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the fundamental criterion for double diffusive
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The background potential energy (BPE) is the only reservoir that double diffusive
instabilities can tap their energy from when developing from an unforced motionless
state with no available potential energy (APE). Recently, Middleton and Taylor linked
the extraction of BPE into APE to the sign of the diapycnal component of the buoyancy
flux, but their criterion can predict only diffusive convection instability, not salt finger
instability. Here, we show that the problem can be corrected if the sign of the APE
dissipation rate is used instead, making it emerge as the most fundamental criterion for
double diffusive instabilities. A theory for the APE dissipation rate for a two-component
fluid relative to its single-component counterpart is developed as a function of three
parameters: the diffusivity ratio, the density ratio, and a spiciness parameter. The
theory correctly predicts the occurrence of both salt finger and diffusive convection
instabilities in the laminar unforced regime, while more generally predicting that the
APE dissipation rate for a two-component fluid can be enhanced, suppressed, or even
have the opposite sign compared to that for a single-component fluid, with important
implications for the study of ocean mixing. Because negative APE dissipation can also
occur in stably stratified single-component and doubly stable two-component stratified
fluids, we speculate that only the thermodynamic theory of exergy can explain its physics;
however, this necessitates accepting that APE dissipation is a conversion between APE
and the internal energy component of BPE, in contrast to prevailing assumptions.
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R. Tailleux

1. Introduction

Stratified binary fluids, in which the stratifying agents diffuse at different rates, exhibit
a range of intriguing phenomena not observed in single-component stratified fluids.
One such phenomenon is double diffusive instabilities, which arise when one of the
stratifying agents acts to destabilise the stratification. In the context of ocean mixing,
this leads to the emergence of new types of flows, including diffusive convection, salt
fingering, thermohaline intrusions, and thermohaline staircases (Turner 1985; Schmitt
1994; Radko 2013). Theoretical analysis categorises the different dynamically relevant
types of stratification based on the density ratio (Rρ) of the fluid: (1) the doubly stable case
(Rρ < 0), when both temperature and salinity are stabilising; (2) salt fingers favourable
(Rρ > 1), with salinity as the destabilising agent; (3) diffusive convection favourable
(0 < Rρ < 1), where temperature acts as the destabiliser. Understanding how double
diffusion modulates mixing in the doubly stable case, and characterising double diffusive
instabilities in both laminar and turbulent regimes, are key questions of interest.

To date, linear stability analysis has been the primary approach for identifying the
physical parameters that control the development of double diffusive instabilities from
a quiescent state. Such an analysis reveals, for instance, that molecular viscosity and
diffusion can severely restrict the range of density ratios at which these instabilities can
occur, namely,

Pr + τ

Pr + 1
< Rρ < 1, for diffusive convection,

1 < Rρ <
1
τ
, for salt fingers

⎫⎪⎬
⎪⎭ (1.1)

(e.g. Radko 2013), where τ = κS/κT represents the ratio of salt diffusivity to temperature
diffusivity, Pr = ν/κT denotes the Prandtl number, and ν is the molecular viscosity. For
example, using the typical oceanic values τ ≈ 0.01 and Pr ≈ 7 yields a reduced density
ratio range 1 < Rρ < 100 for salt fingers and 0.8076 < Rρ < 1 for diffusive convection.

While linear stability theory provides valuable insights into double diffusive
instabilities, other approaches are necessary to understand their energy source and whether
they can persist in a turbulent environment like the oceans. In this regard, the theory of
available potential energy (APE) introduced by Lorenz (1955) and applied to the study
of turbulent stratified fluids by Winters et al. (1995) appears to be one of the most
promising avenues of research. According to APE theory, the energetics of a stratified
fluid can be separated into two main budgets, one for the total mechanical energy (APE +
kinetic energy), and one for the background potential energy (BPE). Physically, the BPE
represents the potential energy associated with the state of minimum potential energy
achievable from the actual state through an adiabatic (and isohaline in seawater) mass
rearrangement. The generic form of these budget equations is

d(APE + KE)
dt

= Forcing −
∫

V
ρ(εk + εp) dV, (1.2)

d(BPE)
dt

=
∫

V
ρ(εk + εp) dV, (1.3)

where εk is the positive definite viscous dissipation rate, and εp is the diffusive rate of APE
dissipation. As is well known, viscous dissipation is an irreversible process that converts
kinetic energy into ‘heat’, which in APE theory is played by the BPE.
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Negative APE dissipation and double diffusive instabilities

In a single-component compressible fluid, Tailleux (2013c) (for which an improved
version is presented in Appendix A) established that the APE dissipation rate εp may
be broken down into three components:

εp = εp,lam + εp,tur + εp,eos, (1.4)

with εp,lam and εp,tur representing the laminar and turbulent parts of εp, respectively, and
εp,eos representing the part of εp arising from the nonlinearities of the equation of state. To
date, the APE dissipation rate has been primarily defined and studied for single-component
Boussinesq fluids with a linear equation of state, for which only εp,lam and εp,tur subsist.
As clarified further in the text, εp,lam and εp,tur relate to the terms −Φi and Φd in the
Winters et al. (1995) framework. Physically, εp,tur is the fundamental quantity for defining
the turbulent diapycnal diffusivity

Kρ = εp,tur

N2 = Γ εk

N2 (1.5)

(e.g. Osborn & Cox 1972; Osborn 1980; Lindborg & Brethouwer 2008), often quantified by
the dissipation ratio Γ = εp,tur/εk, a common measure of mixing efficiency often assumed
to be close to 0.2. Typically, εp,tur is estimated from microstructure measurements using
formulas such as the widely used expression

εp,tur = gακT |∇θ ′|2
dθ̄/dz

(1.6)

(Oakey 1982; Gargett & Holloway 1984), where α is the thermal expansion coefficient, g
is the acceleration due to gravity, and θ̄ represents the mean potential temperature profile.
Consequently, εp, like the viscous dissipation rate, is generally considered a positive
quantity that also converts mechanical energy into BPE or ‘heat’. (For further views on
this, see Tailleux 2009.)

In a double diffusive fluid, double diffusive instabilities can develop even in the absence
of mechanical forcing. Within the framework of APE theory, this is possible only if BPE,
like APE, can become a source of kinetic energy, and hence if we accept the notion that
εp can become negative. In this paper, we derive a theoretical expression for the ratio
εdd

p /ε
std
p of the APE dissipation rates for a double diffusive case over that for a simple

fluid. We demonstrate that εdd
p is negative under the conditions corresponding to the

linear stability analysis for both salt finger and diffusive convection regimes. Recently,
Middleton & Taylor (2020) proposed to characterise double diffusive instabilities in terms
of the sign of the diapycnal component of the molecular buoyancy flux, which is related
to the turbulent part εp,tur of εp (equivalently, Φd), rather than εp. However, their criterion
succeeds in predicting only the occurrence of the diffusive convection instability, but not
the salt finger instability, which suggests that it is the sign of the net APE dissipation rate
εp,lam + εp,tur (equivalently Φd −Φi) that represents the most fundamental criterion for
double diffusive instabilities. Additionally, we show that considering the APE dissipation
rate sheds light on other aspects of double diffusive instabilities in turbulent regimes.
For example, it correctly predicts the regime associated with diffusive interleaving in the
presence of density-compensated isopycnal gradients of temperature and salinity, which
are thought to be essential for the formation of thermohaline staircases (Merryfield 2000).

The remainder of this paper is organised as follows. Section 2 establishes the general
form of the local APE dissipation rate for a double diffusive fluid. Section 3 outlines
the conditions necessary for negative APE dissipation. Section 4 provides a comparison
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R. Tailleux

of the local and APE frameworks. Section 5 discusses the practical issues related to the
computation of the reference temperature and salinity profiles used in our definition of
spiciness. Finally, § 6 discusses the results and provides future perspectives.

