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ON MODULI OF CONTINUITY FOR GAUSSIAN 
AND /2-NORM SQUARED PROCESSES GENERATED 

BY ORNSTEIN-UHLENBECK PROCESSES 

MIKLÔS CSÔRGÔ AND ZHENGYAN LIN 

1. Introduction. Let {Y(t)1 — oo < t < 00} = {X*(0, —00 < t < 00}^ x be 
a sequence of independent Ornstein-Uhlenbeck processes with coefficients lk 

and \k, i.e., Xk(-) is a Gaussian process with EXk(t) — 0 and 

EXk(s)Xk(t) = (lk/\k) exp(-A*|f - s\), (7*, A* > 0 , * = 1,2,...). 

The process Y(-) was first studied by Dawson (1972) as the stationary solution 
of the infinite array of stochastic differential equations 

(1.1) dXk(t) = -\kXk(t)dt + (2lk)
xl2dWk(t) (k = 1,2,...), 

where {Wk(t), —00 < t < 00} are independent Wiener processes (cf. also [6], 
[19], and [1]). If we assume that the /2-norm squared process 

00 

(2) x2(0 = ||nO||2 = X)x*2<'> 
k=l 

has finite mean, i.e., if 
00 

(1.3) EX\t) - £) (7*/A*> < 00, 
k=\ 

then Y(t) G I2 at fixed times. This does not guarantee that Y(t) G l2 for all t 
however (cf. [16], for example). With 7* = 1 (k = 1,2,...) and assuming that 
for large j we have also cjl+è ^ Ay ̂  d/1+6 for some c > 0, d > 0 and è > 0, 
Dawson (1972) showed F(-) in /2 to be almost surely (a.s.) continuous. Since 
the coordinate Ornstein-Uhlenbeck processes Xk(-) are continuous, it follows 
from standard Hilbert space theory that to demonstrate I2 continuity of F(-) it is 
enough to show that the real valued process x2(*) = ll^(*)||2 is continuous. Iscoe 
and McDonald (1986), Schmuland (1988b) developed techniques for studying 
the latter process and showed that x2('X and hence also Y(-) in /2, is continuous 
if, in addition to (1.3), we have also the condition 

00 

(1.4) r 2 = ^ 7 ^ / A , < c x ) . 
k=\ 
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142 M. CSÔRGÔ AND Z. Y. LIN 

This result is not sharp in that 7* can be a lot larger and we will still have 
continuity. Iscoe, Marcus, McDonald, Talagrand and Zinn (1989) showed for 
example that if, in addition to (1.3), we have also 

max 7*((log 7*) V 0)7(A* V 1) < oo for some r > 1, 

then Y(-) is a.s. I2 continuous. In a somewhat more general context, Fernique 
(1989) gave a complete solutioin for the latter continuity problem. A special 
case of his Théorème reads as follows: 

For each x G R+, let 

K(x) = { i e N : 7 ^ > \ic*} and \{x) = sup{A* : k G K(x)}. 

Then Y(-) 6 I2 is a.s. continuous if and only if we have (1.3) and 

f((\og[X(x)])V0)dx<oo 

as well. 

Consequently, (cf. Corollary 1 of [7]), for F(-) 

oo 

(1.5) £] ( 7*/A* ) ( 1 +«logA*) V°)) < °°-

On the other hand, finiteness of I~2 of (1.4) gives more than just continuity of 
Y(-) in I2. Using variations of the condition (1.4), Schmuland (1988a) established 
various orders of Holder continuity for Y(-) in I2 as well as for x2(0-

Another real valued process which is also closely related to Y(-) G I2 is the 
stationary mean zero Gaussian process X(-) defined by 

(1.6) {X(t), - o o < t < oo} = I ^jTxk(t), - o o < t < oo I , 

where the X*(-)' are again the independent coordinate Ornstein-Uhlenbeck pro­
cesses of Y(-). This process can of course be studied by well developed tech­
niques for Gaussian processes. In particular X(-) is a.s. continuous if and only 
if it satisfies Fernique's necessary and sufficient condition for continuity of a 
stationary Gaussian process (cf. Corollary 2.5 of Section IV.2 in [10]), i.e., if 
and only if in this case 

