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CONTAGIONS IN RANDOM NETWORKS
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Abstract

‘We consider a threshold epidemic model on a clustered random graph model obtained from
local transformations in an alternating branching process that approximates a bipartite
graph. In other words, our epidemic model is such that an individual becomes infected
as soon as the proportion of his/her infected neighbors exceeds the threshold ¢ of the
epidemic. In ourrandom graph model, each individual can belong to several communities.
The distributions for the community sizes and the number of communities an individual
belongs to are arbitrary. We consider the case where the epidemic starts from a single
individual, and we prove a phase transition (when the parameter g of the model varies) for
the appearance of a cascade, i.e. when the epidemic can be propagated to an infinite part
of the population. More precisely, we show that our epidemic is entirely described by a
multi-type (and alternating) branching process, and then we apply Sevastyanov’s theorem
about the phase transition of multi-type Galton—Watson branching processes. In addition,
we compute the entries of the mean progeny matrix corresponding to the epidemic. The
phase transition for the contagion is given in terms of the largest eigenvalue of this matrix.
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1. Introduction

The spread of diseases or email viruses is well modeled by classical (SI, SIR, SIS) epidemics,
whose study on complex networks has attracted a lot of attention in recent years; see Newman
[24] for a review on complex networks and an introduction to epidemiological processes on
such networks. The simplest epidemic model was first formulated by Reed and Frost for a
population in which any two individuals can be in contact; see [28] for more details. It can
be easily generalized on networks, and in that case is equivalent to a bond percolation on the
network [21], which is widely studied on random graphs (see [15] and [19] for bond percolation
on the configuration model).

In such epidemic models, each node can be independently influenced by each of his/her
neighbors. For the diffusion of an innovation, an individual’s adoption behavior is highly
correlated with the behavior of his/her neighbors [27], and threshold epidemic models are more
appropriate to model such diffusions. In this paper we consider the game-theoretic contagion
model proposed by Blume [4] and Morris [20], and described below.

Consider an undirected graph G in which the nodes are the individuals in the population and
there is an edge (i, j) if i and j can interact with each other. Each node has a choice between
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two possible actions labeled A and B. On each edge (i, j), there is an incentive for i and j to
have their actions match, which is modeled as the following coordination game parametrized
by a real number g € (0, 1). If i and j choose A (respectively B), they each receive a payoff
of g (respectively (1 — g)); if they choose opposite actions, then they receive a payoff of 0.
Then the total payoff of a player is the sum of the payoffs with each of his/her neighbors. If
the degree of node i is d; and SiB is the number of his/her neighbors playing B, then the payoff
to i from choosing A is g(d; — SiB ) while the payoff from choosing B is (1 — q)SiB. Hence,
in a best-response dynamic, i should adopt B if SI.B > gd; and A if Sl.B < gd;. A number of
qualitative insights can be derived from such a model even at this level of simplicity [16], [27].
Specifically, consider a network where all nodes initially play A. If a small number of nodes
are forced to adopt strategy B (the seed) and we apply best-response updates to other nodes
in the network, then these nodes will be repeatedly applying the following rule: switch to B
if enough of your neighbors have already adopted B. There can be a cascading sequence of
nodes switching to B such that a network-wide equilibrium is reached in the limit.

In [20], the contagion threshold of a connected infinite network was defined as the maximum
threshold g, at which a finite set of initial adopters can cause a complete cascade, i.e. the resulting
cascade of adoptions of B eventually causes every node to switch from A to B. There are two
possible models to consider depending on whether the initial adopters changing from A to B
apply or not a best-response update. It was shown in [20] that the same contagion threshold
arises in both models. Hence, without loss of generality, we restrict ourselves to the model
where the initial adopters are forced to play B forever. In this case, the diffusion is monotone
and the number of nodes playing B is nondecreasing. When the graph G is deterministic, in
[20] Morris computed (and gave general bounds on) the corresponding contagion threshold.

The graph G that we consider here will have most of the properties observed in real-world
networks. One of the most striking features shared by real-world networks is the scale-free
property [2]: their degree distribution follows a power law. Random graphs with an arbitrary
degree distribution [3] cover this property. The contagion model on such graphs was studied
by heuristic means by Watts [29], and a generalization of it was studied rigorously by Lelarge
[17]. In particular, it was shown in [17] that the notion of contagion threshold for a sequence of
random graphs should be weakened in order to make sense (indeed random graphs are typically
not connected) and the notion of pivotal players was introduced. Informaly, a pivotal player
is a node such that if this node is forced to play B forever and it is the only node playing B,
then a global cascade occurs. Hence, in this paper we consider the case where a node playing
B is forced to play B forever and where the seed consists of only one vertex. The graph G
will be infinite and random, and we are interested in the cascade phenomenon, i.e. when an
infinite subset of the population will eventually adopt B. In this setting, we will show a phase
transition for this phenomenon, depending on the value of the parameter ¢ of the model.