2. Local APE theory and APE dissipation rate

Similarly to Middleton & Taylor (2020), we study the energetics of double diffusive
instabilities for a Boussinesq fluid with a linear equation of state for density governed
by the system of equations

Dv

Dt
+ 1
ρ�

∇δp = −g δρ
ρ�

k + ν ∇2v, (2.1)

∇ · v = 0, (2.2)

Dθ
Dt

= −∇ · J θ ,
DS
Dt

= −∇ · J S, (2.3a,b)

ρ = ρ�[1 − α(θ − θ�)+ β(S − S�)], (2.4)

where ρ is density, p is pressure, g is gravitational acceleration, S is salinity, θ is
potential temperature, α is the thermal expansion coefficient, and β is the haline
contraction coefficient, while ρ�, S� and θ� are constant reference values for ρ, S and
θ , respectively. Moreover, δp = p − p0(z) and δρ = ρ − ρ0(z) denote the pressure and
density anomalies defined relative to the reference pressure and density profiles p0(z) and
ρ0(z) = −g−1 dp0/dz characterising the Lorenz reference state. Simple diffusive laws are
assumed for θ and S so that J θ = −κT ∇θ and J s = −κS ∇S, where κT and κS are the
molecular diffusivities of heat and salt, respectively. The tracer equations (2.3a,b) may be
combined with the equation of state (2.4) to form an equation for the Boussinesq buoyancy
bbou = g[α(θ − θ�)− β(S − S�)],

Dbbou

Dt
= −∇ · J b, (2.5)

where
J b = g(αJ θ − βJ s) = −g(κTα∇θ − κSβ ∇S) (2.6)

is the molecular buoyancy flux. Note that in the absence of salinity, J b = −κT ∇bbou is
down the gradient of the Boussinesq buoyancy, but not in the general case.

To understand how double diffusion affects APE dissipation, the local APE framework
(Tailleux 2013b, 2018; Novak & Tailleux 2018) is preferred over the Winters et al. (1995)
global APE framework used by Middleton & Taylor (2020). Indeed, we show in § 4
that defining the total APE of a fluid as the volume integral of a non-sign definite
integrand makes the global APE framework problematic in several respects; for instance,
it introduces unphysical terms in its budget. To avoid such difficulties, it is therefore
preferable to define the APE of a fluid as the volume integral of the APE density:

ea = ea(S, θ, z) = −
∫ z

zr

b(S, θ, z′) dz′, (2.7)

where b(S, θ, z) = −(g/ρ�)(ρ(S, θ)− ρ0(z)) is the buoyancy defined relative to
Lorenz reference density profile ρ0(z) characterising the notional reference state
of minimum potential energy obtainable from the actual state by means of an
adiabatic and volume-conserving rearrangement. This definition of buoyancy has the
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Negative APE dissipation and double diffusive instabilities

advantage of vanishing in the Lorenz reference state of rest, which is not the
case for the Boussinesq buoyancy. To avoid any ambiguity, note that b(S, θ, z′) =
−(g/ρ�)(ρ(S(x, y, z, t), θ(x, y, z, t))− ρ0(z′)) in the integral (2.7), that is, the values of
S and θ are held constant as the parcel moves from zr to z, consistent with the idea
of an adiabatic and isohaline rearrangement. As is well known, the APE density (2.7)
represents the work against buoyancy forces that a parcel needs to counteract to move
from its reference position at zr, solution of the level of neutral buoyancy equation

b(S, θ, zr) = 0, (2.8)

to its actual position at z. For simplicity, we disregard the temporal dependence of ρ0(z) as
the APE dissipation depends only on spatial gradients of the tracer fields. Inversion of (2.8)
establishes that zr = zr(ρ) = zr(S, θ) is a material function of S and θ , and is therefore a
Lagrangian invariant following fluid parcels in the absence of diffusive sources/sinks of
heat and salt.

A local budget equation for the APE density is easily obtained by taking the material
derivative of (2.7), which yields

Dea

Dt
= −b

Dz
Dt

+ b(S, θ, zr)︸ ︷︷ ︸
=0

Dzr

Dt
− (z − zr)

Dbou

Dt

= −bw − ∇ · J a − εp, (2.9)

where J a is the diffusive flux of APE, and εp is the APE dissipation rate, given by

J a = −(z − zr)J b, (2.10)

εp = J b · ∇(z − zr) = −g
(
ακT

∂θ

∂z
− βκS

∂S
∂z

)
︸ ︷︷ ︸

εp,lam

+ g(ακT ∇θ − β κS∇S) · ∇zr︸ ︷︷ ︸
εp,tur

. (2.11)

As indicated by (2.11), εp can be decomposed into ‘laminar’ and ‘turbulent’ components
εp,lam and εp,tur whose volume integrals∫

V
εp,lam ρ� dV = −Φi,

∫
V
εp,tur ρ� dV = Φd, (2.12a,b)

can easily be shown to correspond to Winters et al. (1995) global energy conversions
−Φi and Φd in the global APE framework. So far, the turbulent mixing community has
generally assumed Φi and Φd to represent distinct types of energy conversions, the former
with internal energy and the latter with the BPE; however, the analysis of such conversions
in real fluids detailed in § 4 clearly indicates that there is no physical basis for such a
view, and that in reality, εp, Φd and Φi all represent conversions with internal energy as
established previously by Tailleux (2009). In other words, εp,lam and εp,tur are parts of the
same energy conversion.

Physically, (2.9) states that locally, ea can be modified through: (1) conversion with
kinetic energy via the buoyancy flux bw; (2) diffusive and advective transport via J a
and advection; (3) ‘dissipation’ that can be occasionally be negative associated with εp.
Physically, our local APE budget (2.9) is simpler in form than that derived previously by
Scotti & White (2014) for a single-component fluid, although the two can be verified to be
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R. Tailleux

mathematically equivalent. One of the reasons is due to Scotti & White (2014) imposing
the diffusive flux of APE density to be down-gradient, namely,

J a,sw14 = −κ ∇ea = κ(z − zr)∇bbou + κbk = J a + κbk, (2.13)

which differs from J a by the last term, with the consequence of adding extra terms in their
budget equation. Physically, however, the Scotti & White (2014) approach is inconsistent
with the analysis of the APE budget for a real fluid (cf. § 4 or Tailleux 2009), which
reveals that decomposing the potential energy into available and unavailable components
leads to a decomposition of the heat flux J q = Υ J q + (1 − Υ )J q, with Υ = (T − Tr)/T
a Carnot-like thermodynamic efficiency. Physically, it is the first term Ja = Υ J q that
represents the diffusive flux of APE density, whose Boussinesq approximation is given
by (2.10). Another reason to be sceptical of (2.13) is that it cannot generalise to the case of
a double diffusive two-component fluid, whereas our definition of J a in (2.10) obviously
does.

In their study, Middleton & Taylor (2020) derived an expression for the diapycnal
component of the buoyancy flux J b · n̂ in terms of three parameters – the diffusivity
ratio τ = κS/κT , the gradient ratio Gρ = (α |∇θ |)/(β |∇S|) and the angle γ between
∇θ and ∇S – such that cos γ = ∇θ · ∇S/(|∇θ | |∇S|), with n̂ = ∇zr/|∇zr|, that could
similarly be used to study εp. However, while Gρ and cos γ might be diagnosed easily
from the output of a numerical experiment, they cannot be inferred easily from measured
oceanic properties, nor are they naturally related to physical parameters known to play
a key role in double diffusive instabilities such as density-compensated thermohaline
variations. For instance, in the canonical salt finger experiment that they discuss in their
§ 2.5, Middleton & Taylor (2020) find that Φd becomes negative as the result of the
gradients of salinity growing more rapidly than temperature gradients, resulting in the
creation of density-compensated thermohaline variations (usually referred to as ‘spice’).
In oceanography, the term spice was perhaps first used by Munk (1981) to quantify the
range of possible θ/S behaviour of a seawater sample of given density, from warm and
salty (spicy) to fresh and cold (minty). Physically, the creation of spice is of considerable
dynamical importance because lateral stirring along isopycnal surfaces is not opposed
by restoring buoyancy forces and is therefore considerably more efficient at dissipating
tracer variances than vertical stirring. To study the role of spice, Middleton et al. (2021)
subsequently reformulated the Middleton & Taylor (2020) expression in terms of the
‘spiciness’ variable τ = αθ + βS (denoted Sp in their paper), which may be regarded as
the ‘linear’ version of the spiciness variables developed by Jacket & McDougall (1985) or
Flament (2002), for instance. Recently, the theory of spiciness was revisited by Tailleux
(2021), who argued that to be physically meaningful, spice should ideally vanish in a
spiceless ocean, and hence that spice variables should be defined as isopycnal anomalies,
which is not the case for τ or any related variable. In the present case, this can be
implemented in practice by decomposing θ and S as