E\X(t)-X(s)\2 = $2(\t-s\), 

where (j)(u) is an increasing function in u > 0, we have that (j>{u)/{u{\og{\/u))xl2) 
is integrable at zero. Using this condition one can also compare the processes 
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Y(-) e l2 and X(-). For example, the condition (1.4) with 7* = 1 (k = 1,2,...) 
reduced to (1.3), and hence it is sharp for the a.s. continuity of Y(-) in I2. 
However, in this case Iscoe and McDonald (1986, Example 3 (due to D. A. 
Dawson)) show that with 

oo 

] T À ^ < O O 
k=l 

but 

oo 

^ A ^ O o g À * ) 1 / 2 - ^ 

(e.g. X/ç = k(logk)3/2)Y(') G I2 is a.s. continuous but X(-) does not satisfy the 
just mentioned Fernique condition. On the other hand we have 

(1.7) E\\Y(t) - Y(s)\\2 = E\X(t)-X(s)\2, 

and consequently, in general, checking Fernique's necessary and sufficient con­
dition for the a.s. continuity of the real valued, stationary, mean zero Gaussian 
process X(-) should be also sufficient for that of the stationary, mean zero Gaus­
sian process Y(-) in I2. In particular, just like studying the process x2(0 on its 
own, that of X(-) is also of interest. For example, when proposing mathemati­
cal models for neural response, one of the processes figuring in Walsh's work 
(1981) is X(-) of (1.6). 

The main aim of this exposition is to establish exact moduli of continuity 
for the processes X(-) and x2(0- There are many papers dealing with a.s. upper 
bounds for the moduli of continuity of various Gaussian processes (cf. for exam­
ple [2], [17], [11], [12], [14], [13] and the references of these works). Our exact 
moduli of continuity results in (1.10) and (1.11) do not follow from those of the 
just mentioned papers. Rather, they are fashioned after the P. Levy exact moduli 
of continuity for Brownian motion as presented and proved in [4, Theorem 1.1.1 
and Remark 1.1.2]. The results of (1.12), (1.13) and (1.15), (1.16) constitute 
exact moduli of continuity for the non-Gaussian /2-norm squared process \2(-) 
under the condition (1.4). They also provide a contrast to those of (1.10) and 
(1.11) for X(-) under the condition 

oo 

(1.8) r i = ^ 7 * < o o . 

We now state our moduli of continuity results for X(-) and x2(0- Fi rs t w e 

note that we will assume throughout 

oo 

(1.9) r 0 - E\X(t)\2 = E\\Y{t)\\2 = £(7*/A*) < oo, 
k=\ 
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a condition which is shared by both of the processes X(-) and x 2 ( ) of our present 
interest, as well as by F(-) G I2 via x2(0 = ||F(0||2. 

The organization of this exposition is as follows. In this section we state and 
comment on our exact moduli of continuity results for the two processes X(-) 
and x2()« In Section 2 we state and prove our large deviation propositions which 
we need for proving in Section 3 the moduli of continuity results of Theorems 
1 and 2, stated right below. The large deviation results of Section 2 may also 
be of interest on their own. 

THEOREM 1. Let To < oo, and assume that Th ] oo continuously as h —*• 0. 
Then, if T\ < oo, we have 

n im r \X(t + h) -X(t)\ 
(L10) £ 3 , ^ ô^ôî^k^ôV^ = ^ "•' 

n i n r \X(t + s)-X(t)\ 
( U 1 ) &1Î&SL (2hr^H2iog(Th/h)yn = ^ "-

THEOREM 2. Let To < oo, M = maxy^i7?/A/, and assume that Th \ oo 
continuously as A —> 0. 7Yie«, (/ I~2 < oo, we have 

n . ~ y \x\t + h)-X\t)\ ^ 1 

(1.12) hmsup sup TTT r— S 1 a.s., 
*-° |,|sn &hM)l/22log(Th/h) 

/i , ^ r |x2(^ + -y) — x2(0| < , 
(1.13) hmsup sup sup —- TTT-, TT = 1 a.s. 

