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The blowup-polynomial of a metric space:
connections to stable polynomials, graphs
and their distance spectra
Projesh Nath Choudhury and Apoorva Khare
Abstract. To every finite metric space X, including all connected unweighted graphs with the
minimum edge-distance metric, we attach an invariant that we call its blowup-polynomial pX({nx ∶

x ∈ X}). This is obtained from the blowup X[n] – which contains nx copies of each point x – by
computing the determinant of the distance matrix of X[n] and removing an exponential factor.
We prove that as a function of the sizes nx , pX(n) is a polynomial, is multi-affine, and is real-
stable. This naturally associates a hitherto unstudied delta-matroid to each metric space X; we
produce another novel delta-matroid for each tree, which interestingly does not generalize to all
graphs. We next specialize to the case of X = G a connected unweighted graph – so pG is “partially
symmetric” in {nv ∶ v ∈ V(G)} – and show three further results: (a) We show that the polynomial
pG is indeed a graph invariant, in that pG and its symmetries recover the graph G and its isometries,
respectively. (b) We show that the univariate specialization uG(x) ∶= pG(x , . . . , x) is a transform
of the characteristic polynomial of the distance matrix DG ; this connects the blowup-polynomial of
G to the well-studied “distance spectrum” of G. (c) We obtain a novel characterization of complete
multipartite graphs, as precisely those for which the “homogenization at −1” of pG(n) is real-stable
(equivalently, Lorentzian, or strongly/completely log-concave), if and only if the normalization of
pG(−n) is strongly Rayleigh.

1 The blowup-polynomial of a metric space and its distance matrix

This work aims to provide novel connections between metric geometry, the geometry
of (real) polynomials, and algebraic combinatorics via partially symmetric functions.
In particular, we introduce and study a polynomial graph-invariant for each graph,
which to the best of our knowledge, is novel.
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1.1 Motivations

The original motivation for our paper came from the study of distance matrices DG
of graphs G – on both the algebraic and spectral sides:

• On the algebraic side, Graham and Pollak [21] initiated the study of DG by proving:
if Tk is a tree on k nodes, then det DTk is independent of the tree structure and
depends only on k. By now, many variants of such results are proved, for trees as
well as several other families of graphs, including with q-analogs, weightings, and
combinations of both of these. (See, e.g., [16] and its references for a list of such
papers, results, and their common unification.)

• Following the above work [21], Graham also worked on the spectral side, and with
Lovász, studied in [20] the distance matrix of a tree, including computing its inverse
and characteristic polynomial. This has since led to the intensive study of the roots,
i.e., the “distance spectrum,” for trees and other graphs. See, e.g., the survey [3] for
more on distance spectra.

A well-studied problem in spectral graph theory involves understanding which
graphs are distance co-spectral – i.e., for which graphs H′ /≅ K′, if any, do DH′ , DK′

have the same spectra. Many such examples exist; see, e.g., the references in [18].
In particular, the characteristic polynomial of DG does not “detect” the graph G. It
is thus natural to seek some other byproduct of DG which does – i.e., which recovers
G up to isometry. In this paper, we find such a (to the best of our knowledge) novel
graph invariant: a multivariate polynomial, which we call the blowup-polynomial of
G, and which does detect G. Remarkably, this polynomial turns out to have several
additional attractive properties:

• It is multi-affine in its arguments.
• It is also real-stable, so that its “support” yields a hitherto unexplored delta-matroid.
• The blowup-polynomial simultaneously encodes the determinants of all graph-

blowups of G (defined presently), thereby connecting with the algebraic side (see
the next paragraph).

• Its “univariate specialization” is a transformation of the characteristic polynomial
of DG , thereby connecting with the spectral side as well.

Thus, the blowup-polynomial that we introduce, connects distance spectra for graphs
– and more generally, for finite metric spaces – to other well-studied objects, including
real-stable/Lorentzian polynomials and delta-matroids.