θ = θ0(zr)+ θξ , S = S0(zr)+ Sξ , (2.14a,b)

with the reference profiles θ0(zr) and S0(zr) defining the temperature and salinity
profiles of the assumed spiceless state, and zr = zr(ρ) denoting the reference position
of a fluid parcel as before. Provided that θ0(zr) and S0(zr) are defined as the
(thickness-weighted) isopycnal mean temperature and salinity, respectively, they contain
all necessary information to compute density ρ = ρ�[1 − α(θ0(zr)− θ�)− β(S0(zr)−
S�)], thus allowing them to be interpreted as the ‘active’ components of θ and S. In
contrast, the isopycnal anomalies θξ and Sξ are density-compensated αθξ = βSξ and
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Negative APE dissipation and double diffusive instabilities

therefore do not contribute to density, thus allowing them to be interpreted as the passive
components of θ and S. Physically, defining the spiceless stratification θ0(z), S0(z) in terms
of thickness-weighted isopycnal means can be justified on the grounds that such a state
is the one that would be expected to result in the idealised limit of infinitely fast (resp.
infinitely slow) isopycnal (resp. diapycnal) mixing. How to estimate these in practice are
discussed in § 5. As shown below, defining spiciness in this way allows us to define a new
set of parameters with which to study the behaviour of εp, different from those used by
Middleton & Taylor (2020) and Middleton et al. (2021), and which we consider to be more
physical and more relevant.

In the following, Sξ and θξ are combined into the variable ξ = ρ�(αθξ + βSξ ) to define
a single measure of spiciness having the dimension of density, as is commonly done in the
literature. After some manipulation, it is possible to rewrite εp in the form

εp = g

(
κTα

∂θ̃

∂zr
− κSβ

∂ S̃
∂zr

)(
|∇zr|2 − ∂zr

∂z

)
+ g(κT − κS)

2ρ�

(
∇zr · ∇ξ − ∂ξ

∂z

)

= Kv0 N2
0(zr)

[
Rρ − τ

Rρ − 1
+ (1 − τ)M

](
1 − ∂zzr

|∇zr|2
)
, (2.15)

which depends on the parameters

M ≡ g

2ρ� N2
0(zr)

∇zr · ∇ξ − ∂zξ

|∇zr|2 − ∂zzr
(spiciness parameter),

Kv0 ≡ κT |∇zr|2 = κT

(
dρ0

∂zr
(zr)

)−2

|∇ρ|2 (effective diffusivity),

N2
0(zr) ≡ − g

ρ�

dρ0

dzr
(zr) = g

(
α

dθ0

dzr
− β

dS0

dzr

)
(zr) (reference N2),

Rρ ≡ Rρ(zr) = α
dθ0

dzr

/
β

dS0

dzr
(density ratio),

τ ≡ κS

κT
(diffusivity ratio).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.16)

Our choices of control parameters Rρ and M differ from those of Middleton & Taylor
(2020), who chose the gradient ratio Gρ ≡ α |∇θ |/(β |∇S|), and the angle φ between
∇θ and ∇S defined by cosφ = −∇θ · ∇S/(|∇θ | |∇S|) instead. The present approach is
preferred here because Rρ is a more commonly encountered parameter in the literature,
while M is more naturally connected to the physics of lateral thermohaline intrusions,
whose importance is well established. Moreover, Kv0 represents a local version of the
effective diffusivity concept originally proposed by Winters & D’Asaro (1996) and
Nakamura (1996) based on thermal diffusion, and is positive definite by construction.
Also, Kv0 is different from the effective diffusivity Keff introduced in § 5 and governing the
evolution of the sorted density profile. Note that although the term within square brackets
in (2.15) goes to infinity as Rρ → 1, εp remains finite as N2

0 → 0.

3. APE dissipation and diffusive stability

3.1. Single-component fluid
Even in the case of a single component fluid, the APE dissipation rate εp, unlike the viscous
dissipation rate εk, is not guaranteed to be always positive definite. To see this, let us first
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set M = 0 and τ = 1 in (2.15), leading to

εp ≡ εstd
p = Kv0 N2

0(zr)

(
1 − ∂zzr

|∇zr|2
)

= κT

(
|∇zr|2 − ∂zr

∂z

)
N2

0 . (3.1)

Since κT and N2
0 are positive by construction, (3.1) shows that εp can occasionally be

negative provided that

F ≡ |∇zr|2 − ∂zr

∂z
= |∇hzr|2 +

(
∂zr

∂z

)2

− ∂zr

∂z
< 0, (3.2)

where ∇h denotes the horizontal gradient. If viewed as a quadratic polynomial in ∂zr/∂z
with discriminant Δ = 1 − 4 |∇hzr|2, F can be negative only when possessing two real
roots, that is, when Δ < 0, or equivalently when

|∇hzr| < 1
2 . (3.3)

In that case, F and εstd
p achieve their maximally negative values for ∂zr/∂z = 1/2:

|εstd
p,min| = κTN2

0

(
1
4

− |∇hzr|2
)
<
κTN2

0
4

, (3.4)

which is bounded above by κTN2
0/4, which is laminar-like in character and therefore

extremely small relative to turbulent values. Nevertheless, because a negative εp can
potentially cause perturbations to grow with time, it seems of interest to estimate the time
scale τAPE = ea/εp of the latter. Using the fact that the APE density scales as N2

0ζ
2/2,

where ζ = z − zr, this leads to

τAPE = N2
0ζ

2/2

κTN2
0/4

= 2ζ 2

κT
. (3.5)

For illustration, using κT = 10−7m2 s−1 and ζ = 1 cm = 10−2 m yields τ = 2 ×
10−4/10−7 = 2 × 103 s ≈ 33 min, which is fast enough to be observable in the laboratory,
at least in principle. Inequality (3.3), which may be rewritten as |∇hζ | < 1/2, also requires
that the horizontal scales of the unstable perturbations be larger than their vertical scales.
A priori, perturbations with the required characteristics cannot occur spontaneously;
they can only be created with some form of appropriate gentle mechanical stirring.
These considerations appear to be consistent with the experimental observation of steps
formation by Park, Whitehead & Gnanadesikan (1994), who observed the smaller steps to
grow faster than larger ones. However, these conclusions are only speculative at this stage,
and more research is needed to confirm or disprove the relevance of our results.

3.2. Binary fluid: spiceless case M = 0
In the double diffusive case but in the absence of spiciness, (2.15) reduces to

εp = Kv0 N2
0(zr)

(
Rρ − τ

Rρ − 1

)(
1 − ∂zzr

|∇zr|2
)
. (3.6)

This time, the sign of εp is controlled by the sign of the product of F times the
density-ratio-dependent term within parentheses. Restricting attention to the case τ < 1
pertaining to thermosolutal convection, table 1 shows that εp can be negative for all
possible values of Rρ , although not necessarily in both laminar and turbulent regimes.
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−∞ < Rρ ≤ τ τ < Rρ ≤ 1 1 < Rρ < +∞

F > 0 εp > 0 εp < 0 εp > 0

F < 0 εp < 0 εp > 0 εp < 0

Table 1. Sign of the APE dissipation rate εp as a function of the density ratio Rρ and the sign of F = |∇zr|2 −
∂zzr in the absence of spiciness (M = 0), in the case where τ = κS/κT < 1, characteristic of salty water.

3.2.1. Diffusive convection: τ < Rρ < 1
In this case, εp is negative only if F > 0, in which case the diapycnal component of the
buoyancy flux is associated with up-gradient diffusion, as shown by Middleton & Taylor
(2020). Note that the range τ < Rρ < 1 is associated with diffusive convection instability
only for inviscid flows. In reality, stability analysis shows that viscosity restricts the range
of instabilities to the range

Pr + τ

Pr + 1
< Rρ < 1, (3.7)

where Pr = ν/κT is the Prandtl number, with ν the molecular viscosity. For typical oceanic
conditions, τ ≈ 0.01 and Pr ≈ 7 yield the restricted range 0.876 < Rρ < 1.