"-o \t\m os,s* (8Wf)'/22log(r*//i) 
//", in addition, the continuous nondecr easing function Th satisfies also 

(1.14) logTh/\og(l/h)->oo ash^O, 

then, if T2 < oo, we have as well 

\x2(t + h) — y2(0l 
( L 1 5 ) ^l(ShM)^2log(Th/h) = 1 ^ 

n 1 ^ r |x2(^ + ̂ ) -X2 (0| t 
(1.16) lim sup sup — r-jz r— = 1 a.s. 

h-^\t\érh o*sïh WMy/22\og(Th/h) 

Remark . Under condition (1.14) log(Th/h) in (1.15) and (1.16) can be re­
placed by log Th. In this case we can, for example, take 

Tk = exp{(log l//z)loglog • • -log(l//0}, 
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where for small enough h > 0, log log- • -\og(l/h) stands for taking log any 
given finite number of times, resulting in the modulus (%hM)l/22(log(l/h))\og 
log • • • log(l//z) for the x(') process. 

Taking 7/, — l/h in (1.10) and (1.11), their norming function looks like that 
of the classical P. Levy moduli of continuity for Brownian motion (cf., e.g., 
Theorem 1.1.1 and Remark 1.1.2 in [4]). Clearly, if A* = 1 (k = 1, 2,...) then 
the condition T\ < oo is sharp for the a.s. continuity of the process X(-), as well 
as for (1.10) and (1.11), since then To = Ti, i.e., the existence condition To < oo 
for X(t) to be a Gaussian random variable for each fixed t with mean zero and 
variance To, coincides with requiring the finiteness of T\ for the continuity of 
X(-). If To < oo and To ^ T\, then of course T\ < oo is only a sufficient 
condition for the a.s. continuity of X(-), but then it is always sufficient also 
for the stronger than continuity statements of (1.10) and (1.11) as well. The 
coefficients A* of the Ornstein- Uhlenbeck processes Xk(-) of (1.1) measure the 
strength of their drift toward the origin, while their coefficients 7* reflect their 
tendency to diffuse outward. Thus, in the light of (1.10) and (1.11), the condition 
that T\ should be finite amounts to saying that if there is only a finite global 
"amount of tendency" in the system (1.1) to diffuse, then the infinite series of 
its solutions, namely the process X(t), will behave like Brownian motion on 
R1, provided only that the latter is a Guassian random variable with variance 
TQ < oo for each fixed t. 

As to the results in (1.12), (1.13), (1.15) and (1.16), it is interesting to call 
attention to their much bigger norming function as compared to that of (1.10) 
and (1.11). Instead of (2\og(Th/h))ll2 in the latter, we now have the same 
function squared. Also, instead of the "expected" T2 we have ended up with 
M. These changes can be easily understood, however, by having a look at the 
large deviation results (2.2) and (2.3) on which (1.12), (1.13), (1.15) and (1.16) 
are based. More interesting now is to note that if \k — 1 (k = 1,2,...), then 
the condition T2 < oo is not only sharp for the a.s. continuity of F ( ) in I2 on 
account of To = T ,̂ but then it gives also (1.12) and (1.13), as well as (1.15) 
and (1.16) when combined with (1.14). Also, if To < oo and TQ ^ T2, then 
T2 < oo is not only a sufficient condition for the a.s. continuity of F(-) G I2 and 
that of x2(')> but it yields these exact moduli as well. 

2. Large deviations. 

LEMMA 2.1. Assume FQ < oo. For any e > 0 there exist h(e) > 0 and Ci — 
Ci(e) > 0 (/ — 1,2) such that for any T > h(e), h < h(e) we have 

(2.1) PI sup sup \X(t + s) -X(t)\ ^ v(2/zr1)1/2) ^ (CiT/ZOexp 

for any v > 0, and if T2 < oo as well, then we have also 

(2.2) P{\X
2(t + h) - X\t)\ ^ v(8/zM)1/2} ^ i - exp ( - - ^ — ) . 

-£ 
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(2.3) P sup sup \x2(t + s)-X2(0\ 
l\t\ÛTh0^s^h 

> v(ShM)l'2\ ^ ( C 2 r / A ) e x p ( ~ - - ^ - ) 

for any v ^ (8/c2)(T2/Af )1/2. 

In addition to Lemma 2.1, the proof of Theorem will also utilize the next, 
well-known result. 

LEMMA 2.2 ([18]). Let G(t) and G*(t) be Gaussian processes on R+, pos­
sessing continuous sample path functions, with EG(t) = EG*(t) = 0, EG2(t) = 
EG*2(t) = 1, and let p(s, t) and p*(s, t) be their respective covariance functions. 
Suppose that we have p(s,t) ^ p*(s,t), s,t G R+. Then 

(2.4) P sup G(t) Û u\ ^ P ( sup G*(t) ^ i l l . 