Another feature of real-world networks is that they all have a high clustering coefficient [30];
see also [23] for several examples. The clustering coefficient of a graph is, by definition, the
probability that two given nodes are connected, knowing that they have a common neighbor.
Since the asymptotic clustering coefficient of random graphs with an arbitrary degree distribu-
tion is O (locally, they look like trees), this random graph model fails to cover the clustering
property of real-world networks. Recently, the contagion on clustered random graph models
was studied by heuristic means in [11], and rigorously in [7] and [8] (in which a generalization
of the contagion model is considered). The random graph models considered have a tunable
clustering coefficient and an arbitrary degree distribution, which in particular allows the study
of the clustering impact on the contagion model. However, these random graph models do
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not cover the following property: in real-world networks, a node often belongs to several
communities. A community is a set of nodes which are densely connected internally and only
sparsely connected with other nodes of the network; in the clustered random graph models
mentioned above, communities are represented by cliques, and a node can only belong to at
most one clique. On the contrary, and as explained in [12] and [25], the structure of many
real-world networks is close to the one-mode projection of a bipartite graph, in which each
node belongs (possibly) to several cliques (communities).

The one-mode projection of a bipartite graph is defined as follows. Let ' C V x E be
a bipartite graph, i.e. a graph with two types of nodes: V-nodes and E-nodes, and in which
there are no edges between nodes of the same type. For instance, each E-node of I" represents
a ‘community’ (a movie), and the V-nodes linked to a common E-node are members of the
same community (actors in the same movie). The one-mode projection of I" on the V-nodes
(actors) is a unipartite graph: the nodes are the V-nodes of I", and there is an edge between two
V-nodes if they belong to at least one common community (if these actors played together in at
least one movie). One can construct a random graph by considering the one-mode projection
of a random bipartite graph. To the best of the authors’ knowledge, neither rigorous proofs
nor heuristics have been carried out for the contagion on such a model. There are several
random bipartite graph models, and even the literature on the classical SIR epidemic on the
one-mode projection of such models is incomplete. When the random bipartite graph has
arbitrary degree distribution for each one of both types of nodes, heuristics have been derived
by Newman [22] for the classical SIR epidemic on the one-mode projection of it. Rigorous
results (for the classical SIR epidemic) were obtained by Britton et al. [6] and by Bollobés
et al. [5], but the random graphs considered are such that their asymptotic degree distributions
are respectively Poisson and mixed Poisson. Recently, Hackett er al. [13] studied by heuristic
means the contagion model on random graphs with overlapping communities, i.e. with nodes
that can belong to several cliques. They also derived results about the clustering effect on the
contagion spread (for their random graph model). However, the communities in that random
graph model are only of size three (that model does not come from the one-mode projection of
a random bipartite graph).

Our random graph model is inspired from the one-mode projection of a random bipartite
graph with arbitrary degree distributions. More precisely, we consider the one-mode projection
of an alternating branching process that approximates locally this random bipartite graph (see
[9, Section 7.2] for this approximation), and study rigorously the contagion on this random
graph model. Our goal is twofold:

(i) we study rigorously the contagion on random graphs with overlapping communities;

(ii) our study provides heuristics for the contagion on the one-mode projection of random
bipartite graphs with arbitrary degree distributions.

This paper is organized as follows. In Section 2 we define our random graph model and
recall its degree distribution and clustering coefficient. In Section 3 we state our theorem about
the phase transition for the contagion spread on our random graph model with overlapping
communities. In Section 4 we compute the entries of the matrix involved in the phase transition.
Finally, in Section 5 we prove this phase transition, applying Sevastyanov’s theorem about the
phase transition of multi-type Galton—Watson branching processes.
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2. Random graph model and its basic properties

In this paper we consider the one-mode projection of an alternating branching process. We
define this branching process in Section 2.1, and our random graph model in Section 2.2. The
degree distribution and clustering coefficient of our random graph model are the same as those
computed in [25, Section IV], and are recalled in Section 2.3.

Let p = (pg)a and ¢ = (qy)w be two probability distributions with positive finite means
A=) ,dpq € (0,00) and =) wqy € (0, 00), respectively.

2.1. Alternating branching process

Our random graph model is constructed from the following alternating branching process
I'(p, q), whose definition is given in Section 2.1.1 and phase transition (for I'(p, ) to be
finite/infinite) recalled in Section 2.1.2.

2.1.1. Definition. The branching process I'(p, ¢) is an alternating one: each node is either of
type V or E, and a generation of V-nodes gives birth to a generation of E-nodes, and conversely.

