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Abstract

Let x € [0, 1) be an irrational number and let x = [a;(x), ax(x), . . .] be its continued fraction expansion with
partial quotients {a,(x) : n > 1}. Given a natural number m and a vector (xy,...,x,) € [0, 1)", we derive
the asymptotic behaviour of the shortest distance function

My (x1,. .. Xm) = max{k € N @ a;yj(x) = -+ = aj(x,) forj=1,...,k and some i with 0 < i < n -k},

which represents the run-length of the longest block of the same symbol among the first n partial quotients
of (x1,...,x,). We also calculate the Hausdorff dimension of the level sets and exceptional sets arising
from the shortest distance function.
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1. Introduction

Let T : [0,1) — [0, 1) be the Gauss map defined by
1
T0)=0, Tx)=-(modl) forxe(0,1).
X

Every irrational number x € [0, 1) can be uniquely expanded into an infinite form

1 1
X = = . (LD

a(x) + a(x) +
ax)+ —— a(x) +

1

+ an+—Tn(x) a3(x) + —

where a,(x) = | 1/T""'(x)] are called the partial quotients of x. (Here |-| denotes the
greatest integer less than or equal to a real number and 7° denotes the identity map.)
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For simplicity of notation, we write (1.1) as

x = [a1(x), ax(x), . . ., an(x) + T"(0)] = [a1(x), az(x), a3 (x), . . .].
It is clear that the Gauss transformation 7" acts as the shift map on the continued
fraction system. That is, for each x = [a;(x), ax(x), a3(x),...] € [0,1) N Q°,
T(x) = T([a1(x), a2(x), az(x), . . .]) = [a2(x), az(x), ... .].
Gauss observed that 7' is measure-preserving and ergodic with respect to the Gauss
measure u defined by
1 1

=— dx.
log2x+1 *

du

For more information on the continued fraction expansion, see [3].

The metrical theory of continued fractions, which concerns the properties of the
partial quotients for almost all x € [0, 1), is one of the major themes in the study
of continued fractions. Wang and Wu [7] considered the metrical properties of the
maximal run-length function

R,(x) =max{le N :a;;1(x) =--- =a;y(x) forsomeiwithO <i<n-1I},

which counts the longest run of the same symbol among the first n partial quotients
of x. They proved that, for 4 almost all x € [0, 1),

lim 2 _ :
i logn  21og((V5 + 1)/2)

Song and Zhou [6] gave a more subtle characterisation of the function R,(x). In this
paper, we continue the study by considering the shortest distance function

Mn,m(xh ooy Xy) = max{k € N : ai+j(x1) == ai+j(xm) forj =1,...,k,

and some i with 0 < i < n — k}.
This is motivated by the behaviour of the shortest distance between two orbits,

Spa(ry) = _min (d(T'(x), ')

in the continued fraction system. Shi et al. [5] proved that, for > almost all (x,y) €
[0,1) x [0, 1),
Mn 5 . -1 Sn s
H, - lim 206y o ~1085500)
n—eo  logn n—co logn

where H, is the Rényi entropy defined by (1.2). Investigating the shortest distance
between two orbits amounts to estimating the longest common substrings between two
sequences of partial quotients. In fact, [5] focused on the asymptotics of the length of

the longest common substrings in two sequences of partial quotients.
Forn > 1and (ay,...,a,) € N, we call

L(ai,...,a,) ={x€[0,]):a1(x) =ay,...,a,(x) = a,}
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an nth cylinder. For m > 2, we define the generalised Rényi entropy with respect to the
Gauss measure u by

—lo W u(L(ay, ... a,))"
H, = lim g Xiay....apev H(In(ar n) .

n—oo (m—1)n (1.2)

The existence of the limit (1.2) for the Gauss measure y was established in [2].

THEOREM 1.1. For u™-almost all (xy, . ..,x,) € [0, )™,
i Mn,m(xl’ ce 7xm) 1

im = .

n—oo logn (m-1H,

Here we use the convention that 1/0 = co and 1/c0 = 0.

It is natural to study the exceptional set in this limit theorem. We define the
exceptional set as

< lim sup

—_ M IR M, D)
E={(x1,...,xm)e[0’ l)m;ljminfM M}
n—oo logn n—oo logn

and the level set as

Mnm 9 VM
E(a) = {(x1,...,xm) € [0.1y" : lim Mnn 1o Xm) a}.
n—oo logn

Throughout the paper, dimgy A denotes the Hausdorff dimension of the set A.
THEOREM 1.2. For any a with 0 < @ < oo, dimHE = dimy E(a) = m.

