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Abstract

Background. Suppression of the rostral anterior cingulate cortex (rACC) has shown promise
as a prognostic biomarker for depression. We aimed to use machine learning to characterise
its ability to predict depression remission.
Methods. Data were obtained from 81 15- to 25-year-olds with a major depressive disorder
who had participated in the YoDA-C trial, in which they had been randomised to receive
cognitive behavioural therapy plus either fluoxetine or placebo. Prior to commencing treat-
ment patients performed a functional magnetic resonance imaging (fMRI) task to assess
rACC suppression. Support vector machines were trained on the fMRI data using nested
cross-validation, and were similarly trained on clinical data. We further tested our fMRI
model on data from the YoDA-A trial, in which participants had completed the same
fMRI paradigm.
Results. Thirty-six of 81 (44%) participants in the YoDA-C trial achieved remission. Our
fMRI model was able to predict remission status (AUC= 0.777 [95% confidence interval (CI)
0.638–0.916], balanced accuracy = 67%, negative predictive value = 74%, p < 0.0001). Clinical models
failed to predict remission status at better than chance levels. Testing the model on the alternative
YoDA-A dataset confirmed its ability to predict remission (AUC= 0.776, balanced accuracy = 64%,
negative predictive value = 70%, p < 0.0001).
Conclusions. We confirm that rACC activity acts as a prognostic biomarker for depression.
The machine learning model can identify patients who are likely to have difficult-to-treat
depression, which might direct the earlier provision of enhanced support and more intensive
therapies.

Introduction

It is anticipated that brain imaging technologies will one day help the mental health clinician
choose the treatment that is most likely to benefit the patient before them. However, such
treatment biomarkers, imaging and otherwise, have yet to have been adopted in psychiatric
care. Treatments for depressed patients are usually offered sequentially, and amended using
a trial-and-error approach. A reliable biomarker for treatment response could act to accelerate
the delivery of effective treatments.

Early nuclear imaging studies reported that increased resting-state activity in the rostral
anterior cingulate cortex (rACC) predicted response to antidepressant medications (Brannan
et al., 2000; Mayberg et al., 1997; Saxena et al., 2003). Similar findings have been reported in
studies that have used functional magnetic resonance imaging (fMRI) (Keedwell et al., 2010;
Langenecker et al., 2007; Meyer et al., 2019Sikora et al., 2016; ) and electroencephalography
(EEG) (Korb, Hunter, Cook, & Leuchter, 2011; Pizzagalli et al., 2001, 2018). Increased rACC
activity has also predicted response to sleep deprivation (Wu et al., 1999; Clark et al., 2006),
transcranial magnetic stimulation (TMS) (Drysdale et al., 2017; Kito, Fujita, & Koga, 2008),
and electroconvulsive therapy (ECT) (McCormick et al., 2007). Rather than predicting response
to a particular treatment, these results suggest that rACC activity predicts the overall likelihood
of improvement irrespective of the type of treatment provided.

The rostral anterior cingulate cortex and depression

The rACC is a component of the default mode network (DMN), a set of regions that is typically
active during self-directed thought (including at rest) and suppressed during engagement
with attentionally demanding tasks (Harrison et al., 2008). Depressed participants show weaker
rACC suppression than healthy control participants during the performance of such tasks
(Rose, Simonotto, & Ebmeier, 2006; Wagner et al., 2006); with their failure to suppress rACC activ-
ity predicting poor treatment response (Keedwell et al., 2010). It has been suggested that altered
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rACC activity in depression reflects maladaptive self-related patterns
of thought, and that difficulties in suppressing such processes indi-
cate a more entrenched depression that is more difficult to treat
(Pizzagalli, 2011).

Most of the studies that have examined rACC activity as a treat-
ment biomarker have been open-label studies, where all partici-
pants have received the same treatment. Such designs do not
allow for the determination of the predictive v. prognostic bio-
marker status of rACC activity (i.e. whether it predicts response
to a particular treatment or the overall likelihood of improvement).
This can only occur in studies that include multiple treatments,
and preferably where participants have been randomised to
them. In one of the few studies to have done so (the EMBARC
trial), patients underwent baseline fMRI and EEG before being
randomised to treatment with either sertraline or placebo
(Trivedi et al., 2016). The analysis of EEG data showed that
increased rACC theta activity was prognostic, predicting improve-
ment in depressive symptoms in both treatment groups (Pizzagalli
et al., 2018). Secondary analysis of fMRI data showed that rACC
activity suppression during an emotional conflict task also pre-
dicted outcome across both groups (Fonzo et al., 2019).

