ON A PROBLEM OF ERDÖS AND MAHLER CONCERNING CONTINUED FRACTIONS

JEAN LELIS and DIEGO MARQUES[™]

(Received 29 May 2016; accepted 25 June 2016; first published online 19 October 2016)

Abstract

In 1939, Erdös and Mahler ['Some arithmetical properties of the convergents of a continued fraction', *J. Lond. Math. Soc.* (2) **14** (1939), 12–18] studied some arithmetical properties of the convergents of a continued fraction. In particular, they raised a conjecture related to continued fractions and Liouville numbers. In this paper, we shall apply the theory of linear forms in logarithms to obtain a result in the direction of this problem.

2010 Mathematics subject classification: primary 11J70; secondary 11J86.

Keywords and phrases: continued fractions, Liouville numbers, linear forms in logarithms.

1. Introduction

A real number ξ is called a *Liouville number* if, for any positive integer m, there exists a rational number p/q with $q \ge 1$ such that

$$0 < \left| \xi - \frac{p}{q} \right| < \frac{1}{q^m}.$$

In 1939, Erdös and Mahler [2] studied some arithmetical properties of the sequence of convergents $(A_n/B_n)_n$ of the continued fraction of a real number ξ . In particular, they proved that if $P(B_{n-1}B_nB_{n+1})$ is bounded for infinitely many n (where, as usual, P(m) denotes the largest prime factor of m), then ξ is a Liouville number. Also, they conjectured that if $P(A_nB_n)$ is bounded for infinitely many n, then ξ is a Liouville number. (This problem also appeared as [1, Problem 43].) We refer the reader to [3–6, 9] for more results on this subject.

In this paper, we solve a particular case of this problem by proving the following theorem.

THEOREM 1.1. Let ξ be a real number with sequence of convergents $(A_n/B_n)_n$. Suppose that $P(A_nB_n)$ is bounded for infinitely many different indices $n=n_1,n_2,\ldots$ If $n_{j+1}-n_j=o(\log B_{n_j})$ for all sufficiently large j, then ξ is a Liouville number.

^{© 2016} Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

2. The proof of Theorem 1.1

Let $(n_j)_j$ be the sequence such that, for all j, all the prime factors of $A_{n_j}B_{n_j}$ belong to $\{p_1, \ldots, p_k\}$. We claim that there exists a positive constant c depending only on k and the p_i such that

$$\log B_{n_{i+1}} \ge B_{n_i}^c \tag{2.1}$$

for all sufficiently large j.

Observe that we can prove that $P(A_nB_nA_{n+1}B_{n+1}) \to \infty$ as $n \to \infty$ by using Ridout's theorem [8] together with the fact that $|A_nB_{n+1} - A_{n+1}B_n| = 1$ for all n. Consequently, we can suppose that $n_{j+1} > n_j + 1$ and so A_{n_j}/B_{n_j} and A_{n_j+1}/B_{n_j+1} are convergents of the continued fraction of $A_{n_{j+1}}/B_{n_{j+1}}$. In particular,

$$0 < \frac{1}{2B_{n_i}B_{n_i+1}} < \left| \frac{A_{n_{j+1}}}{B_{n_{j+1}}} - \frac{A_{n_j}}{B_{n_j}} \right| < \frac{1}{B_{n_i}B_{n_i+1}}.$$

By multiplying by $B_{n_i}/|A_{n_i}|$,

$$0 < \left| \frac{A_{n_{j+1}} B_{n_j}}{B_{n_{i+1}} A_{n_i}} - 1 \right| < \frac{1}{B_{n_i} |A_{n_i}|}.$$

By hypothesis, we can write

$$\frac{A_{n_{j+1}}B_{n_j}}{B_{n_{j+1}}A_{n_i}}=p_1^{\beta_1^{(j)}}\cdots p_k^{\beta_k^{(j)}},$$

where $\beta_i^{(j)} \in \mathbb{Z}$. Thus,

$$0 < |p_1^{\beta_1^{(j)}} \cdots p_k^{\beta_k^{(j)}} - 1| < \frac{1}{B_n |A_n|}. \tag{2.2}$$

Now, we shall use Baker's method for obtaining a lower bound for $|p_1^{\beta_1^{(j)}} \cdots p_k^{\beta_k^{(j)}} - 1|$ by means of the following result of Matveev (see [7]).

Lemma 2.1. Let a_1, \ldots, a_m be nonzero rational numbers and let b_1, \ldots, b_m be integers such that $a_1^{b_1} \cdots a_m^{b_m} \neq 1$. Then

$$|a_1^{b_1}\cdots a_m^{b_m}-1|\geq (eB)^{-c'},$$

where $B = \max\{|b_1|, \dots, |b_m|\}$ and $c' = \frac{1}{2}em^{4.5}30^{m+3} \prod_{j=1}^m \max\{1, \log H(a_j)\}$ (where, as usual, $H(a/b) = \max\{|a|, |b|\}$).

