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In this paper, we determine the instability effects of a phase twist superposed on a
quantum vortex defect governed by the Gross—Pitaevskii equation. For this, we consider
the modified form of the equation in two cases: when a uniform phase twist is present
everywhere in the condensate, and when the defect is subject to a localized phase twist
confined to the defect healing region. In the first case, we show that a secondary, new
defect is produced as manifestation of an Aharonov—Bohm type effect. In the second case,
we prove that due to energy minimization, the defect changes its configurational energy by
converting localized twist to writhe. This mechanism, typical of classical elastic systems,
is shown to occur also in quantum defects, and it may find useful applications in science
and technology.
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1. Modified Gross-Pitaevskii equation under twist phase superposition

In an earlier paper (Foresti & Ricca 2020, hereafter referred to as FR20) the present
authors derived a set of hydrodynamic equations governing the dynamics of an isolated
quantum vortex defect subject to an external phase twist. For that case, a modified form
of the Gross—Pitaevskii equation (mGPE) was derived, providing a stability criterion in
terms of twist diffusion. Here we show that twist superposed on a single defect can have
dramatically different effects depending on whether such twist is present everywhere in the
condensate, or it remains confined in the tubular healing region surrounding the nodal line.
We demonstrate that under conservation of helicity, we have two different scenarios. In the
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case of phase twist present everywhere in the system, there is instantaneous production of
a new, secondary defect by an Aharonov—Bohm (1959) type effect, whereas in the case of
localized twist, we show that under energy minimization, a new phase can be generated
producing geometric distortion of the defect by conversion of twist to writhe. These
alternative mechanisms reveal the subtle role of twist phase in the physics of condensates.

The relevance of twist in physical systems has been highlighted by several authors
(Indenbom et al. 1997; Kivshar & Ostrovskaya 2001; Klawunn & Santos 2009; Barkeshli,
Jian & Qi 2013; Tylutki et al. 2015; Teo 2016), and there is now growing evidence that
twist effects play an important role in condensates for the possibility to enhance physical
properties such as electric conductivity in ferroelectric materials (Balke et al. 2012; Yang
et al. 2021). This has led researchers to focus attention on local and global superposed
external twist phase effects in relation to the topological and structural properties of
quantum fluids (Saxena, Kevrekidis & Cuevas-Maraver 2020). For example, the recent
discovery (Caputo et al. 2019) that twist induces the creation of dark soliton-like coherent
vortices that play the role of an insulating barrier, and the creation of new vortices due to
their associated instability, is of great interest for technological applications. A laboratory
experiment to test the effect of a global twist superposition has been proposed by Foresti
& Ricca (2019) (hereafter referred to as FR19). Indeed, as observed in direct numerical
simulations of the Gross—Pitaevskii equation (Zuccher & Ricca 2018) and confirmed by
theoretical investigation in FR19, superposition of a global twist phase on an isolated
defect can induce production of a new, secondary vortex. However, when twist remains
confined to the neighbourhood of a defect, long-range effects become negligible and
different dynamics are possible. All this motivates the aspects addressed by the present
research.

Under the standard Gross—Pitaevskii equation (GPE) (Gross 1961; Pitaevskii 1961),
the system is governed by a mean-field equation for the single, complex wave function
Y = ¥(x, 1) = /pexp (i) (where i is the imaginary unit), where p denotes background
density, 6 denotes phase, and everything is a function of the space variable x and time
t. It is customary to refer to VO = u as a fluid-like velocity that acts on the particles of
the condensate. For simplicity, we assume an unbounded domain with p = |¢/|> — 1 as
|x| — oo. In this context, phase defects emerge as nodal lines of the wave function yr. We
identify a defect line with a smooth, closed space curve £ of vector position X = X (s)
(where s is arc length), unit tangent T, and total length L. Since L is a nodal line, we can
regard this line as a locus of intersection of a fan of infinitely many isophase surfaces S; of
constant phase that foliate the entire space.

Let us consider the effects of an external twist phase 6y, = 6, (x, t) superposed on the
background wave function ¥, i.e.