Using machine learning to characterise biomarker
performance

Machine learning approaches in neuroimaging have permitted a
more detailed examination of the utility of putative biomarkers
(Cearns, Hahn, & Baune, 2019; Janssen, Mourão-Miranda, &
Schnack, 2018). Whereas conventional approaches typically char-
acterise group-averaged effects, machine learning models can be
trained to provide optimal classification accuracy for the individ-
ual patient: for example, determining the likelihood of the patient
responding to particular treatments (as for a predictive bio-
marker) or of having a favourable prognosis irrespective of treat-
ment (for a prognostic biomarker). For neuroimaging to
demonstrate practical clinical utility, it is essential that the charac-
teristics of an imaging biomarker are fully described, including
details on its sensitivity, specificity, and predictive value (Gillan
& Whelan, 2017).

In this study, we sought to determine whether weaker rACC
activity suppression during task performance was a prognostic
biomarker, and one that had utility at the individual patient
level. We trained and tested support vector machine (SVM) mod-
els on data from our recently published clinical trial of cognitive
behavioural therapy (CBT) plus fluoxetine or placebo for youth
depression (the YoDA-C trial) (Davey et al., 2019). Prior to com-
mencing treatment, participants had completed an fMRI task that
reliably produces suppression of rACC activity (Harrison et al.,
2011). We further tested our model on an fMRI dataset from
an accompanying clinical trial that examined the use of anti-
inflammatory medications for youth depression (the YoDA-A
trial) (Berk et al., 2020). Participants had completed the same
fMRI task before being randomised to the addition of aspirin,
rosuvastatin, or placebo to treatment-as-usual.

Our hypothesis was that weaker suppression of the rACC dur-
ing task performance would predict failure to remit to treatment
at the individual level, irrespective of which of the five treatments
the participant had received across the two trials. We anticipated
that this ability to predict outcome using brain imaging data
would be superior to prediction using only clinical and behav-
ioural variables. Our study included young patients who had ill-
nesses that were relatively severe, but at early stages and

therefore less complicated by chronicity and treatment failure.
Our aim was to characterise the performance of rACC activity
suppression as a prognostic biomarker, and to determine whether
its accuracy was sufficient for clinical utility.

Methods

Participants

Participants for our training and validation analyses were 15- to
25-year-olds with moderate-to-severe MDD. They were enrolled in
the YoDA-C clinical trial, which compared treatment with CBT
and fluoxetine with treatment with CBT and placebo. The study
was approved by the Melbourne Health Human Research Ethics
Committee (HREC/12/MH/151 and HREC/12/MH/255) and was
monitored by a Data Safety and Monitoring Board. All procedures
contributing to this work complied with the ethical standards of
the relevant national and institutional committees on human experi-
mentation and with the Helsinki Declaration of 1975, as revised in
2008. All participants provided their written informed consent,
which was also obtained from a parent or legal guardian if the par-
ticipant was younger than 18 years of age. Inclusion and exclusion
criteria are listed in the supplementary materials.

Of the 153 young people who participated in the YoDA-C
trial, 105 consented to undergo optional baseline neuroimaging
before commencing the trial treatments. Of these, seven were
excluded from our analyses because they did not return for post-
baseline assessment, eight due to excessive head movement during
fMRI, one due to an incidental brain pathology finding, and eight
due to poor task performance (see below for further details). Data
from 81 participants were included in the analyses. We further
tested our model on a sample of 25 participants, each of whom
had participated in the YoDA-A trial and completed the same
imaging protocol. This data was used only for validation, and
was not used at all in the development of the classifier.

Trial design

The YoDA-C study was a 12-week, parallel-group, double-blind
randomised control trial in which participants with moderate-
to-severe MDD were allocated to treatment with either CBT
and fluoxetine or CBT and placebo (Davey et al., 2019).
Participants were commenced on one 20-mg capsule of fluoxetine
or one placebo pill. The medication could be increased to fluox-
etine 40 mg daily (or two placebo pills) if there was an insufficient
clinical response at any time after the first 4 weeks. All partici-
pants were offered manualised CBT, delivered by therapists in
weekly 50-min sessions.