3.2.2. ‘Salt’ finger instability: Rρ > 1
According to classical linear stability analysis, salt fingers are expected to develop in the
density ratio range

1 < Rρ <
1
τ

(3.8)

(e.g. Radko 2013). In that range, table 1 shows that APE dissipation can be negative only
if F < 0, and hence that the appropriate expression for εp is

εp = κTN2
0

(
|∇zr|2 − ∂zr

∂z

)(
Rρ − τ

Rρ − 1

)
= κTN2

0F
(

Rρ − τ

Rρ − 1

)
. (3.9)

Equation (3.9) shows that negative APE dissipation in that case corresponds to the
amplification of the negative APE dissipation in a single-component fluid multiplied by
the amplification factor

Rρ − τ

Rρ − 1
> 1. (3.10)

Since the time scale for the growth of an unstable perturbation is a priori inversely
proportional to εp, the expectation is that the same perturbations in single-component
and double diffusive fluids will grow faster in the former than in the latter. A key
difference, however, is that in a double diffusive fluid, diffusive instabilities are able
to grow spontaneously, whereas in a single-component fluid, their development requires
initiation by means of external mechanical stirring of the right kind.

Since F can be negative only for laminar-like conditions, it follows that
density-compensated thermohaline variations need to develop in order for the APE
dissipation to remain negative as the flow transitions to turbulence. In fact, this is precisely
what appears to happen in the salt finger experiments of Middleton & Taylor (2020), and
as was previously advocated by Merryfield (2000).
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Figure 1. The amplification factor f (Rρ, τ,M) (given by (3.12)) as a function of the spiciness parameter M
and density ratio Rρ , for τ = 0.01.

3.3. Impact of spiciness anomalies on diffusive instability
Density-compensated thermohaline variations are a characteristic feature of ocean
stratification in all regions and at all depths (Tailleux 2021). Consequently, spiciness and
a non-zero value of M are likely to be representative of the general situation. Assuming a
prevalence of the turbulent regime, we can make the approximation 1 − ∂zzr/|∇zr|2 ≈ 1,
and the relevant expression for εp in the oceanic case appears as

εp = Kv0 N2
0(zr)

[
Rρ − τ

Rρ − 1
+ (1 − τ)M

]
. (3.11)

This equation shows that the single-component APE dissipation rate εstd
p = Kv0N2

0(zr)

is modulated by the factor

f (Rρ, τ,M) = Rρ − τ

Rρ − 1
+ (1 − τ)M. (3.12)

To illustrate the effect of this factor, figure 1 depicts f (Rρ, τ,M) as a function of Rρ and
M for τ = κS/κT = 0.01. A notable difference from the spiceless case is the possibility
of negative εp for a wide range of stratification, depending on the values of M:

M < − 1
1 − τ

Rρ − τ

Rρ − 1
. (3.13)

This opens up various scenarios, ranging from complete inhibition of mixing ( f = 0) to
enhanced mixing ( f > 1) and even diffusive instability ( f < 0). In the turbulent case, the
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Negative APE dissipation and double diffusive instabilities

value of M approximates to

M = g

2ρ�N2
0

∇zr · ∇ξ − ∂zξ

|∇zr|2 − ∂zzr
≈ g

2ρ�N2
0

∇zr · ∇ξ
|∇zr|2 = −∇ξ · ∇ρ

2 |∇ρ|2 . (3.14)

This reveals that for M to be negative, spiciness and density gradients need to be
positively correlated. Exploring the possibility and magnitude of such a situation requires
a way to express in terms of the large-scale gradients of ξ and ρ, which warrants further
investigation beyond the scope of this study.

4. Comparison of APE frameworks

Holliday & McIntyre (1981) and Andrews (1981) had already shown the possibility of
building Lorenz APE theory from a local principle by the time Winters et al. (1995)
published their study in the mid-1990s. However, the local APE framework was still
rudimentary and had not been used for any concrete applications. This situation has
improved in recent years, as the local APE framework has progressed rapidly and achieved
full maturity, being able to deal with a fully compressible multi-component stratified fluid
(Tailleux 2018). In this paper, we prefer the local APE framework to the global APE
framework, because it is objectively simpler and more physical, even though this is not
necessarily widely appreciated or acknowledged. This section intends to reveal some of
the unphysical aspects of the global APE framework that are commonly overlooked, but
easily uncovered by the local APE framework.

We start by reviewing the main results of the global APE framework as first derived by
Winters et al. (1995). Following Lorenz (1955), Winters et al. (1995) (indicated by ‘W95’
in equations) defined the APE of a fluid as the potential energy of the actual state minus
that of the adiabatically sorted state, i.e.

EW95
a =

∫
V
ρgz dV −

∫
V
ρrgzr dV =

∫
V
ρg(z − zr) dV, (4.1)

and showed that its budget equation may be written in the form

dEW95
a

dt
=
∫

V
ρgw dV︸ ︷︷ ︸
Φz

− g
∮

S
(zρ − ψ)v · n dS︸ ︷︷ ︸

Sadv
APE

+ κg
∮

S
(z − zr)∇ρ · n dS︸ ︷︷ ︸

Sdiff
APE

−(Φd −Φi),

(4.2)
where Φz represents the conversion with kinetic energy, Sadv

APE represents the advective
flux of APE through the boundaries enclosing the control volume considered, and Sdiff

APE
represents the diffusive flux of APE through the same boundaries. The expressions for Φi
and Φd are given by

Φi = −κgA(ρ̄top − ρ̄bottom), (4.3)

Φd = −κg
∫

V

∂zr

∂ρ
|∇ρ|2 dV, (4.4)

where A is the cross-section of the domain, assumed constant and the overbar denotes
surface average, while the quantity ψ entering the expression for the advective flux is
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given by

ψ =
∫ ρ

zr(ρ̃, t) dρ̃ . (4.5)

For the most part, the derivation of (4.2) is straightforward, except for the demonstration
that ∫

V
ρg
∂zr

∂t
dV = 0, (4.6)

which is non-trivial. A key point of this paper concerns the proper interpretation ofΦi and
Φd. Following Winters et al. (1995), Φd and Φi have been interpreted as representing two
different types of energy conversion, with BPE and internal energy, respectively. The need
for revisiting this interpretation is explained below.

The global APE budget (4.2) is now compared with that obtained by integrating the local
APE density budget. This is done here for a two-constituent fluid with time-dependent
Lorenz reference state, for which the local APE density takes the form

ea = ea(S, θ, z, t) = −
∫ z

zr

b(S, θ, z̃, t) dz̃ = g
ρ�

∫ z

zr

[ρ(S, θ)− ρ0(z̃, t)] dz̃, (4.7)

with the global APE being now defined as the volume-integrated APE density

Ea =
∫

V
ρ�ea dV. (4.8)

Because (4.7) implies that ρ�ea = ρg(z − zr)+ p0(z, t)− p0(zr, t), it follows that Ea can
be regarded as the sum of EW95

a plus an additional term related to the work against the
vertical reference pressure gradient, as

Ea = EW95
a +

∫
V

[p0(z, t)− p0(zr, t)] dV. (4.9)

Equation (4.9) shows that the validity of the global definition of APE EW95
a requires the

second term pertaining to the work against the reference pressure gradient to vanish. This
is easily verified to be the case if the volume V enclosing the fluid remains unchanged
under the isochoric adiabatic rearrangement x → xr used to construct ρ0(z, t), as then
∂(x, y, z)/∂(xr, yr, zr) = 1, dV = dVr, Vr = V , thus ensuring that

∫
V

p0(zr, t) dV =
∫

Vr

p0(zr) dVr =
∫

V
p0(z, t) dV, (4.10)

as requested (e.g. Roullet & Klein 2009; Tailleux 2013b; Winters & Barkan 2013).
However, the identity Ea = EW95

a is not expected to necessarily hold for more complex
situations, although the precise circumstances under which this happens have yet to be
fully understood and discussed in the literature.
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For a time-dependent Lorenz reference state, the local APE budget (2.9) derived earlier
is easily shown to be given by

∂ea

∂t
= −v · ∇ea − bw − ∇ · J a − εp − g

ρ�

∫ z

zr

∂ρ0

∂t
(z̃, t) dz̃, (4.11)

where J a = −(z − zr)J b and εp = J b · ∇(z − zr) as before. By taking the volume integral
of (4.11), the evolution equation for the global APE Ea is easily shown to be

dEa

dt
= −

∫
V
ρ�bw dV︸ ︷︷ ︸
−Φz

−
∮

S
ρ�eav · n dS︸ ︷︷ ︸

Sadv
APE

+
∮

S
ρ�(z − zr)J b · n dS︸ ︷︷ ︸

Sdiff
APE

−
∫

V
ρ�εp dV︸ ︷︷ ︸
Φd−Φi

, (4.12)

where the expressions for Φi and Φd are

Φi = −
∫

V
ρ�εp,lam dV = ρ�gA[ακT Δθ − βκS ΔS]

= ρ�gAκTβΔS
[
αΔθ

βΔS
− κS

κT

]
= ρ�gAκTβΔS (Rbulk

ρ − τ), (4.13)

Φd =
∫

V
ρ�εp,tur dV =

∫
V

g(ακT ∇θ − βκS ∇S) · ∇zrρ� dV, (4.14)

where Δθ = θ̄top − θ̄bottom, and ΔS = S̄top − S̄bottom, while Rbulk
ρ is a bulk density ratio.

