (e.g., a descriptive string), are described with time series data (e.g., reference
(string) to a multidimensional array with timestamps and corresponding values). For example, Fan et al.
(2024) used time-series data of common system output variables, such as air temperatures, water
temperatures, flow rates, and differential pressures from fans. The fault-symptom relationships for this
method subclass are the connection between faults and symptoms (e.g., a dictionary with key-value pairs)
and the one to many nature of the connection (e.g., list of strings for the value in a dictionary).

For process history-basedmethods that do not use labeled data, the input for training the classifiers was
just the symptoms themselves; the symptoms were described in a similar manner to the supervised and
semi-supervised methods, with time series data (e.g., reference (string) to a multidimensional array with
timestamps and corresponding values) of system output variables (e.g., a descriptive string). The output
for ARM methods, like Yu et al. (2012), create rules with faults and symptoms with probability values
attached. The faults for the output are described with location (e.g., a descriptive string), which is the
affected system input via actuator equipment, and behavior (e.g., a descriptive string), which is the nature
of the anomalous behavior. In Yu et al. (2012), one of the faults was “fan frequency is high,” which has
“fan frequency” as the location, and “high” as the behavior. The fault-symptom relationships are defined
by two probability values called “support” and “confidence.” Therefore, fault-symptom relationships for
this method subclass require the connection between faults and symptoms (e.g., a dictionary with key-
value pairs) and probability values associated with the connection (e.g., a float value).

3.2. Semantic information models

Semantic models are ways for us to represent information in a structured and standardized way that both
humans and algorithms can interpret, revisit, and repurpose (Pauwels et al., 2017). Information models
(semantic and information models are used interchangeably in this text) are built from (i) taxonomies,
which define concepts and concept hierarchies, and (ii) ontologies, which define relationships between
concepts (Malin and Throop, 2007). For our framework, we first identified information needed to be
represented for FSRs, which we highlighted through a literature review of the FD methods FSR
information requirements. We then searched for existing information models within and outside of
HVAC and found that while many existing information models can represent partial FSR information,
a complete set of descriptions may be missing.

3.2.1. FSR information within HVAC sector
We surveyed informationmodels in theHVAC sector, such as the IFC schema,COBie, gbXML, andBrick,
and found that while HVAC component information location/system input variable is well represented,
fault behavior, fault severity, symptom, and FSR descriptions are incomplete.

The IFC schema has HVAC location representation (i.e., with ifcHvacDomain (HVACie))
(IFCHVACDOMAIN, n.d.), COBie can store information, such as expected fanSpeed and fan-
PressureDrop (COBie Guide, n.d.), and gbXML can hold system input information, such as
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AirLoopEquipment and equipmentType (Sun et al., 2020). These information models can store
HVAC component location information at different granularities. However, they are not specifically
designed for aiding FD and, therefore, do not store information about component fault behavior, fault
severities, symptoms, and FSRs.

There have been efforts to extend existing information models for FD. Brick has a taxonomy for
HVAC components location (i.e., sensor collection point, physical location, equipment family), but
also lays the groundwork for representing symptoms and faults (Balaji et al., 2016). Symptoms exist in
Brick in the form of brick:Alarm entities for specific system output variables with characteristic
descriptions for certain system output variables (e.g., brick:High_Supply_Air_
Temperature_Alarm). Additionally, Brick can represent time duration (e.g., brick:Timeser
iesReference and brick:hasTimeseriesReference) and threshold values for some output
variables (e.g., brick:Temperature_Tolerance_Parameter). The time duration Brick
entity, in particular, could also be used to describe the fault’s time duration. Fault representation, on
the other hand, falls short in Brick. brick:Fault_Status exists as a Brick entity, however,
specific types of faults associated with specific HVAC components do not exist as entities in Brick.
Furthermore, brick:Fault_Status does not indicate the behavior of the fault (e.g., is the damper
stuck or leaking?) nor the severity of the fault (e.g., how badly (%) is the damper leaking?), which is
useful information for facility managers who will interpret FD results and realize it into repairs in the
physical system (Balaji et al., 2016) and recognized as necessary from our FD method literature
review. Brick also offers tags, and more importantly, brick:fault tags, however, tags are created ad-hoc
by the user (Fierro et al., 2019). Therefore, tags do not fit what we envision for FSBrick, which aims to
create consistent information representation for continued revision of FSRs. Additionally, there are no
formal ontological relationships in Brick to describe FSRs (e.g., brick:isPartOf, brick:
isFedBy, brick:isPointOf do not convey diagnosis causal relationships).

