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COMMUTATOR THEORY ON HILBERT SPACE
DEREK W. ROBINSON

1. Introduction. Commutator theory has its origins in constructive
quantum field theory. It was initially developed by Glimm and Jaffe [7] as
a method to establish self-adjointness of quantum fields and model
Hamiltonians. But it has subsequently proved useful for a variety of other
problems in field theory [17] [15] [8] [3], quantum mechanics [5], and Lie
group theory [6]. Despite all these detailed applications no attempt
appears to have been made to systematically develop the theory although
reviews have been given in [22] and [9]. The primary aim of the present
paper is to partially correct this situation. The secondary aim is to apply
the theory to the analysis of first and second order partial differential
operators associated with a Lie group.

The basic ideas of commutator theory and perturbation theory are very
similar. One attempts to derive information about a complex system
by comparison with a simpler reference system. But the nature of the
comparison differs greatly from one theory to the other. Perturbation
theory applies when the difference between the two systems is small but
commutator theory only requires the complex system to be relatively
smooth with respect to the reference system. No small parameters enter in
the latter theory and hence it could be referred to as singular perturbation
theory [10], but this latter term is used in many different contexts [20].

In order to give a more precise comparison suppose H is a given
self-adjoint operator on a Hilbert space h, with domain D(H) and
C®-elements b, = N,=;D(H"), and further suppose that K is a
symmetric operator from b, into h. Then the simplest theorem of
Kato-Rellich perturbation theory [12] [22] states that K is essentially
self-adjoint whenever

(K — H)dll = kl|Hdll + lllall, a € b,

for some k € [0, 1) and / = 0, i.e., the difference between K and H is
small in comparison with H. In contrast the Glimm-Jaffe commutator
theorem states that K is essentially self-adjoint whenever K, © D(H)
and the commutator (ad H)}K) = HK — KH satisfies

(1.1) |l (ad H)(K)all = k\l|Hdll + Lllall, a € bg,,
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for some ky, /; = 0. In fact most versions of the commutator theorem also
require H = 0 but this is not necessary [4]. If H = 0 essential self-
adjointness of K even follows from the weaker commutator bound

| (a, (ad HYK)b) | = Ki||H %all - |H' 2Bl + 1illall - I,
a, b € b,

The next refinement of perturbation theory occurs if K is positive, or lower
semi-bounded. Then self-adjointness properties can be obtained from
weaker perturbative estimates. One of the principal results of Section 2
establishes that analogous refinements arise in commutator theory. If
K = 0 then it is essentially self-adjoint whenever Kb, € b, and

(12) |l (ad H)X(K)all = kyl|H?all + bllall, a € b,
If, in addition, H = 0 then it suffices that the form bound
| (a, (ad HY(K)b) | = Kyl|Hal| - ||HBI| + bllall - Ibll, a, b € b,

is valid. A partial result of this kind was given earlier by Driessler and
Summers [4].

Thus, in summary, there are four basic self-adjointness results of
commutator theory classified by stability properties, expressed by
positivity of H or K, and smoothness properties, expressed by commutator
estimates. In rough terms, the stronger the stability the weaker the
smoothness required for self-adjointness. In each case one can also derive
invariance properties of the unitary group S, = exp{itK } or, if K = 0, the
contraction semigroup 7, = exp{ —¢K}. For example, if (1.1) is satisfied
then h, = D(|H|" is invariant under S for all « € [0, 1] and the
restriction of § to §j, is continuous in the graph norm. Alternatively, if
K = 0 and (1.2) is satisfied then b, is invariant under 7 for all « € [0, 2],
and the restriction of T to [, is continuous in the graph norm. Details are
described in Section 2. Earlier results on invariance occur in [8] [3] [6] [15]
and continuity properties in [16].

A simple illustration of the self-adjointness results is given by taking
h = Lz(R) and H = id/dx the self-adjoint generator of the unitary group
of translations. Then if 4 denotes the operator of multiplication by a
real-valued function with bounded second derivative it follows that the
first-order differential operator K = HA + AH is a symmetric operator
from b, into . Moreover condition (1.1) is satisfied, with k; = 2[|4’||.,
and /| = [|4”||., and hence K is essentially self-adjoint. Alternatively if A
is positive with a bounded third derivative and B is positive with a
bounded second derivative then the second-order differential operator
K = HAH + B is a positive symmetric operator from b, into h which
satisfies (1.2). Therefore K is self-adjoint. These examples illustrate two
important points. First the differentiability, i.e., the smoothness, of the
coefficients is necessary for the boundedness of the commutators
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(ad HXK), (ad H )2(K ), on b.. Second the order of the bound, i.e., the
order in H, reflects the order of the differential operator. Since the O(H)
bound cannot be relaxed in the Glimm-Jaffe theorem (see [22] Example 1
in Section X.5) this theorem is restricted to first-order differential
operators, unless one makes a different choice of H. In contrast the
theorem for K = 0 applies to second-order differential operators because
the commutator bound is O(H?). Again this order cannot be increased (see
[4] Section 4).

It is natural to try and extend the foregoing discussion of differential
operators on LZ(R) to partial differential operators on Lz(Rd). This then
leads to the consideration of operators associated with a unitary
representation of R or a general Lie group G. Commutator theorems for
such operators are derived in Section 3. They generalize results of Poulsen
[21] for operators commuting with the group action. The extension of the
results of Section 2 is quite straightforward since the differential structure
of the representation is completely determined by a Laplace operator. This
Laplacian then plays the role of the self-adjoint operator H. We note that
many of the quantum-mechanical applications of commutator theory have
been based on the choice of H as the Hamiltonian of the harmonic
oscillator, acting on Lz(Rd). But this operator is exactly the Laplacian of
the Heisenberg group, acting in the Schrodinger representation on L*(RY).
Hence these examples are naturally described by the results of
Section 3.

In Sections 4 and 5 we establish commutation theorems. Basically we
prove that if K, and K, are two symmetric operators each satisfying the
criteria of one of the commutator theorems of Section 2, and if K, formally
commutes with K,, then the self-adjoint extensions K, and K, commute.

Finally, in Section 6, we elaborate on the application of our results to
general partial differential operators associated with a Lie group.

Although this paper only considers commutator theory on Hilbert space
we note that the Glimm-Jaffe theorem, as described above, is also valid on
Banach space [1] [23]. It would be of great interest to find a Banach space
analogue of the double commutator theorem.

2. Commutator theorems. In this section we develop the theory of com-
mutator theorems on Hilbert space. There are three classes of theorem, for
dissipative, symmetric, and positive, operators, and there are also three
types of result, generator properties, invariance, and boundedness and
continuity properties. In each successive class the results are more
detailed. ‘

Throughout the section H denotes a self-adjoint operator on the Hilbert
space ly with domain D(H). For each a = 0 we set

be = D(U + HHY?)
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equipped with the norm
llally = 11 + HY*?al.

In particular h = b, and ||| = ||l|,- Next for & << 0 we define 0, to be the
completion of §) with respect to the norm

aeb—ldl, = Ild+ H)Y .

It follows that each b,, « € R, is a Hilbert space, the operators
 + Hz)‘g/2 define unitary maps from b, into b, _ g, and the dual by of b,
is identifiable as ) _,. Moreover b, 2 bg if « = B. Finally we define b,
by

The space b is a Fréchet space with respect to the topology defined by
the family of norms { ||||,; « € R}.
If H = 0 it is also convenient to introduce a different family of

norms
llall, = 11 (I + H)%ll, a € b,

on the spaces §,. It is easy to see that ||-||/ is equivalent to ||-||,. Moreover
I+ H)B defines a map from b, into b, _ g which is unitary with respect to
the norm ||||,.

a. Dissipative operators. The operator K on the Hilbert space ) is defined
to be dissipative if

Re(a, Ka) = 0, a € D(K),
or, equivalently, if
NI + eK)all = llall, a € D(K),

for all e > 0. Each densely defined dissipative operator is closable, and its
closure is also dissipative.

Now we consider dissipative operators K from b, into b and their
commutators (ad H)(K) with H. These commutators are not necessarily
defined as operators but they can be interpreted as sequilinear forms over
boo X B, and we will consistently make this interpretation. Thus, with a
slight abuse of notation, we define the sequilinear form (ad H)(K) by

a,b € b, X b+ (a, (ad HYK)b) = (Ha, Kb) — (a, KHb).

THEOREM 2.1. Let K be a dissipative operator from b, into § and
suppose that

2.1)  [(a, (ad H)XK)b) | = kllall, - [1bll; -0 @, b € b,

for some a € [0, 1) and a k, = 0.
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It follows that the closure K of K generates a strongly continuous
contraction semigroup.

Proof. 1t follows from the Hille-Yosida theorem that K generates a
contraction semigroup if, and only if, the range R(I + €eK) of I + €K is
dense in b for small € > 0. Now assume this is false. Then for each e > 0
there is a non-zero a € I such that

(a, (I + K)b) =0, be b,

Next introduce the self-adjoint contraction semigroup S = {S,},=,
where

S, = exp{—tH*}.
Then S,) € b, by spectral theory. Therefore
(a, I + €K)S5,a) =0
for all + > 0. Consequently
(2.2)  |IS,al? = —e¢ Re(a, KS,,a)
—e Re(S,a, KS,a) + € Re(a, (ad S, )(K)S,a)
= e Re(q, (ad S,))(K)S,a).
Now consider the everywhere defined operators
C, = (ad S, (K)S,, t>0.
We will prove that these operators are bounded and

c=sup{[ICI; 0 <t <1} < +oo,

I

Then from (2.1) one deduces that
lal> = lim |IS,all® = ecllall®
=0+
which gives an inconsistency if e¢c << 1. Thus it remains to establish the

boundedness properties of the C,.
Let ¢, d € b, then

1
(2.3)  (c (ad S)K)S,d) = —1 f o d5(S,c, (ad HY(K)S,—o\d)
1
= —t f o ds{ (HS ¢, (ad HY(K)S,—5\d)

+ (S0 (ad HYK)HS,5_,,d) }.

