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Abstract. For a non-conformal repeller � of a C1+α map f preserving an ergodic
measure μ of positive entropy, this paper shows that the Lyapunov dimension of μ can
be approximated gradually by the Carathéodory singular dimension of a sequence of
horseshoes. For a C1+α diffeomorphism f preserving a hyperbolic ergodic measure μ
of positive entropy, if (f , μ) has only two Lyapunov exponents λu(μ) > 0 > λs(μ), then
the Hausdorff or lower box or upper box dimension of μ can be approximated by the
corresponding dimension of the horseshoes {�n}. The same statement holds true if f is a
C1 diffeomorphism with a dominated Oseledet’s splitting with respect to μ.
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1. Introduction
In smooth dynamical systems, a fundamental approximation result asserts that a C1+α dif-
feomorphism f which preserves a hyperbolic ergodic measure μ of positive entropy can be
approximated gradually by compact invariant locally maximal hyperbolic sets–horseshoes
{�n}, in the sense that dynamical quantities on the horseshoes such as the topological
entropy and pressure, Lyapunov exponents, and averages of continuous functions are
approaching those of the measure μ.

This type of result is widely referenced to the landmark work by Katok [20] or Katok
and Hasselblatt (see [21]). Misiurewicz and Szlenk [28] earlier proved a related result for
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continuous and for piecewise monotone maps of the interval. Przytycki and Urbański [34]
obtained corresponding properties for holomorphic maps in the case of a measure with
only positive Lyapunov exponent. A related setting of dyadic diophantine approximations
was established by Persson and Schmeling in [32]. For a general C1+α diffeomorphism
f preserving a hyperbolic ergodic measure μ with positive entropy, assume that μ has
� different Lyapunov exponents {λj }�j=1. On each approaching horseshoe �n, Avila,
Crovisier, and Wilkinson [2] obtained a continuous splitting

T�nM = E1 ⊕ E2 ⊕ · · · ⊕ E�

and showed that the exponential growth of Dxf n|Ei is roughly λi for each i =
1, 2, . . . , �. A corresponding statement for C1+α non-conformal transformations (that
is, non-invertible maps) was shown in [11]. See [12], [16, 17], and [44] for other results
related to Katok’s approximation construction of C1+α maps.

A natural question is how large is that part of the dynamics described by these
horseshoes. So, it is interesting to estimate the Hausdorff dimension of the stable and/or
unstable Cantor sets of a horseshoe. If μ is a Sinai–Ruelle–Bowen (SRB) measure (that is,
a measure with a particular absolute continuity property on unstable manifolds; see [6] for
precise definitions), it was shown in [36] that μ can be approximated by ergodic measures
supported on horseshoes with arbitrarily large unstable dimensions, which generalized
Mendoza’s result in [26] for diffeomorphisms in a higher dimensional manifold. The
approach in [36] was based on Markov towers that can be described by horseshoes with
infinitely many branches and variable return times. However, there is an essential mistake
in the proof of the key proposition [36, Proposition 5.1]. The authors in [42] proved the
same result by a different method. They used the u-Gibbs property of the conditional
measure of the equilibrium measure and the properties of the uniformly hyperbolic
dynamical systems. Furthermore, in [42], the authors proved that the Hausdorff dimension
of μ can be approximated gradually by the Hausdorff dimension of the horseshoes {�n}
provided that the stable direction is one dimension. See also [24, 25, 27, 29, 37, 38] that
represent works close to this topic.

In this work, our main task is to compare the dimension of the horseshoes {�n} and
the given hyperbolic ergodic measure μ of a Cr (r ≥ 1) diffeomorphism in a more general
setting where μ may not be an SRB measure. For a non-conformal repeller � of a C1+α
map, using the approximation result in [11], we show that the Lyapunov dimension (see
equation (3.1) for the definition) of an f -invariant ergodic measure μ supported on �
can be approximated gradually by the Carathéodory singular dimension (see equation
(3.6) for the definition) of the horseshoes {�n}. For a C1+α diffeomorphism f preserving
a hyperbolic ergodic measure μ of positive entropy, if (f , μ) has only two Lyapunov
exponents λu(μ) > 0 > λs(μ), then the Hausdorff or lower box or upper box dimension of
μ can be approximated by the corresponding dimension of the horseshoes {�n}. The same
statement holds true if f is a C1 diffeomorphism with a dominated Oseledec’s splitting
with respect to μ.

We arrange the paper as follows. In §2, we give some basic notions and properties
about topological and measure theoretic pressures, and dimensions of sets and measures.
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Statements of our main results will be given in §3. In §4, we will give the detailed proofs
of the main results.

2. Definitions and preliminaries
In this section, we recall the definitions of topological pressure and various dimensions of
subsets and/or of invariant measures.

2.1. Topological and measure theoretic pressures. Let f : X → X be a continuous
transformation on a compact metric space X equipped with metric d. A subset F ⊂ X is
called an (n, ε)-separated set with respect to f if for any two different points x, y ∈ F , we
have dn(x, y) := max0≤k≤n−1 d(f

k(x), f k(y)) > ε. A sequence of continuous functions
� = {φn}n≥1 is called sub-additive if

φm+n ≤ φn + φm ◦ f n for all n, m ∈ N.

Furthermore, a sequence of continuous functions 	 = {ψn}n≥1 is called super-additive if
−	 = {−ψn}n≥1 is sub-additive.

2.1.1. Topological pressure defined via separated sets. Given a sub-additive potential
� = {φn}n≥1 on X, put

Pn(f , �, ε) = sup
{ ∑
x∈F

eφn(x)|F is an (n, ε)-separated subset of X
}

.

Definition 2.1. We call the quantity

Ptop(f , �) = lim
ε→0

lim sup
n→∞

1
n

log Pn(f , �, ε) (2.1)

the sub-additive topological pressure of (f , �).

Remark 2.2. If Φ = {ϕn}n≥1 is additive in the sense that ϕn(x) = ϕ(x)+ ϕ(f x)+ · · · +
ϕ(f n−1x) � Snϕ(x) for some continuous function ϕ : X → R, we simply denote the
topological pressure Ptop(f , Φ) as Ptop(f , ϕ).

Let Mf (X) denote the space of all f -invariant measures on X. For μ ∈ Mf (X), let
hμ(f ) denote the metric entropy of f with respect to μ (see Walters’ book [39] for details
of metric entropy), and let

L∗(�, μ) = lim
n→∞

1
n

∫
φn dμ.

The existence of the above limit follows from a sub-additive argument. In [9], the authors
proved the following variational principle.

THEOREM 2.3. Let f : X → X be a continuous transformation on a compact metric
space X, and � = {φn}n≥1 a sub-additive potential on X, then we have

Ptop(f , �) = sup{hμ(f )+ L∗(�, μ) : μ ∈ Mf (X), L∗(�, μ) �= −∞}.
Here we take the convention that sup ∅ = −∞.
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Although it is unknown whether the variational principle holds for super-additive
topological pressure, Cao, Pesin, and Zhao gave an alternative definition via variational
principle in [11]. Given a sequence of super-additive continuous potentials 	 = {ψn}n≥1

on a compact dynamical system (X, f ), the super-additive topological pressure of 	 is
defined as

Pvar(f , 	) := sup{hμ(f )+ L∗(	, μ) : μ ∈ Mf (X)},
where

L∗(	, μ) = lim
n→∞

1
n

∫
ψn dμ = sup

n≥1

1
n

∫
ψn dμ.

The second equality is due to the standard sub-additive argument.