Apart from Brick, Lawrence Berkeley National Laboratory defined common HVAC faults in a
comprehensive taxonomy, where equipment type, component location, and component type, which
corresponds to location/system input variable, fault behavior, and fault severity/intensity were outlined
(Chen et al., 2021). However, connections with faults and their system-wide symptoms, which were not
defined in a taxonomy unlike the faults, were not systematically defined, beyond in diagrams (e.g., fault
trees), which again have no formal structure. Additionally, because the work focused on creating a
taxonomy for common HVAC faults, symptom taxonomy and ontology were overlooked. Liu et al. (n.d.)
have also tried to create an information model for aiding FD processes, which included automatic
extraction of functional relationships (e.g., medium flowing in and affected by the component, import,
outport, sensor associated with the component) of HVAC components necessary for inputs to FD
algorithms from IFC files. However, functional relationships only hint at possible FSRs, and do not
explicitly model them. In summary, taxonomy of HVAC systems and ontology for symptoms exist, but
they have yet to be combined to represent FSRs.

3.2.2. FSR information outside of HVAC sector
We also surveyed outside of the HVAC domain to see if other fields have addressed supporting the
representation of faults, symptoms, and FSRs, since they did not exist in the HVAC literature. In the
aerospace sector, NASA has been leading the effort to move away from document-based modeling into
model-based systems engineering (MBSE) with SysML as the main language used especially in FSR
modeling (Mathur et al., 1998; Day et al., n.d.; Aaseng, 2015; Cornford and Feather, 2016; Izygon et al.,
2016;Wang et al., 2016; Infeld et al., 2018; Figueroa et al., 2019). This body of work is especially relevant
since MBSE, specifically “State Machine Diagram” and “Requirement Diagram” in SysML, allows
derivation of FSRs, in the form of fault trees, failuremodes and effects analysis tables, andD-matrices, in a
modular fashionwith expert’s intervention (Hwang et al., 2024). These diagrams, alongwith an algorithm
to traverse them, would result in FSRs. However, NASA users do not have a unified ontology to describe
the faults, symptoms, and their relationships, which is also a problem that NASA recognized and began
working on through (Malin and Throop, 2007) and openCAESAR (OMLTutorials, n.d.).

Data-Centric Engineering e33-9

https://doi.org/10.1017/dce.2024.26 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2024.26


The manufacturing sector also has literature on representing faults, symptoms, and FSRs (Chi et al.,
2022). Xu et al. (2018) developed an ontology that describes faults through a class FaultMode and its
two subclasses FaultCause, which is akin to our faults, and FaultEffect, which is akin to our
symptoms, and a relationship has_reason and has_effect to describe the connections between the
faults and symptoms. Similarly, Zhou et al. (2015) connected failure mode (in our case alarms) and failure
cause (in our case faults) with a BecauseOf relationship. While we can learn how to represent FSRs
from the manufacturing sector, the ontology for faults and symptoms is not HVAC specific. Therefore,
there is still a gap to address in terms of HVACFSR representation, which leads us to suggest that we need
to create our own formal information model.

4. Architecture of FSBrick

After surveying the available information models and FDmethods’ information representation needs, we
moved forward with extending Brick to accommodate fault and FSRs because it already had a Resource
Description Framework (RDF) format of HVAC component taxonomy to serve as a basis for fault
representation and a more complete representation capability compared to other surveyed information
models. RDF format is particularly beneficial for searching through all the faults, symptoms, and FSRs in
the HVAC system using SPARQL queries as potential candidates for revisions required in an adaptive
system, as envisioned. The Brick entities were preserved and repurposed as much as possible. Existing
information models using the Brick ontology should not have issues using FSBrick since elements were
added, and no existing entities or relationships were manipulated or subtracted. The tables in this
section will provide piece-by-piece examples of how Brick and FSBrick entities can be combined to
formulate FSR and Figure 3 will give a complete FSR example. The FSBrick Github repository contains
(i) the extended Brick.ttl file and (ii) the data used for the coverage analysis in Section 5.

4.1. Representing faults

As seen in Table 1, fault behavior is not currently represented in Brick, and must be extended through the
addition of FSBrick. Additionally, FSBrick must also account for new ontological relationships that will
allow users to append fault severity information to the rest of the fault information.

4.1.1. Representing and connecting fault behavior
For FSBrick, we adapted the fault taxonomy developed by Chen et al. (2021, in particular, fault nature in
Table 4) into theBrick ontology to account for themissing fault representation, specifically fault behavior.
This work describes what behavior of faults (e.g., “Stuck”, “Leakage”) are possible for which specific
HVAC component or location, which we used to create new fault entities in FSBrick. The summary of
FSBrick fault representation is presented in Table 2 for faults not related to sensors or controls. The Brick
entities introduced in the leftmost column in Table 2 (e.g., brick:Reheat_Valve) can be connected
to these new FSBrick fault entities with a new ontological relationship fsbrick:isFault/has-
Fault, akin to howXu et al. (2018) organized faults. Figure 3 shows an example implementation, andwe
can see that bldg:Chilled_Water_Valve is connected to fsbrick:Valve_Leakage via
FSBrick relationship fsbrick:hasFault.