Participants attended interviews at baseline, and at weeks four,
eight and 12, during which they completed assessments with
research assistants. They saw a psychiatrist or psychiatry trainee
to complete medical assessments at the same time-points. The
primary outcome measure was the Montgomery-Åsberg
Depression Rating Scale (MADRS) (Montgomery & Asberg,
1979), an interviewer-rated measure of depression severity, with
a change in a score at 12 weeks as the primary outcome.

As reported in the trial manuscript, there was no difference
between the groups for change in MADRS score at 12 weeks,
and nor for rates of remission (Davey et al., 2019). For our
machine learning analyses, we examined remission as our out-
come of interest. We considered a patient to be in remission
with a MADRS score ⩽12 at their last post-baseline assessment;
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a commonly used definition (e.g. Nierenberg, Feighner, Rudolph,
Cole, & Sullivan, 1994; Popova et al., 2019), and one that provided
approximately balanced groups for remission v. non-remission
(44% v. 56%). We also performed analyses with other definitions
of remission: for MADRS ⩽7 (the definition used in our trial
paper) and for MADRS ⩽10. We also examined treatment
response as an outcome, defined as a change in MADRS scores
of 50% or greater by week 12.

In the accompanying YoDA-A trial, participants were treated
with rosuvastatin 10 mg daily, aspirin 100 mg daily, or placebo
in addition to treatment-as-usual (Berk et al., 2020). They com-
pleted the same assessments at the same timepoints as those in
the YoDA-C trial. There were also no significant differences
between groups for change in MADRS scores or for other
depression-related outcomes in this trial.

Imaging task and the preparation of first-level maps

Participants completed an fMRI emotional face-matching task
before commencing the trial treatments. In brief, the task required
participants to match the gender of a face displaying an emotional
expression at the top half of the screen to the gender of one of two
faces showing the same expression in the bottom half of the
screen. A control task required the matching of shapes. Details
of the task, image acquisition, and image preprocessing steps
are listed in the supplementary materials.

The task was modelled by specifying primary regressors for the
shape and face matching conditions, followed by convolution with
a canonical hemodynamic response function. Parameter estimates
were calculated at each voxel using the general linear model,
adjusted for motion. Our contrast of interest was shapes > faces,
which captures the suppression of activity that occurs routinely in
rACC during engagement with face-matching tasks (Harrison
et al., 2011). A single first-level contrast image was created for
each participant for inclusion in machine learning analyses, and
was also entered into group-level analyses to illustrate whole-brain
task effects (voxel-wise corrected using PFDR < 0.01).

To restrict our focus to rACC activity, we defined an
independent region of interest (ROI) based on a meta-analytic
search (using the term ‘default mode’) of 907 studies in the
Neurosynth database (Yarkoni, Poldrack, Nichols, Van Essen, &
Wager, 2011). We defined our ROI as a 5mm radial sphere centred
on the peak voxel in the anterior DMN component from the
Neurosynth map (MNI coordinates: x =−2, y = 50, z =−6). Note
that this region is described in other contexts as being in the ventro-
medial cortex: we describe it as rACC to maintain consistency with
previous studies. The 5mm ROI contained 81 voxels. We also
assessed the predictive capacity of a larger 10mm ROI (515 voxels).
The fMRI data were prepared for our machine learning pipeline
using Nilearn (Abraham et al., 2014), which parsed the participants’
contrast images (NIfTI files) into one-dimensional arrays.

Clinical models

In addition to training an fMRI model on rACC activity suppres-
sion, we also trained comparison models constructed from clinical
data to determine what, if any, improvements our imaging model
would confer. Our primary clinical model was trained using age,
sex, the severity of baseline depressive symptoms (measured with
the MADRS (Montgomery & Asberg, 1979) and Quick Inventory
of Depressive Symptomatology [QIDS] (Rush et al., 2003)),
the severity of baseline anxiety symptoms (assessed with the

Generalised Anxiety Disorder 7-item questionnaire [GAD-7]
(Spitzer, Kroenke, Williams, & Löwe, 2006)), number of major
depressive episodes, duration of the present episode, and trial
treatment allocation (CBT and fluoxetine or CBT and placebo).
To ensure that other discriminative clinical data were not over-
looked, we trained a second exploratory clinical model using the
elastic net method for feature selection (Zou & Hastie, 2005),
with selected features passed into a linear SVM. This model
included all of the demographic, clinical, and psychometric mea-
sures that were collected for the trial (see the online
Supplementary Table S1 for a list of included features).