Y1 =y el (1.

this new wave function should be interpreted as a perturbation of i, and it is given by a
uniform rotation of the phase surfaces hinged on £. The standard definition of twist Tiv
(see, for example, FR19) is given by considering the mathematical ribbon R = R(X, f])
associated with the framing U normal to L. Physically, we can identify R with the portion
S of a phase surface S, with edges £ and its push-off £* onto S (see figure 1). The defect
healing length & can be taken as a measure of the ribbon spanwise width. The phase twist is
thus given by the rotation of R around L. If ¢/ denotes the fundamental, minimum energy
state, then the new state under twist superposition will be described by the wave function
Y1 governed by a modified form of the Gross—Pitaevskii equation (mGPE; see § 2 and
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Figure 1. (@) Two quantum vortex defects £ and £, (blue and cyan) forming a link; red arrows denote
vorticity direction. (b) Isophase surface S (shades of green) spanned by the link. (¢) Defect ribbons R; and
R» obtained from the isophase surface S.

Corrigendum of FR20); in its non-dimensional form, the mGPE is given by
1 i 2 2 .
o =5 V20 + 5 (1= i = 1V6I2) v + @60 v

+ % V201 + Vi, - V. (1.2)
This equation is just an alternative form of the GPE when the given twist phase 6, is
superposed; new terms are present, in particular an imaginary term that accounts for a
twist phase interaction involving the time derivative of 6y,, and a real term that describes
the production of a flux along £ proportional to V6,,. As discussed in FR19, V6,
admits a hydrodynamical interpretation in terms of a velocity field along the defect that
is responsible for the convective transport of particles along the nodal line, representing
the quantum analogue to a classical vortex filament with an axial flow (Moore & Saffman
1972).

The paper is organized as follows. In §2, we recall the stability result due to the
presence of twist, introducing the definitions of global and localized phase twists. In § 3,
we discuss the effects of a global twist, providing an explanation for the production of
a secondary defect using Kleinert’s (2008) defect gauge theory. In § 4, we consider the
effects of a localized twist, demonstrating that energy minimization induces a change of
configurational energy by possible production of writhe at the expense of twist. This is
done by using some simple geometric results derived in Appendix A. For illustration, two
examples of the effects of localized twist superposition on a vortex ring are discussed in
§ 5, and conclusions are drawn in § 6

2. Stability criterion and twist diffusion

In FR20, we showed that the Hamiltonian H,, associated with the mGPE (1.2)
is non—Hermitian. This implies that the twist part of the energy expectation value
(normalized by the total number of particles) Ey, = (¥1|H|¥1)/{(¥1|¥1) may undergo an
energy loss or gain. From FR20 ((3.5) and Corrigendum), we have

1

En = [ (1991 + 000) +i(Vonival + Vo, - Vi) av. )

where
1
U(y) = (|V9rw|2 —1+3 [y |? — 2at9wi'<> [y 12, (2.2)
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(where v/ denotes the conjugate of 1). The condensate total phase is given by x =
0 + 0. By applying the standard Madelung transform ¥; = /p exp(ix ), we obtain

1
Re(Y1| Vil 1) = —0:0n — 5 p VO - Vyx,
(2.3)

1
Im {1 [Vawlyn) = 7 VO - V.,

where V;, denotes the twist potential (see Corrigendum of FR20). The imaginary term
above makes the Hamiltonian non-Hermitian. We can then consider a perturbation v,
very close to the nodal line with p = o(1) assuming || < 1, so that terms quadratic
in the ground-state wave function can be ignored. By taking [ | = o(/p) (i.e. [V K
[¥1| = /p), we have the dispersion relation

= % [((|k| VO —1— 23,9,W> +i v2etw] (2.4)

(note the additional correction to the prefactor of the Laplacian). The relation above
should be interpreted exclusively in the context of a multi-scale theory (Huerre &
Monkewitz 1990; Brevdo & Bridges 1997). This requires that the perturbation frequency
and wavenumber are in the ultraviolet range, thus implying v >> 8,0, v > V26, and
k[ > [V Oyl

We have the following (FR20, § 3).

Stability criterion. Consider a quantum vortex defect subject to a phase twist governed
by (1.2). Then the following hold.

(1) If VO, - Vp =0 and V29,W < 0, then there is no twist diffusion, and the system is

linearly stable under small perturbations.

(ii) If VO, - Vp = 0 and V?6,, > 0, then there is no twist diffusion, and the system is
linearly unstable under small perturbations.