4.1.2. Connecting fault severities
Additionally, we used existing Brick entities to describe the fault severity with a new relationship,
fsbrick:isSeverity/hasSeverity. Fault severity is described by two Brick entities: one
quantity indicator to define what quantity is affected by the fault and one float value to explain to what
degree the quantity is affected. For example, valves already have a Brick entity called brick:
Position, which specifies in percentages what position the valve is in. The Position entity can
also be connected to an XSD double via the brick:value relationship as seen in Figure 3. Rightmost
column of Table 2 also gives insight into which FSBrick fault entities can be matched with existing Brick
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Table 2. A snippet of fault nature taxonomy from Chen et al. (2021) for faults and how they can be combined with existing Brick entities to create new
FSBrick entities for nonsensor or control-related faults

Brick entities for HVAC components

Fault nature taxonomy
(from (Chen et al.,
2021)) New FSBrick entities examples Brick entities for fault severity

Valves (e.g.,
brick:Reheat_Valve,
brick:Return_Heating_Valve,
brick:Steam_Valve)

Stuck fsbrick:Valve_Stuck brick:Position with brick:Value
Literal:XSD double

Leakage fsbrick:Valve_Leakage brick:Flow with brick:Value Literal:
XSD double

Coils (e.g., brick:Coil,
brick:Heating_Coil,
brick:Cooling_Coil)

Fouling fsbrick:Coil_Fouling brick:Flow with brick:Value Literal:
XSD double

Dampers (e.g.,
brick:Outside_Damper,
brick:Exhaust_Damper,
brick:Return_Damper)

Stuck fsbrick:Damper_Stuck brick:Position with brick:Value
Literal:XSD double

Leakage fsbrick:Damper_Leakage brick:Flow with brick:Value Literal:
XSD double

Malfunctioning fsbrick:Damper_Malfunctioning brick:Flow with brick:Value Literal:
XSD double

Fans (e.g., brick:Fan, brick:
Supply_Fan, brick:Return_Fan)

Stuck fsbrick:Fan_Stuck brick:Rotational_Speed with brick:
Value Literal:XSD double

Malfunctioning fsbrick:Fan_Malfunctioning brick:Rotational_Speed with brick:
Value Literal:XSD double

Filters (e.g., brick:Filter) Block fsbrick:Filter_Block brick:Flow with brick:Value Literal:
XSD double

Air Plenums (e.g., brick:Air_Plenum,
brick:Supply_Air_Plenum)

Block fsbrick:Air_Plenum_Block brick:Flow with brick:Value Literal:
XSD double

Leakage fsbrick:Air_Plenum_Leakage brick:Flow with brick:Value Literal:
XSD double

Pumps (e.g., brick:Pump) Stuck fsbrick:Pump_Stuck brick:Position with brick:Value
Literal:XSD double

Leakage fsbrick:Pump_Leakage brick:Flow with brick:Value Literal:
XSD double
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entities to describe fault severity. For example, brick:Rotational_Speed has an applicable unit
“RAD-PER-MIN” which can tell us how the rotational speed has been affected due to the fsbrick:
Fan_Malfunctioning.

4.2. Representing symptoms

As mentioned in Section 3, Brick already has measured value/system output variable information,
behavior, time duration, and threshold representation for the HVAC system. Brick already has alarms
that allow for alerting operators to off-nominal conditions that correspond with common sensors found in
HVAC systems.While the motivational case study showcased just one threshold-based alarm, we want to
note that the Brick alarm class goes beyond solely representing symptoms for rule-based methods. The
alarm class can be generalized to specify any anomalous behavior in the system. Brick has entities that
allow us to define what off-nominal conditions are with parameters and setpoints, which can serve as
thresholds. For example, brick:Temperature_Setpoint and brick:Temperature_
Tolerance_Parameter (threshold for nominal behavior) can be connected to a brick:Air_
Temperature_Alarm to imply that the alarm will sound when the monitored temperature (measured
value/system output variable) reaches beyond an acceptable threshold. We selected alarms that specified
the medium (air) and quantity measured (temperature) for our classification, such as brick:Air_
Temperature_Alarm. For example, we can have brick:Water_Temperature_Alarm con-
nected to brick:Chilled_Water with a brick:isPoint relationship to imply that the chilled
water temperature is behaving anomalously. There is no Chilled_Water_Temperature_Alarm
in Brick; Nor do we feel the need to add it to FSBrick’s entity list because the combination of entities and
relationship already imbues the meaning we want.