On the algebraic side, a natural question involves asking if there are graph families
{G i ∶ i ∈ I} (like trees on k vertices) for which the scalars det(DG i ) behave “nicely” as
a function of i ∈ I. As stated above, the family of blowups of a fixed graph G (which
help answer the preceding “spectral” question) not only answer this question positively
as well, but the nature of the answer – multi-affine polynomiality – is desirable in
conjunction with its real-stability. In fact, we will obtain many of these results, both
spectral and algebraic, in greater generality: for arbitrary finite metric spaces.

The key construction required for all of these contributions is that of a blowup, and
we begin by defining it more generally, for arbitrary metric spaces that are discrete
(i.e., every point is isolated).
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Definition 1.1 Given a metric space (X , d) with all isolated points, and a function
n ∶ X → Z>0, the n-blowup of X is the metric space X[n] obtained by creating nx ∶=
n(x) copies of each point x (also termed blowups of x). Define the distance between
copies of distinct points x ≠ y in X to still be d(x , y), and between distinct copies of
the same point to be 2d(x , X/{x}) = 2 inf y∈X/{x} d(x , y).

Also define the distance matrix DX and the modified distance matrix DX of X via:

DX ∶= (d(x , y))x , y∈X , DX ∶= DX + diag(2d(x , X/{x}))x∈X .(1.1)

Notice, for completeness, that the above construction applied to a non-discrete
metric space does not yield a metric; and that blowups of X are “compatible” with
isometries of X (see (1.3)). We also remark that this notion of blowup seems to be
relatively less studied in the literature, and differs from several other variants in the
literature – for metric spaces, e.g., [14] or for graphs, e.g., [29]. However, the variant
studied in this paper was previously studied for the special case of unweighted graphs,
see, e.g,. [24–26] in extremal and probabilistic graph theory.

1.2 Defining the blowup-polynomial; Euclidean embeddings

We now describe some of the results in this work, beginning with metric embeddings.
Recall that the complete information about a (finite) metric space is encoded into
its distance matrix DX (or equivalently, in the off-diagonal part of DX). Metric
spaces are useful in many sub-disciplines of the mathematical sciences, and have been
studied for over a century. For instance, a well-studied question in metric geometry
involves understanding metric embeddings. In 1910, Fréchet showed [19] that every
finite metric space with k + 1 points isometrically embeds into Rk with the supnorm.
Similarly, a celebrated 1935 theorem of Schoenberg [37] (following Menger’s works
[32, 33]) says the following.

Theorem 1.2 (Schoenberg [37]) A finite metric space X = {x0 , . . . , xk} isometrically
embeds inside Euclidean space (Rr , ∥ ⋅ ∥2) if and only if its modified Cayley–Menger
matrix

(d(x0 , x i)2 + d(x0 , x j)2 − d(x i , x j)2)k
i , j=1(1.2)

is positive semidefinite, with rank at most r.

As an aside, the determinant of this matrix is related to the volume of a polytope
with vertices x i (beginning with classical work of Cayley [13]), and the Cayley–Menger
matrix itself connects to the principle of trilateration/triangulation that underlies the
GPS system.

Returning to the present work, our goal is to study the distance matrix of a
finite metric space vis-a-vis its blowups. We begin with a “negative” result from
metric geometry. Note that every blowup of a finite metric space embeds into Rk

(for some k) equipped with the supnorm, by Fréchet’s aforementioned result. In
contrast, we employ Schoenberg’s Theorem 1.2 to show that the same is far from true
when considering the Euclidean metric. Namely, given a finite metric space X, we
characterize all blowups X[n] that embed in some Euclidean space (Rk , ∥ ⋅ ∥2). Since
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X embeds into X[n], a necessary condition is that X itself should be Euclidean. With
this in mind, we have the following.

Theorem A Suppose X = {x1 , . . . , xk} is a finite metric subspace of Euclidean space
(Rr , ∥ ⋅ ∥2). Given positive integers {nx i ∶ 1 ⩽ i ⩽ k}, not all of which equal 1, the
following are equivalent:

(1) The blowup X[n] isometrically embeds into some Euclidean space (Rr′ , ∥ ⋅ ∥2).
(2) Either k = 1 and n is arbitrary (then, by convention, X[n] is a simplex); or k > 1

and there exists a unique 1 ⩽ j ⩽ k such that nx j = 2. In this case, we moreover have:
(a) nx i = 1 ∀i ≠ j, (b) x j is not in the affine hull/span V of {x i ∶ i ≠ j}, and (c) the
unique point v ∈ V closest to x j , lies in X.