Let D and W be independent random variables with the following distributions (for any
d>1,w=>1):

d

~ d -
P(D:d—l):%, POW = w— 1) = 24

The variable D (respectively W) represents the offspring number of a V-node (respectively
E-node), except for the root (whose offspring distribution is p). The reasons why we choose
this particular distribution are the following.

e This distribution gives a unimodular tree (the distribution is invariant by rerooting).

e The branching process I'(p, ¢) is a local approximation for the random bipartite graph
B = B(p, q) with arbitrary degree distributions p and ¢ [9, Section 7.2]. Informally,
the root of the branching process I represents a ‘typical’ vertex in 8. Hence, our random
graph model G is a local approximation for the one-mode projection Gg(p, q) of B,
and the root of G represents a ‘typical’ vertex in Gg(p, q).

We can formally define the branching process I' = I'(p, ¢) as follows (only the definition
of the ith V- and E-generations are required in the remaining sections). The root has type V
and offspring distribution p: its number Dy of children satisfies P(Dy = d) = py. Let
(W;'))i, j>1 (respectively (D/El))i,kzl) be random variables distributed as W (respectively D),
all variables being independent and independent from Dg. Then each child j (1 < j < Do) of

the root is an E-node that gives birth to Wj(l) V nodes, so that the root has s(l) ZjDol W(l)
grandchildren. Each suchnode k, 1 <k < EV , 1s a V-node that gives birth to D,ﬁ ) E- nodes.
m

Set &, 1 = i\;l D,El). Notation is summarized in Figure 1.
The root corresponds to V -generation numbered 0, its children to E-generation 0, and so on
(until now, we constructed V and E-generations 0 and 1). Assume that generations O toi — 1

are constructed (i > 2), with &, =D for the number of nodes in the (i — 1)th E- generation.
Then eachnode j, 1 < j < 51(5 , gives birth to W(l) V-nodes, and we seté(l) ZfE 1 W](i)
for the total number of nodes in the ith V-generation. Each such node k, 1 < k < E(l)
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T'(p,q) Number of nodes in each generation
5(0) —
5(0)
(1) Z W(l)
(1) Z D(l)

l:’ E-node Q V-node

FIGURE 1: Notation for the alternating branching process I'(p, q).

. O
gives birth to D(l) E-nodes, and we set Eg) = Zi"zl D;’) for the total number of nodes in the
ith E- generatlon

2.1.2. Extinction versus survival. Let D (respectively W) be a random variable with distribu-
tion p (respectively ). We define the following generating functions for x € [0, 1]:

Wqw 41 dpa 4_y
F(x) = d G(x) = 2wl H(x) = —- )
(x) E Pax (x) § " x (x) E T
d>0 w>1 d>1

The phase transition for I'(p, q) to be finite/infinite is given by the next proposition, which

is a direct consequence of [1, Theorem 1, Section I.A.5] (heuristics can also be found in
[25, Section IV.A]).

Proposition 1. Let pex; be the probability that the branching process I (p, q) is finite.
o IfE[WW — DIE[D(D — 1)] < E[W]E[D] then pex = 1.
o [fE[W(W — DIE[D(D — 1)] > E[W]E[D] then pext < 1. More precisely, we have

Pext = (F o G)(n),
where n ;= inf{x € [0, 1]: (H o G)(x) = x}.

2.2. Random graph model

We construct the (rooted and unipartite) random graph G = Gr(p, q) as follows. The root
of G is the root of I' = I'(p, q), and the parent and the children of each E-node e in I" are
connected into a clique before e is removed, as illustrated in Figure 2. In other words, the
random graph Gr(p, ¢q) is the one-mode projection of I".

Even if the graph G is not a tree, its particular construction allows us to use the same
terminology as for a tree (see Figure 2). More precisely, let v be a node in G, and let d be its
distance from the root. By construction, there is exactly one node u, among the neighbors of v,
which is at distance d — 1 from the root: it is called the parent of v. In addition, the neighbors
of v that are at distance d from the root are called the brothers of v, and those at distance d + 1
the children of v. If we consider a given clique of G, the parent of the clique is the node whose
distance from the root is minimal.
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brothers of v

| OOO0]

children of v

FIGURE 2: Random graph model Gr(p, ¢), constructed from the branching process I'(p, q).

Note that the random graph G is infinite if and only if I is, so that the phase transition for G
to be finite/infinite is given by Proposition 1 above.

2.3. Degree distribution and clustering coefficient

This section contributes to the description of our random graph model, but is not needed in
the sequel. The next proposition can be found in Newman [22, Section III].

Proposition 2. (Newman [22].) We consider the random graph Gr(p, q). Then the degree
distribution Dy, of the root is given by

00 Hd w;
j=1Wjqu;
1 wy+-Fwg=k-+d

Let Ty be the number of triangles the root belongs to, and let Py be the number of connected
triples the root belongs to. Then the local clustering coefficient C of the root is given by

o E(To)
T E(P)
1
= E W = DW = 2)]
E[D(D — )] (E[W(W — D]\? 1 -1
X( [ é[p] )]( [ Ié[W] ”) +E[W]E[W(W—1)(W—2)]) ,

where D (respectively W) is a random variable with distribution p (respectively q).