2.1.2. Measure theoretic pressure. We first follow the approach in [33] to give the
definitions of topological pressures on arbitrary subsets. Given a sub-additive potential
� = {φn}n≥1 on X, a subset Z ⊂ X, and α ∈ R, let

M(Z, �, α, N , ε) = inf
{ ∑

i

exp
(

− αni + sup
y∈Bni (xi ,ε)

φni (y)
)

:

⋃
i

Bni (xi , ε) ⊃ Z, xi ∈ X and ni ≥ N for all i
}

.

Since M(Z, �, α, N , ε) is monotonically increasing with N, let

m(Z, �, α, ε) := lim
N→∞ M(Z, �, α, N , ε). (2.2)

We denote the jump-up point of m(Z, �, α, ε) by

PZ(f , �, ε) = inf{α : m(Z, �, α, ε) = 0} = sup{α : m(Z, �, α, ε) = +∞}.
Definition 2.4. We call the quantity

PZ(f , �) = lim inf
ε→0

PZ(f , �, ε)

the topological pressure of (f , �) on the set Z (see [14] for the weighted version of this
quantity).

Similarly, for α ∈ R and Z ⊂ X, define

R(Z, �, α, N , ε) = inf
{ ∑

i

exp
(

− αN + sup
y∈BN(xi ,ε)

φN(y)
)

:

⋃
i

BN(xi , ε) ⊃ Z, xi ∈ X
}

.

We set

r(Z, �, α, ε) = lim inf
N→∞ R(Z, �, α, N , ε),

r(Z, �, α, ε) = lim sup
N→∞

R(Z, �, α, N , ε)
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and define the jump-up points of r(Z, �, α, ε) and r(Z, �, α, ε) as

CPZ(f , �, ε) = inf{α : r(Z, �, α, ε) = 0} = sup{α : r(Z, �, α, ε) = +∞},
CPZ(f , �, ε) = inf{α : r(Z, �, α, ε) = 0} = sup{α : r(Z, �, α, ε) = +∞},

respectively.

Definition 2.5. We call the quantities

CPZ(f , �) = lim inf
ε→0

CPZ(f , �, ε) and CPZ(f , �) = lim inf
ε→0

CPZ(f , �, ε)

the lower and upper topological pressures of (f , �) on the set Z, respectively.

Given an f -invariant measure μ, let

Pμ(f , �, ε) = inf{PZ(f , �, ε) : μ(Z) = 1}
and then we call the quantity

Pμ(f , �) := lim inf
ε→0

Pμ(f , �, ε)

the measure theoretic pressure of (f , �) with respect to μ. Let further

CPμ(f , �, ε) = lim
δ→0

inf{CPZ(f , �, ε) : μ(Z) ≥ 1 − δ},
CPμ(f , �, ε) = lim

δ→0
inf{CPZ(f , �, ε) : μ(Z) ≥ 1 − δ}.

We call the quantities

CPμ(f , �) = lim inf
ε→0

CPμ(f , �, ε), CPμ(f , �) = lim inf
ε→0

CPμ(f , �, ε)

the lower and upper measure theoretic pressures of (f , �) with respect to μ, respectively.
It is proved in [10, Theorem A] that

Pμ(f , �) = CPμ(f , �) = CPμ(f , �) = hμ(f )+ L∗(�, μ) (2.3)

for any f -invariant ergodic measure μ with L∗(�, μ) �= −∞.

Remark 2.6. In fact, one can show that

Pμ(f , �) = inf{PZ(f , �) : μ(Z) = 1},
where P denotes either P or CP or CP , see [46] for a proof.

2.2. Dimensions of sets and measures. Now we recall the definitions of Hausdorff and
box dimensions of subsets and measures. Given a subset Z ⊂ X, for any s ≥ 0, let

Hs
δ(Z) = inf

{ ∞∑
i=1

(diam Ui)
s : {Ui}i≥1 is a cover of Z with diam Ui ≤ δ, for all i ≥ 1

}

and

Hs(Z) = lim
δ→0

Hs
δ(Z).
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The above limit exists, although the limit may be infinity. We call Hs(Z) the s-dimensional
Hausdorff measure of Z.

Definition 2.7. The following jump-up value of Hs(Z)

dimH Z = inf{s : Hs(Z) = 0} = sup{s : Hs(Z) = ∞}
is called the Hausdorff dimension of Z. The lower and upper box dimension of Z are
defined respectively by

dimB Z = lim inf
δ→0

log N(Z, δ)
− log δ

and dimB Z = lim sup
δ→0

log N(Z, δ)
− log δ

,

where N(Z, δ) denotes the least number of balls of radius δ that are needed to cover the
set Z. If dimBZ = dimBZ, we will denote the common value by dimB Z and call it the box
dimension of Z.

The following two results are well known in the field of fractal geometry, e.g. see
Falconer’s book [13] for proofs.

LEMMA 2.8. Let X and Y be metric spaces. For any r ∈ (0, 1), � : X → Y is an onto,
(C, r)-Hölder continuous map for some C > 0. Then

dimH Y ≤ r−1 dimH X, dimB Y ≤ r−1dimB X and dimB Y ≤ r−1dimB X.

COROLLARY 2.9. Let X and Y be metric spaces, and let� : X → Y be an onto, Lipschitz
continuous map. Then

dimH Y ≤ dimH X, dimB Y ≤ dimB X and dimB Y ≤ dimB X.

Given a Borel probability measure μ on X, the quantity

dimH μ = inf{dimH Z : Z ⊂ X and μ(Z) = 1}
= lim
δ→0

inf{dimH Z : Z ⊂ X and μ(Z) ≥ 1 − δ}
is called the Hausdorff dimension of the measure μ. Similarly, we call the two quantities

dimB μ = lim
δ→0

inf{dimB Z : Z ⊂ X and μ(Z) ≥ 1 − δ}
and

dimB μ = lim
δ→0

inf{dimB Z : Z ⊂ X and μ(Z) ≥ 1 − δ}
the lower box dimension and upper box dimension of μ, respectively.

If μ is a finite measure on X and there exists d ≥ 0 such that

lim
r→0

log μ(B(x, r))
log r

= d

for μ-almost every x ∈ X, then

dimH μ = dimB μ = dimB μ = d .

This criterion was established by Young in [45].
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3. Statements of main results
In this section, we will give the statements of the main results in this paper, and the proof
will be postponed to the next section.

3.1. Dimension approximation for uniformly expanding systems. Let f : M → M be a
smooth map of an m0-dimensional compact smooth Riemannian manifold M, and � a
compact f -invariant subset of M. Let Mf (�) and Ef (�) denote respectively the set of all
f -invariant measures and ergodic measures on �.

3.1.1. Definitions of repeller and Lyapunov dimension. We call � a repeller for f or f is
expanding on � if:
(1) there exists an open neighborhood U of � such that � = {x ∈ U : f n(x) ∈ U

for all n ≥ 0};
(2) there is κ > 1 such that

‖Dxf (v)‖ ≥ κ‖v‖ for all x ∈ � and v ∈ TxM ,

where ‖ · ‖ is the norm induced by the Riemannian metric on M, andDxf : TxM →
Tf (x)M is the differential operator.