If these conditions hold, one can take r′ = r and X[n] = X ⊔ {2v − x j}.

Given the preceding result, we turn away from metric geometry, and instead focus
on studying the family of blowups X[n] – through their distance matrices DX[n]
(which contain all of the information on X[n]). Drawing inspiration from Graham
and Pollak [21], we focus on one of the simplest invariants of this family of matrices:
their determinants, and the (possibly algebraic) nature of the dependence of det DX[n]
on n. In this paper, we show that the function ∶ n ↦ det DX[n] possesses several
attractive properties. First, det DX[n] is a polynomial function in the sizes nx of the
blowup, up to an exponential factor.

Theorem B Given (X , d) a finite metric space, and a tuple of positive integers
n ∶= (nx)x∈X ∈ ZX

>0, the function n ↦ det DX[n] is a multi-affine polynomial pX(n) in
the nx (i.e., its monomials are squarefree in the nx ), times the exponential function

∏
x∈X
(−2 d(x , X/{x}))nx−1 .

Moreover, the polynomial pX(n) has constant term pX(0) =
∏x∈X(−2 d(x , X/{x})), and linear term −pX(0)∑x∈X nx .

Theorem B follows from a stronger one proved below. See Theorem 2.3, which
shows, in particular, that not only do the conclusions of Theorem B hold over
an arbitrary commutative ring, but moreover, the blowup-polynomial pX(n) is a
polynomial function in the variables n = {nx ∶ x ∈ X} as well as the entries of the
“original” distance matrix DX – and moreover, it is squarefree/multi-affine in all of
these arguments (where we treat all entries of DX to be “independent” variables).

We also refine the final assertions of Theorem B, by isolating in Proposition 2.6,
the coefficient of every monomial in pX(n). That proposition moreover provides a
sufficient condition under which the coefficients of two monomials in pX(n) are
equal.

Theorem B leads us to introduce the following notion, for an arbitrary finite metric
space (e.g., every finite, connected, R>0-weighted graph).

Definition 1.3 Define the (multivariate) blowup-polynomial of a finite metric space
(X , d) to be pX(n), where the nx are thought of as indeterminates. We write out a
closed-form expression in the proof of Theorem B – see equation (2.2).
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In this paper, we also study a specialization of this polynomial. Define the univariate
blowup-polynomial of (X , d) to be uX(n) ∶= pX(n, n, . . . , n), where n is thought of as
an indeterminate.
Remark 1.4 Definition 1.3 requires a small clarification. The polynomial map (by
Theorem B)

n ↦ det DX[n] ⋅ ∏
x∈X
(−2d(x , X/{x}))1−nx , n ∈ Zk

>0

can be extended from the Zariski dense subset Zk
>0 to all of Rk . (Zariski density is

explained during the proof of Theorem B.) Since R is an infinite field, this polynomial
map on Rk may now be identified with a polynomial, which is precisely pX(−), a
polynomial in ∣X∣ variables (which we will denote by {nx ∶ x ∈ X} throughout the
paper, via a mild abuse of notation). Now setting all arguments to be the same
indeterminate yields the univariate blowup-polynomial of (X , d).

1.3 Real-stability

We next discuss the blowup-polynomial pX(⋅) and its univariate specialization uX(⋅)
from the viewpoint of root-location properties. As we will see, the polynomial
uX(n) = pX(n, n, . . . , n) always turns out to be real-rooted in n. In fact, even more
is true. Recall that in recent times, the notion of real-rootedness has been studied
in a much more powerful avatar: real-stability. Our next result strengthens the real-
rootedness of uX(⋅) to the second attractive property of pX(⋅) – namely, real-stability.
Theorem C The blowup-polynomial pX(n) of every finite metric space (X , d) is real-
stable in {nx}. (Hence, its univariate specialization uX(n) = pX(n, n, . . . , n) is always
real-rooted.)