The above representation is a specific example implementation for a qualitative model-based method
symptom, however, the alarm class, as mentioned, can be generalized. The same alarm, brick:
Air_Temperature_Alarm (measured value/system output variable) can be connected to a
brick:TimeseriesReference with a brick:hasTimeseriesReference relationship
(time duration). This alarm could also be associated with a general brick:Limit or brick:
Tolerance_Parameter entity (threshold for nominal behavior), which can also have size ℝT ×N

through its connection with a time series (brick:TimeseriesReference with a brick:has
TimeseriesReference). Symptom behavior can also be implied through the comparison of the
measured value/system output variable and the threshold for nominal behavior. Figure 3 illustrates these
relationships with the brick:Supply_Air_Temperature_Alarm and brick:Mixed_Air_
Temperature_Alarm. Therefore, we will focus more on developing the FSRs that are missing from
Brick, such as the grouped and simultaneous nature of symptoms.

4.2.1. Representing grouped and simultaneous nature
In FSBrick, we created a grouped entity called fsbrick:Grouped_Symptom, which uses
fsbrick:hasSymptom relationships (which will be explored in more detail in the following section)
to connect individual Brick alarms to indicate the grouped nature of the symptom. The simultaneity of the
individual symptom in the groupwould be implied through the shared time series reference start times and
end times connected to each alarm entity. This extension was based off of the n-ary relations that
openCAESAR (OMLTutorials, n.d.) adopted to have a “relation entity” that can hold information other
than the relationship between between two entities. In Figure 3, symptoms brick:Mixed_Air_
Temperature_Alarm and brick:Supply_Air_Temperature_Alarm are grouped together
through the fsbrick:Grouped_Symptom entity.

4.3. Representing FSRs

Lastly, although Brick does not have a system in place currently to represent fault-symptom relationships,
we can borrow from the aerospace andmanufacturing industry to extend FSR connection, probability, and
one-to-many relation concepts to FSBrick.
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4.3.1. Representing FSR connections
As explained earlier, Zhou et al. (2015) connect faults and symptoms with a BecauseOf relationship,
and for FSBrick, we propose a new relationship, fsbrick:isSymptomOf/hasSymptom, to convey
the same message in a more “Brick” manner (i.e., is/has ontological relationships). An example of this
architecture is provided in Figure 3. A chain of entities and relationships connect the fault, fsbrick:
Valve_Leakage, through fsbrick:hasSeverity, and fsbrick:hasSymptom (indirectly) to
the brick:Supply_Air_Temperature_Alarm, which represents our FSR. In cases where there
are no grouped symptoms, the fsbrick:hasSymptom relationship would be directly attached to the
fault and the respective symptom (see Figure 4).

4.3.2. Representing and connecting FSR one-to-many relations
Similarly, we propose a new relationship to connect faults with grouped symptoms, fsbrick:
isGroupedSymptom/hasGroupedSymptom. In Figure 3, bldg:Percent_Limit, which is
the last element of our fault description (i.e., fault severity), is connected to the bldg:Grouped_
Symptom entity with the proposed fsbrick:hasGroupedSymptom relationship.

4.3.3. Representing and connecting FSR probabilities
In the n-ary relation documentation for openCAESAR, the World Wide Web Consortium had a working
page (W3C, 2006) on attaching meaning to relationships by creating a “relation entity,” which

Figure 3. Additions to the chilled water valve to represent fault, symptoms, and fault-symptom rela-
tionships. New entities added include fsbrick:Valve_Leakage and fsbrick:Grouped_-

Symptom. New ontological relationships include:fsbrick:hasFault, fsbrick:
hasSeverity, fsbrick:hasGroupedSymptom, fsbrick:hasSymptom, and fsbrick:
hasSymptomProb. The red box highlights fault representation and the blue box highlights symptom

representation.
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openCAESAR (OMLTutorials, n.d.) also uses. One of the suggested additional information to attach to
the relation entity was a probability that describes the strength of the diagnosis certainty. Similarly, we can
express the strength of the causal relationship between faults and symptoms with a brick:Quantity
and Literal that ranges between 0 and 1.We can also attach this causal strength to the brick:Alarm
entity to represent FSR probabilities. For example, in Figure 3, we see that brick:Supply_Air_-
Temperature_Alarm is attached to a brick:Quantity and a Literal through the proposed
relationship fsbrick:hasSymptomProb.

5. Applied study

The FSBrick architecture’s coverage (defined as % of entities mapped) was tested through surveying its
ability to represent FSRs of (i) an example from the motivating case study, (ii) 3 AHUs and their BAS
points, and (iii) 12 manuscripts in the FD literature. Challenges and shortcomings with the current
iteration of FSBrick are also explored in this section.