Therefore
1
| (c, (ad S, )(K)S,d) | = kgt fo ds{ 11S;clly 4o~ 1S;2—5ydll) — o

IS ella - 11810 -l - o}
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Now for 0 < s = 1, and 8 = 0, one has

IS,cllg = 11 + HHP2e™ e = e P2
where

g = }s‘lg()) (1 + )\)B/zef)\,

by spectral theory. Consequently
[ (c, (ad S, XK)S,d) | = kyllell - ld]] {c) 1 a1 —adita T Ca€r—ada}

for 0 < ¢t < 1 where

1
Ia — fo dss—lx/?.(z . S)—]+a/2.

But since 0 = a < 1 both integrals /,, and I, ,,, are finite. Thus C, is
bounded and ||C,|| is uniformly bounded for 0 < ¢ < 1. This establishes
that K is a generator.

Remark 2.2. This proof follows an argument of Nelson [17] who proved
a similar result under the additional hypothesis H = 0.

Next we consider properties of the semigroup generated by K, in
particular boundedness, continuity, and invariance properties, which can

be derived if « = 0 in (2.1).
THEOREM 2.3. Let K be a dissipative operator from b, into ). Suppose
(2.4)  |(a, (ad HXK)b) | = Kllall - lIbll},  a, b € by,

Let T, = exp{ —tK} denote the contraction semigroup generated by K.
It follows that Kb, < b, and

. Th Cbh, =0,
2. |ITall, = é¥all,, a €,
3. lel is ||"l,-continuous.
Proof. By definition
| (Ha, Kb) | = |(a, KHb) | + |(a, (ad H)(K)b) |
= llall{ IKHB|l + KlIbll}}, a, b € b,

and hence Kb € D(H) = §,.
Next we prove that K + kI is [|-||,-dissipative. For this first note that
llall, = Il (I + iH)all. Then

| (I + «K + kI))all, = ||(I + iH)I + «K + kI))al|
= || + «K + kIYI + iH)all
ell (ad H)(K)all

|
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= (1 + e)llall; — ekllall, = llall;

where we have used dissipativity of K, and (2.4).

Finally we prove that R(I + ¢ K + kI)) is ||||,-dense in b, for small
€ > 0. Then it follows from the Hille-Yosida theorem that the ||-||,-closure
of K + kI generates a ||*||;-continuous, ||||,-contractive, semigroup on b,.
The stated properties of T are an immediate consequence. We use an
argument devised in [1]. Suppose there is an f € b} such that

(250 f(U + &K + kl))a) =0, a € b,

Now R = (I + iH)_] is a bounded map from b into b; and hence the
adjoint R* defines a bounded map from b} into b. But to prove f = 0 it
suffices to prove that R*f = 0, because the range of R* equals b. It follows
from (2.5), however, that

(R*, (I + eK)a) = —ek(R*f, a) + ¢f((ad R)K)a)
= —ek(R*f, a) + ie(R*f, (ad H)(K)Ra)
where we have used Kb, € b, to define (ad H)(K) on .. Thus
[(R¥, (I + eK)a| = 2¢k||R*/1| - || (I + eK)all.
Now R(I + €K) is dense in §) and consequently
IR*f1l = 2ek||R*/I.
Thus if € < 1/2k one must have R*f = 0.

b. Symmetric operators. If K is a symmetric operator on ) then *iK are
both dissipative. Hence Theorem 2.1 gives criteria for =K to generate
contraction semigroups. But =iK generate such semigroups if, and only if,

K is self-adjoint. Thus Theorem 2.1 immediately yields a result on
essential self-adjointness of a symmetric operator. But this result can be
strengthened by symmetry.

OBSERVATION 2.4. Let s be a symmetric sesquilinear form over H,, X b,
and suppose

Is(a, b) | = cllall, - lIbllg, a, b € b,
for some a, B € R. Then

5@, b1 = dlall,s, - lbllg @b € b,
forally € [0,B —alif fZ a,ory e[B—a0]lif B=a

This is established in two steps. First by symmetry one has

Is(a. b) | = cllallg - [1b]lq
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and then by interpolation theory (see, for example, [22] appendix to
Section 1X.4) the bound extends to all pairs of intermediate indices with
sum « + 8.

The observation immediately implies that if K is symmetric then
Theorem 2.1 can be extended to the value « = 1, by symmetry. It also
implies that if one has a family of conditions such as

Is(a, b) | = cllall, - lIbll

with a € [0, n] then the weakest condition is for « = n/2 and the
strongest is for « = 0, or « = n. The foregoing discussion of dissipative
operators was based on commutation conditions with index n = 1 and
we next discuss generalizations for symmetric operators. Subsequently we
show that similar results can be obtained for positive symmetric operators
from commutation conditions with index n = 2.

First we consider the weak conditions with index n = 1 then Theorems
2.1 and 2.3 can be generalized if H = 0. Second we consider the strong
conditions with index n = 1 and show that then the generalized invariance
properties can be derived without positivity of H.

a, b € b,

n—a®

THEOREM 2.5. Let K be a symmetric operator from b, into b and
suppose that

(2.6)  |(a. (ad HXK)D) | = kllall, 5 - lIbll 5, a. b € by,

Sfor some k = 0.

It follows that K is essentially self-adjoint.

If, in addition, H = 0 then Kb, S b, ,,. Moreover, for each a € [0, 1/2]
the unitary group V, = exp{itK} has the following properties.

L V!vba = ha’ t e R,
2. WVall, = el'lal‘ﬂ”a“;, t€ R ach,
3. V1 is |Il,-continuous.

Proof. The essential self-adjointness follows from Theorem 2.1, with
a = 1/2, applied to #iK. Now we consider the additional properties
with H = 0. Recall that if H = 0 the norms [|-]|, are defined by

lall, = Il (1 + H)%all, a € b,

It then follows that ||al|, = |lall,, for a« = 0.
To prove Kb, € b,,, we observe that if a, b€ I, then

[(( + H)?a, Kb)| = | (U + H) "?a, (ad HYK)b) |
+ (U + H)Y "?a, KU + H)b) |
= Kllall - 1161l ,2 + llall - 1K+ H)bll.

172

But since b is a core for (I + H)''~ it follows that
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Kb € D(( + H)"?.

In order to establish the properties of the unitary group Vit is necessary
to have an estimate for commutators of fractional powers.

LEMMA 2.6. Let K be a closable operator from b, into V). Suppose
H = 0 and

(27)  |(a, (ad HXK)b) | = Kllall},5 - Ibll} 2, a, b € by,

Then, for each o € [0, 1],

(2.8)  l(a (ad I + H)*)K)D) | = akllally, - 116l a, b € b
Proof. Set L = I + H. We use the integral representation

L* = ¢, fo dM L + ALY !

where
e, = fo AW + N h
Then
(a, (ad L*)(K)b)
o0
= ¢, fo dM % (I + AL) 'a, (ad HYXK)I + AL) " 'b).
Consequently

| (a, (ad L*)(K)b) |

o0
= ke, / ALY + ALY al| - |ILY 20+ L) b))
Therefore by the Cauchy-Schwarz inequality one obtains
[ (a, (ad L*)YK)b) | = kM (a)M(b)

where

[ee]

Ma) = ¢, fo AN YLYAT 4+ ALY alP.

But if E denotes the spectral measure of H then

M(a) = ¢, fTo d(a, E(x)a)x f:o dM X1+ Ax) 2
=c, f d(a, E(x)a)x" | dpp (1 + p) 2

1

[0
~a f | da, Ea)x® = a( llally, )
This gives the desired bounds.
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We note in passing that a slight adaptation of this argument gives
bounds

| (a, (@d(I + H)*)K)b) | = kygllallg - 1blly—p, a b € by,
with k, g < +oo whenever B, a — B € [0, 1/2).

Now we are prepared to prove the invariance properties in
Theorem 2.5.

First note that since K is symmetric it is closable, and hence closable as
an operator from the Fréchet space b into the Hilbert space ). Therefore,
by the closed graph theorem, there is an integer p = 1 and a ¢, =0
such that

29 ||K4q|| = C,,”CIH;, = cp||(1 + H)all, a < b,
Consequently for each € > 0 there is a ¢, (€) such that

IK(I + eH) "all = c,(o) llall, a € 0.
Now introduce the family of bounded self-adjoint operators
(210) K, = (I + eH) PK(I + ¢H) .

It follows that K )y € bp.
Second remark that the norm

llall, = I (I + H)%all, a € b,,
satisfies the bounds
Q11D lall = llally, = 2*?lall,.

Therefore (2.6) implies (2.7) and hence (2.8) is valid for « € [0, 1].

Third, consider the unitary groups V¢ generated by the K. One
has Vb, € b, for all r € R and a € [0, 1] by power series expansion.
Then since

ba = V,((V(_,ba)
one has V), = b,. But

d € d (4 € o €
o IVall)? = (U + H)Via d + H)'V/a)

=i((I + eH) "Vfa,
(ad(d + HY*)K)I + eH) "V a)

A

ak (|| (I + eH) "Viall)?

[IA

ak(||Viall,)?
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where the first inequality uses (2.6), (2.11), and Lemma 2.6, and is valid
for 0 = a = 1/2. Now integrating this differential inequality gives

(2.12) |Viall, = e Yjall,, a € b,

and it is important that this bound is uniform in e.
Next if a € f, then

(K, — Kall = [IK(U + eH) " — Dall

+ | (I + ed)? — DKal|

. P

= ¢l (U + eH) Iall,

+ [ (I + eH) P — DKall

— 0

e—0

where we have used || (I + ¢H) '] = 1 and (2.9). Since b, is a core of K
it follows immediately that V' converges strongly to ¥, for each t € R,
and the convergence is uniform for 7 in compact subsets of R (see, for
example, [2] Section 3.1.3).