Recall that real-stable polynomials are simply ones with real coefficients, which do
not vanish when all arguments are constrained to lie in the (open) upper half-plane
I(z) > 0. Such polynomials have been intensively studied in recent years, with a vast
number of applications. For instance, they were famously used in celebrated works of
Borcea–Brändén (e.g., [5–7]) and Marcus–Spielman–Srivastava [30, 31] to prove long-
standing conjectures (including of Kadison–Singer, Johnson, Bilu–Linial, Lubotzky,
and others), construct expander graphs, and vastly extend the Laguerre–Pólya–Schur
program [27, 34, 35] from the turn of the 20th century (among other applications).

Theorem C reveals that for all finite metric spaces – in particular, for all finite
connected graphs – the blowup-polynomial is indeed multi-affine and real-stable. The
class of multi-affine real-stable polynomials has been characterized in [11, Theorem
5.6] and [43, Theorem 3]. (For a connection to matroids, see [11, 15].) To the best of
our knowledge, blowup-polynomials pX(n) provide novel examples/realizations of
multi-affine real-stable polynomials.

1.4 Graph metric spaces: symmetries, complete multipartite graphs

We now turn from the metric-geometric Theorem A, the algebraic Theorem B, and
the analysis-themed Theorem C, to a more combinatorial theme, by restricting from
metric spaces to graphs. Here, we present two “main theorems” and one proposition.
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1.4.1 Graph invariants and symmetries

Having shown that det DX[n] is a polynomial in n (times an exponential factor), and
that pX(⋅) is always real-stable, our next result explains a third attractive property of
pX(⋅): The blowup-polynomial of a graph X = G is indeed a (novel) graph invariant.
To formally state this result, we begin by re-examining the blowup-construction for
graphs and their distance matrices.

A distinguished sub-class of discrete metric spaces is that of finite simple connected
unweighted graphs G (so, without parallel/multiple edges or self-loops). Here, the
distance between two nodes v , w is defined to be the (edge-)length of any shortest
path joining v , w. In this paper, we term such objects graph metric spaces. Note that
the blowup G[n] is a priori only defined as a metric space; we now adjust the definition
to make it a graph.

Definition 1.5 Given a graph metric space G = (V , E), and a tuple n = (nv ∶ v ∈ V),
the n-blowup of G is defined to be the graph G[n] – with nv copies of each vertex v –
such that a copy of v and one of w are adjacent in G[n] if and only if v ≠ w are adjacent
in G.

(For example, the n-blowup of a complete graph is a complete multipartite graph.)
Now note that if G is a graph metric space, then so is G[n] for all tuples n ∈ Z∣V ∣>0 . The
results stated above thus apply to every such graph G – more precisely, to the distance
matrices of the blowups of G.

To motivate our next result, now specifically for graph metric spaces, we first relate
the symmetries of the graph with those of its blowup-polynomial pG(n). Suppose a
graph metric space G = (V , E) has a structural (i.e., adjacency-preserving) symmetry
Ψ ∶ V → V – i.e., an (auto-)isometry as a metric space. Denoting the corresponding
relabeled graph metric space by Ψ(G),

DG = DΨ(G) , DG =DΨ(G), pG(n) ≡ pΨ(G)(n).(1.3)

It is thus natural to ask if the converse holds – i.e., if pG(⋅) helps recover the group
of auto-isometries of G. A stronger result would be if pG recovers G itself (up to
isometry). We show that both of these hold.

Theorem D Given a graph metric space G = (V , E) and a bijection Ψ ∶ V → V,
the symmetries of the polynomial pG equal the isometries of G. In particular, any
(equivalently all) of the statements in (1.3) hold, if and only if Ψ is an isometry of G.
More strongly, the polynomial pG(n) recovers the graph metric space G (up to isometry).
However, this does not hold for the polynomial uG .

As the proof reveals, one in fact needs only the homogeneous quadratic part of
pG , i.e., its Hessian matrix ((∂nv ∂nv′

pG)(0V))v ,v′∈V , to recover the graph and its
isometries. Moreover, this associates to every graph a partially symmetric polynomial,
whose symmetries are precisely the graph-isometries.