Machine learning pipeline

The SVM models were fitted used sklearn (Pedregosa et al., 2011) in
Python 3.6, which included training and testing using nested cross-
validation (Varoquaux et al., 2017). We used an outer 10-fold cross-
validation loop to approximate model performance separate from all
data transformations and feature selection (Cawley & Talbot, 2010;
Varoquaux et al., 2017). For the fMRI model, we used independent
components analysis (ICA) to reduce the dimensionality of the voxel
space before passing them into a linear SVM. For the primary clin-
ical model, given that the number of clinical predictors was already
low, we included all eight predictors, while for the secondary clinical
model we used the elastic net to isolate the most predictive subset.
Inner loop cross-validation, using five repeats of 10 folds, was per-
formed via the following steps. First, we standardised all predictors
to have a mean of zero and a standard deviation of one. Next,
due to class imbalance in the outcome labels (56% v. 44%) we over-
sampled the minority class (remission) using synthetic minority
over-sampling (SMOTE) (Chawla, Bowyer, Hall, & Kegelmeyer,
2002). To avoid selecting ICA components and SVM hyperpara-
meters based on site-specific distributions in the inner cross-
validation loop, we used a grid-search with leave site out cross-
validation (LSO). Specifically, model hyperparameter combinations
were trained on one data collection site and tested on the others
in an iterative fashion to find the most generalisable subset for
final testing in the outer cross-validation loop (Cearns et al., 2019).

We selected the set of independent components and values for
the L1 ratio, alpha, and C that maximised area under the curve
(AUC) on the receiver operator characteristic. We then used
Platt scaling to calibrate the predicted probabilities of the SVM
inside the cross-validation folds (Cearns, Hahn, Clark, & Baune,
2020). This method takes the final weighted values for the trained
SVM and uses logistic regression to map probability estimates to
each remission label. Finally, we used permutation tests to assess
the statistical significance of our final models (m= 10 000) (Ojala
& Garriga, 2010). We determined a significant omnibus effect
between models using a Kruskal-Wallis H-test. Following, we
used Mann-Whitney rank tests to assess for post hoc differences
between our three models and corrected p-values using the false
discovery rate. The machine learning pipeline is illustrated in
Fig. 1. Analysis code is available on request. All final trained mod-
els are available at the Photon AI online model repository (https://
www.photon-ai.com/repo).

Results

Participant characteristics and treatment outcome

The 81 participants whose fMRI data were used in the machine
learning analyses were a subset of the 153 participants who
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Fig. 1. The machine learning pipeline. The nested cross-validation scheme incorporated an inner loop, within which the imaging data were transformed before
SVMs were trained, and a final outer 10-fold cross-validation loop where each SVM was tested.
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participated in the YoDA-C trial: the participants who were
included in the analyses did not differ on any baseline character-
istic from participants who did not (online Supplementary
Table S2). The participants were randomised to receive either
CBT and fluoxetine (n = 44) or CBT and placebo (n = 37). They
had a mean age of 19.8 (S.D., 2.7) years, and had severe depression,
with a mean MADRS score of 32.6 (S.D., 5.5). Both treatment
groups showed a reduction in MADRS scores over the course of
the trial [−15.7 [95% confidence interval (CI) −19.0 to −12.4]
in the CBT and placebo group and −14.5 (95% CI −17.7 to
−11.4) in the CBT and fluoxetine group]. As in the larger trial,
there was no significant between-group difference for change in
MADRS scores [1.2 (95% CI −3.2 to 5.5), p = 0.59]. Nor was
there a difference between rates of remission (defined as
MADRS ⩽ 12), with 15 of 37 (41%) achieving remission in the
CBT and placebo group and 21 of 44 (48%) in the CBT and flu-
oxetine group [OR 1.3 (95% CI 0.5–3.6), p = 0.65]. The baseline
characteristics of the remission and non-remission groups are
listed in Table 1, with further details of treatment outcomes listed
in online Supplementary Table S3. The baseline characteristics of
participants in the YoDA-A trial, which comprised the second
test dataset, are detailed in online Supplementary Table S4 and
their response to treatment in online Supplementary Table S5.