(iii) If VO, - Vp £0 and V?0,, < 0, then there is twist diffusion along L, and the
system is linearly stable under small perturbations.

(v) If VO, - Vp =0 and V?6,, > 0, then there is twist diffusion along L, and the
system is linearly unstable under small perturbations.

Since twist diffusion is associated with the presence of an axial flow along the nodal
line, the possible source of instability (case (iv) above) may have its physical origin in
the so-called Donnelly—Glaberson instability that has been found to occur also in defects
subject to an axial flow (Klawunn & Santos 2009; Takeuchi & Tsubota 2009).

As shown in FR19, if a twist phase is superposed on the defect, and it is present
everywhere in the condensate, then a new, secondary defect is produced. The formation
of this new defect is due to an Aharonov—Bohm type effect, as a consequence of the
multiple-connectivity of the ambient space. The governing vector potential is thus given by
the gradient of a multi-valued phase, which implies a phase shift of a topological nature
acquired instantaneously by the particles present in the system. However, this situation
changes if the phase shift is local, being of purely geometric origin. In order to examine
these different scenarios, it is useful to introduce the following definitions.

DEFINITION 2.1 (Global phase twist). A phase twist is said to be global if it is present
uniformly everywhere in the condensate, so that there is parallel transport of upn, = V0,

along U on each isophase surface S.
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Figure 2. (a) Test function f(r) defined by (2.6) plotted against the radial distance r from the nodal line
L; taking & = 1, the function goes smoothly to zero as r — 1, and remains zero everywhere as r — 0o.
(b) Visualization of the twist function f(r) inside the tubular healing region 7 = 7 (L).

In this case, we have V x uy,, #= 0, because there is a multi-valued twist phase anomaly
centred on L. As pointed out in FR19, this multi-valued phase is of a topological nature.

Alternatively, we may have the case of twist being localized in space, i.e. being present
only in a tubular neighbourhood 7" of L. As we see from (2.1), since the imaginary term
is directly proportional to the density p, which is either zero on the nodal line or constant
far away from the defect healing region, the volume integral of the Laplacian is zero
everywhere except in the tubular neighbourhood 7. This suggests the following definition.

DEFINITION 2.2 (Localized phase twist). A phase twist is said to be localized on L if it is
confined to the tubular neighbourhood T = T (L).

Localized twist can be prescribed, for example, by taking
O (. 5) = f(r) g(5), 2.5

where f(r) (with r the radial distance from L) is a test function of compact support and
smooth derivatives, and g(s) is either discontinuous or a slowly varying periodic function
along the nodal line; an example of f(r) is given by (see figure 2)

efl/r

f(r) = [1_ e—l/r+e—1/(s—r)]’ O<r<§ (2.6)
0, r=0v r=>E&.

According to (2.5), we can consider the phase twist localization at least of order O(p),
so that in general the imposed perturbation and 6;,, are on a well-separated scale that, in
agreement with what has been observed by Huerre & Monkewitz (1990) and Brevdo &
Bridges (1997), justifies the derivation of the dispersion relation (2.4).

The associated production of a radial velocity of magnitude u, = df(r)/dr and of an
axial flow of magnitude u, = dg(s)/ds (in case of a smooth g(s)) contributes to spread
particles along and away from the healing region; because the velocity of the particles is
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limited by the speed of sound ¢y, we must have

V0| = Ju2 + u2 < cy. 2.7)

For test functions such as f(r), u, has a stationary point at r* € (0, £); denoting by u,|max
the maximum value in the healing region, we have a bound on the axial flow given by

Ug <4/ C% - (ur|max)2- (2.8)

Since the GPE is invariant under a global change of gauge U(1), and the multi-valued
nature of the phase remains confined in the healing region, the governing equation
results are unaffected by a uniform phase change because the potential is single-valued
everywhere in the exterior.

3. Global phase twist: production of a secondary defect

We assume that 6;,, is superposed on the unperturbed system as an external field producing
a perturbation governed by the mGPE (1.2). When an isolated defect is subject to a uniform
twist phase present everywhere in the condensate, we have instantaneous production of a
secondary defect. A simple topological proof of production of a secondary defect £ was
given in FR19. Here we provide an alternative proof based on Kleinert’s (2008) defect
gauge theory.