Given an f -invariant ergodic measure μ supported on the repeller �, let λ1(μ) ≥
λ2(μ) ≥ · · · ≥ λm0(μ) and hμ(f ) denote the Lyapunov exponents and the measure
theoretic entropy of (f , μ), respectively. We refer the reader to [6, 39] for detailed
descriptions of Lyapunov exponents and the measure theoretic entropy. We further define
the Lyapunov dimension of μ as follows:

dimLμ :=
⎧⎨
⎩ �+ hμ(f )−λm0 (μ)−···−λm0−�+1(μ)

λm0−�(μ) , hμ(f ) ≥ λm0(μ),
hμ(f )

λm0 (μ)
, 0 ≤ hμ(f ) < λm0(μ),

(3.1)

where � = max{i : λm0(μ)+ · · · + λm0−i+1(μ) ≤ hμ(f )}.
The original definition of Lyapunov dimension in [1, 19, 22] is defined only for

hyperbolic systems as follows: assume that ν is an ergodic measure of a smooth diffeo-
morphism f with Lyapunov exponents λ1 ≥ · · · ≥ λu > 0 ≥ λu+1 ≥ · · · ≥ λm0 , then the
the Lyapunov dimension is

Lya dim ν = �+ λ1 + · · · + λu + · · · + λ�

|λ�+1| ,

where � = max{i : λ1 + · · · + λi ≥ 0}. Assume further that ν is an SRB measure, then
hν(f ) = λ1 + · · · + λu. As a consequence,

Lya dim ν = �+ hν(f )+ λu+1 + · · · + λ�

|λ�+1|
and � = max{i : −λu+1 − · · · − λi ≥ hν(f )}. Hence, the definition in equation (3.1) is
a reasonable substitute. For a C1 expanding map f, Feng and Simon [15] defined the
Lyapunov dimension of an ergodic measure as the zero of the measure theoretic pressure
Pμ(f , �f (t)) = 0 (see equation (3.4)). In this paper, we will prove that the unique
solution of the equation Pμ(f , �f (t)) = 0 is indeed our definition of Lyapunov dimension
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(see Theorem A). Furthermore, this paper shows that the Lyapunov dimension of an
ergodic measure defined in equation (3.1) is equal to its Carathéodory singular dimension
(see Proposition 3.2), so the Carathéodory singular dimension (see §3.1.3 for the detailed
definition) can be regarded as a geometric explanation of the Lyapunov dimension.

3.1.2. Singular valued potentials. Let � be a repeller of a smooth map f : M → M .
Given x ∈ � and n ≥ 1, consider the differentiable operatorDxf n : TxM → Tf n(x)M and
denote the singular values of Dxf n (square roots of the eigenvalues of (Dxf n)∗Dxf n) in
the decreasing order by

α1(x, f n) ≥ α2(x, f n) ≥ · · · ≥ αm0(x, f n). (3.2)

For t ∈ [0, m0], set

ϕt (x, f n) :=
m0∑

i=m0−[t]+1

log αi(x, f n)+ (t − [t]) log αm0−[t](x, f n). (3.3)

Since f is smooth, the functions x �→ αi(x, f n), x �→ ϕt (x, f n) are continuous for any
n ≥ 1. It is easy to see that for all n, � ∈ N,

ϕt (x, f n+�) ≥ ϕt (x, f n)+ ϕt (f n(x), f �).

It follows that the sequence of functions

�f (t) := {−ϕt (·, f n)}n≥1 (3.4)

is sub-additive, which is called the sub-additive singular valued potentials.

3.1.3. Carathéodory singular dimension. We recall the definition of Carathéodory
singular dimension of a repeller which is introduced in [11].

Let�f (t) = {−ϕt (·, f n)}n≥1. Given a subset Z ⊆ �, for each small number r > 0, let

m(Z, t , r) := lim
N→∞ inf

{ ∑
i

exp
(

sup
y∈Bni (xi ,r)

−ϕt (y, f ni )
)}

,

where the infimum is taken over all collections {Bni (xi , r)} of Bowen’s balls with xi ∈ �,
ni ≥ N that cover Z. It is easy to see that there is a jump-up value

dimC,r Z := inf{t : m(Z, t , r) = 0} = sup{t : m(Z, t , r) = +∞}. (3.5)

The quantity

dimC Z := lim inf
r→0

dimC,r Z (3.6)

is called the Carathéodory singular dimension of Z. Particularly, the Carathéodory
singular dimension of the repeller � is independent of the parameter r for small values
of r > 0 (see [11, Theorem 4.1]).
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For each f -invariant measure μ supported on �, let

dimC,r μ := inf{dimC,r Z : μ(Z) = 1},
and the quantity

dimC μ := lim inf
r→0

dimC,r μ

is called the Carathéodory singular dimension of the measure μ.

3.1.4. Approximation of Carathéodory singular dimension of repellers. Given a repeller
� of a C1+α map f, the following result shows that the zero of the measure theoretic
pressure function is exactly the Lyapunov dimension of an ergodic measure μ ∈ Ef (�),
and the Lyapunov dimension of an ergodic measure of positive entropy can be approxi-
mated by the Carathéodory singular dimension of a sequence of invariant sets. Recall that
�f (t) := {−ϕt (·, f n)}n≥1 is the sub-additive singular valued potentials with respect to f
(see the definition in equation (3.4)).

The following result gives a measure theoretic version of Bowen’s equation, that is, the
unique zero of the measure theoretic pressure is exactly the Lyapunov dimension of an
ergodic measure.

PROPOSITION 3.1. Let f : M → M be a C1 map of an m0-dimensional compact smooth
Riemannian manifold M, and � a repeller of f. For every f-invariant ergodic measure μ
supported on �, we have that

dimLμ = sμ,

where sμ is the unique root of the equation Pμ(f , �f (t)) = 0.

For an ergodic measure supported on a repeller with positive entropy, one can find
a sequence of compact invariant sets whose Carathéodory singular dimension gradually
approaches the Lyapunov dimension of the measure.

THEOREM A. Let f : M → M be a C1+α map of an m0-dimensional compact smooth
Riemannian manifold M and� a repeller of f, and let μ be an f-invariant ergodic measure
on � with hμ(f ) > 0. For any ε > 0, there exists an f-invariant compact subset �ε ⊂ �

such that dimC �ε → dimLμ as ε approaches zero.

Some comments on the previous theorem are in order. First, the map of higher
smoothness C1+α is crucial as it allows us to use some powerful results of Pesin theory.
Second, if f is a local diffeomorphism preserving an ergodic expanding measure μ of
positive entropy, that is, (f , μ) has only positive Lyapunov exponent, in this case, one can
also obtain an approximation result as in [11] so that we can obtain the second statement
in the previous theorem in this setting. In [37], for a C2 interval map f with finitely
many non-degenerate critical points, the author proved that the Hausdorff dimension of
an expanding measure μ can be approximated gradually by the Hausdorff dimension of a
sequence of repellers.

For each f -invariant ergodic measure μ supported on�, the following result shows that
the Carathéodory singular dimension of μ is exactly its Lyapunov dimension.
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PROPOSITION 3.2. Let f : M → M be a C1 map of an m0-dimensional compact smooth
Riemannian manifold M, and � a repeller for f. Then the following statements hold:
(1) for each subset Z ⊂ �, we have that

dimC Z = tZ ,

where tZ is the unique root of the equation PZ(f , �f (t)) = 0;
(2) for each f-invariant ergodic measure μ supported on �, we have that

dimC μ = dimLμ.

3.2. Dimension approximation in non-uniformly hyperbolic systems. In this section, we
first recall an approximation result in non-uniformly hyperbolic systems that is proved
by Avila, Crovisier, and Wilkinson [2], then we give the statement of our dimension
approximation result in non-uniformly hyperbolic systems.