Our next result works more generally in metric spaces X, hence is stated over
them. Note that the polynomial pX(n) is “partially symmetric,” depending on the
symmetries (or isometries) of the distance matrix (or metric space). Indeed, partial
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symmetry is as much as one can hope for, because it turns out that “full” symmetry
(in all variables nx ) occurs precisely in one situation.

Proposition 1.6 Given a finite metric space X, the following are equivalent:
(1) The polynomial pX(n) is symmetric in the variables {nx , x ∈ X}.
(2) The metric dX is a rescaled discrete metric: dX(x , y) = c1x≠y ∀x , y ∈ X, for some

c > 0.

1.4.2 Complete multipartite graphs: novel characterization via stability

The remainder of this section returns back to graphs. We next present an interesting
byproduct of the above results: a novel characterization of the class of complete
multipartite graphs. Begin by observing from the proof of Theorem C that the
polynomials pG(⋅) are stable because of a determinantal representation (followed by
inversion). However, they do not enjoy two related properties:
(1) pG(⋅) is not homogeneous.
(2) The coefficients of the multi-affine polynomial pG(⋅) are not all of the same

sign; in particular, they cannot form a probability distribution on the subsets
of {1, . . . , k} (corresponding to the various monomials in pG(⋅)). In fact, even
the constant and linear terms have opposite signs, by the final assertion in
Theorem B.

These two (unavailable) properties of real-stable polynomials are indeed important
and well-studied in the literature. Corresponding to the preceding numbering:
(1) Very recently, Brändén and Huh [12] introduced and studied a distinguished

class of homogeneous real polynomials, which they termed Lorentzian polyno-
mials (defined below). Relatedly, Gurvits [23] / Anari–Oveis Gharan–Vinzant [2]
defined strongly/completely log-concave polynomials, also defined below. These
classes of polynomials have several interesting properties as well as applications
(see, e.g., [1, 2, 12, 23] and related/follow-up works).

(2) Recall that strongly Rayleigh measures are probability measures on the power set
of {1, . . . , k} whose generating (multi-affine) polynomials are real-stable. These
were introduced and studied by Borcea, Brändén, and Liggett in the fundamental
work [8]. This work developed the theory of negative association/dependence for
such measures, and enabled the authors to prove several conjectures of Liggett,
Pemantle, and Wagner, among other achievements.

Given that pG(⋅) is always real-stable, a natural question is if one can characterize
those graphs for which a certain homogenization of pG(⋅) is Lorentzian, or a suit-
able normalization is strongly Rayleigh. The standard mathematical way to address
obstacle (1) above is to “projectivize” using a new variable z0, while for obstacle (2) we
evaluate at (−z1 , . . . ,−zk), where we use z j instead of nx j to denote complex variables.
Thus, our next result proceeds via homogenization at −z0.

Theorem E Say G = (V , E)with ∣V ∣ = k. Define the homogenized blowup-polynomial

p̃G(z0 , z1 , . . . , zk) ∶= (−z0)k pG (
z1

−z0
, . . . , zk

−z0
) ∈ R[z0 , z1 , . . . , zk].(1.4)
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Then the following are equivalent:
(1) The polynomial p̃G(z0 , z1 , . . . , zk) is real-stable.
(2) The polynomial p̃G(⋅) has all coefficients (of the monomials zk−∣J∣

0 ∏ j∈J z j)
nonnegative.

(3) We have (−1)k pG(−1, . . . ,−1) > 0, and the normalized “reflected” polynomial

(z1 , . . . , zk) ↦ pG(−z1 , . . . ,−zk)
pG(−1, . . . ,−1)

is strongly Rayleigh. In other words, this (multi-affine) polynomial is real-stable
and has nonnegative coefficients (of all monomials ∏ j∈J z j), which sum up to 1.

(4) The modified distance matrix DG (see Definition 1.1) is positive semidefinite.
(5) G is a complete multipartite graph.

Theorem E is a novel characterization result of complete multipartite graphs in the
literature, in terms of real stability and the strong(ly) Rayleigh property. Moreover,
given the remarks preceding Theorem E, we present three further equivalences to
these characterizations.