Proof of Lemma 2.1. First we prove (2.1). Obviously, it is enough to consider 
the case of T\ < oo. Assuming TQ < oo, we have by definition 

X(t + s) - X(t) ~ N 10,2 X](77/Ay)(l - e x p ( - V ) ) J . 

By using L'Hospital's rule and dominated convergence, we have 

oo 

£ ( V A ; ) ( 1 - exp(-Ayj))/(jr1) — 1 as s -+ 0. 
7=1 

Let r = r(e) be a positive number to be specified later on. Putting r\ = hjT 
and tr = [t/r\]r\, we have 

\X(t + s)-X(t)\^\X((t + s)r)-X(tr)\ 
oo 

= 5 3 |X((f + ^ W i ) - X((r + *)r+</)| 

oo 

+ £ |X& + ; + i ) -X( f r + ; ) | , 

and, on choosing r = r(e) large enough, we obtain 

(2.5) p\ sup sup \X((t + s)r)-X(tr)\ è v(l -e/6)(2/zr1)1/2} 
(\t\ÛTh0Ss^h J 
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(2.6) Pi SUp SUp > \X((t + s) r+j+\ 

oo 

è ^ ^ n ^ + e/)^^1)1/2 

7=1 
OO • 

V P | sup sup |X((^ + 5)r+7+i)-X((r + ^)r+y) 
7TT l\t\£Th0£s£h 

^(2/zri(v2 + 6/')/2r+y+1)1/2 

and, similarly, 

exp 
/ v 2 + 6 A ^CT f v2 \ 

(2.7) F sup sup J2\X(tr+j+l)-X(tr+j)\ 
(\t\^Tho^s^h~; 

o o >. 

^(2/ ! r 1 (v 2
+ 6y) /2^ + 1 ) I /2 

;—n J 

(-£)• 

7=0 

We can assume without loss of generality that v ^ 1. Then 

oo / ? , / . \ l / 2 oo 1 t oo / « . \ 1/2 

Wx_i^V < — V—L- + J- W ^ V < -
Z ^ I 2r+-/'+l / ~ 2r/2 ^ 20+0/2 T

 2 ' / 2 ^\2J ~ 12 

provided r = r(e) is large enough. 
Now the proof of (2.1) is completed by combining these inequalities. 
Next we prove (2.2) and (2.3). Put 

Mn = max 7.7A, , a\ = E(X*(f + h) + X*(0)2 

a'2k=E(Xk(t + h)-Xk(t))
2. 

and 

Then 

(2.8) £(X2(f + A) - X2(f))2 = offf? = 4(7*/A,)2(l - exp(-2A^)). 

At first we let 

p„(v) = P J^ixfit + hy-xfit)) 
7=1 

^ v(8AA/„) 1/2 
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and prove that for large n we have 

(2.9) l e x p ^ ^ ^ ^ ^ e x p ^ ^ - ) , 

provided v ^ ($/e2)(jr2/Mn)
1'2. 

Let &o be an integer such that 7?/A^0 = Mn. We put 

and note that Y is independent of X\ (t + h) — X\ (i). Since 

J^(xf(t + h) - x?(0) = £)(*y(' + h) + xy(0)(X;(r + A) - x,(0) 

is symmetric, we have 

(2.10) Pn(v) = 2/> £(X?(f + h) - Xf(t)) ^ v(8/zMn)
1/2 

è 2/>{X2
o(f + A) - x£(f) ^ v(8/iMw)1/2, F ^ 0} 

- 2/>{x£(f+ /0 - X £ ( 0 £ v(ShMn)
{/2}P{Y a; 0} 

^ P{x£(f + h) -X2
o(r) ^ v(ShMn)

1/2}. 

Now we estimate P{X2(t+h)—X]:(t) ^ vcr^o^}. Let/^ denote the denisty function 
of Xl(t + h)- Xfa). By independence of Xk(t + h) + Xk(t) and Xk(t + h) - Xk(t) 
we have 

2 A,2 1 Z"00 1 f JC 2 y 2 ) , 
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and on using tail probability estimates of a normal variable we obtain 