For canonical salt finger instability, 1 < Rbulk
ρ < 1/τ , in which case (4.13) predictsΦi > 0

as required to act as a source of APE. Note that the last term in (4.11) may be written in
the form F(z, t)− F(zr, t), with F such that (∂F/∂z)(z, t) = (∂ρ0/∂t)(z, t). As a result, its
volume integral must vanish whenever the second term of (4.9) also vanishes for the same
reason, as explained above.

Winters & Barkan (2013) assumed that when Ea equals EW95
a , their respective budgets

should be equivalent and described by the equations for an open domain derived previously
by Winters et al. (1995). We disagree with this view, however, because the budgets of
Ea and EW95

a are closely related to the local budgets of their integrands, but these are
not equivalent, as established above. Physically, the non-equivalence of the budgets for
Ea and EW95

a is due to the integrand of EW95
a lacking a vital piece of information about

the energetics of stratified fluids compared to Ea, namely the fact that when a fluid
parcel moves from its reference position zr to its actual position, it has to work not only
against gravity, but also against the vertical reference pressure gradient. More generally,
Tailleux (2013b) shows that work against buoyancy forces actually involves three terms:
(1) one associated with changes in gravitational potential energy; (2) one associated with
changes in internal energy; and (3) one associated with work against the reference pressure
gradient. Even if the latter term integrates to zero over the whole fluid domain, it is
still necessary to retain it for correctly predicting the advective flux of APE through the
boundaries of open domains. Two key differences characterise the non-equivalence of the
budgets for Ea and EW95

a : (1) in Winters et al. (1995), the reversible conversion with
kinetic energy Φz is associated with the density flux ρgw, but with the buoyancy flux
−bw in the local APE framework; (2) in Winters et al. (1995), the advective flux of APE
through boundaries Sadv

APE is associated with the flux of the bizarre quantity g(zρ − ψ) but
with the flux of APE density ea in the local framework, which makes much more sense.
The unphysical character of the advective flux of APE in Winters et al. (1995) highlights
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the well-known problematic character of the global APE framework for regional studies,
which was one of the key motivations for the quest of a local available energy framework
(Tailleux 2013a).

The unphysical character of the advective flux of APE in the Winters et al. (1995) global
APE budget for open domains is problematic and can be corrected only by using the
local APE framework. The issue is vital, because recent studies of local energetics have
demonstrated the key importance of the lateral advection of APE density for understanding
important physical processes, such as storm track dynamics (Novak & Tailleux 2018;
Federer et al. 2024), tropical cyclone intensification (Harris et al. 2022), or the energetics
of the thermohaline circulation (Gregory & Tailleux 2011; Sijp et al. 2012). Importantly, it
is worth noting that Ea and EW95

a are also non-equivalent numerically. Indeed, in the global
framework, the APE of the fluid is estimated as a small residual between two very large
terms, which is ill-conditioned and prone to large numerical errors. In the local framework,
however, the APE of a fluid is estimated as the sum of small non-negative numbers,
which is numerically robust and very accurate. As a result, the field would benefit greatly
from switching to the local APE framework, as this is the better and more physical-based
practice.

5. Reference state variables

The practical implementation of the above theoretical results requires the computation
of the Lorenz reference density profile ρ0(z, t), as well as of the associated isopycnal
temperature and salinity averages necessary for defining spiciness. Here, we provide the
mathematical foundations for defining the latter in terms of probability density functions
(p.d.f.s), which allows one to compute these in practice without the use of sorting. These
results pertain to arbitrary domains and unify the p.d.f. approaches of Tseng & Ferziger
(2001) and Saenz et al. (2015), while also making use of previous ideas by Hochet &
Tailleux (2019) and Hochet et al. (2021).

5.1. Reference position zr(ρ, t) and density profile ρ0(z, t)
The classical interpretation of the Lorenz reference state as an isochoric rearrangement of
fluid parcels is easy to understand and implement algorithmically. However, it does not
easily lend itself to mathematical analysis. Here, we derive expressions for defining and
constructing the Lorenz reference density profile ρ0(z, t) and its inverse function zr(ρ, t)
(such that ρ0(zr(ρ, t), t) = ρ at all times) in a way that greatly facilitates the study of its
mathematical properties. Our approach is not entirely new, as elements of it can be found
in Winters et al. (1995) or in the p.d.f. approaches of Tseng & Ferziger (2001), Saenz
et al. (2015), Hochet & Tailleux (2019), Hochet et al. (2021) and Penney et al. (2020), but
is useful to introduce the approaches discussed next. To that end, let us assume that the
domain containing the fluid is bounded at the top by a rigid lid at z = 0, and at its bottom
by a spatially varying bottom topography at z = −H(x, y). We denote by V̂(z) the volume
between an arbitrary depth z and the surface, and by A(z) = −dV(z)/dz the cross-sectional
area of the domain at depth z.

Physically, the reference depth z = zr(ρ, t) of a fluid parcel must be such that the volume
of water between zr(ρ, t) and the surface, namely,

V̂(zr) =
∫ 0

zr

A(z) dz, (5.1)
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Figure 2. Mapping of (a) physical space onto (b) reference state space.

must equal the volume of water in physical space made up of all the fluid parcels of
densities less than ρ, namely,

V(ρ, t) =
∫

V(ρ(x′,t)≤ρ)
dV ′ =

∫
V

H(ρ − ρ(x′, t)) dV ′, (5.2)

where H denotes the Heaviside step function defined as in Winters et al. (1995):

H(ρ(x, t)− ρ(x0, t)) =

⎧⎪⎪⎨
⎪⎪⎩

0, ρ(x, t) < ρ(x0, t),
1
2
, ρ(x, t) = ρ(x0, t),

1, ρ(x, t) > ρ(x0, t).

(5.3)

Equating the two volumes V̂(zr) = V(ρ, t) yields an implicit equation for zr(ρ, t), which
may be inverted to yield

zr(ρ, t) = V̂−1[V(ρ, t)], (5.4)

which in the case where A(z) = constant, reduces to

zr(ρ, t) = −V(ρ, t)
A

, (5.5)

as derived previously by Winters et al. (1995). As an illustration, figure 2(a) shows the
constant Lorenz reference depth zr(ρ, t) = −1000 m for a realistic ocean, with figure 2(b)
showing the corresponding position in reference state space. Construction of the Lorenz
reference state for a realistic ocean has been discussed in Saenz et al. (2015) and Tailleux
(2016, 2021). Once zr(ρ, t) has been determined for a number of target densities, the
reference density profile ρ0(z, t) may be obtained simply by solving the implicit relation
ρ0(zr(ρ, t), t) = ρ at a number of discrete reference depths, from which an interpolator
may be constructed to infer the reference density for other values. Alternatively, using
the fact that ρ = ρ0(zr, t) by definition, one may also solve the equation V̂(zr) = V(ρ, t)
in the form V̂(zr) = V(ρ0(zr, t), t) to infer ρ0(zr, t) at a number of predetermined target
reference depths.
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Figure 3. Schematics of an isopycnal surface (dashed red line) bounded by two nearby isopycnal surfaces
(thick blue lines) defining the volume of fluid used to define the thickness-weighted average value of any
arbitrary tracer for the isopycnal surface considered.