Corollary 1.7 Definitions in Section 4.2. The assertions in Theorem E are further
equivalent to:
(6) The polynomial p̃G(z0 , . . . , zk) is Lorentzian.
(7) The polynomial p̃G(z0 , . . . , zk) is strongly log-concave.
(8) The polynomial p̃G(z0 , . . . , zk) is completely log-concave.

We quickly explain the corollary. Theorem E(1) implies p̃G is Lorentzian (see
[12, 15]), which implies Theorem E(2). The other equivalences follow from [12, Theo-
rem 2.30], which shows that – for any real homogeneous polynomial – assertions (7),
(8) here are equivalent to p̃G being Lorentzian.

Remark 1.8 As we see in the proof of Theorem E, when DG is positive semidefinite,
the homogeneous polynomial p̃G(z0 , . . . , zk) has a determinantal representation, i.e.,

p̃G(z0 , . . . , zk) = c ⋅ det(z0 Idk +
k
∑
j=1

z jA j),

with all A j positive semidefinite and c ∈ R. In Proposition A.2, we further compute the
mixed characteristic polynomial of these matrices A j (see (A.1) for the definition), and
show that up to a scalar, it equals the “inversion” of the univariate blowup-polynomial,
i.e., zk

0 uG(z−1
0 ).

Remark 1.9 We also show that the univariate polynomial uG(x) is intimately related
to the characteristic polynomial of DG (i.e., the “distance spectrum” of G), whose
study was one of our original motivations. See Proposition 4.2 and the subsequent
discussion, for precise statements.

1.5 Two novel delta-matroids

We conclude with a related byproduct: two novel constructions of delta-matroids,
one for every finite metric space and the other for each tree graph. Recall that a
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delta-matroid consists of a finite “ground set” E and a nonempty collection of feasible
subsets F ⊆ 2E , satisfying⋃F∈F F = E as well as the symmetric exchange axiom: Given
A, B ∈ F and x ∈ AΔB (their symmetric difference), there exists y ∈ AΔB such that
AΔ{x , y} ∈ F. Delta-matroids were introduced by Bouchet in [9] as a generalization
of the notion of matroids.

Each (skew-)symmetric matrix Ak×k over a field yields a linear delta-matroid MA
as follows. Given any matrix Ak×k , let E ∶= {1, . . . , k} and let a subset F ⊆ E belong
to MA if either F is empty or the principal submatrix AF×F is nonsingular. In [10],
Bouchet showed that if A is (skew-)symmetric, then the set system MA is indeed a
delta-matroid, which is said to be linear.

We now return to the blowup-polynomial. First, recall a 2007 result of Brändén [11]:
given a multi-affine real-stable polynomial, the set of monomials with nonzero coeffi-
cients forms a delta-matroid. Thus, from pX(n), we obtain a delta-matroid, which as
we will explain is linear.

Corollary 1.10 Given a finite metric space (X , d), the set of monomials with nonzero
coefficients in pX(n) forms the linear delta-matroid MDX .

Definition 1.11 We term MDX the blowup delta-matroid of (X , d).

The blowup delta-matroid MDX is – even for X a finite connected unweighted
graph – a novel construction that arises out of metric geometry rather than combina-
torics, and one that seems to be unexplored in the literature (and unknown to experts).
Of course, it is a simple, direct consequence of Brändén’s result in [11]. However, the
next delta-matroid is less direct to show.

Theorem F Suppose T = (V , E) is a finite connected unweighted tree with ∣V ∣ ⩾ 2.
Define the set system M′(T) to comprise all subsets I ⊆ V, except for the ones that
contain two vertices v1 ≠ v2 in I such that the Steiner tree T(I) has v1 , v2 as leaves with a
common neighbor. Then M′(T) is a delta-matroid, which does not equal MDT for every
path graph T = Pk , k ⩾ 9.

We further prove, this notion of (in)feasible subsets in M′(T) does not generalize
to all graphs. Thus,M′(T) is a combinatorial (not matrix-theoretic) delta-matroid that
is also unstudied in the literature to the best of our knowledge, and which arises from
every tree, but interestingly, not from all graphs.