In order to use this lemma, we take m = k, $a_i = p_i$ and $b_i = \beta_i^{(j)}$ for $1 \le i \le k$. Note that $H(p_i) = p_i$ and so

$$|p_1^{\beta_1^{(j)}} \cdots p_k^{\beta_k^{(j)}} - 1| \ge (eB)^{-c'},$$
 (2.3)

where c' is a constant depending only on k and the p_i . By combining (2.2) and (2.3),

$$B > B_{n,+1}^c |A_{n_i}|^c / e,$$
 (2.4)

where c = 1/c'. Suppose now that $B = B^{(j)} = |\beta_{\ell_i}^{(j)}|$. Then

$$B = |\beta_{\ell_j}^{(j)}| \le \nu_{p_{\ell_j}}(A_{n_j}B_{n_j}A_{n_{j+1}}B_{n_{j+1}}) \le \frac{5}{\log 2}\log B_{n_{j+1}},\tag{2.5}$$

observing that the *p*-adic valuation of m, $v_p(m)$, has upper bound $\log m/\log 2$ and that $|A_{n_{j+1}}| < (1 + |\xi|)B_{n_{j+1}}$ for all sufficiently large j. By combining (2.4) and (2.5), we arrive at

$$\log B_{n_{j+1}} > B_{n_j+1}^c \frac{|A_{n_j}|^c \log 2}{5e} > B_{n_j}^c,$$

because $|A_{n_j}|^c \log 2/(5e) > 1$ for all sufficiently large j (since $|A_{n_j}|$ tends to infinity as $j \to \infty$). In conclusion, we have proved (2.1), as desired.

Let m be a positive integer. In order to prove that ξ is a Liouville number, it suffices to prove the existence of a positive integer r such that $B_{r+1} \ge B_r^m$ (since $0 < |\xi - A_r/B_r| < 1/(B_rB_{r+1})$). Suppose, towards a contradiction, that $B_{r+1} < B_r^m$ for all positive integers r. In particular, this holds for $r \in \{n_j, \ldots, n_{j+1} - 1\}$. Thus,

$$B_{n_{j+1}} < B_{n_{j+1}-1}^m, B_{n_{j+1}-1} < B_{n_{j+1}-2}^m, \dots, B_{n_j+1} < B_{n_j}^m.$$

By iterating these inequalities, we obtain $B_{n_{j+1}} < B_{n_j}^{m^{n_{j+1}-n_j}}$. By taking the logarithm,

$$\log B_{n_{j+1}} < m^{n_{j+1}-n_j} \log B_{n_j}.$$

Now, we use (2.1) to arrive at $B_{n_i}^c < m^{n_{j+1}-n_j} \log B_{n_j}$. After some manipulation,

$$\log m > \frac{c \log B_{n_j} - \log \log B_{n_j}}{n_{j+1} - n_j}.$$

Since $n_{j+1} - n_j = o(\log B_{n_j})$, the right-hand side above tends to infinity as $j \to \infty$, which contradicts the fact that m is fixed. In conclusion, we obtain a positive integer r such that $B_{r+1} \ge B_r^m$ and, in particular, ξ is a Liouville number.

Acknowledgement

The authors are grateful to the referee for the suggestions which helped to improve the quality of this paper.

References

- Y. Bugeaud, Approximation by Algebraic Numbers, Cambridge Tracts in Mathematics, 160 (Cambridge University Press, New York, 2004).
- [2] P. Erdös and K. Mahler, 'Some arithmetical properties of the convergents of a continued fraction', J. Lond. Math. Soc. (2) 14 (1939), 12–18.
- [3] A. S. Fraenkel, 'On a theorem of D. Ridout in the theory of Diophantine approximations', *Trans. Amer. Math. Soc.* **105** (1962), 84–101.
- [4] A. S. Fraenkel, 'Transcendental numbers and a conjecture of Erdös and Mahler', J. Lond. Math. Soc. (2) 39 (1964), 405–416.

- [5] K. Mahler, 'Ein Analog zu einem Schneiderschen Satz, I', Proc. Kon. Ned. Akad. Wetensch. 39 (1936), 633–640.
- [6] K. Mahler, 'Ein Analog zu einem Schneiderschen Satz, II', Proc. Kon. Ned. Akad. Wetensch. 39 (1936), 729–737.
- [7] E. M. Matveev, 'An explict lower bound for a homogeneous rational linear form in logarithms of algebraic numbers, II', *Izv. Ross. Akad. Nauk Ser. Mat.* 64 (2000), 125–180; English transl. *Izv. Math.* 64 (2000), 1217–1269.
- [8] D. Ridout, 'Rational approximations to algebraic numbers', Mathematika 4 (1957), 125–131.
- [9] T. N. Shorey, 'Divisors of convergents of a continued fraction', J. Number Theory 17 (1983), 127–133.

JEAN LELIS, Departamento de Matemática, Universidade de Brasília, Brasília, 70910-900, Brazil e-mail: jeancarlos@mat.unb.br

DIEGO MARQUES, Departamento de Matemática, Universidade de Brasília, Brasília, 70910-900, Brazil e-mail: diego@mat.unb.br