3. Phase transition for the contagion: statement of our result

In Section 3.1 we define the contagion model described in the introduction, on the random
graph G = Gr(p, q). In Section 3.2 we state our main theorem (whose proof is given in
Section 5).
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3.1. Epidemic model

Let g € (0,1). We consider the contagion model described in the introduction, on the
random graph G = Gr(p, q), with parameter g and the seed consisting in the root only. For
simplicity, players B are called active vertices, and players A inactive vertices. The progressive
dynamics of the contagion on the graph G operates as follows: the root starts out being active;
all other vertices are inactive. Time operates in discrete stepst = 1,2, 3, .... Atagiventimez,
any inactive vertex becomes active if its proportion of active neighbors is strictly greater than g.
Once active, a vertex stays active. Hence, the set of active vertices increases with time, and we
define G(qt as the graph induced by the vertices in G that are active in the limit as time tends
to oo. We say that a cascade occurs if the graph Gact) is infinite. We will show a phase transition

for the cascade phenomenon, i.e. for the graph G‘(:gt) to be finite/infinite.

3.2. Phase transition

In the following, we make the additional assumption that the degrees of nodes in I'(p, q) are
bounded: there exist d, w > 1 such that p; = 0 ford > d and ¢,, = 0 for w > w. It ensures
that the number of types for the multi-type branching process defined in Section 5.1 is finite,
which is required in the proof of Theorem 1. In addition, we assume that pg = go = g1 = 0.

We consider the random graph G = Gr(p, ¢q) defined in Section 2.2. We define the type of
avertex in G as its number of childrenin G. Forall xo, x € {0, 1, ..., d_zi)}, we set my,  for the
mean number of active children of type x of an active vertex of type xo in G. In other words, we
consider an active vertex u, different from the root, with x¢ children (if the probability that there
exists such a vertex is 0, then we set my, , = 0). Once the contagion has spread among all its
children, we count the number of such children that are active and have exactly x children. The
mean of this quantity (among all possible realizations of G for the children and grandchildren

of u) is called my, .. The matrix M = (mXo,X)Osxo,xg(iu‘; will be computed in Section 4.

We have the following phase transition for the graph G;Zt) to be finite/infinite, and is proved

in Section 5.
(9)

act

Theorem 1. Let pr be the probability that the random graph G
largest eigenvalue of M. Then, we have

() ifq > § then pr = 1;

is finite, and let p be the

(i) ifg < 1 then
(q)

o if p» = q2 = 1 then the random graph G is infinite with probability 1;

e otherwise pr = 1 ifand only if p < 1.

The idea developed in Sections 4 and 5 is the following. We first describe the epidemic
(i.e. the graph G act) by a branching process. The construction of the random graph G implies
independence and recursion properties that left us with the study of the contagion spread inside
one clique. Yet this propagation depends on the degree of the nodes (cf. Lemma 1 in Section4.1).
In other words, the number of active vertices at a given generation depends on the offspring
number of these vertices. Our idea is to use a multi-type (and alternating) branching process to
encode this information (cf. Section 5.1). The definition of this branching process requires not
only the computation of the number of active vertices inside a clique, but rather the computation
of the joint distribution for this number and the types of the vertices (cf. Lemma 2 in Section 4.1).

Once the epidemic has been described by a multi-type branching process, we use a phase
transition theorem for multi-type branching processes. As developed in Sections 5.2 and 5.3,
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classical results about multi-type branching processes do not apply directly in our case, since
the matrix M defined above is not positively regular. We thus use Sevastyanov’s theorem. To
complete the proof of Theorem 1, we compute the final classes (defined in Section 5.2) of our
multi-type branching process.

We divided our work into two parts: although Lemmas 1 and 2 are used in both the proof of
Theorem 1 and the computation of the matrix M, we chose to gather the computational part of
our work in the next section.

4. Computation of the matrix M

Before computing the entries of the matrix M defined in Section 3.2, we state two lemmas
about the number of active vertices inside a given clique. These lemmas will also be used
in Section 5.1 (to define the multi-type branching process that describes the contagion spread

inGr(p, q)).
4.1. Lemmas about the number of active vertices inside a given clique

We consider a clique of size w whose parent u becomes active at time 7. The other nodes
inside the clique can be activated until time ¢ + w — 1. More precisely, the first nodes (different
from u) that are possibly activated inside the clique are those with fewer children. If such
activations occur at time ¢ + 1, then it can turn other nodes of the clique into active ones at time
t + 2, and so on.

The following lemma computes the number of active vertices inside a clique, when the
contagion has spread inside the clique.