5.1. FSBrick mapping in the motivating case study

We map the subsystem addition example presented in the motivating case study as an initial check for
FSBrick’s coverage. In the case study, we see that the Cooling Coil Valve Stuck Open and Heating Coil
Valve Stuck Closed faults both triggered the Supply Air Temperature Alarm for the existing system,
consisting solely of the AHU. This FSR is recorded in Figure 4, where theCooling Coil Valve Stuck Open
fault, expressed by the chain of brick:Cooling_Valve, fsbrick:hasFault, fsbrick:
Valve_Stuck, fsbrick:hasSeverity, brick:Position, brick:value, Lit-
eral:100, is connected to the symptom, brick:Air_Temperature_Alarm, with a
fsbrick:hasSymptom relationship. Similar representation is also displayed for the Heating Coil
Valve Stuck Closed fault and brick:Air_Temperature_Alarm symptom. For the reconfig-
ured casewhere bothCooling Coil Valve StuckOpen andHeatingCoil Valve Stuck Closed faults no longer
display the brick:Air_Temperature_Alarm symptom, we can simply disconnect the two faults
and symptom by erasing the fsbrick:hasSymptom connection as seen in Figure 5.

5.2. FSBrick mapping to the FD case study in Carnegie Mellon University’s Porter Hall

Additionally, we applied FSBrick and Brick to a real-life case study using Building Automation System
(BAS) points. This application was done to showcase FSBrick’s ability to represent FSRs in real-life
buildingHVAC systems, such as the AHUs in CMU’s Porter Hall, as opposed to the simulated case study
examples in the last subsection.We queried CMU’s HVAC FD platform to survey their fault database and
collect nonsensor or command faults that occurred between 5/15/23 and 6/15/23. Table 4 shows the faults
that were flagged by the platform’s diagnosis systems (notice that only one has a severity associated
with it).

Table 3. List of Brick symptoms that are connected to Brick entities to build FSRs

Brick example entities for HVAC mediums Brick example symptoms

brick:Supply_Air brick:Air_Temperature_Alarm

brick:Outside_Air brick:Humidity_Alarm

brick:Return_Air brick:Air_Flow_Alarm

brick:Zone brick:CO2_Alarm

brick:Filter brick:Pressure_Alarm

brick:Chilled_Water brick:Water_Temperature_Alarm

brick:Cooling_Valve brick:Valve_Position
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In parallel, we also pulled a subset of the available BAS points in the same 24-hour period that the faults
were detected in and converted them into alarms, if an entity had setpoints and sensor values. The
threshold parameters were selected to our best judgment, since the importance of the analysis is placed on
representing FSRs and not the accuracy of the relationships. The alarm would ring if the following
inequalities were not met for more than an hour:

Figure 4. Representing the FSRs for Cooling Coil Valve Stuck Open and Heating Coil Valve Stuck
Closed faults from the motivating case study before the reconfiguration.

Figure 5. Representing the FSRs for Cooling Coil Valve Stuck Open and Heating Coil Valve Stuck
Closed faults from the motivating case study after the reconfiguration. The severity and alarm detail

entities were taken out to avoid repetitive information.

Table 4. Mapping from the FD platform fault name to FSBrick and Brick entities. The dates below the
AHU names correspond to the 24-hour period in which the fault was present.

AHU # FD platform fault name Fault mapping
Fault severity
mapping

AHU3
(5/25/23)

Heating Valve Stuck
Closed

fsbrick:Valve_Stuck for
brick:Hot_Water_Valve

brick:Position
with Literal:0

AHU9
(6/7/23)

Cooling Valve Leaking fsbrick:Valve_Leakage for
brick:Cooling_Valve

No severity in name

AHU2
(6/11/23)

Exhaust Air Damper is
Open But No Airflow

fsbrick:
Damper_Malfunctioning for
brick:Exhaust_Damper

No severity in name

The dates below the AHU names correspond to the 24-hour period in which the fault was present.
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• |Outside Air Airflow—Outside Air Airflow Minimum Setpoint| < 200 cfm.
• Outside Air damper position—Outside Air Damper minimum% open > x (varied with the 3 AHUs:
AHU2 100%, AHU3 55%, AHU9 30%).

• Exhaust Air damper position—Exhaust Air Damper minimum% open > y (varied with the 3 AHUs:
AHU2 100%, AHU3 55%, AHU9 60%).