The multi-valued twist phase 6, can be reduced to a single-valued scalar function by
inserting a generic cut surface X'. This surface represents the location of points where 6y,
jumps by 27, and its insertion serves the purpose of making the ambient space simply
connected. If we considered a ring defect Ly placed in the (x, y)-plane with us,, = V0,
(normal to X) directed along Ly, then the cut surface X would coincide with the azimuthal
half-plane delimited by the z-axis and orthogonal to the family of infinitely many phase
surfaces S; hinged on L. Points on X have velocity uy,. According to Helmholtz’s
decomposition theorem, we can write uy, as the sum of an irrotational and a rotational
solenoidal field. In the presence of the cut surface, we have

Upy = Voy, +Als = VO, + '] 5, 3.1)

where the vector potential 4|y = I"’§| 5 takes care of the rotational effects associated with
Oy, I'" represents the circulation of the secondary defect £', and

8|y :/ 8P (x —x')dS. (3.2)
)

Since A| 5 does not depend on the geometry of £, the twist phase is of purely topological
origin; thus by direct application of Kleinert’s distributional theory (see Kleinert 2008,
pp. 111-119), we have the production of new vorticity, given by g, =V X uy, =
I'8lyx £0, with §|35 = 8(L'). In the case of twist superposed on a vortex ring, §(L’)
would be directed along the z-axis with production of a straight defect along z. Thus we
have Vy = V(0 + 6y,) = u+ uyy, and @y = @ + @4y, with @ = V x VO £ 0 (because
0 is also multi-valued) and w;,, = V x V6,,.

Let us investigate the physical effects due to the presence of the new defect. Let u|s and
uyy| » denote the single-valued contributions of the respective curls. The time evolution of
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x 1s given (see FR20, equation (4)) by

1
dx = (1 —p—IVx»H+0, (3.3)

where O = Q(p) denotes quantum potential. To take account of the multi-valued nature
of the phase, we introduce the scalar potentials 1y = ug|s and uopp, = uony|x defined on S
and X, respectively. Since Q remains single-valued, (3.3) becomes

1
(60 +6) + (W0 + o) = 5 [1 = p = W+ un)?] + QO =F. (34
Taking the gradient of the left-hand side of (3.4), and using (4.7) of FR20, we have
V1[0:(60 + On) + (o + uonw)] = 0, V(0 + 61) — E, (3.5)

where E = 0;(u 4 uyy) — V(ug + upny). By equating (3.5) to the gradient of the
right-hand side of (3.4), we obtain

V(@ +6,)—E=VF. (3.6)
Taking the curl of (3.6), we have
8[(()[01 =V x E, (37)

interpreting scalar and vector potentials on X' as components of a quadri-potential, (3.7)
can be seen as a Faraday-type equation for the transport of vorticity. Equation (3.7)
determines the relationship between the flux induced by £’ through S and the twist
gradient.

Finally, let us consider the single- and multi-valued contributions to V26,,,: we have

V20n, = V20n|s + 'V - §]5. (3.8)

From (3.8), we see that the instability due to V26, induces production of the secondary
defect through the divergence of uy,. Under the topological constraint of zero helicity, we
then have generation of twist also on the secondary defect to satisfy the total zero linking
number condition (Sumners, Cruz-White & Ricca 2021). Stability is then attained when
the fluxes of V6,,|x and u;, through X' cancel one another out.

4. Localized phase twist: production of writhe from defect distortion

In the presence of localized twist, the defect is unstable in the tubular region of the nodal
line where V26, > 0, with 6, = constant in R3 \ 7 (see the example in figure 3). Two
different situations are possible: (i) a new phase develops to cancel out 6, everywhere,
thus inducing a configurational change of £ that brings the system to a local minimum
E}, |V<9|2 + 2|V9,W|2; (i1) the defect evolves along an isotwist surface by minimizing
real and imaginary parts of Ej, to attain the global minimum E%’" x |Vo |2. In both cases,
we will have twist relaxation and production of writhe.

4.1. Proof of writhe production by twist relaxation

The writhing number Wr of L is a global geometric property that measures the amount
of coiling and distortion of £ in space (Fuller 1971). A plane curve has zero writhe, but
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(a) (b) z A

Lo

Figure 3. Example of a planar vortex ring £y (in cyan) subject to a localized twist phase prescribed by
(2.5): f(r) is given by (2.6), and g(s) is given here by a periodic sinusoidal function along the nodal line L.
(a) Visualization of 6y, (not to scale). (b) Visualization of the twist ribbon R at points very close to the nodal
line (not to scale); note that according to (2.6), the twist goes to zero when r > &.