3.2.1. Lyapunov exponents and holonomy maps. Let f : M → M be a diffeomor-
phism on an m0-dimensional compact smooth Riemannian manifold M. By Oseledec’s
multiplicative ergodic theorem (see [30]), there exists a total measure set O ⊂ M

such that for each x ∈ O and each invariant measure μ, there exist positive integers
d1(x), d2(x), . . . , dp(x)(x), numbers λ1(x) > λ2(x) > · · · > λp(x)(x), and a splitting

TxM = E1(x)⊕ E2(x)⊕ · · · ⊕ Ep(x)(x),

which satisfy that:
(1) DxfEi(x) = Ei(f (x)) for each i and

∑p(x)

i=1 di(x) = m0;
(2) for each 0 �= v ∈ Ei(x), we have that

λi(x) = lim
n→∞

1
n

log ‖Dxf n(v)‖.

Here we call the numbers {λi(x)}p(x)i=1 the Lyapunov exponents of (f , μ). In the case that
μ is an f -invariant ergodic measure, the numbers p(x), {di(x)}, and {λi(x)} are constants
almost everywhere. We denote them simply by p, {di}pi=1, and {λi}pi=1.

A compact invariant subset� ⊂ M is called a hyperbolic set if there exists a continuous
splitting of the tangent bundle T�M = Es ⊕ Eu, and constants C > 0, 0 < λ < 1 such
that for every x ∈ �:
(1) Dxf (E

s(x)) = Es(f (x)), Dxf (Eu(x)) = Eu(f (x));
(2) for all n ≥ 0, ‖Dxf n(v)‖ ≤ Cλn‖v‖ if v ∈ Es(x), and ‖Dxf−n(v)‖ ≤ Cλn‖v‖ if

v ∈ Eu(x).
Given a point x ∈ �, for each small β > 0, the local stable and unstable manifolds are
defined as follows:

Ws
β(f , x) = {y ∈ M : d(f n(x), f n(y)) ≤ β for all n ≥ 0},

Wu
β (f , x) = {y ∈ M : d(f−n(x), f−n(y)) ≤ β for all n ≥ 0}.
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The global stable and unstable sets of x ∈ � are given as follows:

Ws(f , x) =
⋃
n≥0

f−n(Ws
β(f , f n(x))), Wu(f , x) =

⋃
n≥0

f n(Wu
β (f , f−n(x))).

A hyperbolic set is called locally maximal if there exists a neighborhood U of � such that
� = ⋂

n∈Z f n(U). Recall that a horseshoe for a diffeomorphism f is a transitive, locally
maximal hyperbolic set that is totally disconnected and not finite.

Let Wu and Ws be the unstable and stable foliations of a hyperbolic dynamical system
(f , �). For x, y ∈ � with x close to y, let Wu

β (f , x) and Ws
β(f , x) be the local stable

foliations of x and y. Define the map h : Ws
β(f , x) → Ws

β(f , y) sending z to h(z) by
sliding along the leaves of Wu. The map h is called the holonomy map of Wu. The map h
is Lipschitz continuous if

dy(h(z1), h(z2)) ≤ Ldx(z1, z2),

where z1, z2 ∈ Ws
β(f , x) and dx , dy are natural path metrics onWs

β(f , x),Wu
β (f , y) with

respect to a fixed Riemannian structure on M. The constant L is the Lipschitz constant, and
it is independent of the choice of Ws . The map h is α-Hölder continuous if

dy(h(z1), h(z2)) ≤ Hdx(z1, z2)
α ,

where H is the Hölder constant. Similarly, we can define the holonomy map of Ws .

3.2.2. Approximation of Lyapunov exponents and entropy. For a C1+α diffeomorphism
f : M → M , Katok [20] showed that an f -invariant ergodic hyperbolic measure (a mea-
sure has no zero Lyapunov exponents) with positive metric entropy can be approximated by
horseshoes. However, Katok’s result does not explicitly mention a control of the Oseledets
splitting over the horseshoes. Recently, Avila, Crovisier, and Wilkinson [2] showed that
there is a dominated splitting over the horseshoes, with approximately the same Lyapunov
exponents on each sub-bundle of the splitting.

Recall that Df -invariant splitting on a compact f -invariant subset �:

T�M = E1 ⊕ E2 ⊕ · · · ⊕ E�, (� ≥ 2),

is a dominated splitting if there exists N ≥ 1 such that for every x ∈ �, any unit vectors
v, w ∈ TxM:

v ∈ Ei(x), w ∈ Ej(x) with i < j �⇒ ‖Dxf N(v)‖ ≥ 2‖Dxf N(w)‖.

We write E1 �E2 � · · · �E�. Furthermore, if there are numbers λ1 >λ2 > · · · > λ�,
constants C > 0, and 0 < ε < min1≤i<�(λi − λi+1)/100 such that for every x ∈ �,
n ∈ N, 1 ≤ j ≤ � and each unit vector u ∈ Ej(x), it holds that

C−1en(λj−ε) ≤ ‖Dxf n(u)‖ ≤ Cen(λj+ε),

then we say that

T�M = E1 ⊕ E2 ⊕ · · · ⊕ E�, (� ≥ 2)

is a {λj }1≤j≤�-dominated splitting.
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For the reader’s convenience, we recall Avila, Crovisier, and Wilkinson’s approximation
results in the following, see [2] for more details.

THEOREM 3.3. Let f : M → M be a C1+α diffeomorphism, and μ an f-invariant ergodic
hyperbolic measure with hμ(f ) > 0. For each ε > 0 and a weak-∗ neighborhood V of μ
in the space of f-invariant probability measures on M, there exists a compact set �∗

ε ⊂ M

and a positive integer N such that the following properties hold:
(1) �∗

ε is a locally maximal hyperbolic set and topologically mixing with respect to f N ;
(2) hμ(f )−ε < htop(f , �ε)< hμ(f )+ ε, where �ε =�∗

ε ∪ f (�∗
ε) ∪ · · · f N−1(�∗

ε);
(3) �ε is ε-close to the support of μ in the Hausdorff distance;
(4) each invariant probability measure supported on the horseshoe �ε lies in V;
(5) if λ1 > λ2 > · · · > λ� are the distinct Lyapunov exponents of (f , μ), with

multiplicities d1, d2, . . . , d�, then there exists a {λj }1≤j<�-dominated splitting
T�εM = E1 ⊕ E2 ⊕ · · · ⊕ E� with dim Ei = di for each i, and for each x ∈ �ε,
k ≥ 1 and each vector v ∈ Ei(x)

e(λi−ε)kN ≤ ‖Dxf kN(v)‖ ≤ e(λi+ε)kN for all i = 1, 2, . . . , �.

Remark 3.4. In the second statement, the original result does not give the inequality of
the right-hand side. However, only a slight modification can give the upper bound of the
topological entropy of f on the horseshoe.

Remark 3.5. By the estimation in the fifth statement of the above theorem, one can further
show that there exists a constant C > 0 such that

C−1e(λi−ε)n ≤ ‖Dxf n(v)‖ ≤ Ce(λi+ε)n for all i = 1, 2, . . . , �

for all x ∈ �ε, v ∈ Ei(x), and n ≥ 1. Without loss of generality, one can assume that
C = 1 by considering an equivalent norm.