Now if E denotes the spectral measure of (/ + H) then for a € b, one
deduces from (2.12) that

(e;1|k/4”a||/l/2)2 = _[N d(Via, EMV a)\

= N2 / v dVa, EMNV a)Re

= N2 — Ey)V/all)’

where E, denotes the projection onto the subspace for which (/ + H) =
NI. Thus if 0 = a < 1/2

Q13) N = Vil = 0+ NIUEAVS = Vall
4 2e|t|k/4||a”/”2/Nl/2fa
and
@14 vy = Dally = A+ NIE(Y; = Dall
+ (¢ 4 1y Jlall; o/ NV

It immediately follows from (2.13) and (2.14) that V' is ||-||,-convergent
to Vase— 0. Thus Vb, € b, and Vb, = b, by the group property. But
then it follows from (2.12), (2.13) and (2.14), that the restriction of V' to by,
is |||, -continuous and satisfies the bounds

/2
WV, = " Yall, a € b,
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for 0 = a << 1/2. Next it follows from these bounds and monotone
convergence that V)§),,, = b;,, and

/4
1Valli,, = ¢™*¥all},, a € by,

Finally, since Kb, € b,,, and

t
(V, = Da = i fo dsVKa, a € b,
one has
I (V, = Dalli,, = lde™*IKalli . a € b

But b, is ||'llj,,-dense in b,,, and hence this establishes that V| is
[I"|l} /5-continuous.

Remark 2.7. The original Glimm-Jaffe commutator theorem [7] proved
essential self-adjointness from a commutator condition of index one under
the assumption H = 0. Other versions based on similar assumptions were
subsequently given in [17] [5] [15] [16]. An invariance property of b),,, was
first proved by Faris and Lavine [S] by a differential inequality method
similar to the above. But the modified method using the K, approximation
technique was introduced by Glimm and Jaffe [8] [9] for the proof of
invariance and commutation properties. Similar applications were sub-
sequently given by Driessler and Frohlich [3] [6]. The invariance of
the fractional spaces b, and the ||-]| -continuity of V on b, appear to
be new.

Our second result on symmetric operators is based on the stronger form
of the commutator condition with index one and does not require H = 0.
The essential self-adjointness statement is essentially Theorem 1 of [4].

THEOREM 2.8. Let K be a symmetric operator from Y, into b and
suppose that

(2.15) | (a, (ad HY(K)b) | = Kllall - ||bll}, a, b € by,

for some k = 0.

It follows that K is essentially self-adjoint.

Moreover, Kby, € b, and the unitary group V, = exp{itK} has the
Jollowing properties for each « € [0, 1]:

. Vb, =b,. tER,
2. |¥all, = é"™lall,, € R, a e,
3. Vlbu is |||l ,-continuous.

Proof. The essential self-adjointness follows from Theorem 2.1, with
a = 0, applied to *iK. Next note that
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(2.16) | (a, (ad HA)(K)b) |
= | (Ha, (ad H)YK)b) | + | ((ad H)(K)a, Hb) |
= k(lIHall - Ibll, + llall, - 1HBI) = 2kllall, - 1b]];.

Since the C™-elements of H and H* are the same it follows that the
hypotheses of Theorem 2.5 are fulfilled with respect to the positive
self-adjoint operator H?. Hence the statements about ¥ follow essentially
from Theorem 2.5 when one notes that the fractional space b, of H
corresponds to the space b,,, of H”. The estimates on Va can be
improved, however, because it is no longer necessary to introduce the
equivalent norm |[|-||/. For example one has the following:

LEMMA 2.9. Let K be a symmetric operator from b, into b) and
suppose that

| (a, (ad H*)K)b| = 2kllall, - 1Ibll;, a, b € by
then for each a € [0, 1]
| (a. (ad(I + HY)(K)b) | = 2akllally - Iblly a b € bo
The proof is identical to that of Lemma 2.6.

Next repeating the derivation of inequality (2.12), but using (2.16) and
Lemma 2.9 one deduces that

k
Wedl, = "™ all, a € b,

The proof then continues as in Theorem 2.5.

Finally we note that the index one in the commutator bounds (2.6) and
(2.15) is necessary for the essential self-adjointness of K. Example 1 in
Section X.5 of [22] gives counterexamples to any relaxation of this
condition, even with H = 0. Nevertheless self-adjointness follows even
from a mixed estimate of index one, i.e., an estimate of the type

n

| (a. (ad H)(K)b)| = ,21 kllally gy - WbllG—gyae @b € b,
with 8, € [0, 1]. The invariance properties are, however, more delicate. If
one has an intermediate bound

| (@, (ad HY(K)b)| = Kllallys g2 Blly g2 @ b € oo
for B € [0, 1] then this estimate together with symmetry gives

| (@, (ad HPYK)b) | = 2Kllall; - bl 1y @ b € b

where y = (1 — |B])/2. Therefore by a slight variation of the proof of
Lemma 2.6 one finds

| (a. (ad(I + HH*YK)b) | = 2k, Jlall, - 11bllye a. b € b,
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valid for « € [0, I — |y| ). Hence one has the invariance of b, under V, for
each a € [0, (1 + |B])/2).

c. Positive operators. The results of the previous subsection can be
extended if the symmetric operator K is positive. First it is only necessary
to have a bound on the double commutator (ad H)Z(K) and second it
suffices that this bound has index two. It is the latter point which is of
greatest interest in applications.

Again there are two results based on a weak bound of index two and a
strong bound, respectively.

THEOREM 2.10. Let K be a positive operator from b, into b and
suppose that

(2.17) I(a, (ad HY*(K)b) | = Kllall, - IIbll,

for some k = 0.

It follows that K is essentially self-adjoint.

If, in addition, H = 0 then Kb, S b, and for each a € [0, 1] the
contraction semigroup T, = exp{—tK} has the following properties.

1' 7;[)01 g bw t z 0’
2 Tl = ¢lally, 1= 0.a € b,
3. Ty is |||l -continuous.

Proof. Since K = 0 it suffices, for essential self-adjointness, to prove
that R(I + €K) is dense in b for sufficiently small € > 0. But if there is an
a € b orthogonal to the range of I + €K then by the calculation used to
derive (2.2) one has

(2.18) [IS,all* = —e Re(S,a, KS,a) + € Re(a, (ad S,)(K)S,a)
= (e/2){ (a, (ad S,)K)S,a) + ((ad S,)K)S,a, a) }
where S, = exp{—1H"}. Now consider the operators
C,, = (ad S,)%(K)

defined on b,,. We will prove that the C,, have bounded closures
C,, and

w = sup{ |G, |I; 0 < < 1/2} < +oo.
Then one has

(a, (ad S))(K)S,a) + ((ad S,)(K)S,a.a) = —(a. Cy,a)
by continuity, and hence

lall> = lim [|S,all* = (e/2)wljall?
—0
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by (2.18). But if ew << 2 this implies ¢ = 0. Hence K is essentially
self-adjoint.

Next we establish the boundedness properties of the C, ,.

If ¢, d € b, then

(c, (ad S)*(K)d)
1 1
=7 ,/0 dr ./o ds(Sy, 116> (ad HYK)S 0, )
and hence by linear algebra, and (2.17), one finds

(2.19) | (¢, (ad S,)X(K)d) |

1 1 2
2\
= ke’ .[0 dr .[o ds ,,,2=o (m)”H "ol WS o sydlly
5 1 1 2 2
= foar fras S (2)i0 il 1 ol
But
IS,cllg = cgs™ P 2lcl)

for 0 < s = 1and 8 = 0, where
¢g = sup{ (I + A)lme_}‘, A = 0}

by spectral theory. Substituting these bounds into (2.19) then gives
| (c, (ad S,y (K)d) | = K|d]| - |Idl|

for some K/ = 0 and all 0 < ¢ = 1/2. The boundedness properties of

C,, are then apparent.
Next we establish that Kb, S b, when H = 0. This requires an
estimate on the commutator (ad H)(K), which does not rely on the as-

sumption H = 0.
LEMMA 2.11. Let K be an operator from Yy into ) and suppose that
| (a, Kb) | = Kollally, - l18llg,
| (a, (ad HY(K)b) | = kyllall, - Ibllg, a. b € b,
Jor some k; = 0 and a;, B; = 0. Then
| (@, (ad H)K)B) | = Kylall,, - Ibllg. a.b € b
Jor some k| = 0 where a; = oy V a, and B, = By V B>.

Proof. First for each t > 0 define 7;(K) as an operator from b, into b
by setting

T(Kya= UKU_,a, ab € b
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where U, = exp{itH}. Then
(@ TKIB) | = kollU-ally, - I1U_,bllg,
k()Ha”aO ’ Hb”ﬂo’ a, b € b

Next for s, > 0 define sesquilinear forms
_ s/t
Efa b Ky = 3 o

(a. T,(K)b)
p=0
over b, X b, Then one has the bounds
IE a. b K)| = Kllall,, - 1bllg,:
But one calculates by rearrangement of convergent power series that
(—s)
E fa. b, K) = X —L(a, DY(K)b)
pz0 p!

where we have set D, = (I — T)/t. Hence

4

;;,;E,,(a, b; K) = (= 1)F, (a, b; D¥(K)).
Now
] 1 4
(a. DX(K)b) = - fo dr /O ds(U_,_a, (ad HYXK)U_,_b).
Hence
| (a, D}(K)b) | = Kyllall,, - lIbllg, a.b € b,
Consequently

|E (a. b: D}K)) | = kyllall,, - Ibllg,. a. be b,
Therefore one deduces from the Taylor series expansion

E (a, b; K) = (a, Kb) — s(a, D,(K)b)

+ f 0 dr(r — $)E (a, b; D(K))
that
sl(a, DKW)Y | = 2kllally, - 11bllg, + (kys*/2) llally, - lIbllg,
for all a, b € b, and s > 0. Finally
| (a, (ad HYK)b) | = ,Eﬂ | (a, D,(K)b) |

and hence
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| (a, (ad H)(K)D)| = kllall,, - lIbllg,
with a; = ay V ay, B = By V B, and
ki = (2ky/s) + (sky/2)

where s > 0.
Now we return to the proof that Kb, € b, when H = 0.
First K must satisfy the bound (2.9). Thus

I (a, Kb) | = cllall - [1Bll,, a, b € b
Second by the assumption of the theorem
| (a, (ad HYX(K)b)| = Kllall; - Ibll}. a. b € b,
Hence by Lemma 2.11 there is a k; such that
| (a, (ad H)(K)b) | = kllall} - lIbll,, a, b € by
Then one has
|(( + H)a, Kb)| = | (I + H) 'a, (ad(d + HY’)(K)b)|
+ (U + H) 'a, KU + H)’b)|
= |(( + H) 'a, (ad H*(K)b) |
+2/(U + H) 'a, (ad HYK)YI + H)b) |
+ (U + H) 'a, KU + H)*b) |
= Kllall - 1611y + 2k, llall - 1161]) 4
+ ¢,llall - [1Bll}, 4>

for all a, b € Y. But since h, is a core for H it follows that
Kb € D(I + H), ie., Kb C b,.