Behavioural and imaging data

Behavioural data from the fMRI task confirmed that response
times (RTs) for the faces were longer than for the shapes (faces
RT = 1.32 s, shapes RT = 0.81 s, p < 0.001), although levels of
accuracy were similar (faces = 96%, shapes = 97%). As expected,
the primary fMRI contrast of interest (shapes > faces) showed sig-
nificant suppression of activity in extended DMN regions, includ-
ing the anterior midline cortex, encompassing the rACC (online
Supplementary Fig. S1 and Table S6).

Prediction of treatment outcome

The SVM for the fMRI model of rACC activity suppression achieved
a moderate and statistically significant level of outer cross-validated
accuracy [test AUC = 0.777, (95% CI 0.638–0.916), p = <0.0001],
using four independent components selected in the inner cross-
validation loop (Table 2, online Supplementary Fig. 2). The primary
clinical model, which comprised eight hypothesis-driven predictors,
did not perform better than chance [test AUC = 0.505 (95% CI

0.402–0.618), p = 0.48]. Our exploratory clinical model, which
used the elastic net variable selection technique, selected five
variables for prediction: the MADRS items for inability to feel,
reduced sleep, and pessimistic thoughts; and the Cognitive
Emotion Regulation Questionnaire (CERQ) (Garnefski, Kraaij, &
Spinhoven, 2001) items for self-blame and putting things into per-
spective. This model also performed at no better than chance [test
AUC= 0.613 (95% CI 0.466–0.727), p= 0.23]. Significant differences
were found between models after correcting for ties (H = 8.9, p=
0.01), with the fMRI model significantly outperforming both the pri-
mary ( p= 0.006) and exploratory clinical models ( p= 0.018), demon-
strating significant incremental utility. The results for fMRI models
that used a larger (10mm) rACC ROI and alternative definitions of
remission (MADRS⩽ 10 and MARDS⩽ 7) and response are pre-
sented in Table 3.

The fMRI model showed a sensitivity of 77.5%, and a specifi-
city of 56.5%. The negative predictive value (NPV) of the model
(the probability of correctly predicting that a young person
would not remit) was 74.0%, indicating the potential clinical
utility of the classification for predicting the likelihood of non-
remission. The fMRI model performed similarly in the independ-
ent test set from the YoDA-A trial (test AUC 0.776, p < 0.0001).
The model’s sensitivity was 75.0%, specificity 53.9%, and NPV
70.0% (Table 2).

Discussion

Our study confirms the utility of rACC activity as a prognostic
imaging biomarker for depression. We showed that weaker sup-
pression of rACC during task engagement predicted the likeli-
hood of non-remission after 12 weeks of treatment. The fMRI
classifier performed better than clinical classifiers, suggesting its
potential utility for clinicians. The classifier’s prediction of
non-remission was correct for 70% to 74% of patients (across
both trial samples). This was true for participants who were to
commence a diverse range of treatments, indicating that the pre-
dictive utility of rACC function is not treatment specific (i.e. it
acts as a prognostic rather than predictive biomarker). This result
adds to similar conclusions from the recent analysis of EEG and
fMRI data from the EMBARC trial (Fonzo et al., 2019;
Pizzagalli et al., 2018), extending their findings to depressed
youth, and detailing the predictive characteristics of rACC
suppression.

Table 1. Baseline characteristics of the participants

Descriptive statistic

Remission Non-remission Remission v. non-remission

Baseline characteristic N = 36 N = 45 p valuea

Age Mean (S.D.) 19.3 (2.7) 20.1 (2.6) 0.23

Sex, female N (%) 22 (61%) 29 (64%) 0.82

MADRS score Mean (S.D.) 31.3 (5.0) 33.6 (5.7) 0.06

QIDS score Mean (S.D.) 16.0 (3.7) 17.7 (2.4) 0.02

GAD7 score Mean (S.D.) 12.0 (5.3) 14.2 (5.2) 0.06

Number of major depressive episodes Median (IQR) 2 (1–4) 3 (1–5+) 0.17

Duration, weeks Median (IQR) 16 (11–46) 25 (11–54) 0.50

Treatment allocation, CBT and fluoxetine N (%) 21 (58%) 23 (51%) 0.65

aCalculated using t tests for normally distributed variables, Wilcoxon tests for skewed variables, and Fisher’s exact test for categorical variables.
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A prognostic biomarker has potential value to clinicians, who
do not accurately predict the likelihood of response from clinical
impressions alone (Chekroud et al., 2016; Leuchter et al., 2009).
The prediction that a patient is unlikely to remit in the short
term can act to direct a clinician’s attention to the fact that
the depression will be difficult to treat at an early stage, prior to
the patient enduring multiple treatment failures. It suggests the
patient might require close monitoring and additional supports,
along with the accelerated ‘stepping up’ of treatments.
Conversely, where the classifier suggests a likelihood of a good
outcome, more benign treatments such as watchful waiting or
supportive psychotherapy might be suggested initially.