Note that by differentiating the equality V̂(zr) = V(ρ, t) = V(ρ0(zr, t), t) with respect
to zr, the following useful expression for ∂ρ0/∂zr may be obtained:

∂ρ0

∂z
(zr, t) = −

(
∂V
∂ρ

)−1

A(zr). (5.6)

The above expressions establish that the practical computation of zr(ρ, t) and ρ0(z, t) can
be achieved without resorting to a sorting algorithm. Indeed, all one has to do is to define
a number of target densities ρi, i = 1, . . . ,N, at which to compute the corresponding
volumes V(ρi, t). Having defined the inverse function V̂−1(z), one may simply compute
the corresponding target reference depths zr(ρi, t) at which ρ0(z, t) may be evaluated.
Once all quantities have been determined at the discrete target depths, interpolators can
be constructed to find values at other points.

5.2. Construction of isopycnal mean profiles
Physically, the isopycnally averaged temperature and salinity profiles θ0(z, t) and S0(z, t)
needed to isolate the passive spice component need to be obtained as thickness-weighted
isopycnal averages, as illustrated in figure 3, as this is the only physically meaningful way
to define an isopycnal average (Young 2012). Mathematically, θ0(z, t) can be defined as a
solution of the equation∫ 0

zr(ρ,t)
A(z) θ0(z, t) dz =

∫
V(ρ,t)

θ(x, t) dV︸ ︷︷ ︸
H(ρ,t)

. (5.7)

Physically, the right-hand side of (5.7) represents the volume integrated temperature over
the body of water made up of fluid parcels with densities less than ρ, which we denote
H(ρ, t). The right-hand side is the volume integral of the thickness-weighted isopycnally
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Figure 4. (a) Latitude/depth section of Conservative Temperature along 30◦W in the Atlantic Ocean. (b)
Global isopycnal mean (red line) profile used for the spice/heave decomposition of Conservative Temperature
shown in (c) and (d). For comparison, a horizontal mean profile (black line) is also depicted. (c) Active heave
component of Conservative Temperature along the same 30◦W section as in (a). (d) Passive spice component
of Conservative Temperature along the same 30◦W section as in (a). Black contour lines represent constant
Lorenz reference density surfaces labelled in terms of thermodynamic neutral density γ T .

averaged temperature between zr(ρ, t) and the surface. An explicit expression for θ0(z, t)
at z = zr may be obtained by differentiating (5.7) with respect to zr, which leads to

−A(zr) θ0(zr, t) = ∂H
∂ρ

∂ρ0

∂zr
(zr, t) ⇒ θ0(zr, t) =

(
∂V
∂ρ

)−1
∂H
∂ρ
, (5.8)

which made use of (5.6).
Equation (5.8) is easily implemented in practice, at least for the type of data considered

here. As an illustration, figure 4 shows a decomposition of temperature into active and
passive components. Specifically, figure 4(a) shows a meridional section of Conservative
Temperature along 30◦W in the Atlantic Ocean. Figure 4(b) shows the thickness-weighted
isopycnal temperature average profile compared with the more standard horizontal mean
profile. The thickness-weighted averaged temperature is illustrated in figure 4(c), while
figure 4(d) illustrates the passive spice component, obtained as θspice = θ − θ0(zr, t). Our
approach to defining spice, based on Tailleux (2021), is strongly supported by the fact that
the patterns in figure 4(d) all appear to coincide with known ocean water masses in the
Atlantic Ocean, namely Antarctic Bottom Water, North Atlantic Deep Water, Antarctic
Intermediate Water and Mediterranean Intermediate Water.
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5.3. Evolution of the reference density profile
By definition, ρ0(z, t) must coincide with its thickness-weighted isopycnal average and
therefore satisfy (5.7), namely,∫ 0

zr

A(z) ρ0(z, t) dz =
∫

V(ρ,t)
ρ(x′, t) dV ′

︸ ︷︷ ︸
R(ρ,t)

. (5.9)

We now show that this equation can be manipulated to yield an exact expression for
the evolution equation satisfied by ρ0(z, t) as well as for the effective diffusivity first
introduced by Winters & D’Asaro (1996) and Nakamura (1996). For simplicity, we focus
only on the case where the buoyancy flux vanishes through all solid boundaries as well
as the surface, but the derivation can easily be extended to account for a non-zero surface
buoyancy flux.

To obtain the sought-for evolution equation for ρ0, let us take the time derivative of
(5.9), which yields ∫ 0

zr

A(z)
∂ρ0

∂t
(z, t) dz =

∫
V(ρ,t)

∂ρ

∂t
(x′, t) dV ′. (5.10)

Now, using the fact that the evolution equation for density may be written as

∂ρ

∂t
= −v · ∇ρ + ∇ · (ρ�J b/g), (5.11)

(5.10) may be rewritten as∫ 0

zr

A(z)
∂ρ0

∂t
(z, t) dz =

∫
V(ρ,t)

[∇ · (ρ�J b/g)− v · ∇ρ] dV ′

=
∮

Sρ
(ρ�/g)J b · n dS =

∮
Sρ
(ρ�/g)J b · ∇ρ

|∇ρ| dS

= ∂ρ0

∂z
(zr, t)

∮
Sρ
(ρ�/g)

J b · ∇zr

|∇ρ| dS

= −∂ρ0

∂z
(zr, t)

∮
Sρ
(ρ�/g)

εp,tur

|∇ρ| dS. (5.12)

In the second line, Sρ refers to the isopycnal surface ρ = const., meaning that the
outward normal unit vector is n = ∇ρ/|∇ρ| = −∇zr/|∇zr|, as illustrated schematically
in figure 2(a). To go from the second line to the third line, we used the fact that as
ρ = ρ0(zr, t), we have ∇ρ = (∂ρ0/∂zr)(zr, t)∇zr. To go from the third line to the fourth
line, we used the fact that by definition, J b · ∇zr = −εp,tur.

By defining the reference squared buoyancy profile as

N2
0(zr, t) = − g

ρ�

∂ρ0

∂z
(zr, t), (5.13)

and the locally defined effective diffusivity as

κeff = εp,turb

N2
0(zr)

, (5.14)
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(5.12) may be rewritten as∫ 0

zr

A(z)
∂ρ0

∂t
(z, t) dz = −A(zr)Keff

∂ρ0

∂zr
(zr, t) = ∂R

∂t
, (5.15)

where the globally defined effective diffusivity is related to the locally defined one by

Keff = 1
A(zr)

∮
Sρ

κeff

|∇zr| dS, (5.16)

as established previously by Hochet et al. (2019). The final step of the derivation consists
in differentiating (5.15) with respect to zr, which yields

∂ρ0

∂t
(zr, t) = 1

A(zr)

∂

∂zr

[
A(zr)Keff

∂ρ0

∂zr

]
(zr, t). (5.17)

Note that in practice, Keff can also be determined by inverting the diffusion equation
(5.17) from the knowledge of the temporal variations of the sorted density profile ρ0(z, t).
Alternatively, one may combine (5.6) and (5.15) to verify that the globally defined effective
diffusivity may be written as

Keff (zr, t) = 1
A2(zr)

∂V
∂ρ
(ρ, t)

∂R
∂t
(ρ, t), (5.18)

which in principle allows one to calculate Keff using simple binning techniques. The above
results establish that the effective diffusivity depends only on the turbulent part εp,tur of
εp, consistent with established results.

6. Summary, discussion and conclusions

Double diffusive instabilities are mysterious as they can seemingly develop from a state
with zero initial mechanical energy, without the need for any external mechanical source(s)
of energy (except for that of the initial perturbation triggering the instability). In the
context of APE theory, such instabilities are possible only if the mechanical energy
KE + APE can grow at the expense of BPE. Since viscous dissipation εk is always
positive, this can happen only when the APE dissipation rate εp is negative. Therefore,
it is more logical and physically plausible to consider the sign of the APE dissipation
rate εp = J b · ∇(z − zr), rather than the sign of the diapycnal component of the buoyancy
flux proposed by Middleton & Taylor (2020), as the most fundamental criterion for
characterising double diffusive instabilities. In the context of the Winters et al. (1995)
framework, this is equivalent to predicting the development of double diffusive instabilities
from the sign of Φd −Φi rather than that of Φd only. This is justified by the fact that Φd
is negative only for diffusive convection instability, not for salt finger instability, while
Φd −Φi is negative for both.