3.2.3. Statements of results. Let f : M → M be a C1+α diffeomorphism of a compact
Riemannian manifold M, and let μ be a hyperbolic ergodic f -invariant probability measure
with positive entropy. Suppose that (f , μ) has only two Lyapunov exponents λu(μ) > 0 >
λs(μ). Ledrappier, Young [23] and Barreira, Pesin, Schmeling [7] proved that

Dimμ = hμ(f )

λu(μ)
− hμ(f )

λs(μ)
, (3.7)

where Dim denotes either dimH or dimB or dimB . Our strategy used to prove the dimension
approximation in this setting is as follows. It follows from Theorem 3.3 that hμ(f ) can be
approximated by the topological entropies of a sequence of horseshoes {�ε}ε>0. Using
well-established properties of dimension theory in uniform hyperbolic systems, one can
show that

Dim(�ε ∩Wi
β(f , x)) ≈ hμ(f )

|λi(μ)|
for i = u, s and every x ∈ �. Burns and Wilkinson [8] prove that the holonomy maps of
the stable and unstable foliations for (f , �ε) are Lipschitz continuous. Consequently, one
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can show that

dimH (�ε ∩Wu
β (f , x))+ dimH (�ε ∩Ws

β(f , x))

≤ Dim�ε

≤ dimB (�ε ∩Wu
β (f , x))+ dimB (�ε ∩Ws

β(f , x))

for every x ∈ �ε. Hence, Dimμ is approximately equal to Dim�ε. The detailed proofs will
be given in the next section.

THEOREM B. Let f : M → M be a C1+α diffeomorphism, and μ be an f-invariant
ergodic hyperbolic measure with hμ(f ) > 0. Assume that (f , μ) has only two Lyapunov
exponents λu(μ) > 0 > λs(μ). For each ε > 0, there exists a horseshoe �ε such that

|Dim �ε − Dim μ| < ε,

where Dim denotes either dimH or dimB or dimB .

In [41], the authors relaxed the smoothness of Theorem 3.3 to C1 under the additional
condition that Oseledec’s splitting Eu ⊕ Es of (f , μ) is dominated. In this setting, one
does not have Lipschitz continuity of the holonomy map in general. However, using Palis
and Viana’s method [31], one can show that for every γ ∈ (0, 1), there is some Dγ > 0
such that the holonomy maps of the stable and unstable foliations for the hyperbolic
dynamical system (f , �ε) (see Lemma 4.2) are (Dγ , γ )-Hölder continuous. Since γ is
arbitrary, using the ideas in [43], one can prove the following theorem.

THEOREM C. Let f : M → M be a C1 diffeomorphism, and let μ be an f-invariant
ergodic hyperbolic measure with hμ(f ) > 0. Assume that (f , μ) has only two Lyapunov
exponents λu(μ) > 0 > λs(μ) and the corresponding Oseledec’s splitting Eu ⊕ Es is
dominated. For each ε > 0, there exists a horseshoe �ε such that

|Dim�ε − Dimμ| < ε,

where Dim denotes either dimH or dimB or dimB .

4. Proofs
In this section, we provide the proof of the main results presented in the previous section.

4.1. Proof of Proposition 3.1. Given an f -invariant ergodic measure μ, let P(t) :=
Pμ(f |�, �f (t)), it is easy to see that the function t �→ P(t) is continuous and strictly
decreasing on the interval [0, m0]. It follows from equation (2.3) that P(0) = hμ(f ) ≥ 0,
and P(m0) ≤ 0 by Margulis-Ruelle’s inequality. Consequently, there exists a unique root
sμ of the equation Pμ(f |�, �f (t)) = 0.

If hμ(f ) = 0, it is easy to see that hμ(f ) = sμ = 0. Hence, dimL μ = sμ.
If 0 < hμ(f ) < λm0(μ), then P(0) > 0 and P(1) < 0. This implies that sμ ∈ (0, 1)

and 0 = P(sμ) = hμ(f )− sμλm0(μ). As a consequence, we have that

sμ = dimL μ = hμ(f )

λm0(μ)
.
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If hμ(f ) ≥ λm0(μ), note that

0 = hμ(f )+ L∗(�f (sμ), μ)

= hμ(f )−
m0∑

i=m0−[sμ]+1

λi(μ)− (sμ − [sμ])λm0−[sμ](μ).

Hence,

sμ = [sμ] +
hμ(f )− ∑m0

i=m0−[sμ]+1 λi(μ)

λm0−[sμ](μ)
.

However, since t �→ P(t) is strictly decreasing in t, we have that

[sμ] = max{i : λm0(μ)+ · · · + λm0−i+1(μ) ≤ hμ(f )}.
This yields that

sμ = dimLμ.

This completes the proof of the proposition.

4.2. Proof of Theorem A. By [11, Theorem 5.1], for each f -invariant ergodic measure
μ with positive entropy and for each ε > 0, there exists an f -invariant compact subset
�ε ⊂ � such that the following statements hold:
(i) htop(f |�ε) ≥ hμ(f )− ε;

(ii) there is a continuous invariant splitting TxM = E1(x)⊕ E2(x)⊕ · · · ⊕ E�(x) over
�ε and a constant C > 0 so that

C−1 exp(n(λj (μ)− ε)) ≤ ‖Dxf n(u)‖ ≤ C exp(n(λj (μ)+ ε))

for any unit vector u ∈ Ej(x), where λ1(μ) < · · · < λ�(μ) are distinct Lyapunov
exponents of f with respect to the measure μ.

By modifying the arguments in [11, Theorem 5.1], one may improve the estimate in
statement (i) as follows:
(i)′ hμ(f )+ ε ≥ htop(f |�ε) ≥ hμ(f )− ε.
Since�ε is a repeller of f, one can choose an f -invariant ergodic measure με on�ε so that
hμε (f ) = htop(f |�ε) yields that

Ptop(f |�ε , �f (t)) ≥ hμε (f )+ L∗(�f (t), με)
≥ hμ(f )+ L∗(�f (t), μ)− (t + 1)ε (by statement (ii))

≥ Pμ(f |�, �f (t))− (m0 + 1)ε.

However, since f is expanding, by the variational principle, there exists an f -invariant
ergodic measure μ̃ε on �ε so that

Ptop(f |�ε , �f (t)) = hμ̃ε (f )+ L∗(�f (t), μ̃ε)
≤ hμ(f )+ L∗(�f (t), μ)+ (t + 1)ε

≤ Pμ(f |�, �f (t))+ (m0 + 1)ε.
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Hence,

|Ptop(f |�ε , �f (t))− Pμ(f |�, �f (t))| ≤ (m0 + 1)ε.

By [11, Theorem 4.1], the Carathéodory singular dimension dimC �ε of �ε is given by
the unique root of the following equation:

Ptop(f |�ε , �f (t)) = 0.

This, together with Proposition 3.1, yields that

K| dimC �ε − dimLμ| ≤ |Pμ(f |�, �f (dimC �ε))− Pμ(f |�, �f (dimLμ))|
= |Pμ(f |�, �f (dimC �ε))− Ptop(f |�ε , �f (dimC �ε))|
≤ (m0 + 1)ε,

where K = minx∈� log m(Dxf ) and m(·) denotes the minimum norm of an operator.
Consequently, we have that dimC �ε → dimLμ as ε approaches zero.

4.3. Proof of Proposition 3.2. Given a subset Z ⊂ �, since PZ(f |�, �f (t)) is con-
tinuous and strictly decreasing in t, let tZ denote the unique root of the equation
PZ(f |�, �f (t)) = 0. For every t < tZ , we have that PZ(f |�, �f (t)) > 0. Fix such a
number t, and take β > 0 so that PZ(f |�, �f (t))− β > 0. Since

PZ(f |�, �f (t)) = lim inf
r→0

PZ(f |�, �f (t), r),

there exists r0 > 0 such that for each 0 < r < r0, one has

PZ(f |�, �f (t), r) > PZ(f |�, �f (t))− β.

Fix such a small r > 0. By the definition of topological pressure on arbitrary subsets, one
has

m(Z, �f (t), PZ(f |�, �f (t))− β, r) = +∞.