Next we discuss the properties of the semigroup 7. For this we need the
double commutator analogue of Lemma 2.6.

LEMMA 2.12. Let K be a closable operator from Y, into Y. Suppose
H = 0 and

| (a, (ad HY(K)b) | = Kllalli - 1611}, a, b € b
Then, for each a € [0, 1]
(@, (ad (I + HYY(K)B) | = oKllally - 1Bl a. b € b,
Proof. The proof is an easy extension of the proof of Lemma 2.6.
Next we reintroduce the approximants

K, = (I + eH) PK(I + eH)
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€ > 0, used in the proofs of Theorems 2.5 and 2.8. We assume p = 1 and
hence Kb, € b,. Note that since K = 0 one has K, = 0. Now we prove
that K, + w/ is ||'||,-dissipative for a € [0, 1] for w sufficiently large.

LeMMA 2.13. Let K be a positive operator from Y, into V). Suppose
H = 0 and

| (@, (ad (I + H)YY(K)b)| = wllall, - Il a, b € b,

Jor some a € [0, 1]. If K, = (I + eH) ?K(I + eH) * with e > 0 and
p = 1 then K, + (w/2)I is ||'||,-dissipative.

Proof. Let b € b, and take a € h* = bh_ such that
a(b) = llall_o - lI5ll;

Now (I + H) “ defines a unitary map from b* into b* and (I + H)"is a
unitary map from b, into b. Thus

c=U+ H) %ae€lh and d=(U+ H)b €.
But since
(e, d) = a(b) = llall_o - llblly = Il - llll
it follows that
c=d=(I+ H% <€ b,
Now with ¢, = (I + €H) ’c one has
Re a(Kb) = Re((I + H)%, K(I + H) %)
Re(c, K.c) + Re(c, (ad(I + HYYK)I + H) %)
= (1/2)(c,, (I + H) %ad(I + HYXK)I + H) %)
= —(@/2)llelF = —(w/2) llell®
—(w/2) llall” o - 16115

I

Le, K, + (w/2)1 is ||||,-dissipative.

Now we are in a position to prove the second half of Theorem 2.10. We
proceed as in the proof of Theorem 2.5 and introduce

K, = (I + eH) PKUI + eH)™”?

with p = 1 large enough that K_ is bounded. Then K, = 0 and it is easily
verified by series expansion that the associated contraction semigroups

T; = exp{—1K}

map b, into by, for each a € [0, 1]. But it follows from (2.17), Lemma 2.12,
and Lemma 2.13, that K, + (&*k/2)I is Il -dissipative for a« € [0, 1].
Hence
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2
ITall, = &“*dll, t=0,a€ b,

for all « € [0, 1]. The remainder of the proof is identical to the proof of
Theorem 2.5.

Remark 2.14. The semigroup T on Y is a bounded holomorphic
semigroup of angle #/2 and it follows by interpolation theory that the
restriction of T to each b, a« € [0, 1], is a bounded holomorphic
semigroup.

Remark 2.15. 1t is unclear whether the hypotheses of Theorem 2.10 and
the condition H = 0 imply that b,, @ € [0, 1], is invariant under the
unitary group V, = exp{itK}.

Next we have a version of Theorem 2.10 based on the stronger
commutation condition of index 2 which does not require H = 0.

THEOREM 2.16. Let K be a positive operator from Y, into b and
suppose that

(2.20) |(a, (ad HYXK)b) | = Kllall - Ibll, a, b € b,

for some k = 0.
It follows that K is essentially self-adjoint and Kb, < b,. Moreover,
for each a € [0, 2] the contraction semigroup T, = exp{—tK} has the

Jollowing properties:
. Th, S, t=0,
2. |ITdll, = ¢“*lall,, t=0.a€b,
3. Tlha is |||l ,-continuous.

Proof. 1t follows from (2.20) by Observation 2.4 that
| (a, (ad HY*(K)b)| = Kllallg- Ibll,—p. a.b € b,

for B € [0, 2], In particular K is essentially self-adjoint, by Theorem 2.10.
But applying this bound with 8 = 0, 1, 2 one also has

(2.21) | (a, (ad H)*(K)b) | = 4kllall, - |Ibll,, a. b € b,

Hence one can now apply Theorem 2.10 with respect to the positive
operator H? to obtain the properties of 7. Alternatively, one can repeat
the arguments used to prove the theorem with H replaced by H*. For
example it follows from (2.21) by an extension of the proof of Lemma
2.6 that

| (@, (ad (I + HYYH(K)b) | = o’kllall, - bl a b € by,

for all @ € [0, 2]. Hence by the proof of Lemma 2.13 one concludes that
K, + (o*k/2)I is |/l -dissipative for a € [0, 2]. This gives the bound on
IT$all, for the approximating semigroups
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T = exp{—K}

and the properties of lea are deduced by the same arguments used in the
proof of Theorem 2.5.

Finally since K satisfies (2.9) it follows from (2.20) and Lemma 2.11 that
there is a k; = 0 such that

| (a, (ad HYK)B) | = Kyllall - Ibllyse @b € Do
Then one deduces that Kb, € b, by the estimate
| (H?a, Kb) | = | (a, (ad H)X(K)b)| + 2| (a, (ad H)(K)HD) |
+ | (a, KH?b) |
which establishes continuity of a € h_, > (Hza, Kb), for each b € p.

d. Multiple commutators. The preceding results on generators and
invariance properties were based on estimates for first- and second-order
commutators. Bounds on higher order commutators lead to improved
results of invariance [1] [6]. The simplest result is for dissipative
operators.

THEOREM 2.17. Let K be a dissipative operator from Y, into b and
suppose that

| (a, (ad H)Y"(K)b) | = k,llall - |Ibll,, a,b € boop =1.2,....m.

Then Kb, C Y, and the contraction semigroup T generated by K satisfies
the following properties, forp = 1,2, ..., m;

. Ty, S, =0,

SH
2. |ITall = exp{t qu (q)kq}IIaHp, 1=0,a €,
3. lep is H'Ilp-continuous.

Proof. The property Kb, C b, follows by continuity from the
identity

(H'a, Kb) = (a, KH"D)
)4
+ > (Z)(a, (ad HY(K)H? ), a, b € b,
g=1

The rest of the proof is an extension of the argument used to prove
Theorem 2.3. First one proves II-Ilp-dissipativity of K + wl forlarge w = 0
as follows. One has

(2.22) || + iHY’Ud + «K + wl))all
= ||+ «K + o)) + iH) al||—¢l| (ad (I + iH)’ ) K)all.
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But then
p
(ad (I + iH)Y)K)a = > (1; )(ad iHY(KYT + iH) "a
g=1
and hence
p
@2 @d (@ + iyl = 2 (7,
q=

Now (2.22) and (2.23) together with dissipativity of K establish that
K + wlis H'Hp-dissipative whenever

0z 3 (” )k :
q=1\q/ 1
Next one argues that R(/ + ¢(K + wl)) is Il-llp-dense in b, for small

€ > 0. For this suppose there is an f € b such that

S + «K + «w))a) =0, a € b,
Now setting R, = (I + iH) ” one has R}f € b and

(R¥f, (I + eK)a) = —ew(RYf, a)

+ «(Rxf)((ad (I + iH)"YK)R,a).

Then using (2.23) and dissipativity of K one finds

|(REf. (I + eK)a) |

IA

ll B2/ Tl + ¢ 2 (7 )i iz 1 -

g=1

IA

e+ é (7 )k Juz 1 16+ ol

Since R(I + €K) is dense in § it follows that le‘f = 0 for sufficiently small
e > 0.

Finally one concludes that the ||-|lp-closure of K generates a semigroup
with the three properties stated in the theorem. An easy argument then
shows that this semigroup is the restriction of 7 to ).

If K is symmetric similar conclusions can be reached for the unitary
group generated by iK but the combinatorics are more complicated.

THEOREM 2.18. Let K be a symmetric operator from b, into §) and
suppose that

(2.24) [ (a. (ad H)’(K)b) | = K llall - Ibll,. a.b € bepop = 1,2..... 2m.
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Then Kb, € b, and for each a € [0, 2m] the unitary group V generated
by iK has the following properties:
1. Vb, = b, t €R,
2. Wall, = "™lall,, € R ae,
for some k = 0,
3. VIIL. is |||l ,-continuous.
Proof. The proof is based upon the observation that
| (a, (ad HY'(K)b) | = K llall, - 1Ibll,—,, q € [0, p,
by Observation 2.4. Then it follows by rearrangement that
| (a. (ad (I + HY")K)b)| = Kllall,, - IBll,,. a. b € b,
for a suitable k = 0, and consequently, by Lemma 2.6,
la, (ad (I + HYKID) | = Kllally - 1Bllas @, b, € Do

for a € [0, m]. The rest of the proof then follows the proofs of Theorems
2.5 and 2.10.

Finally one has similar results for positive symmetric operators.

THEOREM 2.19. Let K be a positive symmetric operator from b, into b and
suppose that

| (a, (ad H)P(K)b) | = K llall- [1bll,, a.b € boo,p =2,3,...,2m.
Then the semigroup T generated by K has the following properties for each

a € [0, 2m]:
l. Ty, Sb, t=0,
2. ||Tdl, = ¢ Hall, 1=0.a€ b,
3. Ty, is |Illy-continuous.

Proof. Now one uses the multiple commutator conditions, and
Observation 2.4, to deduce that

| (a, (ad( + HY™Y(K)b)| = Klldll,, - bll,, @ b € by,

nm°

for a suitable k = 0. Then the proof follows the line of reasoning used to
prove Theorems 2.10 and 2.16.

3. Lie groups. In this section we extend the previous results to operators
approximately invariant under the unitary action of a Lie group.

Let U be a strongly continuous unitary representation of the Lie
group G on the Hilbert space 5 and for each positive integer n let JZ
denote the C"-elements of U, i.e, those a € 5 for which the function
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g € G— U(g)a € 5#is n-times continuously differentiable on G. Further-
more let 52 denote the C*-elements of U. Then

H, = QX

©o n
n=1

Next if g is the Lie algebra of G there is a representation dU of g on 52
such that the representative dU(X) of X € g is the infinitesimal generator
of the one-parameter group ¢ — U(e'*). The representation dU extends
uniquely to a representation of the universal enveloping algebra of the
complexification of g and it can be used to give several operator-theoretic
characterizations of the subspaces 7,.