(b)

Figure 4. Spontaneous production of writhe by twist energy relaxation: (a) elastic loop (adapted from Wadati
& Tsuru 1986); (b) skyrmion soliton solution (adapted from Battye & Sutcliffe 1998).

in general Wr can take any real value. Writhe is measured by the solid angle spanned by
the tangent indicatrix of £ on the unit sphere, and it can be identified with the geometric
phase acquired by the particles travelling along L. Indeed, the geometric phase is the
phase acquired by a system when its Hamiltonian depends on a parameter that varies
in space or time. By identifying such a parameter with the unit tangent T to £, the
evolution of £ determines (by the tangent map) a closed curve on the Gauss sphere S2. The
geometric phase is thus measured by the solid angle swept out by the tangent indicatrix
on §2. This phase is gauge-invariant under SO(3), i.e. under the choice of a fixed axis
in R3.

An isolated defect such as a vortex ring has minimum configurational energy when
both writhe Wr and total twist 7w are identically zero. Since GPE defects are states of
zero helicity (Salman 2017; Kedia et al. 2018), an isolated defect has self-linking number
Sl = Wr 4 Tw = 0, a condition that persists during the evolution (Sumners et al. 2021).
This condition is evidently preserved also at minimum energy. For classical systems, such
as elastic strings, twist relaxation under conservation of S/ = 0 determines spontaneous
production of writhe (see figure 4). Here, we demonstrate that the same relaxation process
occurs for quantum defects. With reference to the two cases above, we prove the following
result.

THEOREM 4.1. Let L denote a closed space curve that is a nodal line of a quantum defect
in isolation; the defect is subject to a twist phase 0y, localized in T (L). Suppose that
at t =0 we have Tw 0, Wr = 0 and V?6,, > 0 in T(L). Under conservation of zero
helicity, we have

Tw— —Wr(mod2) astt Vt>O0. 4.1
949 A19-8
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Proof. According to (2.1), if V26, > 0, then the Hamiltonian is non-Hermitian and the
system is linearly unstable. Thus in the case of localized twist phase, we have

1 A
Tw = VG,W Tds #0, 4.2)
27[

and along £ we can take

AV, d%6,,

V29 —
w ds ds?

>0, Vi>0 4.3)

(in the healing region dzetw/dr2 ~ 0). We have two cases. (i) In one case 6O, is
discontinuous along L: in this case the product UnyT must be multi-valued, because
d|V6;,]/ds > 0 determines two different values of |V6,,| on a closed curve (say at the
origin and after a full turn on £). If T remained constant with respect to a fixed direction

2, then Ej, o< u?, would be also multi-valued, evidently inadmissible from a physical

viewpoint (the condensate cannot have two different energy values at a single point).
Therefore T must change direction. (i) In the other case 6y, is continuous along £: in
this case the 1nstab111ty relation (2.4) and the change of sign of V26, along L imply the
change in direction of T. Let us denote by $2 the spatial angular velocity of T with respect

to z. Interpreting the arc length variation of T along £ in terms of rigid body rotation of
the Frenet triad, we have

T=@xT, Vvi>0, (4.4)

where prime denotes arc length derivative. By taking the cross-product of (4.4) with T,
using a standard vector identity, and multiplying everything by z, we have

3. TxT)=3-12-(@-DT] (4.5)

Let £2 and £ denote the parallel and perpendicular contributions of £2 to z; from the
right-hand side of (4.5), we have

~ ko A/ ~ S o ~ ke
2T xT)=2-%-T®@,-T)—2,¢-17> (4.6)
or
A N A A
z-(T'xT z-T(2,-T
Q”:z ( AXA )+Z (AJ_A )’ 4.7)
l-@E-T? 1-@&-1)7?
where £ = |SZ||| Now we take advantage of the gauge invariance of (4.4) under

2 —> 2+ (2- T )T From that equation and the gauge freedom of 2, we have
— [+ @ -TT1xT, (4.8)
and choose 2 - T = (Z X T ) - T ; we can thus rewrite (4.7) as
- TxT) 2.TG-TxT)

2= — — — . (4.9)
1-(z-T)? 1-@z-T)?