We used an attentionally demanding task that reliably sup-
pressed rACC activity. The suppression of rACC activity is
hypothesised to reflect the suppression of affective and self-related
mental content that might interfere with task engagement
(Harrison et al., 2011). Our task was not only attentionally
demanding, but it incorporated the implicit processing of affec-
tively laden facial expressions. One interpretation is that negative
emotional expressions intrude into the attentional space of sus-
ceptible participants via their self-related characteristics, prevent-
ing suppression of rACC activity. This is consistent with the
decreased theta wave activity that has been shown to predict the

poor outcome – it is associated with decreased ability to focus
attention (Asada, Fukuda, Tsunoda, Yamaguchi, & Tonoike,
1999). It is not yet clear why weaker suppression of the rACC
characterises difficult-to-treat depression: whether this difficulty
is related to the intrusive nature of self-related affective stimuli
or to more basic processes. Notwithstanding some uncertainty
about the underlying mechanisms, there is nonetheless now
good evidence that the extent of rACC suppression during task
performance is important for understanding the longer-term tra-
jectory of depression.

We used the same machine learning approach to examine
whether an SVM classifier could be trained on clinical parameters.
In our primary model, which used clinical parameters that have
previously been shown to predict depression outcome, the classi-
fier failed to perform at a better than chance level. Clinical factors
have shown only weak predictive power in large samples
(Chekroud et al., 2016; Uher et al., 2012), and their failure to
show utility at the individual level in our study might be due to
our modest sample size. To address concerns that have been
raised in prior imaging machine learning studies – that the
clinical model had been designed to fail and to inflate the relative
success of the imaging model (Nelson, Yung, & McGorry, 2019) –
we additionally tested a model that included all available

Table 2. Performance metrics for all classifiers

Train AUC
(95% CI)

Test AUC
(95% CI) F1 BAC Acc Sens Spec PPV NPV p value

Nested SVM results from the YoDA-C study

fMRI SVM 0.789
(0.775–0.803)

0.777
(0.638–0.916)

64.9% 67.0% 65.9% 77.5% 56.5% 61.8% 74.0% <0.0001

Clinical SVM
( primary)

0.684
(0.380–0.629)

0.505
(0.402–0.618)

51.1% 52.0% 53.2% 40.0% 64.0% 53.3% 58.9% 0.48

Clinical SVM
(exploratory)

0.848
(0.473–0.753)

0.613
(0.446–0.727)

49.2% 52.1% 51.3% 56.7% 47.5% 50.3% 61.3% 0.23

Independent validation of fMRI SVM results in the YoDA-A study

fMRI SVM – 0.776 63.7% 64.4% 64.0% 75.0% 53.9% 60.0% 70.0% <0.0001

AUC, Area-under-the-Curve; F1, Harmonic mean of sensitivity and specificity; BAC, Balanced accuracy; Acc, Accuracy; Sens, sensitivity; Spec, Specificity; PPV, Positive predicted value; NPV,
Negative predicted value.

Table 3. Performance metrics for the fMRI classifier using different definitions of remission, response, and rACC ROI sizes