Hence, for each ξ > 0, there exists L ∈ N so that for any N > L, we have that

exp(−N(PZ(f |�, �f (t))− β)) inf
{ ∑

i

exp
(

sup
y∈Bni (xi ,r)

−ϕt (y, f ni )
)}

≥ inf
{ ∑

i

exp(−(PZ(f |�, �f (t))− β)ni + sup
y∈Bni (xi ,r)

−ϕt (y, f ni ))
}
> ξ ,

where the infimum is taken over all collections {Bni (xi , r)} of Bowen’s balls with ni ≥ N ,
which covers Z. This yields that

inf
{ ∑

i

exp
(

sup
y∈Bni (xi ,r)

−ϕt (y, f ni )
)}
> ξ exp(N(PZ(f |�, �f (t))− β)).

Letting N → ∞, we have that

m(Z, t , r) = +∞.
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Hence,

dimC,r Z ≥ t

for all 0 < r < r0. Consequently, since t < tZ is arbitrary, we have that

dimC Z ≥ tZ . (4.1)

However, for each t > tZ , one has that PZ(f |�, �f (t)) < 0. Fix such a number t, and
take β̃ > 0 so that PZ(f |�, �f (t))+ β̃ < 0. By the definition of topological pressure on
arbitrary subsets, for any R > 0, there exists 0 < r < R such that

PZ(f |�, �f (t), r) < PZ(f |�, �f (t))+ β̃.

For such a small r > 0, one has

m(Z, �f (t), PZ(f |�, �f (t))+ β̃, r) = 0.

Hence, for each small ξ̃ > 0, there exists L̃ ∈ N so that for any N > L̃, we have that

exp(−N(PZ(f |�, �f (t))+ β̃)) inf
{ ∑

i

exp
(

sup
y∈Bni (xi ,r)

−ϕt (y, f ni )
)}

≤ inf
{ ∑

i

exp
(

− (PZ(f |�, �f (t))+ β̃)ni + sup
y∈Bni (xi ,r)

−ϕt (y, f ni )
)}

≤ ξ̃ ,

where the infimum is taken over all collections {Bni (xi , r)} of Bowen’s balls with ni ≥ N ,
which covers Z. This yields that

inf
{ ∑

i

exp
(

sup
y∈Bni (xi ,r)

−ϕt (y, f ni )
)} ≤ ξ̃ exp(N(PZ(f |�, �f (t))+ β̃)).

Letting N → ∞, one has

m(Z, t , r) = 0.

Consequently, for such r > 0, one has

dimC,r Z ≤ t .

Hence, we have that

dimC Z = lim inf
r→0

dimC,r Z ≤ tZ . (4.2)

It follows from equations (4.1) and (4.2) that

dimC Z = tZ .

To show the second statement, for a given f -invariant ergodic measure μ supported on
�, and a subset Z ⊂ � with μ(Z) = 1, we have that

PZ(f |�, �f (t)) ≥ Pμ(f |�, �f (t)).

By item (1) of Theorem A and the first statement, one has

dimC Z ≥ dimL μ.
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By the definition of Carathéodory singular dimension of arbitrary subsets, one has

dimC,r Z ≥ dimL μ

for all sufficiently small r > 0. Consequently, we have that

dimC μ = lim inf
r→0

dimC,r μ = lim inf
r→0

inf{dimC,r Z : μ(Z) = 1} ≥ dimL μ.

To prove that dimC μ = dimL μ, we assume that dimC μ > t̃ > dimL μ. By the first
statement in Theorem A, we have that

Pμ(f |�, �(̃t)) < 0.

By the definition of measure theoretic pressure, for each n ∈ N, there exists 0 < rn < 1/n
so that

inf{PZ(f |�, �(̃t), rn) : μ(Z) = 1} < 0.

Hence, there exists a subset Zn ⊂ � with μ(Zn) = 1 so that

PZn(f |�, �(̃t), rn) < 0.

Put Z̃ := ⋂
n≥1 Zn, then μ(Z̃) = 1 and

PZ̃(f |�, �(̃t)) = lim inf
r→0

PZ̃(f |�, �(̃t), r)

≤ lim inf
n→∞ PZn(f |�, �(̃t), rn) ≤ 0.

It follows from the first statement and the definition of Carathéodory singular dimension
of μ that

dimC μ = lim inf
r→0

dimC,r μ ≤ lim inf
r→0

dimC,r Z̃ = dimC Z̃ ≤ t̃ ,

which yields a contraction. Hence, we have that dimC μ = dimL μ.

4.4. Proof of Theorem B. Ledrappier, Young [23] and Barreira, Pesin, Schmeling [7]
proved that

Dimμ = hμ(f )

λu(μ)
− hμ(f )

λs(μ)
,

where Dim denotes either dimH or dimB or dimB . Fix a small number ε > 0. By
Theorem 3.3, there exists a horseshoe �ε such that:
(i) |htop(f , �ε)− hμ(f )| < ε;

(ii) there exists a dominated splitting T�εM = Eu ⊕ Es with dim Ei = di (i = u, s),
and for each x ∈ �ε, every n ≥ 1, and each vector v ∈ Ei(x)(i = s, u),

e(λi (μ)−ε)n < ‖Dxf n(v)‖ < e(λi(μ)+ε)n.

The above estimation can be proven in similar fashion as Remark 3.2.
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Fixed any k ∈ N and denote F = f 2k . Since �ε is a locally maximal hyperbolic set for f,
�ε is also a locally maximal hyperbolic set for F. Notice that

Wu
β (F , x) ∩�ε = Wu

β (f , x) ∩�ε and Ws
β(F , x) ∩�ε = Ws

β(f , x) ∩�ε.
Let ‖ · ‖ andm(·) denote the maximal and minimal norm of an operator. For every x ∈ �ε,
Barreira [4] proved that

tku ≤ dimH (�ε ∩Wu
β (f , x)) ≤ dimB (�ε ∩Wu

β (f , x)) ≤ t
k
u,

where tku, tku are the unique solutions of

Ptop(F , −t log ‖DxF |Eu(x)‖) = 0 and Ptop(F , −t log m(DxF |Eu(x))) = 0,

respectively. Using the same arguments as in the proof of [3, Theorems 6.2 and 6.3], one
can prove that the sequences {tku} and {tku} are monotone. Furthermore, setting

tu := lim
k→∞ tku and tu := lim

k→∞ t
k
u,

one can show that tu, tu are the unique solutions of the following equations:

Pvar(f , −t{log ‖Dxf n|Eu‖}) = 0, Ptop(f , −t{log m(Dxf n|Eu)}) = 0,

respectively.
Consequently, we have that

tu ≤ dimH (�ε ∩Wu
β (f , x)) ≤ dimB (�ε ∩Wu

β (f , x)) ≤ dimB (�ε ∩Wu
β (f , x)) ≤ tu

and

tu = sup
{

hν(f )

lim
n→∞

1
n

∫
log ‖Dxf n|Eu‖ dν

: ν ∈ Mf (�ε)

}
,

tu = sup
{

hν(f )

lim
n→∞

1
n

∫
log m(Dxf n|Eu) dν

: ν ∈ Mf (�ε)

}
.

Combining with items (i) and (ii), one has

hμ(f )− ε

λu(μ)+ ε
≤ Dim(�ε ∩Wu

β (f , x)) ≤ hμ(f )+ ε

λu(μ)− ε
(4.3)

for every x ∈ �ε, where Dim denotes either dimH or dimB or dimB . One can show in a
similar fashion that

−hμ(f )− ε

λs(μ)− ε
≤ Dim(�ε ∩Ws

β(f , x)) ≤ −hμ(f )+ ε

λs(μ)+ ε
(4.4)

for every x ∈ �ε.