Lemma 1. We consider the contagion spread inside a clique of size w, whose parent u is
initially active. Let L be the final number of active children (active vertices different from u)
inside the clique. We denote by {1, ..., w — 1} the set of children inside the clique, and set X;
for the number of children of vertex i, 1 <i < w — 1 (so that X ;) + w — 1 is the degree of
vertex i). Then L satisfies the following equation:

L=min{ie{l,...,w-1}| ¢gXi»+w-1D]+1>i}-1, (D)

where X1y = min; X; < Xo) < -+ < Xw-1) = max; X; is the order statistics of
(Xi<i<w—1, and L = w — 1 if this set is empty (i.e. if |g(X@ +w — 1] +1 < i for
alll <i<w-—1).

Proof. By definition, anode i, 1 <i < w — 1, becomes active if and only if the proportion
of its active neighbors is strictly greater than ¢, i.e. if and only if its number of active neighbors
is at least

A =g Xi+w—-1)]+ 1. 2)

We use the order statistics of (A;)1<;i<w—1 (or equivalently the one of (X;)1<;<y—1): nodes
with fewer children need fewer active neighbors to become active, and the first node(s) to
become possibly active is (are) the one(s) with X (1) children. More precisely, if Ay > 1,
no node different from u inside the clique can be activated, and L = 0. If A¢qy < 1, then at
least one node (different from u) is activated. Then a second one is also activated if and only
if A2y <2, and the lemma follows by a simple induction.

The next lemma provides the joint distribution of L and the order statistics (X)) 1<i <1, given
the size w of the clique. The random variables (X;)1<;<w—1 are independent and identically
distributed (i.i.d.) and distributed as the following random variable X, which represents the
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number of children of a vertex different from the root in Gr(p, ¢) (this equation is similar to
the one of Proposition 2):

d d—1
dpa njzl Wjquw;
PX =k =) == 2 o ®)
d=1 (wi—1D)+-+(wg—1—D=k
For any sequence x; < xp < --- < xgandany i € {1,...,¢ — 1}, we set (omitting the
dependency on (x1, ..., x¢))
max{j >0 | x; =x;4;}+1 ifxi_y <x;jori =1,
5i = : ) 4
1 if x;_1 = x;.

When x;_1 < x; (ori = 1), s; is the number of i’ > i such that x;; = x;. For instance, if £ = 6
and x| < xp = x3 = x4 < X5 = xg,thens; = 1,50 = 3,53 =54 = 1, and s5 = 2, so that
T, s:! =312

Lemma 2. We consider a clique of size w whose parent u is initially active, and use the same
notation as in Lemma 1. Then we have, forany 1 <{ <w —land 0 <xy <xp <--- < xy,

p(E)(Z,xl, e, Xy | w) = P(L ZE,X(l) = X1y eeey X(g) =)Cg)

¢ (w— 1)
= nl{tq<x,~+w7m+1si} '

Pl (w—1-0! '] 5!

14

x (HP(X = xi))(IP’(Lq(X +w— 1] >e)v==t
i=1

PEO | w) :=PB(L=0) = @(lg(X +w— 1] >0)"".

Proof. The joint distribution of the order statistics for a sequence of i.i.d. discrete random
variables (Y;)|<;<,, distributed as Y, is given by the following equation, for any y; < y» <
- < yy (see [10, Equation (2.3)]),

n! n
PXYay=y1,.... Y =yn) = W HP(Y =y)=pr(y1, ..., ), 6]
i=1"" j=1
where (s;); (defined in (4)) correspond to the sequence (yq, ..., yn)-

If lg(x; +w—1)] +1 > i forsome 1 < i < ¢, then L < £ (due to (1)), so that
p,x1,...,x¢ | w) =0. We assume that |[g(x; + w — 1)| + 1 <iforall 1 <i < ¥. Then,
using (1) for the random variable X defined in (3), we have

P B x1, x| w) = Z Px X1y vy Xw—1) Y g1 +w—1)]> ¢}

Xe<Xg41=-=Xu—1

= > pxGr X D) Y tuwe)s0 - (6)

Xpp1 =0 =Xw—1
The last equality comes from the fact that |g(x; + w — 1)| + 1 < £. We set

w—1

(w—1-=20)
gx@wyi= 3 s [ POXC= ) Yjg w1
Xp<Xp41=-=Xy—1 Hi=i+1 Sit i=0+1
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Then, using (6) and replacing px (x1, ..., Xy—1) by its expression in (5), we have
£, w)
E) g, xi, ... - P(X = ) | —SX & W)
P Xy, e | w) ( ]_[( ) 10
l 1 l i=1
We now compute gx (¢, w). Let Zy, ..., Zy_1—¢ be i.i.d. random variables distributed as X,

and set Z(j) := minj<x<y—1—¢ Zi. Then, using (5), we have

gx(, w) = Z Px(Xert, ooy Xuw—1) Y g +w—1)]>0)

Xp41 = SXy—1
=P(lg(Zay +w—1)] > ©)
= P(g(X +w— 1] > )¢

This proves the first equation, and the second one follows from

P(L=0)=P(lgXi+w—-1)]+1>1foralli <w-—1)
= P(g(X +w—1)] > 0",

which completes the proof.