While our current findings unequivocally acknowledge the existence and necessity
of negative APE dissipation in single- and two-component stratified fluids, the precise
underlying mechanisms remain elusive. The controversy revolves primarily about the
nature of BPE and of the energy conversion type between APE and BPE. The primary
challenge stems from the fact that in fully compressible fluids, APE dissipation appears
naturally as a conversion between APE and the internal energy component of BPE, akin
to viscous dissipation (Tailleux 2009, 2013c). However, this interpretation is not the most
intuitive within standard Boussinesq models, as the BPE lacks an explicit link to internal
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energy, thereby complicating our understanding of its energetics. Nevertheless, the crucial
role of internal energy in understanding the energetics of turbulent stratified fluids is
underscored by the term gz Dρ/Dt, which approximates the compressible work p Dυ/Dt
in Boussinesq models (Young 2010; Tailleux 2012), implying a conversion with internal
energy. While some may find considering thermodynamics central to the understanding of
the energetics of turbulent stratified fluids unpalatable, it is noteworthy that in the current
state of knowledge, there does not appear to be any other way to explain the occurrence
of negative APE dissipation in single-component fluids or doubly stable two-component
fluids. Indeed, existing explanations for the release of BPE into APE by Smyth, Nash
& Moum (2005) and Ma & Peltier (2021) have linked it to the ‘APE’ associated with a
destabilising stratifying tracer. However, this approach is difficult to justify theoretically,
because in reality, heat and salt can be separated only diabatically (due to intermolecular
forces). Another difficulty is that the approach breaks down in the limit κS = κT , which
reduces to the case of a simple fluid, or for doubly stable stratified fluids. On the other
hand, the thermodynamic theory of exergy offers a potentially more promising avenue.
Exergy theory posits that because internal energy is convex with respect to its canonical
variables (specific entropy, salinity and specific volume for two-component seawater), a
portion of it – referred to as exergy, proportional to the deviation from thermodynamic
equilibrium – is available for conversions into work (Bannon 2013; Tailleux 2013a; Bannon
& Najjar 2014) under diabatic transformation, regardless of whether the stratifying tracers
are stabilising or destabilising. For single-component fluids, exergy is directly proportional
to temperature variance at leading order, providing a means to identify and quantify the
portion of BPE that can be converted into APE in simple and double diffusive flows.
However, this approach necessitates accepting APE dissipation as a conversion between
APE and the internal energy component of BPE, thereby challenging the prevailing
assumption. Pursuing this line of enquiry is beyond the scope of this paper and is deferred
to future studies. We anticipate that this will require the development of a new class
of Boussinesq models with explicit and thermodynamically consistent internal energy.
The development of such models, building upon the recent findings of Tailleux & Dubos
(2024), is currently underway and will be presented in a subsequent study.

In this study, the local APE framework was preferred over the Winters et al. (1995)
global APE framework owing to its greater simplicity, physical justification, and flexibility.
Despite its popularity, the global APE framework has several unphysical aspects that
can sometimes lead to erroneous conclusions and/or interpretations. Examples include
its unsuitability for regional studies in open domains due to the unphysical character
of its advective fluxes, and the inability to meaningfully decompose the sign-indefinite
integrand ρg(z − zr) into mean and eddy components. These issues, which tend to be
overlooked in the turbulent mixing community, can be corrected only by using the local
APE framework. While the non-intuitive character of the early formulations of the local
APE theory by Andrews (1981), Holliday & McIntyre (1981) and Shepherd (1993) made
it somewhat difficult to use or apply, the most recent formulations have greatly clarified
it, and several applications have since demonstrated its usefulness and ease of use, e.g.
Roullet & Klein (2009), Zemskova, White & Scotti (2015), Novak & Tailleux (2018) and
Harris & Tailleux (2018). Given that the local APE framework has made the global APE
framework largely obsolete, there is no longer any real justification for continuing to use
the global framework, especially as it is obviously unsuitable for the study of individual
turbulent mixing events in large domains such as that pertaining to the oceans. We hope
that the simplicity of our derivations, which we believe to be more intuitive and transparent
than those of Scotti & White (2014), will convince some readers to switch frameworks.
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Negative APE dissipation and double diffusive instabilities

For a single-component fluid, the Boussinesq APE dissipation rate εp = J b · ∇(z − zr)
can be shown to approximate the quantity

ρεp = κcp ∇T · ∇
(

T − Tr

T

)
(6.1)

(Tailleux 2009, 2013c). Equation (6.1) features a Carnot-like thermodynamic efficiency
(T − Tr)/T , underscoring the inherent thermodynamic character of turbulent stratified
mixing and APE dissipation, which is hidden by the Boussinesq approximation. Tailleux
(2013c) demonstrated that (6.1) could be broken down into three parts (see Appendix A for
a simpler and clearer derivation of the result): a laminar component εp,lam related to the
term −Φi in Winters et al. (1995); a turbulent term εp,turb related to the termΦd in Winters
et al. (1995); and a term εp,eos that arises from the nonlinearities of the equation of state
and has no equivalent in the standard Boussinesq model and Winters et al. (1995). As far
as we understand the issue, these components are indissociable parts of εp and therefore
necessarily of the same type, thus implying that Φd and Φi should both be interpreted as
conversions between APE and internal energy, in contrast to the prevailing interpretation.
In the literature, Φi and εp,lam are often neglected based on the assumption that they are
negligible in fully turbulent flows. However, this may not necessarily be the case, as Φi
appears to be a significant term in many published studies. For example, Φi is comparable
to Φd in the simulations discussed by Winters et al. (1995). The present theory predicts
that Φi should also be dominant in the early stages of the canonical salt finger instability
experiment discussed by Middleton & Taylor (2020); it is therefore unfortunate that the
authors did not diagnose Φi in their experiments, as this would undoubtedly have been
useful to demonstrate its fundamental importance. We hope to illustrate this behaviour
in the future by using an energy complete Boussinesq approximation currently under
development, based on the findings of Tailleux & Dubos (2024).

Like Middleton & Taylor (2020), we find that three physical parameters are sufficient
to fully describe the behaviour of Φd or εp, but apart from the diffusivity ratio κS/κT ,
how to chose the two remaining parameters is not unique. The parameters chosen by
Middleton & Taylor (2020) are strongly affected by turbulence and the microstructures
of θ and S, so diagnosing them from observational data or environmental parameters,
or even linking them to parameters used in previous studies (such as the density ratio),
is not straightforward. To overcome some of these difficulties, Middleton et al. (2021)
subsequently reformulated the problem in terms of density/spiciness variable, using a
linear spiciness variable to achieve a more physical and useful characterisation of Φd.
However, this spiciness variable is arguably suboptimal for measuring spiciness because
it is not properly calibrated to vanish in a spiceless fluid. For this reason, Tailleux
(2021) recommended that spiciness be defined as an isopycnal anomaly instead. On this
basis, we proposed a new set of physical parameters that we used to characterise εp: a
density ratio and a new spiciness parameter more in line with the parameters used in
previous studies. However, estimating these parameters in numerical simulations or in
the field requires the computation of thickness-weighted isopycnal averages, with which
most non-oceanographers are likely to be unfamiliar. For this reason, and to facilitate
the adoption of our ideas, we provided explicit mathematical expressions and practical
examples to show how to implement this form of averaging in practice, valid even for
a fully compressible and nonlinear ocean, and illustrated it on a realistic oceanographic
example with real data.

While the presence of double diffusive instabilities is determined by the sign of the full
APE dissipation rate εp = εp,lam + εp,tur, the effective diapycnal diffusivity controlling
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the evolution of the sorted density profile is determined only by the turbulent part
εp,tur. Consequently, the conventional expressions for turbulent diapycnal diffusivity and
dissipation ratio should be formulated as Kv = εp,turb/N2 and Γ = εp/εk = εp,turb/εk
rather than in terms of the full εp. This is consistent with common practice, but it may
not necessarily be obvious if one considers that εp,lam (equivalently Φi) is part of the
definition of the net APE dissipation rate, which departs from the prevailing view that
only εp,turb or Φd contributes to it. As a consequence, not all double diffusive instabilities
can be expected to exhibit negative effective diffusivities, which, for instance, are not
present in the initial stages of the canonical salt finger instability discussed by Middleton
& Taylor (2020). Our theory shows that double diffusion can enhance, reduce or even
change the sign of Kv , whose consequences for the study of mixing in the oceans need to
be investigated further. The implications for the theoretical understanding of thermohaline
staircases is unclear, as recent theories tend to emphasise the spatial variations (linked to
the functional dependence on some turbulent parameters such as the buoyancy Reynolds
number) of an otherwise positive effective diffusivity as the main cause; e.g. see Radko
(2005), Taylor & Zhou (2017) or Ma & Peltier (2022a,b) and references therein for some
recent discussion. Further research is clearly needed to clarify the issue, but is beyond the
scope of this paper.