• |PreHeat Water Supply Temperature—PreHeat Water Supply Temperature Setpoint| < 2.5 F.
• Return Air CO2 Maximum Setpoint—Return Air CO2 > 0 ppm.
• |Supply Air Static Pressure Actual—Supply Air Static Pressure Setpoint| < 0.5 in H2O.
• |Supply Air Airflow—Supply Air Airflow Setpoint| < 200 cfm.
• |Supply Air Temperature Actual—Supply Air Temperature Setpoint| < 2.5°F.

Out of the 3 faults, 1 fault severity, 8 symptoms, and 16 BAS points observed, we were not able to
assign Brick entity for one of the symptoms (brick*:Damper_Position_Alarm does not exist,
and the asterisk specifies this) and one of the BAS points (brick*:CO2_setpoint_limit does not
exist). This was to bring attention to the fact that Brick itself may need to be expanded to accommodate
for FSRs.

In Figure 6, we can see an example of how FSBrick, Brick, and CMU’s BAS points can be used together
to represent FSRs for AHU3. To describe the Heating Valve Stuck fault, we related brick:Hot_-
Water_Valve to the fsbrick:Valve_Stuck entity with a fsbrick:hasFault relationship. To
convey that it is a Valve Stuck Closed fault, we related a brick:Position of Literal:0 with
fsbrick:hasSeverity. To describe the |Outside Air Airflow—OutsideAir AirflowMinimumSetpoint|
< 200 cfm symptom,we relatedbrick:Air_Flow_Alarm tobrick:Outside_Air. In addition, we
attached brick:Tolerance_Parameter, brick:Min_Air_Flow_Setpoint_Limit, and
brick:Air_Flow_Sensor to Literal:200, AHU3:OA Airflow Min Setpoint, and AHU3: OA
Airflow respectively, to convey the alarm’s parameters. Lastly, we connected the fault with the symptom
using the fsbrick:hasSymptom relationship. Along with the visualization results for AHU3, we also
provided FSR representation using FSBrick, Brick, and CMU’s BAS points for all AHUs in Table 5.

Figure 6. FSR with FSBrick for AHU3’s BAS points. The connection between Brick and FSBrick entities
were deleted to avoid repetition. However, all example bldg entities were named verbatim after Brick
entities. bldg:Valve_Stuck and bldg*:Damper_Position_Alarm were colored by their

FSBrick or Brick entity colors.
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Table 5. FSR mapping for FSBrick, Brick, and BAS points from CMU. Note that the “–” holds repeating information

AHU # Symptom mapping BAS symptom element name Brick symptom element mapping

AHU3 (5/25/23) brick:Air_Flow_Alarm for brick:
Outside_Air

AHU3:OA (Outdoor Air) Airflow brick:Air_Flow_Sensor
AHU3:OA Airflow Min Setpoint brick:Min_Air_Flow_Setpoint_Limit

brick*:Damper_Position_Alarm for
brick:Outside_Damper

AHU3:OA Damper Position Feedback brick:Damper_Position_Sensor
AHU3:OA Damper Min

Position Setpoint
brick:Min_Position_Setpoint_Limit

brick:Water_Temperature_Alarm for
brick:Preheat_Hot_Water_System

AHU3:PHT (Preheat Hot Water) Supply
Temperature

brick:Water_Temperature_Sensor

AHU3:PHT Supply Temperature Setpoint brick:Water_Temperature_Setpoint

AHU9 (6/7/23) brick:Air_Flow_Alarm for brick:
Outside_Air

– –

brick*:Damper_Position_Alarm for
brick:Outside_Damper

– –

brick:Water_Temperature_Alarm for
brick:Preheat_Hot_Water_System

– –

brick:Pressure_Alarm for brick:
Supply_Air

AHU9:SA Static Pressure Actual brick:Static_Pressure_Sensor
AHU9:SA Static Pressure Setpoint brick:Static_Pressure_Setpoint

brick:Air_Temperature_Alarm for
brick:Supply_Air

AHU9:SATemperature Actual brick:Air_Temperature_Sensor
AHU9:SATemperature Setpoint brick:Air_Temperature_Setpoint

AHU2 (6/11/23) brick:Air_Flow_Alarm for brick:
Outside_Air

– –

brick:Water_Temperature_Alarm for
brick:Preheat_Hot_Water_System

– –
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5.3. FSBrick mapping to FSRs in literature