4.2. The number of active vertices of a given type

The next proposition gives the computation for the matrix M (whose largest eigenvalue is
used in Theorem 1).

Proposition 3. We define the following quantities, for 0 < x < dw, 1 <w < w, 1 <
k<w—-—Lk+|gb+w—-1D] <l<w-—1and |gx+w—1)] <i < €—k (with
p(E) &, x1,...,x¢ | w)defined in Lemma 2),

Bkt ={x1, o X)) | X1 S0 X < X1 =0 = Xjpk = X < Xkl < X¢)s

Powk, i)=Y pBx, .., x | w)

(X150esX0) €8x k. 0.0)

mewi= Y. k > ( > Px|w(k,£,i)>.

I<k<w—1 k+|gx+w—1)]<l<w—1 “|gx+w—1)|<i<l—k

Let v be an active vertex in G = Gr(p, q) with type xo, (_) < xp < dw. Then the mean
number my,  of its active children having type x, 0 < x < dw, ismg x = 0ifxo = 0 and
otherwise is given by

d d—1
Mg x Z% ) o1 0180y Bkl me\w'

R ey AN T L

Proof. Using the definition of p(E) “, x1,...,x¢ | w)in Lemma 2, we can easily see that
Pyw(k, £,i) is the probability that a clique of size w, whose parent is initially active, has
exactly £ active children, i of which having type strictly less than x and exactly k of which
having type x.
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Hence, the mean number, for a clique of size w, of its active children having type x is given

by
Nepw:= > k Y (Z Px|w(k,€,i)>.

I<ksw—-1 0<l<w-1 0<i<l—k

In addition, for the children of type x to be activated inside the clique, there must be at least
lg(x +w — 1)] 4 1 active children of type strictly less than x (due to (2)). In other words, for
Py y(k, £, i) to be positive, we should have i +1 > |g(x + w — 1) + 1. Moreover, we have
£>k+i>k+[gx+w—1)],s0that Ny |y = my|y.

The end of the proof follows easily, since we can study independently two different cliques
having the same parent: with the notation of Figure 2, if the parent of v is active, the fact that v
becomes active or not is independent of the activation/nonactivation of v’, when v’ is not a
brother of v.

5. Proof of Theorem 1

This section is organized as follows. First we define a multi-type (and alternating) branching
process that completely describes the contagion spread in G = Gr(p, q) (using Lemma 2 of
Section 4.1). Second we recall Sevastyanov’s theorem about the phase transition for multi-type
Galton—Watson branching processes [26]. We then use this theorem to prove Theorem 1 (stated
in Section 3.2).

5.1. Description of the contagion model by a multi-type (and alternating) branching
process

We now define an alternating branching process I'” in which the number of V-nodes in the

ith V-generation is distributed as the number of vertices in the ith generation of G;Zt) (for any

i > 0). As explained in Lemma 1, the number L of vertices at the end of the contagion spread

inside a clique depends on:
o the clique size w;
e the number of children in Gr(p, q) of each child i, 1 <i < w — 1, inside the clique.

These dependencies lead to considering a multi-type branching process for I’ (for an intro-
duction on such processes; see, for example, Harris [14, Chapter 2] or Mode [18, Chapters 1

and 2]).
We need the following notation. Forall 1 <d < dand0 < wy, wy, ..., wg—1 < w, we set
dpy -l w;iq x!
(V) _ . “ra 1Yw; .
pr@ =L 10 = Lty 7 (H " )(H oo

i=1

where the generating functions G and H are defined in Section 2.1.2, and (H o G)®(0) is the
value at point O of the xth derivative of H o G.

Proposition 4. We define an alternating and multi-type branching process ' as follows. The
root is a V -node that gives birth to d (< d) E-nodes with probability pg. Each of these E-nodes
has type w with probability wq,, /L.
An E-node of type w gives birth to £ € {0, ..., w — 1} V-nodes of types 0 < x; < xp <
<xg < dw with probability p(E)(E, X1, ..., Xx¢ | w) defined in Lemma 2.
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Finally, a V-node of type x > 0 gives birth to d — 1 E-nodes of types wi, ..., wg—1 with
probability p(V)(d — 1, wy, ..., wg—1 | x) defined above.