In fact, Theorem 1.2 follows immediately from the following more general result.
For any 0 < @ < 8 < oo, set

M1, -
E(a,p) = {(xl,...,xm) € [0, 1)" :Timinf Mnn(1ee o Xn)
n—oo logn
My, .
lim sup M :ﬁ}.
n—o0 logn

THEOREM 1.3. For any a,Bwith 0 < a <8 < oo, dimy E(a,8) = m.

2. Preliminaries

In this section, we fix some notation and recall some basic properties of continued
fraction expansions. A detailed account of continued fractions can be found in
Khintchine’s book [3].

For any irrational number x € [0, 1) with continued fraction expansion (1.1), we
denote by

) _
gn(x)
the nth convergent of x. With the conventions

[a1(x),...,a,(x)]

pP-1x)=1, g1(x) =0, pox) =0, qgo(x)=1,
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we have, for any n > 0,

Pn+1 (x) = an+l(x)Pn(x) + Pn-1 (x), qn+1 (X) = apsi (X)Qn(x) + qn-1 (x).

Obviously, g,(x) is determined by the first n partial quotients a;(x), ..., a,(x). So we
also write g,(a,(x), ...,a,(x)) in place of g,(x). If no confusion is likely to arise, we
write a, and g, in place of a,(x) and g,(x), respectively.
PROPOSITION 2.1 [3]. Forn > 1 and (ay,...,a,) € N*:

(1) g =2""Y72and

n n

nakﬁqnsﬁ(ak+l)ﬁ2nl_lak;

k=1 k=1 k=1
(2) the length of I(ay, .. .,a,) satisfies
L <|L(ay,...,a,)| = ; < i
242 (Gn + Gn-1)qn ~ G5

The following ¢-mixing property is essential in proving Theorem 1.1.

LEMMA 2.2 [4]. For any k > 1, let B’f =o(ai,...,a) and let B;" = o(ay, a1, - . .)
denote the o-algebras generated by the random variables (ay, . . ., ay) and (ay, Qg+ 1, - - )
respectively. Then, for any E € B’; and F € By, ,

HENF) = u(E) - u(F)(1 + 6p"),
where 0| < K,p < 1 and K, p are positive constants independent of E, F,n and k.

To estimate the measure of a limsup set in a probability space, the following lemma
is widely used.

LEMMA 2.3 (Borel-Cantelli lemma). Let (Q, B,v) be a finite measure space and let
{A,}us1 be a sequence of measurable sets. Define A = (\y_; Uy—y An. Then

0 if ) vAy) <o,
v(A) = n=l
v(Q) if Z V(A,) = oo and {A,},>1 are pairwise independent.

n=1

Let K = {k,},>1 be a subsequence of N that is not cofinite. Define a mapping
¢r : [0, 1) NQ° — [0,1) N Q° as follows. For each x = [a},a,,...] € [0,1) N Q°, put
or(x) =X = [c1,¢2,...], where [c1, 2, . . .] is obtained by eliminating all the terms a,
from the sequence ay, as, . ... Let {b,},>1 be a sequence with b, € N,n > 1. Write

EX, {b,}) ={x€[0,1)NQ° : a,(x) = b, forall n > 1}.
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LEMMA 2.4 [6]. Assume that {b,},>1 is bounded. If the sequence K is of density zero
in N, that is,

po Blisniick) o,
n—oo n

where § denotes the number of elements in a set, then
dimy E(K, {b,}) = dimy ¢x(E(K, {b,})) = 1.
We close this section by citing Marstrand’s product theorem.

LEMMA 2.5 [1]. IfE,F C Rdfor some d, then dimg(E X F) > dimg E + dimgy F.