As a closing statement here: in addition to further exploring the real-stable poly-
nomials pG(n), it would be interesting to obtain connections between these delta-
matroids MDG and M′(T), and others known in the literature from combinatorics,
polynomial geometry, and algebra.

1.6 Organization of the paper

The remainder of the paper is devoted to proving the above Theorems A through
F; this will require developing several preliminaries along the way. The paper is
clustered by theme; thus, the next two sections and the final one respectively involve,
primarily:
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• (commutative) algebraic methods – to prove the polynomiality of pX(⋅)
(Theorem B), and to characterize those X for which it is a symmetric polynomial
(Proposition 1.6);

• methods from real-stability and analysis – to show pX(⋅) is real-stable
(Theorem C);

• metric geometry – to characterize for a given Euclidean finite metric space X, all
blowups that remain Euclidean (Theorem A), and to write down a related “tropical”
version of Schoenberg’s Euclidean embedding theorem from [37].
In the remaining Section 4, we prove Theorems D–F. In greater detail: we focus

on the special case of X = G a finite simple connected unweighted graph, with
the minimum edge-distance metric. After equating the isometries of G with the
symmetries of pG(n), and recovering G from pG(n), we prove the aforementioned
characterization of complete multipartite graphs G in terms of p̃G being real-stable, or
pG(−n)/pG(−1, . . . ,−1) being strongly Rayleigh. Next, we discuss a family of blowup-
polynomials from this viewpoint of “partial” symmetry. We also connect uG(x) to
the characteristic polynomial of DG , hence to the distance spectrum of G. Finally,
we introduce the delta-matroid M′(T) for every tree, and explore its relation to the
blowup delta-matroid MDT (for T a path), as well as extensions to general graphs. We
end with Appendices A and B that contain supplementary details and results.

We conclude this section on a philosophical note. Our approach in this work
adheres to the maxim that the multivariate polynomial is a natural, general, and
more powerful object than its univariate specialization. This is of course famously
manifested in the recent explosion of activity in the geometry of polynomials, via the
study of real-stable polynomials by Borcea–Brändén and other researchers; but also
shows up in several other settings – we refer the reader to the survey [40] by Sokal
for additional instances. (E.g., a specific occurrence is in the extreme simplicity of
the proof of the multivariate Brown–Colbourn conjecture [36, 39], as opposed to the
involved proof in the univariate case [42].)

2 Algebraic results: the blowup-polynomial and its full symmetry

We begin this section by proving Theorem B in “full” algebraic (and greater mathemat-
ical) generality, over an arbitrary unital commutative ring R. We require the following
notation.

Definition 2.1 Fix positive integers k, n1 , . . . , nk > 0, and vectors pi , qi ∈ Rn i for all
1 ⩽ i ⩽ k.
(1) For these parameters, define the blowup-monoid to be the collection Mn(R) ∶=

Rk × Rk×k . We write a typical element as a pair (a, D), where in coordinates,
a = (a i)T and D = (d i j).

(2) Given (a, D) ∈Mn(R), define M(a, D) to be the square matrix of dimension n1 +
⋅ ⋅ ⋅ + nk with k2 blocks, whose (i , j)-block for 1 ⩽ i , j ⩽ k is δ i , j a i Idn i +d i jpi qT

j .
Also define Δa ∈ Rk×k to be the diagonal matrix with (i , i) entry a i , and

N(a, D) ∶= Δa + diag(qT
1 p1 , . . . , qT

k pk) ⋅ D ∈ Rk×k .

(3) Given a, a′ ∈ Rk , define a ○ a′ ∶= (a1a′1 , . . . , ak a′k)T ∈ Rk .
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The set Mn(R) is of course a group under addition, but we are interested in the
following non-standard monoid structure on it.

Lemma 2.2 The set Mn(R) is a monoid under the product

(a, D) ○ (a′ , D′) ∶= (a ○ a′ , ΔaD′ + DΔa′ + D ⋅ diag(qT
1 p1 , . . . , qT

k pk) ⋅ D′)
= (a ○ a′ , ΔaD′ + DN(a′ , D′)),

and with identity element ((1, . . . , 1)T , 0k×k).

With this notation in place, we now present the “general” formulation of
Theorem B.