As before, we set I' = T'(p, q) for the alternating branching process defined in Section 2.1,
G = Gr(p, q) for the corresponding random graph model, and th) for the random graph o{
active vertices in G (as defined in Section 3.1). Then there is a coupling between I'" and G;Zt
such that

o the number of V-nodes in the ith V-generation of U’ is distributed as the number of

vertices in the ith generation of Gflzt) (foranyi > 0);

o the type w attached to each E-node in T corresponds to its ‘size’ in T (i.e. its offspring
number in T isw —1);

e the type x attached to each V -node in T corresponds to its number of children in G (i.e.
its number of grandchildren in I is x).

Proof. Using Lemma 2 and the fact that the contagion spreads independently in two different
cliques, we are left to prove that, when Z;i;ll (w; — 1) = x, the probability
D—1

Z(W,-—l):x)

i=1

PZ=P<D=d—1,W1=w1—1,..., ~ﬁ=wd_1—1

is given by (7), where D is the offspring number of a V-node in Gr(p, q) (with generating
function H), and (W;); the offspring numbers of E-nodes in Gr(p,q) (with generating
function G).

We have . ~ .
P IP’(D:d—l,lewl—l,..., Ij=wa'_1)
PO Wi = x)
The numerator is easy to compute:
dos =l
P(D=d—-1,W; =w1—1,...,WD=wd,1)=ﬂl_[ﬂ.

A

i=1 ®

We use generating functions to compute the denominator. We have, for all y € [0, 1],

o d L
By Y = 3 BB = d - DERE= )
d=1

d ~
=3 Ly
A
d
= (HoG)(y)

1
=Y =H W)y,
X

which leads to

D
- 1
P(Z Wj = x) = ;(H o G)(x)(0)7
j=1
and completes the proof.
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By definition, there is a cascade in Gr(p, q) if Ga(zt) is infinite, which occurs if and only if
the branching process I'’ is infinite.

5.2. Phase transition for multi-type Galton—Watson branching processes

We refer the reader to Harris [14, Chapter 2] for further information on multi-type Galton—
Watson branching processes. Let Z be a multi-type Galton—Watson branching process, by k
different types, starting from only one individual of a given type ip (results are the same when
the process starts from a finite number of individuals, but we are interested only in this case
here). Let M = (m;;), <i,j<k be the first-moment matrix of Z, i.e. m;; is the mean number of
children of type j that is created by a single individual of type i.

We next recall Sevastyanov’s theorem about the phase transition for multi-type Galton—
Watson branching processes that we will use in the next section. We define final classes as in
[14, Chapter 2]. Let m be for n > 1, the element in the ith row and jth column of M". The
types i and j communzcate if m(]) m(.'}) > 0 for some n, n’ > 1. A type that communicates
neither with itself nor with any other type is called singular; a class is a set of types, each pair
of which communicate, that is not contained in any other set having this property. The types
fall uniquely into singular types and mutually exclusive classes. A final class C is a class in
which any individual of type i € C has probability 1 to give birth to exactly one individual with
type in C (other individuals whose type is not in C may also be produced). Let p be the largest
eigenvalue of M. Sevastyanov’s theorem can be stated as follows.

Theorem 2. ([26].) The probability of extinction of the branching process Z is 1 if and only
if
(@) p <1and

(b) there are no final classes.

The proof of this theorem originally appeared in Sevastyanov [26]. The statement used here
corresponds to [14, Chapter 2, Theorem 10.1].

Remark 1. There is a classical version of Theorem 2 (with a simpler proof) for positively
regular processes. The process Z is said to be positively regular if there exists n > 1 such
that M" is positive, i.e. all entries of M" are (strictly) positive. The particular case of Theorem 2
for positively regular processes can be found in [14, Chapter 2, Theorem 7.1], or in any book
dealing with multi-type branching processes (see also [18, Chapter 1] or [1, Chapter 5]).
Some examples of nonpositively regular processes are also considered in [18, Chapter 2].
The hypothesis that the branching process has no final class is reduced to the hypothesis of
nonsingularity in the positively regular case. We will see in the proof of Theorem 1 that the
process we consider is not positively regular as soon as p; > 0, for instance, so that we need
the stronger result of Sevastyanov.

5.3. Proof of Theorem 1

We construct a nonalternating branching process I'}, from I'" by erasing E-generations, so
that a V-generation directly gives birth to the next V-generation, and we apply Theorem 2 to
the branching process I'},.

Note that we have the following fact, as mentioned in the remark following Theorem 2. If
p1 > 0, then the process I'y, is not positively regular, since mo, = 0 for all x. In addition, we
cannot assume without loss of generality that p; = 0. Indeed the V-nodes of degree 1 in the
original branching process I' = I'(p, ¢) play a role in the contagion inside a clique, since the
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activation of the nodes with high degree depends on the activation of the nodes with low degree
(cf. Lemma 1 in Section 4.1).

The proof of Theorem 1(i) is obvious. We assume that g < % We will show that there is no
final classes in I'}, if and only if either p» < 1 or g2 < 1. Then applying Theorem 2 completes
the proof (the p» = ¢g» = 1 case is direct). We first show that, if there exists a final class C
in FQ,, then necessarily C = {1}. We start with a definition and a lemma.