3. Proof of Theorem 1.1
Theorem 1.1 can be proved from the following two propositions.
PROPOSITION 3.1. For u™-almost all (xy,...,x,;) € [0, 1)",

li Mn,m(xlv--~axm) 1
1m sup < .
700 logn (m = 1)H,,

PROOF. We can assume that H,, > 0 (the case H,, = 0 is obvious). Fix s; < s, <
(m — 1)H,,. By the definition of the H,,,

it szn} 3.1

> .. a)" < exp{ S1Ze

for sufficiently large n. Set u, = [logn/s;]|. Note that, for any (xi,...,x,) € [0, 1)"
with M, (X1, .. .,Xn,) = k, there exists i with 0 < i < n — k such that

aij(x1) = -+ = aigj(xy)
forj=1,...,k We deduce

Hm({(xls oo axm) € [0’ l)m : Mn,m(xla oo axm) > un})

= D HAC ) €10, D) My (i) = KD
k=u,+1
o n—k

< D DGk €10, D) 5 aig(n) = o = i), = 1, KD,

k=u,+1 i=0

By the invariance of u under 7, it follows that

Ay xm) € [0, D)™ 0 My (yy - oy X)) > Uy))

<n Z MG, xm) €10, D)™ rai(xy) = -+ = aj(xy), j=1,...,k))
k=u,+1
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=n Y > ula,....a)"
k=u,+1 (ay,...,a;)eNF

S1 + 82
2

<Cn- exp{ - Gty + 1)} (by (3.1)

< Cn_(SZ—Sl)/ZSl’
where C = 377, exp{—(s; + 52)k/2}. Choose an infinite subsequence of integers
{ni}i=1, where ny = kX and L - (s, — 51)/2s; > 1. Then

DA %) €10, 1) My (X1, ) > ) < 0.
k=1

From the Borel-Cantelli Lemma 2.3, for almost all (xi, ..., x,) € [0, 1)",
Mnk,m(xl, o ,xm) < Up,

for sufficiently large k. Thus,

. Mn,m(xls cee axm) . Mnk+|,m(x1a ce sxm)
lim sup ———— <limsup
n—oo 10g n k—>00 IOg ny
M, XlyeoorX . 1
<limsup im0 m) - lim sup Ml o
koo log ng41 k—ooo Mk 51
Therefore, by the arbitrariness of sy,
. Mn,m(x17"'sxﬂ’l) 1
lim sup < .
00 logn (m-1H,
This completes the proof. ]

PROPOSITION 3.2. For u™-almost all (x,...,x,) € [0, 1),

]iminan,m(xh- . -axm) > 1 )
n—oo ]Og n (m - I)Hm

PROOF. We can assume that H,, < oo (the case H,, = o is obvious). For 1 < d < n, set

Migm(x1, ... x,) = max{k € N @ a;(xy) = -+ = aiy(x,) forj=1,...k,
and for some i withd — 1 <i<n-—k}.

We denote {(x1,...,x,) € [0, )" : M, (X1, ...,%y,) < k} by {M,, <k} for brevity.
For any s > (m — 1)H,,, by the definition of the H,,,

s+ (m— l)Hmn}

2 (3.2)

(ar,....an)EN"
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for sufficiently large n. Let u, = [logn/s| and I, = |n/u?]. Then
{Mn,m <u,}C {M[iu%+1,iu§+un] <up:0=<i<l}

a2 .
C{Myym <uy N (T X---xT) u”{M[iL¢5+1,iu%+un] <u,:0<i<l,—1}.

m times

By Lemma 2.2, it follows that

K" (M < t})
< ,Um({Mun,m <ubN (T X---X T)_ltﬂ{M[iu%Jrl,i,uﬁﬂtn] <up,0<i<l, - 1})

m times

< 1" (Mo < 1t })"(1 + Gpta =y

Iy
<(t= ) ulan.a,)") 1+ gy

(@1,50es@yy JEN"

n . . m-n
< exp{ -2 .n—(As+(m—1)Hm)/2As} . exp {gpuﬁ—un . }
u’l un
ns—(m=DHy)/2s
< e -
u

n

where the penultimate inequality follows from (3.2) and the two facts (1 —x) <
exp(—x) forv 0<x<1 and lim,—(1 +1/n)" = e, and the last inequality follows
because Gp"“m - n/u> — 0 as n — co. Thus,

DMy < ) < o0,

n=1

From the Borel-Cantelli Lemma, for x-almost all (xy,...,x,) € [0, 1)",

liminan,m(xlv-u,xm) > 1 )
n—oco logn (m-1H,

This completes the proof of Proposition 3.2 and of Theorem 1.1. |

4. Proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. Our strategy is to construct
Cantor-like subsets with full Hausdorff dimension. The proof is divided into several
cases according to the values of @ and 8. We give a detailed proof for the case 0 < @ <
B < oo and a sketch of the proof for the remaining cases.