(2.11) P{X2
k(t + h)-X2

k(t)^va'k} 

\_f_ 
Wko'v k y \ Jvn* "^ 1 My21 ~ i e x p I 2a',2 

eV ^V 3 /4 + v l /4 

= ^{(^"8^) e X p {-2 v } 

rfy 

V 3/4 

^ — exp(-v), 

provided that v is large enough, where above we used the change of variable 
t = y + v/y. Since 

o^a'l/iShMn) —> 1 as h —• 0, 

by (2.10) and (2.11) we get the left hand side inequality of (2.9). 
Now we proved the right hand side inequality of (2.9). For 0 ^ t ^ l/(o}a^) 

we have 

£exp{f(X?(f + A)-X?(0)} 

= £{£[exp{f(Xy(f + h) + Xj(t))(Xj(t + h)~ Xj(t))} \ 

(Xj(t + h)+Xj(t))]} 

= £ exp {\t2(Xj(t + A) + Xj{t)faf } 
— M , 2 / 2 2 ^ - 1 / 2 

Consequently, for 0 ^ r ^ l/(akoa
/
ko), we have 

(2.12) pn(v) > 2exp{-fv(8/îA/„)1/2}n(l - A>?of ) _ I / 2 . 

Let ? = (l-e/2)/((T / t o^o). Then 

r2a2X^d-^/2)2^l-3e/4, 
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and by using the inequality 1 — x ^ e xle for 0 ^ x Û 1 — e, 0 < e < 1, we get 

n(i-^fr>/^exP{(i)(i)^é^f} 

Hence, on assuming that v ^ (8/e2)(r2/M„)'/2, by (2.12) we get 

/>„(v) ^ 2exp{- ( l - e/2)v(ShMn)
l/2/(akoa'ko) 

^ 2exp{-(l - 2e/3)v} ^ 2exp 

provided that h is small enough. This also completes the proof of (2.9). 
By assuming Y2 < oo, Mn — M for all large n. For all such n (2.9) remains 

true when Mn is replaced by M in the definition of pn(v). Consequently (2.9) 
yields 

(2.13) i - exp { - ^— } ^ P{|X
2(r + A) - X2(0| ^ v(8/zM)1/2} 

if v Z (8/e2)(r2/M)1/2. The left hand side inequality of (2.13) is (2.2), while 
(2.3) can be proved along the lines of the proof of (2.1) with the help of the 
right hand side inequality of (2.13). Hence we omit these details. 

3. Proofs of theorems 1 and 2. 

PROOF OF THEOREM 1. For any given e > 0, let hn be such that 

oo 

(3.1) X)(*»-1/r*-)£<0° 
«=i 

and, as n —» oo, 

(3.2) ( t i / î " * , ) / f c / r » j ^ i . 

T^ 
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By Lemma 2.1 we have 

P sup sup \X(t + s) - X(t)\ 
\t\ÛThn^s^hn-X 

(1+6)((2^_1r1)21og(7,7/zn_1))1/2 J 

(CiThn/hn-i)exp | —— log(ThJhn-i) 1 

^C(hn-xlThJ. 

The latter combined with (3.1) yields 

\X(t + s)~X(t)\ . 
hmsup sup sup — - — ,,—77 ^ 1 + e a.s., 

«-.oo i f i ^ o ^ V i ((2/in-iri)2\og(ThJhn-{)) 

which, by condition (3.2), results in 

(3.3) hmsup sup sup „^ fT, ^ , — , „ /IXX1/0 ^ 1+e a.s. 
^ F , , | ^ 0 £ s L ((2/zr1)21og(7,//2))1/2 

Next we prove 

(3.4) hmmf sup —— :—nr ^ 1 — e a.s. 
*-° H ^ ((2/zr1)2iog(r,//^))1/2 

To this end, define hn by 

/z„ = sup < h : —~- ^ (log«)3//€ and h < hn-\ > . 

Then hn—+0 and hn/hn+\ —• 1 as AZ —> oo. For / <y we have 

(3.5) E(X((i + l)An) - X(ihn))(X(U + l)An) - X(7An)) 
oo 

= ^(7//A,)e-A 'A(2eA"' !" - «.W-D*- - e
A'C'+1>'!») < 0, 

and hence, by using Lemma 2.2, we obtain 
P{ max (X((Jt+l)-X(*/in)) 

(\k\i[Tk^Jh„] 

^(l-e)((2/!„r1)21og(rA„_,//!„))1/2 

S (/»{(X(A„) -X(0)) ^ (1 - e)((2hnrl)21og(Thii_l/hn))
[/2})2[T^/h"]+] 