LEMMA 4.1. The holonomy maps of the stable and unstable foliations for (f , �ε) are
Lipschitz continuous.
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Proof. Fix a positive integer N, put F := f N and � = �ε. Since � is a locally maximal
hyperbolic set for f, so is � for F. Notice that

Wu
β (F , x) ∩� = Wu

β (f , x) ∩� and Ws
β(F , x) ∩� = Ws

β(f , x) ∩�. (4.5)

Let

aF = ‖DF−1|Eu‖, bF = ‖DF |Es‖, cF = ‖DF |Eu‖, dF = ‖DF−1|Es‖.

It follows from item (ii) that

1 <
‖DxF |Ei(x)‖
m(DxF |Ei(x))

< e2εN for every x ∈ � and i ∈ {s, u}.

Hence,

aF bF cF = ‖DF |Es‖ · ‖DF |Eu‖
m(DF |Eu) < e(λs(μ)+3ε)N < 1,

provided that ε > 0 is sufficiently small such that λs(μ)+ 3ε < 0. By [8, Theorem 0.2],
we have that the holonomy map of the stable foliation for (F , �) is C1. Similarly, note that

aF bF dF = ‖DF |Es‖
m(DF ||Es )m(DF ||Eu) < e(−λu(μ)+3ε)N < 1

provided that ε > 0 is sufficiently small such that λu(μ)− 3ε > 0. It follows from [8,
Theorem 0.2] that the holonomy map of the unstable foliation for (F , �) is C1. Combining
with equation (4.5), one has the holonomy maps of the stable and unstable foliations for
(f , �) are Lipschitz continuous.

By Lemma 4.1 and the fact f is topologically mixing on �ε, one has dimH (�ε ∩
Wu
β (f , x)), dimB(�ε ∩Wu

β (f , x)), and dimB(�ε ∩Wu
β (f , x)) are independent of β and

x (see the proof of [5, Theorem 4.3.2] for more details). Let

Aε,x = (�ε ∩Wu
β (f , x))× (�ε ∩Ws

β(f , x)).

By the properties of dimension (e.g. see [13, 33]), one has

dimH (�ε ∩Wu
β (f , x))+ dimH (�ε ∩Ws

β(f , x))

≤ dimH Aε,x

≤ dimB Aε,x

≤ dimB Aε,x

≤ dimB (�ε ∩Wu
β (f , x))+ dimB (�ε ∩Ws

β(f , x)).

(4.6)

Let � : Aε,x → �ε be given by

�(y, z) = Ws
β(f , y) ∩Wu

β (f , z).

It is easy to see� is a homeomorphism onto a neighborhood Vx of x in�ε. It follows from
Lemma 4.1 that � and �−1 are Lipschitz continuous (see [5, Theorem 4.3.2] for detailed
proofs). It follows from Corollary 2.9 that

Dim Vx = Dim Aε,x ,

https://doi.org/10.1017/etds.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.26


402 Y. Cao et al

where Dim denotes either dimH or dimB or dimB . Since {Vx : x ∈ �ε} is an open cover
of �ε, one can choose a finite open cover {Vx1 , Vx2 , . . . , Vxk } of �ε. It follows from
equation (4.6) that

dimH (�ε ∩Wu
β (f , x))+ dimH (�ε ∩Ws

β(f , x))

≤ dimH �ε = max
1≤i≤k

dimH Vxi

≤ dimB �ε = max
1≤i≤k

dimB Vxi

≤ dimB (�ε ∩Wu
β (f , x))+ dimB (�ε ∩Ws

β(f , x)),

for every x ∈ �ε. Combining equations (4.3) and (4.4), we obtain

lim
ε→0

Dim �ε = hμ(f )

λu(μ)
− hμ(f )

λs(μ)
= Dim μ,

where Dim denotes either dimH or dimB or dimB . This completes the proof of Theorem B.

4.5. Proof of Theorem C. For every pair (f , μ) satisfying the assumptions, Wang and
Cao [40, Corollary 1] proved that

dimH μ = hμ(f )

λu(μ)
− hμ(f )

λs(μ)
.

Fix a small number ε > 0. Wang, Cao, and Zou [41, Theorem 1.1] proved that there exists
a horseshoe �ε such that:
(i) |htop(f , �ε)− hμ(f )| < ε;

(ii) there exists a dominated splitting T�εM = Eu ⊕ Es with dim Ei = di (i = u, s),
and for each x ∈ �ε, every n ≥ 1, and each vector v ∈ Ei(x)(i = s, u),

e(λi (μ)−ε)n < ‖Dxf n(v)‖ < e(λi(μ)+ε)n.

The above estimation can be obtained by item (v) of [41, Theorem 1.1] and
Remark 3.2.

Fix a positive integer k ∈ N, denote F = f 2k . Since�ε is a locally maximal hyperbolic
set for f, so is �ε for F. Notice that

Wu
β (F , x) ∩�ε = Wu

β (f , x) ∩�ε and Ws
β(F , x) ∩�ε = Ws

β(f , x) ∩�ε.
For every x ∈ �ε, it follows from [43, Lemmas 3.5 and 3.6] that

tku ≤ dimH (�ε ∩Wu
β (f , x)) ≤ dimB (�ε ∩Wu

β (f , x)) ≤ t
k
u,

where tku, tku are the unique roots of

Ptop(F , −t log ‖DxF |Eu(x)‖) = 0, Ptop(F , −t log m(DxF |Eu(x))) = 0,

respectively. Using the same arguments as in the proof of [3, Theorems 6.2 and 6.3], one
can prove that the sequences {tku} and {tku} are monotone. Set

tu := lim
k→∞ tku and tu := lim

k→∞ t
k
u,
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where tu, tu are the unique solutions of the following equations:

Pvar(f , −t{log ‖Dxf n|Eu(x)‖}) = 0, Ptop(f , −t{log m(Dxf n|Eu(x))}) = 0,

respectively. Hence, we have that

tu ≤ dimH (�ε ∩Wu
β (f , x)) ≤ dimB (�ε ∩Wu

β (f , x)) ≤ dimB (�ε ∩Wu
β (f , x)) ≤ tu.

Since

tu = sup
{

hν(f )

lim
n→∞

1
n

∫
log ‖Dxf n|Eu(x)‖ dν

: ν ∈ Mf (�ε)

}

and

tu = sup
{

hν(f )

lim
n→∞

1
n

∫
log m(Dxf n|Eu(x)) dν

: ν ∈ Mf (�ε)

}
,

using items (i) and (ii), one can show that

hμ(f )− ε

λu(μ)+ ε
≤ Dim (�ε ∩Wu

β (f , x)) ≤ hμ(f )+ ε

λu(μ)− ε
(4.7)

for every x ∈ �ε, where Dim denotes either dimH or dimB or dimB . Similarly, we obtain
that

−hμ(f )− ε

λs(μ)− ε
≤ Dim (�ε ∩Ws

β(f , x)) ≤ −hμ(f )+ ε

λs(μ)+ ε
(4.8)

for every x ∈ �ε.
LEMMA 4.2. Let � be a locally maximal hyperbolic set of a C1 diffeomorphism such
that f is topologically mixing on �. Assume that the diffeomorphism f |� possesses a
{λu(μ), λs(μ)}-dominated splitting T�M = Eu ⊕ Es with Eu � Es and λu(μ) > 0 >
λs(μ). Then for every γ ∈ (0, 1), there exists Dγ > 0 such that the holonomy maps of
the stable and unstable foliations for f are (Dγ , γ )-Hölder continuous.