First if X;, ..., X, is an arbitrary basis of g then

Ay = 0 DAUKX)™ .. dUX,)%)

where a = (a),...,ay), «; = 0, and |la] = a; + ...+ «a, (see, for
example, [11] Proposition 1.1). Moreover if py(a) = |la|| and

p,(a) = max IIdU(X]-l)...dU(X/- all, n =1,
|14 : i

=)=

then J% is a Banach space with respect to the norm

n
lall, = X p,.(a)

m=0

(see [11] Corollary 1.1). In addition 5Z_ is a Fréchet space with respect to
the family of norms { [|-||,; n = 0}.

An alternative description of the 5, can be given in terms of the

Laplacian A determined by the basis X),..., X, The operator A is
defined as the closure of the sum

~2L@UX) )

It is both self-adjoint and positive. Then it follows from [18] that
Ay = D(UI + A"

and the norm ||||/, on £, is equivalent to the norm
a = llall, = 1 + 8"l

(see [11] Proposition 1.3). Hence for « = 0 we introduce the fractional
spaces

A, = D(U + 1))
with the norm

lall, = Il (I + A)%al|
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and if @« < 0 we define 5, to be the completion of 5 with respect to
the norm

lall, = 11 (T + A)¥2all.

Again each 5, is a Hilbert space with respect to the norm |[|-||, and the
operators (I + A)B/2 define unitary maps from 5, into J _ 5. Moreover
the dual JZ* of /, is identifiable as /# .

Now it is straightforward to use this characterization of the differenti-
able structure of (% G, U) in terms of the Laplacian to extend the results
of Section 2. Again we consider the three classes of dissipative, symmetric,
and positive, operators.

a. Dissipative operators. First one has a direct analogue of Theorem
2.1.

THEOREM 3.1. Let K be a dissipative operator from S, into ¥ and
suppose that

(3.1)  [(a, (ad dU(X)) XKD) | = kjllall - lIblly o a. b € A,

for some a € [0, 1) and a k, = 0.
It follows that the closure K of K generates a strongly continuous
contraction semigroup.

Proof. 1t follows immediately from (3.1) that
| (a, (ad AYK)D) | = kyllally 1o - 1Bl — o + Kgllall, - 116l -4

for all a, b € 5. Now the proof is the same as the proof of Theorem 2.1
but with S, = exp{—rA}.

Next we consider the limiting case « = 0 in Theorem 3.1.

If « = 0 in (3.1) then it follows by continuity, as in the proof of
Theorem 2.3, that K»#_ C 5#. It further follows by the proof of this
latter theorem that K + wI is ||-||{-dissipative for w = k;. But it is not
evident that the semigroup 7, = exp{—tK} leaves 54 invariant. This
follows, however, if one has appropriate higher-order commutator
estimates.

THEOREM 3.2. Let K be a dissipative operator from S into ¥ and
suppose that

(32)  |(a (ad dUe- X) Y(KB) | = ¢ llall - [1bl],, a, b €

for all e € RY with lel = 1, and allp = 1, 2,...,m where m = 2 and
¢, = 0. Then the contraction semigroup T generated by K satisfies the follow-
ing properties forp = 1,2, ..., m;

T 7
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2. there exists w, = 0 such that

ITall = e%|lalll, t=0,a € .}f;,
3. TI% is H-Hl’)-continuous.

Proof. The proof follows the reasoning used in Theorems 2.3 and 2.17.
We will just outline the argument.

First it follows easily from (3.2) that K>, C J#,. Then setting
H, = dU(X;) one has for a € 5

IIH,l .. Hi,,(l + €K + wh))dl| = (1 + ew) HH,l .. .Hipall
—dl (ad H, ... H, Kl

by dissipativity of K. Then by (3.2), and linear algebra there is an w, = 0
such that

Il (ad H, ... H)K)all = llall,.
Thus if w = @, it follows that
I + eK + wI))all, = llall,.

e, K+ wlis H-III’,-dissipative. Next one proves that R(I + «(K + wl)) is
H-ll;—dense in 72,
Suppose there is an f € # such that

S + €K + w))a) =0, a €A,

Then if p is even set

R, =+ 18 "7
and if p is odd set
R, = (I + A)~(7FD2

P
Thus R, = 5, or A, . In both cases to prove /= 0 it suffices to
prove R;‘f = 0 because the range of R, is ll‘]]p-dense in 5. But

the proof that R 'f = 0 is similar to the proof of the comparable property
in Theorem 2.17.

One concludes from these observations that the ||~H,’,-closure of K
generates a semigroup with the properties stated in the theorem, and this
semigroup must be the restriction of T to /.

b. Symmetric operators. Again there are two results based on the weak
and strong form of the commutator bounds of index one.

THEOREM 3.3. Let K be a symmetric operator from ., into ¢ and
suppose that

(3.3) [(a, (ad dU(X;) WK)b) | = k”a”uz ’ Hb”]/Qs a, b e i,
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for somek = 0,and alli =1,2,...,d
1t follows that K is essentially self-adjoint.

This follows by applying Theorem 3.1, with a = 1/2, to *=iK.

THEOREM 3.4. Let K be a symmetric operator from 3 into ¥ and
suppose that

(34)  [(a, (ad dU(X)) XK)b) | = Kllall - |Ibll}, a, b € A,

for some k = 0 and all i = 1, 2,...,d Then the unitary group
V, = exp{itK} has the following properties for each a € [0, 1];

L VA=A (ER

2. WV, = el'la/‘d”alla, t € R a e X

3. V|% is ||l ,-continuous.

Proof. Set H, = dU(X;). The proof is based on the observation that
| (a, (ad A)(K)D) |

d

2 {|(Ha. (ad H)YK)b) | + | ((ad H)(K)a. Hb)|}

i=1

lIA

d
X KkllHall - 1bll, + Kllall, - [|Hb]

i=1

IA

MIA

2kd|lall; - |Ibll;.

Now the result follows from Theorem 2.5 with H replaced by A (see in
addition the proof of Theorem 2.10).

c. Positive operators. The extension of the results of Section 2c is a little
less straightforward because for non-abelian G one also needs bounds on
single commutators.

THEOREM 3.5. Let K be a positive operator from H., into 3 and
suppose that

(3.5 I(a, (ad dUX,)K)b) | = killall, - lI&ll;,
(3.6)  |(a, (ad dU(X,) )(ad dU(X)) XK)b) | = kyllall, - 1bll;, a. b € A,

Jfor some k|, ky Z 0 foralli,j =1,2,...,d
It follows that K is essentially self-adjoint.

Proof. This follows from the proof of the first statement in Theorem
2.12 once one replaces S by the semigroup S, = exp{—¢A}. But for this
one needs an estimate on (ad A)Z(K). Now setting H, = dU(X)
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d
(ad AX(K) = ; (ad H})(ad H;)(K)

ﬂ Ma.

d
2 3 {HGd HYXHd H)EK) + @d H)KH)

Il
HK M&.

+ (ad H)(H(ad H)K) + (ad H)(K)H)H,).

Now using the structure relations for g one can re-express the summand as
a linear combination of terms H™(ad HY'(K)H>~ ™ where n = 2 and
m=0,1,2,orn = 1and m = 1. Here H represents an H, H* a product

HH;, (ad H)(K) represents (ad H,)(K) etc. Hence from (3. 5) and (3.6) one
obtains a bound

I(G, (ad A)Z(K)b)l = C0H0”3 ' HbH] + C]”““Q . “b”2
+ Cz“alll : ”b||3
This suffices for the argument used to prove Theorem 2.12.

Remark 3.6. If G is abelian then the only terms occurring in the
calculation of (ad A)X(K) are of the form H™(ad H)*(K)H>~ ™. No
terms H(ad H)(K)H occur. Hence the bound (3.5) is unnecessary for
abelian G.

Alternatively if one has a bound

[ (a, Kb)| = kollth -blly, a, b € A,
then (3.5) follows from (3.6) by Lemma 2.11.

CoroLLARY 3.7. Let K be a positive operator from ., inio ¥ and
suppose that

| (a, Kb) | = Kllall, - 111];,
[ (a, (ad dU(X;) Xad dU(X)) XK)b) | = kyllall, - lIblly,  a, b € A,

for some ky, ky = 0andalli,j = 1,2,...,d
It follows that K is essentially self-adjoint.

Finally one has generalization of Theorem 2.16.

THeEOREM 3.8. Let K be a positive operator from . into ¢ and
suppose that

(3.7 |(a, (ad dU(X,) XK)b) | = kllall; - 1Ibll;,
(3:8) | (a, (ad dU(X)) )ad dU(X)) YK)b) | = kyllall - ||bll;, a,b € K,

Jfor some k, ky = 0and all i, j = 1L2,....d Then for each a € [0, 2] the
contraction semigroup T, = exp{—1tK} has the following properties;
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1. T, CH t=0,

2. there is an w (independent of «) such that
ITdll, = e““lall, 1=0,acx

3. T|%§ is ||| ,~continuous.

Proof. The proof is based upon the reasoning used to establish Theorem
2.16 but with H* reglaced by A. Again it is necessary to have appropriate
estimates on (ad A)7(K). But by Observation 2.4 and (3.8) one has

(3.9) | (a. (ad dU(X,))ad dUXX,) XK)b) |
= kyllally - 1bll, g a. b € K,

for all B € [0, 2]. Now estimating | (a, (ad AY(K)b)| as in the proof
of Theorem 3.5 but using (3.7) and (3.9), with 8 = 0, 1, 2, one finds
a bound

| (a, (ad AY*(K)b) | = Kllall, - Ibll, a, b € A,

for some k = 0. Now one can apply the arguments used in the proof of
Theorem 2.10 with H replaced by A.

Remark 3.9. If G is abelian (3.7) is unnecessary (see Remark 3.6).