Train AUC (95% CI) Test AUC (95% CI) F1 BAC Acc Sens Spec PPV NPV

5 mm mask

MADRS ⩽ 7 0.722 (0.705–0.740) 0.701 (0.602–0.801) 55.3% 57.9% 54.2% 65.0% 50.7% 29.2% 79.3%

MADRS ⩽ 10 0.770 (0.746–0.794) 0.727 (0.523–0.925) 61.0% 63.3% 61.5% 70.0% 56.7% 55.2% 70.5%

MADRS ⩽ 12 0.789 (0.775–0.803) 0.777 (0.638–0.916) 64.9% 67.0% 65.9% 77.5% 56.5% 61.8% 74.0%

MADRS ⩽ 50% 0.815 (0.796–0.834) 0.832 (0.728–0.936) 70.6% 72.3% 72.0% 76.7% 68.0% 73.4% 79.3%

10 mm mask

MADRS ⩽ 7 0.737 (0.721–0.753) 0.726 (0.582–0.871) 50.6% 62.0% 50.4% 85.0% 39.0% 32.9% 83.3%

MADRS ⩽ 10 0.786 (0.770–0.806) 0.680 (0.478–0.882) 51.5% 59.3% 54.0% 80.0% 38.7% 44.4% 69.2%

MADRS ⩽ 12 0.811 (0.797–0.824) 0.792 (0.658–0.925) 67.2% 69.8% 68.4% 82.5% 57.0% 61.0% 82.5%

MADRS ⩽ 50% 0.831 (0.819–0.844) 0.843 (0.751–0.936) 73.1% 74.8% 74.4% 89.2% 60.5% 69.3% 85.8%

AUC, Area-under-the-Curve; F1, Harmonic mean of sensitivity and specificity; BAC, Balanced accuracy; Acc, Accuracy; Sens, sensitivity; Spec, Specificity; PPV, Positive predicted value; NPV,
Negative predicted value.
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demographic, clinical and psychometric data. It too failed to clas-
sify patients beyond chance.

It is important to note that in our analyses, where baseline
clinical data provided no information to inform classification, a
model that includes both the imaging data and baseline clinical
data will perform the same as a model that includes only the
imaging data. This reinforces the difficulties that clinicians have
had in finding useful clinical markers to inform treatment out-
come. While in this study the clinical data did not add useful
information, if we can better understand the brain basis for the
role that rACC suppression has in predicting outcome, we
might better integrate imaging and clinical data to improve
predictive modelling.

Our total clinical sample of 106 participants is one of the
largest fMRI studies of rACC biomarker status. While we used a
larger sample than most, it is still a relatively small sample from
a machine learning perspective, with a consequent risk of system-
atic overestimation of the classifiers’ accuracy. It has been argued
that higher accuracy estimates for small samples arise due to sam-
ple homogeneity, while larger samples tend to yield more modest
estimates due to increased sample heterogeneity (Schnack &
Kahn, 2016). Overall, however, by using two levels of validation
(outer 10-fold cross-validation and across-study validation), we
believe that the probability of sample size-based accuracy overesti-
mation is low. The further testing of our model in the separate
trial did occur in participants who were recruited from overlapping
clinical settings, and who completed the same fMRI task on the
same scanner: more diverse samples will be needed to define the
bounds of model performance (Hahn, Ebner-Priemer, &
Meyer-Lindenberg, 2019). While the patients in the trials were rela-
tively young, and at early stages of illness, the relevance of rACC sup-
pression for predicting treatment outcomes is consistent with findings
from older patient groups.

Altered rACC activity has shown promise as a potential
biomarker for treatment outcome in depression after first being
identified two decades ago, but its characteristics as a predictor
at the individual patient level have until now remained uncertain.
Our study suggests that weaker suppression of rACC activity
during an attentionally demanding affective task might be
particularly useful for identifying patients who are likely to have
difficult-to-treat illnesses. The biomarker was less useful at iden-
tifying patients with good prognoses (its specificity and positive
predictive value were relatively low). While our study endorses
rACC activity as a strong candidate imaging biomarker in depres-
sion, work remains before it might be used in clinical care. The
accuracy of the classifier is more modest than will be needed if
such a biomarker is to be clinically useful. There is still uncer-
tainty about what underlying function is represented by weaker
suppression of rACC activity in depression. Clarifying this mech-
anism would help to develop better task-related imaging probes
that more clearly delineate the subtypes of depression that have
better or worse prognoses. While the task we have used is rela-
tively simple, and can be easily implemented on hospital-grade
MRI scanners, the cost v. benefit of performing such imaging rou-
tinely would need to be considered. We have focused only on
rACC suppression, which has most often been implicated as a
prognostic imaging biomarker for depression. The activity of
other brain regions in the context of other task conditions
might also be informative, and once they have been more clearly
delineated might add to imaging biomarker performance.

Ultimately, the clinical usefulness of prognostic biomarkers
such as we have outlined will require validation in prospective

clinical trials. For example, patients could be randomised to
receive either classifier-guided treatment or treatment-as-usual,
along similar lines to the PReDicT trial, which is examining the
potential clinical utility of non-imaging parameters (Kingslake
et al., 2017). While there is a need for further development of
rACC suppression as an imaging biomarker, our results, which
extend previous work, suggest a pathway for it to become a tool
for clinical decision-making.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291721004323.
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