By standard decomposition of total twist in geometric terms, we have Tw = 7 + A/, where
7 is the normalized total torsion, and N the intrinsic twist given by the framing U on £

949 A19-9
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(Moffatt & Ricca 1992). By Lemma A.1 of Appendix A, we can write 7 in terms of z, and
by Lemma A.2 we can see that the integral of (4.9) is the writhing number mod 2, i.e.

1
——% 2 ds = —Wr (mod 2). (4.10)
TJL

Hence the rotation of 7 converts the initial localized phase twist to a geometric phase
given by the production of writhe. Since (4.9) takes into account the sole rotation of T in
space without involving the U framing on L, by (4.2) we have

Tw— —Wr(mod2) ast? Vi>0, (4.11)

as stated. |

REMARK 4.2. The gauge freedom is reﬂected in the free choice of 7 in space, hence
ﬁxmg the gauge is equlvalent to fixing % in R3. It can be shown that the choice of taking

2, -T=(zx T/) T is equivalent to assuming $2 - T= —£2.

REMARK 4.3. The conversion of twist to writhe given by the rotation of T is due to the
distortion of L in space and the defect energy redistribution, with production of writhing

energy density —i V20,1 ? to cancel out the imaginary term in (2.1).

5. Two examples of defect ring subject to localized twist

Two examples of the effect of the localized twist that provide interesting test cases for
laboratory experiments are presented for illustration.

Increasing twist. Consider a vortex ring L subject to localized twist with d|V6y,|/ds >
0 along Ly. Since V26,, > 0, the vortex becomes unstable. At the point of twist
injection, where the ribbon closes on itself, twist flux is maximum. Relaxation of twist
determines defect distortion, with consequential production of writhe. Stability is restored
eventually when the imaginary part of the energy functional (2.1) is absorbed by the
defect deformation. Below the critical twist threshold imposed by the speed of sound
(cf. (2.7)), the defect may coil up and fold over, with possible phase fragmentation and
defect reconnection to produce small-scale vortex rings.

Oppositely signed twist. A limit case is represented by a vortex ring subject to localized,
constant twist propagating with opposite sign in opposite directions from the point of
injection. The Laplacian along the defect is different from zero, but the total flux is zero
with source (V26,, > 0) and sink (V26 < 0) contributions radiating away from the point
of injection. These contributions may produce a distortion of the defect in space with
simultaneous creation of positive and negative coiled regions while keeping total writhe
equal to zero.

6. Conclusions

In this paper we have considered the physical effects of the superposition of an external
twist phase on an isolated quantum vortex defect governed by the Gross—Pitaevskii
equation. By relying on stability results obtained previously by the present authors (FR20),
we have analysed the effects of global and local phase twist (§2) to demonstrate two
results. (i) When the superposed phase is uniformly twisted everywhere in the condensate,
a secondary defect is produced as a result of an Aharonov—Bohm type effect (§3).

949 A19-10


https://doi.org/10.1017/jfm.2022.711

https://doi.org/10.1017/jfm.2022.711 Published online by Cambridge University Press

Instability of a quantum vortex by twist perturbation

(i) When the superposed phase twist is localized, i.e. it is confined in the tubular healing
region of the nodal line, the defect undergoes a distortion due to the production of writhe
by twist relaxation (§ 4). This mechanism, proved here for quantum systems, is analogous
to the relaxation of supercoiled elastic strings in classical mechanics (Wadati & Tsuru
1986). Two simple examples are presented in § 5 to illustrate the physical effects of twist
localization. These results rely on application of Kleinert’s (2008) defect gauge theory for
multi-valued potentials, and use of simple geometric results derived in Appendix A.

There are physical effects that may limit the amount of twist flux injected. On one hand,
since V0, induces an axial velocity u, and this is limited by the speed of sound ¢, (1, <
¢cs), there must be an upper limit on the injected twist. Moreover, since a localized twist
is confined to the tubular healing region, there must be also a natural limit given by the
amount of particles that can be transported along the nodal line. Both these effects must
play a part in the values of 6y, that are physically realizable.