CoroLLARY 3.10. Let K be a positive operator from 3 into ¥ and
suppose that

(3.9 |(a, Kb) | = kgllall, - 11bl];.
| (a, (ad dU(X;) Y(ad dU(X)) XK)b) | = kyllall - [Iblly,  a, b € A,

for some ky, ky = 0 and all i,j = 1, 2,...,d Then the conclusions of
Theorem 3.8 are valid.

The corollary follows because (3.7) follows from (3.9), (3.10), and
Observation 2.4.

4. Commutation theorems. In this section we return to the context
of Section 2 and examine pairs of symmetric operators K,, K, satisfying
the criteria of essential self-adjointness given in Theorems 2.5, 2.8, and
2.16. Our aim is to show that if K| and K, formally commute, i.e.,
if (ad K|)(K,) = 0 as a form on b, X b, then K, and K, commute,
i.e., all bounded functions of K, and K, commute. But to establish this
result we need to impose form bounds

[ (a, Kb)| = Kllall, - 1bll,, a. b € by,

q’°

on the K, Therefore it is natural to slightly reformulate our basic
hypotheses in terms of forms. Then, following [8], we can use the form
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bounds combined with commutator bounds to prove the existence of
operators. This is particularly convenient in applications. Thus we now
assume that k, k|, k, etc. are sesquilinear forms over 2 X 2 where
2 < b, is a core of H and HZ € 2. Then to emphasize that we
are dealing with forms we now explicitly define the commutators as
forms, e.g.,

(ad H)(k)a, b) = k(Ha, b) — k(a, Hb), a,b € D.

In general a sesquilinear form does not determine an operator, unless it is
closable, but Glimm and Jaffe [8] established that it does if one has a weak
commutator bound of index one. We will demonstrate a similar result
using a double commutator bound of index two. But first we give a slight
generalization of the Glimm-Jaffe theorem.

ProrosiTioN 4.1. Let H = 0 and consider a sesquilinear form k over
9 X D satisfying

(4.1)  [(ad H)(k)(a, b) | = kllall;, - lIblly/5, a. b € 2,

Jor some ky = 0. Then for each a = 0 the following conditions are
equivalent:

L. lk(a, b)| = kllally - 1blle, a, b € 2,
2. |k(a, b)| = Kglldll - 1Ibllye, a. b € 2.

Moreover, if these conditions are satisfied then k determines a unique linear
operator K such that D(K) = 0,, and

k(a, b) = (a, Kb), a, b € 2.

Proof. Both Conditions 1 and 2 can be extended to i, X b, by
continuity. Then setting R = (I + H)~!' Condition 1 can be reformu-
lated as

[k(R%a, R°b) | = Kkillall - 1bll, a, b € b,
and Condition 2 as

lk(a, R*p) | = kgllall - IBll, a, b € e
But if « = n + B with n integer and 0 = B < 1 then

n
k(R%a, R%b) — k(a, R**b) = X (ad H)(k)R* " "'a, R*""b)
m=1
+ (ad(I + H)P)k)RPa, R*b)

where the sum is absent if n = 0, i.e., if a << 1. Hence it follows from (4.1)
and Lemma 2.6 that
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n
lk(R%a, R%b) — k(a, R*b)| = k; > [IR* " al|,,

m=1
~IR™ %al), 5
+ KilIRPallg), - IR*Bllg,-
= (nky + k%) llall - |Ibl

for some k| = 0. Therefore 1 < 2.
Finally if Condition 2 is satisfied then there exists a bounded operator
K, such that

(a, K,b) = k(a, R*b) foralla, b € b,
Then one can define K on b,, by K = K (I + H)™.

Next we establish an analogue of this result based on a weak double
commutator bound of index two.

PrROPOSITION 4.2. Let H = 0 and consider a symmetric sesquilinear form
k over @ X 9D satisfying

(42) | (ad HYX(k)(a, b)| = kylldll, - IBll;, a, b € 2,

Jor some ky Z 0. Then for each a € [0, 1] the following conditions are
equivalent

L Ik b)| = Kyllall, - Ibll, abe @
2. k(@ b)| = Kgllall - 1blby a, b € 2.

Moreover, if these conditions are satisfied then k determines a unique linear
operator K such that D(K) = b,, and k(a, b) = (a, Kb), a, b € %, and

(4.3)  |(a, (ad (I + HY*NK)D)| = kjllall - ||blly, a, b € 2,
Jor some k; = 0.

Proof. 2 = 1. Since k is symmetric this follows from Observation 2.4
without use of (4.2)
1 = 2. First we prove a weaker form of (4.3)

44)  |(ad I + H))(k)a, b)| = Kllall, Ibll, a b€ 2,

by exploiting Condition 1 and (4.2).
Since a € [0, 1] it follows from Lemma 2.12 and (4.2) that

4.5  |(ad (I + ) (k)a, b)| = Pkyllall, - IIbll, a. b € 2.
Next we repeat the proof of Lemma 2.11 with U, replaced by
U = exp{it(I + H)"}

and using the form k in place of the operator K. Thus for s, r > 0 we
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define sesquilinear forms
—sri(s/1)?
Efa b k)= 2 e “”uk(U‘ima, U ,b)
- p=0 p!

where it is understood that k has been extended to b, X b, Then from
Condition 1 one has

IE; (a, b; k)| = kpllally - 1B,
But using (4.5) one estimates as in the proof of Lemma 2.11 that

d2
ahda b o = @l 161, a6 <,

Therefore one deduces from the Taylor series expansion of F;, that
k(U ,a, UL,b) — k(a, b) 1/t = Killall, - 16l a, b € b,

for a suitable k] = 0 and all t = 0. Then (4.4) follows by taking the limit
t—0.
Next with R = (I + H)*l one has

(4.6)  |k(a, R*b) — k(R%, R°b)| = |(ad (I + H)*)(k)(R%, R**b) |
= Kkillall - 11bl]

by (4.4). This establishes that 1 < 2.

But replacing k by (ad (I + H)*)(k) in (4.6) and using (4.5) one
concludes that (4.3) and (4.4) are equivalent.

Finally if Condition 2 is satisfied then there is a bounded operator K
such that

(a, K,b) = k(a, R*b) for all a, b € b,
and one can define K on b,, by K = K(I + H)*

One can immediately deduce versions of Propositions 4.1 and 4.2
without the assumption H = 0.

COROLLARY 4.3. Let k by a symmetric sesquilinear form over 2 X 2 and
suppose that

(4.7 |(ad H)(k)a, b)| = kllall - [Ibll,, a, b € 2,

for some k, = 0. Then for each a« = 0 the following conditions are
equivalent;

L lk(a, b)| = Kpllall, - llbll, a. b € 2,
2. |k(a, b)| = Kllall - llbllyy a, b € 2.

Moreover, if these conditions are satisfied then k determines a unique
operator K.

https://doi.org/10.4153/CJM-1987-063-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-063-2

1266 DEREK W. ROBINSON

Proof. 1t follows from (4.7) that
| (ad H*)(k)(a, b)| = 2k,lldll, - |Ibl];.

Therefore the hypotheses of Proposition 4.1 are fulfilled with respect to
the positive operator H>. (The norm |[|-||, with respect to H corresponds
to the norm |||, with respect to H?). The result follows immediately.

COROLLARY 4.4. Let k be a symmetric sesquilinear form over 9 X 9 and
suppose that

4.8) |(ad HY(k)a, b)| = kyllall - Iblly, a, b € 2,

for some k = 0. Then for each a € [0, 2] the following conditions are
equivalent;

L kG b)| = Kyllall, - bl @b € 2,
2 Ik b)| = Kgllall - 1bll, a, b € 2.

Moreover, if these conditions are satisfied then k determines an operator
K and

49) (@ (ad (I + HY*)K)b) | = killall - [1bllye, a. b € .
for some k; = 0.
Proof. 1t follows from (4.8) and Observation 2.4 that
| (ad H)’(k)a, b)| = Kyllall, - llblly . a.b € 2,
for p = 0, 1, 2. Therefore
| (ad H*(kXa, b) | = 4k,llall, - [Ibll. a. b € 2,
and the corollary follows from Proposition 4.2, with H replaced by H>.

After these preliminaries on form bounds we now state and prove the
commutation theorems for operators satisfying the criteria of the theorems
in Section 2. Again Glimm and Jaffe [8] [9] were the first to prove results
of this nature but subsequent generalizations of their results were given by
Driessler and Frohlich [3] [6]. These papers all deal with the commutation
of two operators satisfying the conditions of Theorem 2.8, but a partial
result was given by Driessler and Summers [4] for one operator satisfy-
ing the conditions of Theorem 2.8 and the second satisfying the condi-
tions of Theorem 2.16. The next theorem gives a complete result for all
such operators.

THEOREM 4.5. Let K|, K, be symmetric operators from Y, into ) and
suppose they each satisfy one of the following two conditions;

l(a, Kb)l = k0||a||1/2 : Hb“1/2
| (a, (ad H)(K)b) | = killall - Ibll, a, b € b,
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K=0
2. | (a, Kb) | = kllall, - lIbll;
| (a, (ad HY(K)b) | = kyllall - 1B, a. b € b,
Further assume that
4.9)  (Kya. Kb) = (Kya, Kib) a, b € b,
It follows that the self-adjoint closures K,, and K,, commute.

Proof. The proof divides into three cases. Case 1; K, and K, both satisfy
Condition 1. Case 2; K, and K, both satisfy Condition 2. Case 3; K|
satisfies Condition 1 and K, satisfies Condition 2.

Case 1. First it follows from Corollary 4.3 that

| (a, Kb)| = Kgllall - Iblly, a, b € b,

for some k{ = 0. Thus b, € D(K,) and
Kbl = kglibll,, b € by,

by continuity. Therefore one deduces from (4.9) that
(K,a, K,b) = (Kya, K\b), a, b €Y.

Next let

Vi = exp{itK}}, j =12,

then V{bl = b, by Theorem 2.8. Hence if a, b € b, one has
(a, (V)V} = VIVhHb)

s -— -_—
=i f o dua, ViRV — VIK)V_b)
s t _ —
- f , du f o DKV VL g, KV VI b)
_(Izl Vz-»'VLua’ EZVtzf'stlfub) }

= 0.