* 0 - 6Qog(rJ,/».>>'/» exp{-(l - e / ^ l o g ^ , / ^ ) } ) 2 ^ ' 7 " 

^ e x p ^ r , , . , / / ^ / 3 } ^ ! / * 2 . 
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Hence, 

r . (X((k + i)hn)-X(khn)) > 1 

hmini max — — - : rrr ^ 1 — e a.s., 
^oo l^l^tr^,/^] ((2^r1)21og(r,w_1/^))1/2 

which, in turn, implies 

(3.6) hminf sup , ^ 1 - e a.s. 
"-*00 k l ^ v , ((2hnTi)2\og(Thn_Jhn)y/2 

As « —•> co, for hn ^ h < hn-\ we have 

(3.7) A„ logtfV, /A„)/(A \og(Th/h)) — 1. 

Furthermore, 

|X(f + A ) - X ( f + /*„)! 
(3.8) sup sup 

. |X(/ + s ) -X( r ) | 
S sup sup \ushL-K VwZ^„ ((2A»r,)21og(rVl/AII))»/2-

By definition of Aw, as n —• co, (A^-i — hn)/hn —* 0 and we have also 

f 3 9 ) (Aw-i -hn)\og((Thn_x +hn)/(hn-l -hn)) _^ 
(hn\og(Thn_Jhn)) ~~* 

Moreover, by (3.3), 

lim sup sup sup 

\X(t + s)-X(t)\  

(2(A„_i -hn)Tx2\og((Thn_{ +hn)/(hn^-hn))y/2 ' 

^ 1 + e a.s. 

Combining the latter with (3.8) and (3.9), we get 

m m r \X(t + h)-X(t + hn)\ 
(3.10) hmsup sup sup , 0 1 , T ,, , u / 2 = 0 a.s., 

and now (3.6), (3.7) and (3.10) yield (3.4). Consequently, by (3.3) and (3.4) we 
obtain (1.10) and (1.11). This also completes the proof of Theorem 1. 

Proof of Theorem 2. Given any e > 0, we can prove 

, - „ , r \x2(t + h)-X
2(t)\ 

(3.11) hmsup sup sup ' w x 1 / ^ , — - — 7 7 - ^ 1 + e a.s. 
^ it\/Th ossïh (8AM)1/221og(7,/A) 
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along the lines of the proof of (3.3) by using (2.3) instead of (2.1). Hence we 
omit these details, and conclude that (1.13), and hence also (1.12) are true. 

In order to prove (1.15) and (1.16) it is enough to show that under the condition 
(1.14) we have 

(3.12) liminf sup )jf}!*®t
 X! ( '?L ^ l ~ c a.s. 

A-o \t\iTh (8hMy/22log(Th/h) 

The proof of this statement becomes somewhat involved due to the fact that 
we cannot apply Slepian's lemma to study the increments of the non-Gaussian 
X2(-) process. 

From the condition T2 < oo, and similarly to (3.11), it is easy to see that 

(3.13) limsup sup 

J2(X2
k(t + h)-X2

k(t)) 
k=K 

^ o \t\érh (8/iM)1/22log(r,//z) e a.s.. 

provided that K = K(e) is large enough. Fixing the value of K, by (3.13) the 
statement of (3.12) becomes equivalent to 

(3.14) liminf sup 
h—+0 

Y,(X2
k(t + h)-X2

k(t)) 
k=\ 

m n (8hMy/22\og(Th/h) 

Define hn such that Thn_x jhn — n and put 

^ 1 — e a.s. 

Then 

tf=Xk((l+l)hn)-Xk(lhn), ri=Xk((l+l)hn)+Xk(lhn). 

Jc EV£*\2 — 2lk n -\khn 

*k 

o*:=£(i,f)2 = ^ ( l + ^ * " ) , 

and for / < r, 

(2-e -\khn _ „\khn\ 

•Xk(r-l)h„ (2 + e ~\khn oh -ETJH = ^-e-

*k 

n\khn 

-\khn\ 
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and, clearly, T^ = —rfr. Let 

pk _ pk __ &h_ pk _ zh_ k nk _ k _ AA_ pk _ ^u_ k 

It is easy to see that (£*, 77*) is independent of (£* /7 77̂  z). We write 

till = 2 ^ ^ M + ^ T ^ / " TJFS^I) " J^TX^ 
*=i 

7^,7*, /l Jfc * ' l / ' / l ,-* jfc " l / ' / l / K 2 crf/rf, 
+-*- m - zfrr toî - jgf (v\r « 1 °îl«îl 

£=1 

We put 

A™ = min{A*, * ^ £ } > 0, L = [{\mhnT
l log(7V, //i„)], 

A„ = (1 - c)(8/k„ f̂ )x/2 logCr^., //kn). 