CASEL: O < <3 < o0.
Choose two positive integer sequences {rn;}x>1 and {s;}¢>1 such that, for each k > 1,

mo=2, me =1 s= | Blognl. (4.1)
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We readily check that

. s
lim ———
k—co M1 — Nk

=0. 4.2)

Without loss of generality, we assume that ny,; — n; > s; for all k£ > 1. Otherwise, we
consider only sufficiently large k. Put

Mis1 — N = Sg - b + O,

where

Nj1 — N
L = {—J for 0 < O < sg.
Sk

Define a marked set K of positive integers by
K:= K({nk}, {Sk}) = U{nk,nk + 1, + 2,00, ng + Sk, N + 2Sk,l’lk + 3Sk, R (A Lksk}.
k=1

Now we define m sequences as follows.

e Fori=1,
1 _ @ _ D _ a1 _ SN ¢ ) _
ap, = 1, ankH - - ank+.sk—l =1, Apytsy, = ank+2sk - = Qg = L
e For2 <i<m,
) — (() I ()] ()N ()] R () _
Ay I am+1 - - am+sk 1 =1, Ayt = ank+2sk - = Ay, = b

Then, fori =1,2,...,m, write

E(K, {aP},51) = {x € [0,1) N Q° : a,(x) = a for all n € K}.

n

Now we prove [], E(K, {an tn=1) € E(a, B). Fix (x1,...,x,) € [T, E(K,{ an },,>1)
for any n > n; and let k be the integer such that n; < n < ny;;. From the construction
of the set [, E(K, {aﬁ,’)}nzl), we see that

Sk-1 — 1 ifm < n < ny + 51,
My (X1 X) =0 —ng if ng + 831 < m < my + g,

sp—1 if ng + s << mgyq.

Further, by (4.1), we deduce that

. . Mn,m(xl, e »-xm) . . . Mnk+sk,|—1,m(x1’ e ’xm) Ml’lk+]—1,m(x17 e ,xm)
lim inf ——— = liminf min ,
n—oco logn k—co log(ng + sp—1 — 1) log(ng+ — 1)
. . . Sk—1 — 1 Sk — 1
= lim inf min { s }
k—o0 log(nk + Sp-1 — 1) 10g(l’lk+1 - 1)

=a
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and
. Mn,m(xl’ e sxm) . {Mnk,m(xla v ,xm) Mnk+sk—1,m(x1a v 7xm)}
lim sup ——— = lim sup max s
H—00 logn ko0 log(m) log(ni + s, — 1)
= lim supmax{sk_1 — 1 S~ 1 }
k00 log(nk) " log(ng + sx — 1)
= ﬁ

Hence, (x1,...,x,) € E(a,f).
It remains to prove that the density of K C N is zero. For n; < n < ny4; with some
k>1:

cifm<n<m+s,thenfli<n:ieK}= ]’.‘;ll(mj+tj)+n—nk+1;
e if mp+iIlsp <n<mng+({(+1)s; for some [ with 0</[<y, then we see that
Hi<n:ieK}= j].‘z_ll(sj+tj)+sk+l;

eifm+usy <n<my,thenfli<n:ieK}= Zle(sj + ).

Consequently,
) fli<n:iekK} . Zjl':l](sj"'tj)'*'sk‘*‘l
lim sup ———— < lim sup max { }
n—00 n k—oo 0=I<y ni + lSk
< limsup {211;_11 (5 +4) + s + Lk)}
T koo ny
=0,

where the last equality follows by the Stolz—Cesaro theorem and (4.2). By Lemmas 2.4
and 2.5,

dimp Eo > dimy [ | EGE1a)n)) 2 ) dimyg BCE (ahiz1) = m.
i=1

i=1

Similar arguments apply to the remaining cases. We only give the constructions for
the proper sequences {ni}i>1 and {si}x>1-

CASE2:0 < @ = 8 < o0. Take n; = 2% and s; = | logny | for k > 1.
CASE3: =0 < 8 < co. Take iy = 22 and 5, = | Blog ny | for k > 1.
CASE 4: @ = 0, = co. Take nz = 22 and s, = |klog g ] fork > 1.
CASE5: 0 < @ < 8 = oo. Take n; = 2k and s, = lak log ny | for k > 1.
CASE 6: @ = 3 = 0. Take n; = 2* and s; = |loglogny | for k > 1.
CASE 7: @ = 8 = oo. Take ny = 2 and 5; = |klogn| for k > 1.
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