Finally, we chose to build a database of fault behaviors, fault severities, symptoms, grouped symptoms,
FSRs, and probability values for FSRs from a subset of the HVAC FD literature we surveyed previously
(House et al., 2001; Liang and Du, 2007; Zhao et al., 2015; Zhao et al., 2017; Yan et al., 2018; Yan et al.,
2019; Qiu et al., 2020; Taal and Itard, 2020; Li et al., 2021; Pradhan et al., 2021; Chen et al., 2023; Fan
et al., 2024) and perform a coverage analysis similar to the one done for Balaji et al. (2016). In that study,
Brick’s applicability and effectiveness were tested by the ability to map five campus HVAC data points
(e.g., fromBMS, other metadata formats, and building infrastructure) toBrick. Thematch percentage was
calculated by field experts assessing if point names could be manually converted to a Brick entity. From
the literature, we collected unique descriptors for 86 fault behaviors, 125 fault severities, 159 symptoms,
25 grouped symptoms, 98 FSRs, and 29 probability values for FSRs for nonsensor-related faults,
available on a Github repository with FSBrick.ttl file. We want to mention that Fan et al.’s (2024) FSRs
came fromGranderson andLin (n.d.), which provides us another opportunity to checkFSBrick’s coverage
for another real-life HVAC test bed. Additionally, someworks in Figure 2 did not explicitly list some fault,
symptom, and FSR elements; hence, they were left out of this evaluation. The results of the coverage
analysis can be seen in Table 6.Wewill refer to this table in the following paragraphs to discuss our results.

5.3.1. Fault behavior mapping
Of the 86 fault behaviors, 88.23% of themwere converted into 13 uniqueFSBrick fault entities.Most fault
descriptors from literature were sorted into fsbrick:Valve_Stuck, fsbrick:Damper_Stuck,
fsbrick:Valve_Leakage, and fsbrick:Coil_Fouling. The fall in % entities mapped came
from (i) Brickmissing an entity to describe ducts, and therefore, we could not account for faults like AHU
duct leaking before/after supply fan and (ii) some fault descriptors were more like symptoms rather than
faults. For example, heating coil reduced capacity can be due to heating coil fouling, but the authors did
not specify further. Therefore, we could not conjecture what FSBrick entity would fit best.

5.3.2. Fault severity mapping
Of the 125 descriptors for fault severities, 92.8% were connected to FSBrick fault entities with 3 unique
combinations of existing Brick and FSBrick ontological relationships. The unique combination consisted of
a link to the FSBrick fault entity with fsbrick:hasSeverity ontological relationship to (i) brick:
Flow, brick:Position, or brick:Rotational_Speed and (ii) variable quantitative descriptors
(e.g., 60%) with brick:value and Literal:XSD double. Qualitative descriptions, such as exhaust
air damper stuck fully open were converted to Literal:100, to the best of our knowledge. The fall in
coverage came from (i) Brick missing descriptors for elements like surface area and (ii) failure to convert
some qualitative descriptors (e.g., complete failure) into either FSBrick or Brick entities.

5.3.3. Symptom mapping
Of the 159 symptom descriptors, 67.9%weremapped to various alarm entities asmentioned in Table 3. The
fall in mapping score came from missing entities in Brick, such as the lack of a flow alarm for water when
there is one for air (i.e., brick:Air_Flow_Alarm under brick:Air_Alarm but no brick:-
Water_Flow_Alarm under brick:Water_Alarm). The other limitation of FSBrick and Brick was
incorporating mathematical operations. For example, some of the symptoms we could not represent were
Difference between return air and mixed air temperatures and Supply fan power consumption is a
polynomial function of supply air flow rate. The symptoms that we had envisioned usually consisted of
entities within the medium and quantity being measured. For example, the brick:Air_-
Temperature_Alarm associated with brick:Supply_Air would imply that the supply air is out
of the range of its setpoint +/- the threshold. Therefore, it was difficult to represent House et al.’s (2001) rules
that required comparison across multiple mediums. If we subtract the rules from our dataset, FSBrick
reaches up to 79.8% coverage for symptoms that only concern themselves with one medium and quantity.
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Table 6. Percentage mapped results and sample examples for faults, fault severities, and symptoms collected from HVAC literature and fitted to
FSBrick

Fault behavior Fault severity Symptom Grouped Symptom FSRs
Probability values for
FSRs

% Mapped 88.2% 92.8% 67.9% 100% 100% 100%
E.g. fsbrick:Cooling_

Valve_Stuck can
represent: Cooling coil
valve stuck
closed/open, AHU
cooling coil valve
stuck higher/lower
than normal, Stuck
cooling coil, Cooling
coil valve stuck

fsbrick:hasSeverity
+ brick:Position +
value, literal can
represent: Percentages
(e.g., 0%, 5%, 15%,
100%), Qualitative
descriptors (e.g., stuck at
max, stuck at min)

fsbrick:hasSymptom
+ brick:Valve_
Position_Alarm can
represent: Cooling coil
control signal open/close
valve, predicted control
signal of cooling coil valve
vs actual value (positive
max, positive, negative,
negative min)

fsbrick:
Grouped_Symptom +
fsbrick:hasSymptom
can represent: High CO2

AND air flow rate = 0 at the
same time

fsbrick:has
Symptom can
represent:
Recirculation
damper stuck
causing mixed air
temperature alarm
AND outlet water
temperature alarm