Therefore the unitary groups V! and V? commute and hence all bounded
functions of K, and K, commute (see, for example, [22] Chapter VIII).
Case 2. Now it follows from Corollary 4.4 that

| (a, K;b)| = kgllall - [Iblly, a, bE b,
for some k{j = 0. Thus b, € D(K,) and
IKbll = k§libll,, b € by,

by continuity. Therefore one deduces from (4.9) that
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(Ela, I?zb) = (I-(_;za, Klb)’ a, b e bz.
Next let
T = exp{—tK,}, i=12,

then T'h, C b, by Theorem 2.16. Hence one can compute as in Case 1 and
conclude that the semigroups 7' and T? commute. But then all bounded
functions of K, and K, commute.

Case 3. It follows as before that b, € b, € D(K)), b, € D(K,), and

Kbl = Kylibll, = kgllbll,,
Kbl = kglibll,,

for some kj, k§ = 0 and all b € b,. Thus one again deduces from
(4.9) that

(I?]a, bi) = (I?za, I?lb), a, b S b2.
Next for a > 0 define K, by

1 o
Ky =~ fo dtUKU._,

where U, = exp{itH} and K = K. Then a simple computation establishes
that K, satisfies Condition 1.

In particular I?a is self-adjoint, by Theorem 2.8, and ), € b, © D(I?a)
by Corollary 4.3 and the previous reasoning. But one also has

(ad HYX(K,) = (i) '{Uad HXK)U_, — (ad H)(K) }.
Therefore
| (a, (ad HYA(KQb) | = (2/a)k llall - Bll;, a, b € by

Thus if V' = exp{itK,} then V), = b, by Theorem 2.18. But it also
follows from Theorem 2.8 that V'), = b, and

@.10) |IVially = ¢llall,, a € by.
Next setting 7, = exp{ —¢K,} one calculates as in Case 1 above that

(a, (V{T, — TVb)
s t _ _
= fo du _/0 av{ (K TV a, K, TV b)
— (K, LV a0, KT,V b))

for all a, b € b,. But if K, is replaced by K the integrand is zero, by
commutation of K and K,. Therefore

@10 | (a, (VT — TV |
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= [ au [ 1RV @l IR, — BT
+ 1 (K, — K)TVE all - 1K T Vi bl }.
Now
KTVl = (V0 T,,KT,V a) IKT
= koI, V% allrepy !,
by Condition 2 and spectral theory, where

¢, = sup Ae M
AZ0

Moreover
vk,/4 vk~/4 k
T,V all, = & Ve all, = e*/4eh|ql],

by Theorem 2.16 and (4.10). Thus combination of these estimates
establishes there is a ¢ = 0 such that

@4.12) KTy dl = o™ llall,, a € by,
forall [ul = 1,and 0 = v = 1.
Next note that
It
I (UKU-, = K)all = f , dsll (ad HYK)U_a
é |t|k1Ha”]s a e boo

by Condition 1. Therefore

1K, — Kl = o' [ @il kU, ~ Kyl
= (/kllall;, a € b
Consequently
IR, — B)TV? all = (/DKL all,
and arguing as above one concludes there is a ¢’ = 0 such that
4.13) || (K, — K)TVE a4l = acllall;, a € b,

forallju = land 0 =v = 1.
Combination of (4.11), (4.12), and (4.13), allows us to conclude that

(4.14) | (a, (VT — TVHb) | = dacclall; - |IBll,

foralla,b € hrands| = 1,0 =1 = 1.
Finally for a € b,

1K, — Kall = o~ [ de(11 (U, ~ DEall + K-, ~ Dall}
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=a! fo dt{ || (U — DIKal| + k|l (U_, — Dall,}
where we have used Condition 1 and Corollary 4.3. Thus

lim || (K, — K)all =0, a € b
a—0

and hence
Vi —V, = exp{itK} asa—0

(see, for example, [2] Section 3.1.3). Therefore
(a. (VT = TV)b) = 0. a b€ b,

for|s| = 1 and 0 = ¢ = 1, by (4.14). But it then follows from boux_1dednes_s,
density, and the group property, that V and T commute. Thus K, and K,
commute.

If H = 0 and one considers operators K,, K, satisfying weak
commutator bounds of the type occurring in Theorem 2.5 and 2.10
the commutation properties are less evident. But one has the following
partial analogue of Theorem 4.5.

THEOREM 4.6. Let H = 0 and consider two symmetric operators K|, K,

from b, into b satisfying
(4.15) |(a, K;p) | = Kkollally o - 1Bl
| (a, (ad H)(K)b) | = k|||aH1/2 Bl 5 @ b € b

Further assume that
(4.16) (K,a, Ky)b) = (Kya, K\b), a, b € b
It follows that the self-adjoint closures K|, and K,, commute.
Proof. First it follows from Proposition 4.1 that
(@, Kb)| = Kgllall - 1By, @, b € b
for some kj = 0. Thus §, € D(K,) and
(4.17) |IKbll = kgliblly, b € by,
by continuity. Thus one deduces from (4.16) that
(4.18) (K a, K;,b) = (Kya, K\b), a, b € b,.
Next let
VI = exp{itK;}.j = 1. 2.
Then V7%,,, = 0,5, by Theorem 2.5 and

||V{a|]|/2 = exp{wltl } llally,, a € by,
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where w = k;/4. The rest of the proof is divided into two parts.
OBSERVATION 4.7. For a, b € h, andt € R
(a, Vb)) = (Kya, V/'b).
Proof. For each € > 0 define
K. =+ eH) '"K(I + eH) .
Then it follows straightforwardly with the aid of (4.17) that

lim ||Ka — Kzall =0, a€b,.
e—0
Next if a, b € b, then

(a, VIKb) — (Ka, V!b) =i ; ds{K,V' .a, KV b)
— (KV'a KV b))
But one also has
(K,(I + eH) 'V a, K,(I + ) 'V, b)
= (KU + eH) 'V g, K\(I + eH) 'V, b)
by (4.18). Therefore
(4.19) (a, V/Kb) — (K.a, V'b)

= f; ds{((ad (I + eH) WKV  a K,(I + eH) 'V b)

— (KI + eH) "W a,(ad (I + eH) "YK)V,_b)}.
Now consider the first term in the integrand. One has
| ((ad( + eH)~ 'YKV a K1 + eH)™ 'V b)|
= (I + eH) '(ad H)K )T + eH) V! a,
K + ) 'V b)|
= k|l + i) 'V 4,
N+ eH) 'K + eH) 'V bl
where we have used (4.15). But
I+ el)"'VEiall,, = Vil = el
by Theorem 2.5. On the other hand
el + eH) 'K(I + eH) 'V, bll,,,
= Ky + eH) 'V bl
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= %kl + eH) 'V b,

where the last estimate uses (4.15) and Proposition 4.1. But if E denotes
the spectral measure of H then

i + i) 'vL bl

= /:o dWV' b, EG)Vb)1 + x)e(1 + x)(1 + ex)” .

Now x — (1 + x)(1 + ex)_l is uniformly bounded on [0, co) and tends
pointwise to zero as € — 0. Moreover

(o)
f o AV b, E)WVL b)Y + x) = (IV_blli ) < +oo
by Theorem 2.6. Therefore
lim €'2||(1 + eH) 'V pll, =0
€0
by the Lebesgue dominated convergence theorem. This establishes that the
first term in the integrand of (4.19) is uniformly bounded on [0, ¢] and

tends pointwise to zero as € — 0. The second term has similar properties,
by symmetry and interchange of s and ¢+ — s. Therefore

lim { (a, V/Kb) — (Ka, V!b)} =0
e—0

by another application of the Lebesgue dominated convergence theorem.
But since

IKa — Kyall >0 and [|Kb — Kbl — 0
this establishes the observation.
OBSERVATION 4.8. For all s,t € R
(ad VH(v?) = o.
Proof. For each 8 > 0 define Kj by

Ky = 8! fz dtU K,
where U, = exp{itH}. Then
(ad H)(Ky) = (i8) (UK, U_5 — K)
and hence
Il (ad H)(Kp)all = 2(ko/8) llall,, a € b,
by (4.15) and Proposition 4.1. Thus if
V,‘S = exp{itK;s}
then V;Sb] = D, ¢ € R, by Theorem 2.8. But one also has
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| (a, (ad H)(Kg)b) | = kyllally 5 - 1blly,5. a, bE b,
by (4.15). Hence V2,,, = b,,5. t € R, and
4.20) IVel;,, = é"“llall},,. 1 € R a €,
by Theorem 2.5. Moreover
(a. (Ks — Ky)b) = 87! /Z dt f; dsi(a, U(ad HYKy)U_.b)
and consequently
(421) | ((a, (Ks — Kyb)| = (k;8/2) llall; 5 - lIBll, -

In particular

I —
HMW—WWP#LMQ@&*QWJJ

14
= (kIS/z)’fo dS||V2—sa“1/2 ’ IIV;S~sb{II/2

= (ky8/2)e*ally 5 - 118115
by another application of Theorem 2.5. Hence

lim (a, (V2 — Vb) = 0
§—0

for all a, b € 1,,, and then, by continuity, for all a, b € 0. Thus

(a, (ad VYVHb) = lim (a, (ad VY VP)b).
§—0

But if a, b € 1), then

14
(a, (ad VH(VO)b) = i f o duf (KsV° a, VvV b)
— V% a4 VIKVE b))

l -
i fo du{ (Ks — K)V% a, VIVE b)

I

— (VP a VIKs — KV b))

by Observation 4.8, where it is important that V'Sbl = b,. Finally one
estimates that

lel
| (a, (adVYVD)b) | = (k,8/2) fo duf{ V2 ally 5 IVIVE bl

) )
WLV alln IV bl o)

A

g| + ’
ky8e* D ally - 1Bl 0 @b € By
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by (4.20), (4.21), and Theorem 2.5. Therefore
(a, (ad VHY(VDb) = lim (a, (ad V)VD)b) = 0
80
for all ¢, b € b,,, and then, by continuity, for all @, b € b.

Since the unitary groups V', V? commute the operators K, K,
commute and the proof is complete.

Remark 4.9. Although no proof of Theorem 4.6 seems to appear in the
literature the result is referred to in notes added in proof to [3] and [6] and
is attributed to Nelson.

5. Lie groups and commutation. Combination of the results of Sections 3
and 4 immediately give a commutation theorem for self-adjoint operators
associated with a unitary representation of a Lie group.