Proof. Since the diffeomorphism f |� possesses a {λu(μ), λs(μ)}-dominated splitting
T�M = Eu ⊕ Es with Eu � Es and λu(μ) > 0 > λs(μ), there exists a constant C > 0
such that for every x ∈ �, n ∈ N and each unit vector v ∈ Ei(x) (i = u, s),

C−1en(λi (μ)−ε) ≤ ‖Dxf n(v)‖ ≤ Cen(λi(μ)+ε).

As illustrated in Remark 3.2, for simplicity, we assume that C = 1 in the rest of the proof.
Fix a positive integer N and put F := f N . This implies that for every x ∈ �,

1 ≤ ‖DxF |Eu‖
m(DxF |Eu) ≤ e2Nε, 1 ≤ ‖DxF |Es‖

m(DxF |Es ) ≤ e2Nε.

Notice that � is also a locally maximal hyperbolic set for F and

Wu
β (F , x) ∩� = Wu

β (f , x) ∩� and Ws
β(F , x) ∩� = Ws

β(f , x) ∩�
for every x ∈ �.

https://doi.org/10.1017/etds.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.26


404 Y. Cao et al

Let πs and πu be the holonomy maps of stable and unstable foliations for f, that is, for
any x ∈ �, x′ ∈ Ws

β(f , x), and x′′ ∈ Wu
β (f , x) close to x,

πs : Wu
β (f , x) ∩� → Wu

β (f , x′) ∩� with πs(y) = Ws
β(f , y) ∩Wu

β (f , x′)

and

πu : Ws
β(f , x) ∩� → Ws

β(f , x′′) ∩� with πu(z) = Wu
β (f , z) ∩Ws

β(f , x′′).

Therefore, πs is also a map from Wu
β (F , x) ∩� to Wu

β (F , x′) ∩� and πu is also a map
from Ws

β(F , x) ∩� to Ws
β(F , x′′) ∩�.

Let U ⊂ M be an open subset such that � = ⋂
n∈Z f n(U), and U ⊂ Diff1(M) be a

neighborhood of f such that for each g ∈ U , �g = ⋂
n∈Z gn(U) is a locally maximal

hyperbolic set for g and there is a homeomorphism hg : � → �g that satisfies g ◦ hg =
hg ◦ f , with hg C

0-close to identity if g is C1-close to f. For g ∈ U , let T�gM =
Eug ⊕ Esg denote the hyperbolic splitting over �g . For i ∈ {u, s}, {Wi

β(g, z) : z ∈ �g} is
continuous on g in the following sense: there is {θig,x : x ∈ �}, where θig,x : Wi

β(f , x) →
Wi
β(g, hg(x)) is a C1 diffeomorphism with θig,x(x) = hg(x), such that if g is C1-close to f

then, for all x ∈ �, θig,x is uniformly C1-close to the inclusion of Wi
β(f , x) in M.

For any γ ∈ (0, 1), let UFγ be a small C1 neighborhood of F (recall F = f N ). Taking
G ∈ UFγ ∩ Diff2(M) such that for every x ∈ �G (here�G is a locally maximal hyperbolic
set for G), n ∈ N, and i = u, s,

enN(λi (μ)−2ε) ≤ ‖DxGn|Ei(x)‖ ≤ enN(λi (μ)+2ε). (4.9)

CLAIM 4.3. The following properties hold:
(a) hG|Wu

β (F ,x)∩� and (hG|Wu
β (F ,x)∩�)−1 are (Cγ , γ )-Hölder continuous for some

Cγ > 0;
(b) the stable and unstable foliations

{Ws(G, z) : z ∈ �G}, {Wu(G, z) : z ∈ �G}
are C1 and invariant for G. Thus the holonomy maps

πsG : Wu
β (G, hG(x)) ∩�G → Wu

β (G, hG(x′)) ∩�G with

πsG(y) = Ws
β(G, y) ∩Wu

β (G, hG(x′)),

and

πuG : Ws
β(G, hG(x)) ∩�G → Ws

β(G, hG(x′′)) ∩�G with

πuG(z) = Wu
β (G, z) ∩Ws

β(G, hG(x′′))

are Lipschitz continuous.

Proof. (a) See [43, Claim 3.1].
(b) Since G satisfies equation (4.9), we conclude
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‖DG|Eu‖ · ‖DG|Es‖
m(DG|Eu) ≤ e4NεeN(λs(μ)+2ε)

= eN(λs(μ)+6ε)

≤ 1,

provided that λs(μ)+ 6ε < 0. By [18, Theorem 6.3], the stable foliation is C1. A similar
argument shows that the unstable foliation is also C1. Then the corresponding maps
are uniformly C1 (see [35, pp. 540–541] for more details), which implies the desired
result.

We proceed to prove Lemma 4.2. For any y ∈ Wu
β (F , x) ∩�,

hG(π
s(y)) = hG(W

s
β(F , y) ∩Wu

β (F , x′))
= Ws

β(G, hG(y)) ∩Wu
β (G, hG(x′))

= πsG(hG(y)).

For the above γ , by Claim 4.3, there exists Dγ > 0 such that

πs = h−1
G ◦ πsG ◦ hG

is (Dγ , γ )-Hölder continuous. Using the same arguments, one can prove (πs)−1, πu, and
(πu)−1 are also (Dγ , γ )-Hölder continuous.

By Lemma 4.2 and the fact that f is topologically mixing on �ε, one has dimH (�ε ∩
Wu
β (f , x)), dimB(�ε ∩Wu

β (f , x)), and dimB(�ε ∩Wu
β (f , x)) are independent of β and

x (see the proof of [43, Lemma 3.4] for more details). Let

Aε,x = (�ε ∩Wu
β (f , x))× (�ε ∩Ws

β(f , x))

be a product space. By the properties of dimension (see [33, Theorem 6.5] for details),
one has

dimH (�ε ∩Wu
β (f , x))+ dimH (�ε ∩Ws

β(f , x))

≤ dimH Aε,x

≤ dimB Aε,x

≤ dimB Aε,x

≤ dimB (�ε ∩Wu
β (f , x))+ dimB (�ε ∩Ws

β(f , x)).

(4.10)

Let � : Aε,x → �ε be given by

�(y, z) = Ws
β(f , y) ∩Wu

β (f , z).

It is easy to see that � is a homeomorphism onto a neighborhood Vx of x in �ε. For
any γ ∈ (0, 1), by Lemma 4.2, there is Eγ > 0 such that � and �−1 are (Eγ , γ )-Hölder
continuous (see Step 2 in the proof of [43, Theorem A] for more details). By Lemma 2.8
and the arbitrariness of γ , one has

Dim Vx = Dim Aε,x ,
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where Dim denotes either dimH or dimB or dimB . Since {Vx : x ∈ �ε} is an open cover of
�ε, one can choose a finite open cover {Vx1 , Vx2 , . . . , Vxk } of�ε. It follows from equation
(4.10) that

dimH (�ε ∩Wu
β (f , x))+ dimH (�ε ∩Ws

β(f , x))

≤ dimH �ε = max
1≤i≤k

dimH Vxi

≤ dimB �ε = max
1≤i≤k

dimB Vxi

≤ dimB (�ε ∩Wu
β (f , x))+ dimB (�ε ∩Ws

β(f , x)),

for every x ∈ �ε. This together with equations (4.7) and (4.8) yields that

lim
ε→0

Dim �ε = hμ(f )

λu(μ)
− hμ(f )

λs(μ)
= Dim μ,

where Dim denotes either dimH or dimB or dimB . This completes the proof of Theorem C.
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