fsbrick:
hasSymptomProb +
value, literal
can represent: The
probability of cooling
coil valve fully stuck
open fault causing
symptom E12 and E42
be at 28%
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5.3.4. Grouped symptom mapping
We collected 25 grouped symptoms from literature, whichmostly consisted of statements, such as the one
in Qui et al. (2020), where an FSR says the air valve stuck fault will exhibit low room air temperature,
increased fan energy consumption, and increased water pump energy consumption at the same time. If the
symptom could be represented with FSBrick, the coverage result was 100% for this category. However,
we want to bring attention to the fact that while the current FSBrick implementation can represent logic
statements, like “AND,” it has difficulty representing others, like “OR”, and “NOT.”This is a problem that
we foresee in future usages of FSBrick, although not one we encountered during our literature search.

5.3.5. FSR mapping
98 FSRs were collected, and it was possible to map all faults and symptoms with the fsbrick:
hasSymptom relationship, if the subject and object of the RDF graph could be represented with Brick
and FSBrick.

5.3.6. FSR probability mapping
We collected 29 FSR probabilities for the coverage analysis. Some FSRs were posterior probabilities
linking faults and all symptoms together (Pradhan et al., 2021), which would mean that the fsbrick:
Grouped_Symptom entity would be connected to a brick:Value Literal:XSD double with
fsbrick:hasSymptomProb. Other FSRs had faults attached to individual symptoms and had
probability values for these individual relationships. FSBrick represented these relationships with
connections from faults to individual symptoms (e.g., alarms) via fsbrick:hasSymptom. The
individual symptoms were also attached to brick:Value Literal:XSD double with the
fsbrick:hasSymptomProb relationship. These two representations covered 100% of the FSRs
we found in the literature.

6. Discussion and conclusion

Current FD methods do not automatically account for system reconfiguration, where existing FSRs will
need to be checked and revised. To do so, we must create formal representation for existing FSRs that
contain semantic information. We presented FSbrick, which was a first attempt at representing FSRs on
top of an existing information model, namely Brick. We chose Brick because its development towards
representing FSR was further along than other semantic models. Brick already had (i) HVAC equipment
necessary for fault representation and (ii) symptoms in the form of alarms, thresholds, and setpoints.
While we chose to build upon Brick for the current iteration of representing FSRs, there is merit in
exploring the incorporation of this work in more commonly used schemas, like HVACie, and even
graphical modeling languages, like SysML.

FSBrick adds (i) entities to describe fault behaviors (16 FSBrick entities), fault severities (2 FSBrick
entities), and grouped symptoms (3 FSBrick entities) and (ii) ontological relationships to connect fault
entities to symptom entities (2 FSBrick entities) and symptom entities to probability associated with the
FSR (2 FSBrick entities). We conducted three studies to show FSBrick’s applicability and coverage:
showcasing FSBrick’s usage on the motivational case study, applying FSBrick to represent FSRs in 3
different AHUs and their BAS points at CMU, and analyzing the % entities mapped on FSRs found in 12
FD papers across all method types. Through our analyses, we discovered that Brick itself can be extended
to better accommodate for FSR representation, as it lacked infrastructure to describe some HVAC
components and properties. FSBrick can also be improved further, to include mathematical and logical
expression representation in symptoms and FSRs. In this iteration of this work, simultaneous alarm
activation (e.g., “AND” relationship) could be represented by FSBrick with the addition of the grouped
symptom entity. However, other logical expressions, such as “NOT” and “OR” could not be represented.
These elements will be explored in future works to aid the automated revision of FD algorithms upon
system reconfiguration.
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Overall, this work is in line with the building energy academic community’s efforts to streamline the
adaptation of smart analytics and control applications by standardizing descriptions for HVACoperations.
FSBrick, in particular, offers an information representation approach for automating fault diagnosis.
FSBrick is also the first step in creating an adaptive fault diagnosis framework robust to system
reconfiguration. This framework has the potential to reduce inaccuracies in automated fault diagnosis
methods deployed in commercial buildingHVAC systems, whichwill decrease energywaste and increase
occupant comfort.

Data availability statement. FSBrick ontology files and the database used to conduct the three applied studies can be found on the
github page: https://github.com/INFERLab/FSBrick. The .ttl file stored in this repository can be used in conjunctionwith theBrick
ontology to represent HVAC fault-symptom relationships. The three Excel files contain raw data utilized in Section 5: Applied
Study. Each file is appropriately labeled as #1, #2, and #3, corresponding to their respective case studies. More details on how to use
FSBrick and the data are documented in the README associated with this repository.
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