Our results shed new light on the physical effects of twist on defect dynamics. According
to whether twist prescription is global or local, we may have production of new defects or
twist relaxation with consequential geometric distortion of the original defect and creation
of writhe. Indeed, writhe production corresponds to the generation of a geometric Berry
phase (Hannay 1998; Chruscinski & Jamiolkowski 2004). The examples presented in § 5
show that even under twist localization we can have quite different scenarios: either a
change of shape through distortion of the defect in space, or, if twist exceeds a critical
threshold, possible phase fragmentation and reconnection of the original defect with
production of small-scale vortex rings. These conclusions, based on purely theoretical
arguments, show the subtle role that topology and twist localization (or the lack of it) may
play in the physics of condensates. In light of the most recent developments in condensed
matter physics (Klawunn & Santos 2009; Caputo et al. 2019; Saxena et al. 2020; Bergholtz,
Budich & Kunst 2021), these results suggest new ways to produce secondary defects,
or trigger configurational changes of existing defects, that may help to enhance physical
properties for scientific purposes and technological applications.
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Appendix A. Total torsion and writhing number in terms of z
Let Lbe a smooth closed space curve of unit tangent, normal and binormal given by the

Frenet triad {T N B} curvature ¢ = ¢(s) and torsion T = t(s), all smooth functions of
arc length s of £. We have the following.

LEMMA A.l. Given a smooth, closed, space curve L and a fixed axis Z in R3, we have

_ L g G-TE- T><T) (A1)
2w J, 21 1—(z- T)2
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Proof. Consider the unit vector decomposition Z = (Z - )T + (3-%,)%,, where 2, is a
unit vector orthogonal to T on £. By using (Z+21)%> = 1 — (z - T)?, we have

. i-¢-DT
U=
J1-@-1)?

After some straightforward algebra, we have

(A2)

. G-DE-TxT)

G = (A3)

By recalling the definition of total twist (Moffatt & Ricca 1992), we have
1 A A A 1 ,
Tw=—@® z1xz))Tds=— P (t +oa)ds, (A4)
27 L 21 L

where a = «(s) is the rotation angle of the intrinsic twist A; from (A4) we have

(AS5)

1— (- T)?

We want to prove that sr = kt, with k = 1. First we prove that »x =0« v =0. (i) If
%=0,then 2-T=0o0r 2-T x 7' = 0. In the first case, since z is fixed in space,
2.7 =0 iff 2 L T, which means that £ must be planar with r = 0. In the second
case, - T x T = 0iff (by Frenet-Serret equations) ¢ % - B = 0. Since £ is closed, ¢ # 0
(almost everywhere) and so Z - B = 0; this means that (- B) =0 iff —t2-N =0. If
T #0, thenz - N =0, thatis 2 L Band 2 L N, so that 2 I T. However, since 2’ = 0, we
must have (2 - N)/ =2 - N = —c2-T+12-B=0,ie.2-T = 0, which contradicts the
assumption; hence T = 0. (ii) If t = 0, then £ is planar. We can always choose z such that
2.7 = 0. Hence 5 = 0.

From (i) and (ii) above, and (A5), we thus have »c = kt = v + o/, thatisa’ = (k — 1)7;
however, this cannot be true because «’ is independent of torsion. Hence @’ = 0 and k = 1,
that is »c = t; hence, using (AS5) we have the statement (A1). |

The writhing number Wr is measured by the solid angle spanned by the tangent
indicatrix £* of £ on the unit sphere S? (Fuller 1971), and can thus be interpreted as

the flux of 7 through the surface spanned by £* on S?. We have the following result.

LEMMA A.2. Given a smooth closed space curve L and a fixed axis z in R3, we have

Wr

1 [2-%xf’ G- TE-TxT)

I f‘)z o T)z :|ds (mod 2). (A6)
p— Z. —_ z.
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Proof. Let us identify the polar axis on S> with the z-axis, fixed in R?. From Binysh &
Alexander (2018, equation (14)), without loss of generality we take n., = z; we have

1 2.7 x 7
—— —ds (mod 2). (A7)

Wr=— —
2 Je 14+%.T

By multiplying and dividing the integrand above by (1 — Z - T ), we have

N A fa A A/
2 TxT  a-2-DeE-TxT) z2.7x7T G-T)(2-TxT)

—— — = — — — . (A8)
l+z-T 1—(-T1)? 1—(z-T) 1—(z-T)?
Substituting the right-hand side above into (A7), we have the statement. |
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