Acknowledgements. The author gratefully acknowledges comments from three anonymous reviewers, as
well as discussions with L. Middleton and J. Taylor, which greatly helped to improve clarity and refine some of
our hypotheses and interpretations.

Funding. This research has been supported by the NERC-funded OUTCROP project (grant no.
NE/R010536/1).

Declaration of interests. The author reports no conflict of interest.

Data availability statement. Matlab software to reproduce the results and figures of this paper are openly
available in the Zenodo repository at https://doi.org/10.5281/zenodo.12544932, cited as Tailleux (2024).

Author ORCIDs.
R. Tailleux https://orcid.org/0000-0001-8998-9107.

Appendix A. APE dissipation in compressible and Boussinesq fluids

In contrast to the concept of viscous dissipation, whose origin can be traced back to the
development of the Navier–Stokes equations in the early 19th century, the concept of APE
dissipation is comparatively much more recent, as it appears to have been developed in
a somewhat ad hoc way from a re-scaling of the dissipation of temperature variance
by Gargett & Holloway (1984) and Oakey (1982). In particular, it was not obtained as
part of a local APE budget, even though the possibility of constructing Lorenz (1955)
APE theory from a local principle had been established by Andrews (1981) and Holliday
& McIntyre (1981). Local balance equations for a local APE density were perhaps first
derived by Molemaker & McWilliams (2010). As far as we are aware, a theoretical
formulation of APE dissipation for a fully compressible fluid clarifying how it relates to its
Boussinesq counterpart was developed only much more recently by Tailleux (2009, 2013c).
Here, we revisit our earlier derivation to provide a somewhat simpler treatment, in which
dependence of our expressions in terms of entropy is replaced by a dependence on potential
temperature. Concretely, the task here is to understand how to relate the expression for the
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APE dissipation rate for a fully compressible fluid, i.e.

εp = κTcp ∇T · ∇Υ = −κTcp ∇T · ∇
(

Tr

T

)
, (A1)

to the terms Φi and Φd that appear in the Winters et al. (1995) global APE framework,
where Tr = T(η, pr) and T = T(η, p) are the in situ temperatures at the reference
pressure pr and actual pressure p, respectively, with Υ = (T − Tr)/T the thermodynamic
efficiency.

As in Tailleux (2013a), we take as our starting point the following thermodynamic
relation for the total differential of specific entropy η regarded as a function of either
(T, p) or θ , namely,

dη = cp

T
dT − α

ρ
dp = cpθ

θ
dθ, (A2)

in which η is the specific entropy, α is the thermal expansion coefficient, cp is the specific
heat capacity at constant pressure, θ = T(η, pa) is the potential temperature (i.e. the
temperature referenced to the mean surface atmospheric pressure pa), and cpθ = cp(θ, pa).
The thermodynamic relation (A2) can be rearranged to yield an expression for the total
differential of the logarithm of the temperature ln T , namely,

dT
T

= α

ρcp
dp + cpθ

cp

dθ
θ
, (A3)

thus allowing one to regard T = T(θ, p) as a function of potential temperature and
pressure. Because dT/T is an exact differential, (A3) implies the following Maxwell
relationship (i.e. the equality of the cross-derivatives):

∂

∂θ

(
α

ρcp

)
= cpθ

θ

∂

∂p

(
1
cp

)
, (A4)

which will prove useful in the following. For the cases of interest, the reference
temperatures entering calculations are ‘potential temperatures’ of some kind referenced
to an arbitrary pressure pr. It follows that if we denote Tr = T(θ, pr), then we may write

ln
Tr

T
=
∫ pr

p

α

ρcp
(θ, p̃) dp̃. (A5)

Taking the gradient, we then obtain

T
Tr

∇Tr

T
= − α

ρcp
(θ, p)∇p +

[∫ pr

p

∂

∂θ

(
α

ρcp

)
(θ, p̃) dp̃ + α

ρcp
(θ, pr)

dpr

dθ

]
∇θ. (A6)

Using the above Maxwell relationship (A4) gives∫ pr

p

∂

∂θ

(
α

ρcp

)
(θ, p̃) dp̃ = cpθ

θ

∫ pr

p

∂

∂p

(
1
cp

)
(θ, p̃) dp̃ = cpθ

θ

(
1

cpr
− 1

cp

)
, (A7)

so that (A6) may be rewritten as

∇
(

Tr

T

)
= − αTr

ρcpT
∇p + αrTr

ρRcprT
∇pr + cpθTr

Tθ

(
1

cpr
− 1

cp

)
∇θ, (A8)

with cpr = cp(θ, pr), αr = α(θ, pr) and ρr = ρ(θ, pr). Note here that the notation Q =
Q(θ, p) is an abuse of notations for the function Q = Q(T(θ, p), p), i.e. it is computed
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from the expressions in terms of in situ temperature and pressure in which T is replaced
by its expression as a function of potential temperature and pressure.

The above results may be used to express the non-viscous non-conservation term εp as
the sum

εp = εp,lam + εp,tur + εp,eos. (A9)

Moreover, if one uses the fact that pr = p0(zr(θ)) so that ∇pr = −ρrg (dzr/dθ)∇θ , then
one may write

εp,lam = αTr

ρT
κT ∇T · ∇p, (A10)

εp,tur = cpTrαrg
cprT

dzr

dθ
κT ∇T · ∇θ, (A11)

εp,eos = −cpθTr

cprT
cp − cpr

θ
κT ∇T · ∇θ. (A12)

Importantly, the term εp,lam vanishes only at standard thermodynamic equilibrium,
characterised by uniform in situ temperature T . However, both εp,tur and εp,eos vanish
at standard thermodynamic equilibrium, but also for the ‘turbulent’ thermodynamic
equilibrium characterised by uniform potential temperature θ .

A.1. Link with the Boussinesq approximation
The above expressions show that the exact counterparts of the Φi term in Winters et al.
(1995) are the expressions

Φexact
i = −

∫
V

αTr

T
κT ∇T · ∇p dV, (A13)

Φexact
d =

∫
V

cpTrραrg
cprT

dzr

dθ
κT ∇T · ∇θ dV. (A14)

In the Boussinesq approximation, p ≈ −ρ�gz, Tr ≈ T and α is treated as a constant. As a
result,

Φexact
i ≈

∫
V
ρ�αgκT

∂T
∂z

dV = ρ�αgκT(〈T〉top − 〈T〉bottom) = Φi. (A15)

As is well known, this term integrates to a term that depends on the difference between the
surface integrated temperature at the upper boundary minus that at the lower boundary. For
a single-component fluid, Φi is generally positive for a stable stratification. In particular,
Φi is independent of the turbulent character of the fluid. It is important that this is not
the case of the exact expression. An important open question is whether strong turbulence
could potentially make Φexact

i significantly different from Φi.
Regarding the Φd term,

Φexact
d ≈

∫
V
ρ�αg

dzr

dθ
κT |∇θ |2 dV = −

∫
V

g
dzr

dρ
κT |∇ρ|2 dV, (A16)

assuming dρ = −ρ�α dθ . The Boussinesq approximation ofΦexact
d is therefore potentially

much more accurate than that of Φi.
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Note that

εp,eos ≈ −cp − cpr

θ
κT ∇T · ∇θ (A17)

is related to a nonlinear equation of state. This term vanishes if the pressure variations of
cp can be neglected. As shown by the Maxwell relation (A4), this is the case if

∂

∂θ

(
α

ρcp

)
= 0. (A18)

Therefore, the condition α/(ρcp) = const. was taken as the appropriate definition of a
linear equation of state underlying the construction of the Boussinesq approximation in
Tailleux (2013c).
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