UNION CURVES OF A HYPERSURFACE

C. E. SPRINGER

1. Introduction. A curve on an ordinary surface is a union curve! if its
osculating plane at each point contains the line of a specified rectilinear con-
gruence through the point. The author? has obtained the differential equa-
tions of union curves on a metric surface in ordinary space and has exhibited
certain generalizations for union curves of known results concerning geodesic
curves on a surface. It is the purpose of the present paper to develop the dif-
ferential equations of the union curves of a hypersurface V, immersed in a
Riemannian manifold V,4; of # 4+ 1 dimensions. The osculating plane to a
curve on a surface is generalized to a totally geodesic surface the straight lines
of which are geodesics in the space V,y1. A formula is given for the union
curvature vector of a curve in V.

2. Vector fieldin V,. If y*(a = 1,...,%n + 1) denote the coordinates of
a point in V43, and x* (¢ = 1,...,n) the coordinates of a point in V,, the
equations of the hypersurface V, may be written in the form

(1) ye=ye(x ..., x").

For points in the V, the functional matrix ||dy*/dx|| is of rank #. Let the
metric of V, be denoted by g;dx'dx’ and that of V,i1 by a.sdy°dy®. These
metrics are assumed to be positive definite. It follows that

2 Qasy® i Y% = gij »

where y° ; denotes the covariant derivative of y* with respect to x*. (Greek
indices always have the range 1,...,#n 4+ 1 and Latin indices the range
1,...,n) If Nedenote the components of a unit vector in V,; normal to
Vn, then

3) Qogy®,i NP =0 (t=1,...,n),
and

(4) aaﬁNuNﬂ = 1.

If a vector field in V, has components U in the y’s and components #° in
the «’s, then the relation
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(5) ¢ = yﬁyi ui

must obtain. If g* are the contravariant components in the ¥’s of the derived
vector relative to Vi1 of a vector of the field along a curve C in V,, and if
p* are the contravariant components in the x’s of the derived vector relative to
V., of the same vector along C, it can be shown?® that

dx? ]
(6) q® = Qij ut % Ne + ya’ipz’

where Q;; dx® dx’ is the second fundamental form for V.

3. Totally geodesic surface in V,,;. As an analogue for the osculating
plane in ordinary space a totally geodesic surface in V,,1 is introduced. It
is determined by the tangent to the curve C with equations x* = x%(s) in V,,
s denoting arc length, and by the first curvature vector in V,,1 of the curve
C. Let A® be the contravariant components in the y’s of a unit vector in the
direction of a curve of a congruence of curves, one curve of which passes through
each point of V,. The vector with components A¢ is, in general, not normal
to V,, and may be specified by

(7 A = tPye,; 4+ rNe,
where ¢ and 7 are parameters. Because A® represent a unit vector @.gA\"\f = 1,
and it follows by use of equations (3), (4), (7) that
bt =1 — 12
If the geodesic in V, .1 in the direction of the curve of the congruence with

direction A% is to be a geodesic of the totally geodesic surface, then it is neces-
sary that A® be a linear combination of vy*,; #% and g*. Hence,

® tiye,i + rN* = vy°,; u® + wgs,

wherein v and w are to be determined, the u* of equations (5) are now dx?*/ds,
and ¢® are given by

dx® dx’

9 a — Qz‘“‘ bt Na a”: i’

9 q el a4

and p°® are given by
. dx¢ 2| dx? dx®

10 SRS

(10) p ds? {J ds ds

. dxtdx? ..
If K, is written for Q; PR which is the normal component of the curva-

s ds

ture vector of the curve Cin V, 1, equations (8) take the form

3C. E. Weatherburn, Riemannian Geometry and the Tensor Calculus (Cambridge University
Press, 1938).
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. dxt .
(11) t*ye + rNe = vy%,; 7}3 + w(K.N* 4 9%, p%).

Multiplication of equations (11) by a.)*,;, summation with respect to a,
and use of equations (2), (3) yield the z equations

) dx’ :
(12) gitt = vgij o + wgiip*

If equations (11) are multiplied by a.sN*®, summation on a and use of (4) give
the relation

(13) r = wK,.

J
The solution of (12) for v is effected by multiplying by (Zi and summing on j.
s

- dx? .
Because g;;p* o= 0, it follows that
s

- dx’
14 U = gitt — .
(14) gij ds
Therefore, on using the values of v and w from (13) and (14), the # equations
(12) take the form
dx* dx™ | r :
— gimt' —— + — gip".
81 s K. gip

15 Gt = g
(15) gij g]ds

Multiplication of equations (15) by g%, summation on 7, and the replacement
of t*/r by I* lead to

m k
0o Ly

=0 k=1,...,n),
ds ds ( )

wherein p* are given by equations (10).

4. Union curves in V,. For a congruence specified by the parameters J¥,
the solutions of the # equations (16) determine the union curves in V, relative
to that congruence. The parameter » can not vanish under the assumption
that the direction A% is not in the V,. The left members of equations (16)
may be denoted by ¥, which we shall call the contravariant components of
the union curvature vector in V,y1. A union curve of V, with respect to a
congruence determined by the parameters [* may therefore be defined as a
curve along which the union curvature vector is a null vector.

By use of (10) and the fact that g;;dx’dx’ = ds?, equations (16) can be writ-
ten in the form

17 7t = Pk — Kpb = 0,

where the vector »* is defined by
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i ] k
yk = g” dx (lk @ —l] éx_> .
ds ds ds

From equations (17) it follows that if the curve C is an asymptotic curve in
V., in which case K, = 0 along the curve, then for a union curve (3* = 0),
p* = 0 and the curve is a geodesic. Hence, if a union curve is an asymptotic
curve, it is a geodesic. Furthermore, if a union curve is a geodesic, then it
is either an asymptotic curve or the vector of components »* is a null vector.

The magnitude Ky of the vector n* is given by Ky?2 = gi;n'n’. From equa-
tions (7) it is seen that the angle ¢ between the vectors A\ and N® in V,; is
given by cos ¢ = 7, and because t¥/r = I¥ and ti#° = 1 — ¢, it follows that
g:il%W = tan? ¢. The angle o between the vector /* and the tangent vector to

k
C is given by cos a = gikli%x— . In terms of ¢ and «, the magnitude Ky of
s
the union curvature vector can be shown to be given by
Ky = K, — K, tan ¢ sin q,

where K, is the geodesic curvature of the curve C in V,. Itis to be observed
that if ¢ = 0, the union curve is a geodesic.
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