THEOREM 5.1. Let K|, K, be symmetric operators from A into X and
suppose they each satisfy one of the following two conditions:

[ (a, Kb) | = kyllally, - 1Bl 5,
Lo (@ (ad dU(X,) XK)b) | = kyllall - Ibl],.
i=1,...,d a b€ X,
K=0
| (a, Kb) | = kgllall, - lIb];,
| (a, (ad dU(X)) Yad dU(X;) X(K)b) | = kllall - lIbll,,
i,j=1....d a b € .
Further assume that
(Kya, Kyb) = (Kya, K\b), a, b € .
It follows that the self-adjoint closures K \» and 1?2, commute.

Proof. 1t follows from Theorem 3.4 and Corollary 3.10 that K, and K,
are self-adjoint. But if K satisfies Condition 1 then it also satisfies
Condition 1 of Theorem 4.5 with H = A, the Laplacian associated with
the representation. This is verified in the proof of Theorem 3.4.
Alternatively if K satisfies Condition 2 then it satisfies Condition 2 of
Theorem 4.5 with H = A. This follows because K must satisfy the
hypotheses of Theorem 3.8, as a consequence of Observation 2.4 and
Lemma 2.11. Then the bound on (ad A)Z(K) is verified in the proof of
Theorem 3.8.

Now Theorem 5.1 is a direct corollary of Theorem 4.5.
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6. Partial differential operators. As an illustration of the foregoing
theory we discuss various applications to general partial differential
operators.

Let U be a strongly continuous unitary representation of the Lie group
G on the Hilbert space »# and adopt the notation of Section 3. Moreover
set H; = dU(X;). Next let # denote the C*-algebra of a bounded operator
on % Then G acts as a o-weakly continuous group of *-automorphisms of
% through the action

T,(4) = U(g)AU(g)~', A€ B geG.

Consequently for each X, there exists a o-weakly continuous one-
parameter group

1 U@E*)4Ue ™)

of *-automorphisms of #. Let §, denote the generator of this subgroup.
Then 8, is a o-weak densely defined, o-weakly — o-weakly closed,
derlvatlon with

By (A)* = —8y(4*).

Moreover 4 € D(8y ) if, and only if, (ad H;)(4) is a bounded sesqui-
linear form over D(H) X D(H;) or, equivalently, AD(H;) € D(H;) and
(ad H;)(A) has a bounded closure (see, for example, [2] Proposition
32.55).1f 4 D(SX) then SX(A) is equal to the closure of (ad H;)(A4).
One can associate with the 8y a C'-structure on % similar to the
structure on J defined in Section 3 with the H, For example, we set

B, = N DEY...8%)

and

n
Al = X p,,(4)

m=0
where py(4) = ||4|| and
p,(4) = lmax ||8X -8)(/4”-
S =d "

Next we examine partial differential operators associated with the
system (O£ G, U). By this we mean polynomials in the generators H; with
coefficients in 4. Nelson and Stinespring [19] established essential self-
adjointness results for elliptic operators with constant coefficients and
similar results for second-order elliptic operators on Banach space. The
Banach space results were then extended to all orders, and significantly
generalized by Langlands [13] [14], but again for operators with constant
coefficients. The subsequent discussion is more restrictive in that it only
applies to first- and second-order operators, but more general insofar as it
allows coefficients in 4. We begin with first-order operators.
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If A, = A € %, i = 1,...,d then one can define a symmetric
sesquilinear form over 5 X 5 by

d
K=1i2 (HA + AH).
j=1

But if 4, € %, then K defines a symmetric operator on 7 because
d
K = IEI Q4;H, + 8(4))

and one has an estimate
©6.1) |lKall = Kllall,, a € .

Next if 4; € %, then a straightforward calculation, using the structure
relations of g, establishes that

| (a, (ad H)(K)b) | = killall - lll;, a, b € A,

for some k;, = Oand alli = 1,...,d. Hence K is essentially self-adjoint
on % by Theorem 3.3. But it then follows from (6.1) that K is essentially
self-adjoint on any [|'||,-dense subspace of 4. Note that it also follows
from Theorem 3.3 that the unitary group V, = exp{itK} leaves the
subspaces /%, a € [0, 1], invariant and V|, is ||||,-continuous. Finally it
follows by the methods of Section 2d that'if A, € #,,, then V leaves
M, a € [0, n], invariant. Smoothness properties of the coefficients are
reflected by smoothness properties of V.

Next we examine second-order partial differential operators. Let

Ay = A} A; = AF, A = A* be elements of # then
d d
K= X HA,

(2 HAH, 2 AH A 4

is a symmetric sesquilinear form over J X J. Moreover if 4,
then K defines a symmetric operator on J4 satisfying estimates
(6.2) |IKall = kllall, a € 58,

| (a, (ad H)(K)b) | = kyllall, - llbll,, a, b € 4,
But if 4,
|(a, (ad H))(ad H)(K)b) | = kyllall, - lIbll,. a, b € 4.

A; € B

A; € %, and A € %, one has a further estimate

Thus the commutator estimates of Theorem 3.5 are verified. Consequently
if K is lower semi-bounded then it is essentially self-adjoint on %2 by
Theorem 3.5. Strong ellipticity is a simple sufficient condition for
semi-boundedness.

https://doi.org/10.4153/CJM-1987-063-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1987-063-2

COMMUTATOR THEORY 1277

The operator K is defined to be strongly elliptic if there is an € > 0
such that

2
(Aij - fHAi” 8{‘,'1)
is positive definite in the sense

d
2 (a, A, — dl4l’8;Da) =0, a €K

ij=1

Note that if 4, = 0 then this condition reduces to positive-definiteness of
(4, which clearly ensures that

K =4 = —||4||L

The general case is a small perturbation of this special case.
Set A, = HA,.II2 and adopt the convention that

A,./\/XI- =0 if4, =0.
Then for each § > 0 one has

d d
8 X (Ha A;Ha) =8 X (Ha, (4; — \s,])Ha)
ij=1 ij=1 :

+

d
2} | VSN H, = (11/e8N)A4,)all’
£

d
i 2 (a, (HA; + AH)a)
j=1

=+

d
— 2 [14;all*/(edN)).
Fari .
Therefore one has the perturbation estimate
d
2 (@, (H A, + AH)a)
i=1
d d
=38 2 (Ha AzHa) + ()" 2 |4,/
ij=1 j=1
and in particular
(a, Ka) = = (/o) llall* + (a, 4a) Z —((d/e) + AI}) llall*.

Thus K is lower semi-bounded. Hence K is essentially self-adjoint on 5
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or, by (6.2), essentially self-adjoint on any ||-||,-dense subspace of 4.
Finally if A; € %;, and A;, A € %, one has a further estimate

| (a, (ad H;)(ad H)(K)b) | = Killall - [1bll, a. b € 5

and hence the semigroup 7, = exp{ —tK} maps J, into /%, for a € [0, 2],
and T, is ||||,-continuous by Theorem 3.8.

To conclude we discuss the more specific setting of partial differential
operators on R?. Thus we choose # = Lz(Rd), set p; = i9/9x; the self-
adjoint operator of differentiation, defined through multiplication on the
Fourier transform, and set g; the operator of multiplication by x;. Now if
G = R%and U denotes the action of G on by translations we can choose
X, such that H; = p. Next if A(gq) € % denotes the operator of
multiplication by a bounded function

x € R A(x)
then 4(q) € %, if, and only if, x — A(x) is Lipschitz, i.e.,
A(x) = A()| Scdx =yl x =y =1,

for some ¢ = 0. Moreover A(q) € %,,, if x — A(x) is n-times
continuously differentiable and the n-th order derivatives are Lipschitz.
Thus the above considerations give self-adjointness and smoothness
results for first and second order partial differential operators with
differentiable coefficients, e.g.

d
(63) K= 21 A QP + A@q)

iLj=

is essentially self-adjoint on CJ(R?) if A(q) € By, (4;(x)) is positive-
definite for each x € RY and A(q) € % (No differentiability of A4 is
necessary because it is bounded.) Moreover if 4; € %; and A € %, then
the semigroup 7, = exp{—tK} maps the subspaces 5, into 5, for
a € [0, 2], and T, is ||||,-continuous. Note that it also follows from
Theorems 3.5 and 3.8 that these conclusions are still valid if one adds to K
a positive operator

K, = 2 ¢ p"

la|=n

with constant coefficients ¢, € C.

One drawback of such results is that they require boundedness of the
coefficients but such restrictions can be removed by the choice of other
groups. For example, there is a unitary action of the Heisenberg group on
Lz(Rd) given by the Schrodinger representation. Then we can choose a
basis X, i = 0, 1,...,2d of g such that H, = I, H/ = p Hd+j = g

j = 1,...,d But for this action ) is equal to the Schwartz space
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y(R‘l) (see, for example, [21] Example 5.1) and hence (6.3) is defined as a
form over # X H#_ whenever 4, (q) and A(q) are polynomially bounded
in g. Moreover the hypotheses of Theorem 3.5 are satisfied whenever 4,
satisfies the previous hypotheses but 4 = 0, x > A(x) is once-
differentiable, and

NVA(x)| = ¢)Ix| + ¢, for some ¢}, ¢, = 0.

Hence one obtains results for 4 which are 0(x2) at infinity.

Finally we give an improvement of an example discussed by Driessler
and Summers [4]. Let K be a positive fourth-order polynomlal in the p;, g;.
Then it follows that K is essentially self-adjoint on ¥(RY), and the
contraction semigroup 7, = exp{—¢K} maps each 5 into itself, for
a=0,and T| x is ||l ,-continuous. The self-adjointness statement follows
easily from Theorem 2.6 by choosing

H = E(p,+q,)+1

i=1

to be the Laplacian of the Schrodinger representation, i.e., the harmonic
oscillator Hamiltonian. Then it follows from the Heisenberg commutation
relations that (ad H)?(K) is also a fourth-order polynomial in the p,, g, for
eachp = 1,2, ... . Therefore

| (ad HY'(K)all = kllall,, a € AR = A,

by Nelson’s estimates [18] used in Section 3 for a general Lie group (see
[11] Proposition 1.3). Now the statements concerning K follow from
Theorems 2.16, and 2.19.
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