We have 

(3.15) P max J2(X2k((l+Wn)-X2
k(lhn)) 

k=\ 

^A„ 

£ P < max 
IS>ST„„_,/(Z.A„) 

J2(XJ((jL+l)hn)-X2
k(jLhn)) 

*=i 

^A„ 

^ F ^ ( ^ ( ( L + l ^ - X f C Z A , ) ) 
*=i 

£An 

x F { max 
\2<j^Thn_J{Lhn) 

E«W k 

*=1 

^A^i + cr^/^r 1 ) 

+ /> max IZ/yL^A^r^y/z , ) -

At first we wish to estimate the last probability. A typical enough term in HjL is 

Ë K / L M I ) É Î ^ 
*=I 
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which we now proceed to estimate in probability. We put 

^ = *4-(<ytM,)£ 

and note that the latter is independent of £*. We have 

E(r,)Lf = ^jL-(i\JL)2l^u. 

It suffices to estimate only 

K 

An inequality like that of (2.12) with n—\ and t = l/(2aiCQo,
kQ) here gives 

i I K 

(3.16) P >^An{Thn_Jhny
x 

k=\ 

^ 3K exp { — ^ A„(r„„_, //*„)" V 

(4(^yt)
2(^I)-1(«lyL - (^x)2M°,))1/2 } , 

where 

(<yL)2(^ir'^(^)V,r' 
= o((ik\khi{Thn_jhnr

x)2i{iki\k)) 
= 0{lk\lhlT^) 

and 

Inserting these into (3.16) yields 

ÏX*/tfîl)tf*?/L 
*=1 

^ ^ A ^ r ^ / w - 1 

< 3^exp{-c/i;3/2log(r,w_1//zw)} ^ {Thn_JhnT\ 

provided that n is large enough, where c here, and also later on, stands for a 
positive constant which does not depend on «, but mav take different values on 
the occasions when it occurs. Consequently we have also 

P { max 
\2£j£Thn_J(]Uhn) 

^L-\Thn_jhny 

E K ; Z > I I ) ^ L 
k=\ 

•3 

^^An(Thn_jhny 
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For the other terms of HjL we have similar estimations, and thus we arrive at 

P ( max, \HjL\ ^ An(Thn_Jhny
l ) ^ cL~l(Thn_Jhnr

3. 
[ 2^j^Thn_{ /(Lhn) J 

Using a similar procedure for estimating the second probability on the right 
hand side of the inequality of (3.15), we obtain 

(3.17) P max 
\2£jûThn_J(LhH) E*t> •LVIJL 

K 

max 
^j^Thn_J(Lhn) 

+ cL-\Thn_Jhny 

E ^ k=l 

ûAn{\+{Thn_jhnyr 

£An(l+2(Th^/hnr
l\ 

Inserting the latter upper estimate into (3.15) and then repeating the same pro­
cedure for estimating the probabilities on the right hand side of the inequality 
of (3.17), we continue this procedure until we obtain 

(3.18) P I max 
\\i\mhn_jhn] 

[Thn_J{Lhn)\ 

* n * 

Y^ixlid + Dh^-xluK)) ̂ An 

Y^iXliUL + l)h„) - X2{jLhn)) 
*=i 

^An(l + j(TK_JhnT
l)\ 

+ c{LThit_JhnT
2 

£\p J2(X2(h„)-X2
k(0)) 

k=\ 

< KH 
\TK_ ,/(£*„)] 

+ c{LThn_Jhnr
2. 

Having taken the value of K = K(e) large enough, and using now (2.2) and our 
condition (1.14), the first term on the right hand side of the last inequality of 
(3.18) does not exceed 

[Thn_ , / ( «„ ) ] 

X2(hn) - X
2(0)| 

(l - j^j (MnM)l/2\og(TK_Jhn)\) 

è 1 
[7»n_1 l(Lh„)\ 
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provided that n is large enough. The rest of this proof of (3.12), which also 
completes those of (1.15) and (1.16), is similar to that of (3.4), and hence we 
omit these further details. 
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