Definition 1. Let 0 < x < dw. A configuration starting from x is an element o, of the form

oy = (Wi, Xi1, -+, Xig;))1<i<d—1,

where | <d <d,2<w; <w,0<¢ <w;—1,and0 < x;1 < --- < x5, < dw for all
1 <i <d — 1. We say that a configuration o, has positive probability to occur if

e py>0;
o Y wi — 1) =x;
® qu; > Oandp(E)(Ei,x”,...,xigi | wi) >0foralll <i <d—1.

In other words, a configuration o, of positive probability is a possible realization for the next
two generations starting from a V-node v of type x in I'/ (it contains all the information about
the children and grandchildren of v in the sense that the w;s represent the types of the children
of vinI", and x;; the types of its grandchildren).

The next lemma provides a simple way to construct new configurations o} of positive
probability, if one knows a given configuration oy of positive probability (the proof is obvious,
using the expression of p(E) (&;, xi1, ..., Xig; | w;) given in Lemma 2).

Lemma 3. Let o, = ((w;, Xi1, ..., Xi¢;)) 1<i<d—1 be a configuration that occurs with positive
probability. Let (y,]) be such that vij < xij and P(X = y;;) > Oforalll <i <d -1,
1 < j < ¥, where the distribution of X is given by (3). Then the new configuration o, =
((wi, Yi1, -+, Yie;))1<i<d—1 still occurs with positive probability.

We assume that there is at least one final class C, and first prove that necessarily C = {1}.
Let x € C be such that P(X = x) > 0, and let v be a V-node in " with type x. We assume
by contradiction that x # 1. Since O is singular, necessarily x > 1. By the definition of a
final class, the number N of children of v whose type is in C is 1 almost surely. Hence, there

exists a configuration o, = ((w;, X1, ..., Xi¢;))1<i<d—1 With a positive probability to occur
and in which there exists a unique couple (io, jo) such that x;,;, € C. We distinguish several
cases.

e If there exists (k, £) such that xz; > Xx;,j,, we consider the new configuration o, with
vij = xij if (i, j) # (k,£) and yr¢ = xjyj,. Then N = 2 in o, and o, has positive
probability to occur by Lemma 3, which is a contradiction.

o If there exists (k, £) such that x;¢ < x;,j,, we consider the new configuration o, with
vij = xij if (i, j) # (io, jo) and yiyj, = xx¢. Then N = 0 in o}, and o, has positive
probability to occur by Lemma 3, which is a contradiction.

e Otherwise, v has only one grandchlld (of type xj,j,) in I'". We first consider the case
where w;, = 2. Since Z - (w, — 1) = x > 1, there exists k # ip such that wy > 2.
We construct o, by replacing wy by wy — 1 E-nodes of type 2, each of which having a
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V-node of type x;,, as a child. Hence, N = w; > 2 in a;, and it is easy to see that a)é
has positive probability to occur, which is a contradiction.

e The remaining case is when v has only one grandchild (of type x;, j,) in I'’, and w;, > 2.
We construct o, by replacing (wj,, Xiy j,) by (Wi, Xiyjo Xiyjo)- Hence, N =2 in oy, and
it is easy to see that o has positive probability to occur, which is a contradiction.

Hence, C = {1}, which means that v has only one grandchild in the original branching process
I' = I'(p, q). It implies in particular that g > 0, and we are left to compute the following
quantity:

22202

pPPU=1x=1]w=2)=1p<0P(X =1)= o

By the definition of a final class, p®(¢ = 1,x = 1 | w = 2) = 1, which implies that
P2 = g2 = 1, and completes the proof.

6. Conclusion and perspectives

We studied rigorously the contagion [4], [20] on a clustered random graph model with
overlapping communities. Our random graph model allows an arbitrary distribution for the
community sizes, while the heuristic study of Hackett et al. [13] was performed on a random
graph model with communities of size 3. To the best of the authors’ knowledge, these are
the only two studies of this epidemic model on random graphs with overlapping communities.
There are several dependencies that made this study challenging:

(1) in the epidemic model itself, since the behavior of an individual depends on the behavior
of all his/her neighbors;

(ii) in the random graph model considered, that allows an arbitrary distribution for both the
community size and the number of communities an individual belongs to.

In addition, our study provides heuristics for the contagion on the one-mode projection of a
random bipartite graph with arbitrary degree distributions, which is well suited for modeling
real-world networks [12], [25].

We showed that our epidemic is completely described by a multi-type and alternating
branching process, and use a nonclassical theorem on phase transitions for multi-type branching
processes, referred to as Sevastyanov’s theorem, to prove a phase transition for our process.
This opens the way to the study of the clustering effect on the cascade phenomenon in this case,
as studied in [13] or [8].
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