Theorem 2.3 Fix integers k, n1 , . . . , nk and vectors pi , qi as above. Let K ∶= n1 + ⋅ ⋅ ⋅ +
nk .
(1) The following map is a morphism of monoids:

Ψ ∶ (Mn(R), ○) → (RK×K , ⋅), (a, D) ↦ M(a, D).

(2) The determinant of M(a, D) equals ∏i an i−1
i times a multi-affine polynomial in

a i , d i j , and the entries qT
i pi . More precisely,

det M(a, D) = det N(a, D)
k
∏
i=1

an i−1
i .(2.1)

(3) If all a i ∈ R× and N(a, D) is invertible, then so is M(a, D), and

M(a, D)−1 = M((a−1
1 , . . . , a−1

k )T ,−Δ−1
a DN(a, D)−1).

Instead of using N(a, D) which involves “post-multiplication” by D, one can also
use N(a, DT)T in the above results, to obtain similar formulas that we leave to the
interested reader.

Proof The first assertion is easy, and it implies the third assertion via showing
that M(a, D)−1M(a, D) = IdK . (We show these computations for completeness in the
appendix.) Thus, it remains to prove the second assertion. To proceed, we employ
Zariski density, as was done in, e.g., our previous work [16]. Namely, we begin by
working over the field of rational functions in k + k2 + 2K variables

F ∶= Q(A1 , . . . , Ak , D i j , Q(l)i , P(l)i ),

where A i , D i j (with a slight abuse of notation), and Q(l)i , P(l)i – with 1 ⩽ i , j ⩽ k and
1 ⩽ l ⩽ n i – serve as proxies for a i , d i j , and the coordinates of qi , pi , respectively. Over
this field, we work with

A = (A1 , . . . , Ak)T , Qi = (Q(1)i , . . . , Q(n i)
i )T , Pi = (P(1)i , . . . , P(n i)

i )T ,

and the matrix D = (D i j); note that D has full rank r = k, since det D is a nonzero
polynomial over Q, hence is a unit in F.

Let D = ∑r
j=1 u jvT

j be any rank-one decomposition. For each 1 ⩽ j ⩽ r, write
u j = (u j1 , . . . , u jk)T , and similarly for v j . Then D i j = ∑r

s=1 us ivs j for all i , j. Now a
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Schur complement argument (with respect to the (2, 2) block below) yields:

det M(A, D) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A1 Idn1 . . . 0 u11P1 . . . ur1P1

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 . . . Ak Idnk u1kPk . . . urkPk

−v11QT
1 . . . −v1kQT

k
⋮ ⋱ ⋮ Idr

−vr1QT
1 . . . −vrkQT

k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

We next compute the determinant on the right alternately: by using the Schur
complement with respect to the (1, 1) block instead. This yields:

det M(A, D) = det(Idr +M)
k
∏
i=1

An i
i ,

where Mr×r has (i , j) entry ∑k
l=1 v i l (A−1

l QT
l Pl) u j l . But det(Idr +M) is also the

determinant of

M′ ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(A−1
1 QT

1 P1)u11 . . . (A−1
1 QT

1 P1)ur1

Idk ⋮ ⋱ ⋮
(A−1

k QT
k Pk)u1k . . . (A−1

k QT
k Pk)urk

−v11 . . . −v1k

⋮ ⋱ ⋮ Idr

−vr1 . . . −vrk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

by taking the Schur complement with respect to its (1, 1) block. Finally, take the Schur
complement with respect to the (2, 2) block of M′, to obtain

det M(A, D) = det M′
k
∏
i=1

An i
i = det (Idk +Δ−1

A diag(QT
1 P1 , . . . , QT

k Pk)D)
k
∏
i=1

An i
i

= det N(A, D)
k
∏
i=1

An i−1
i ,

and this is indeed∏i An i−1
i times a multi-affine polynomial in the claimed variables.

The above reasoning proves the assertion (2.1) over the field

F = Q(A1 , . . . , Ak , D i j , Q(l)i , P(l)i )

defined above. We now explain how Zariski density helps prove (2.1) over every unital
commutative ring – with the key being that both sides of (2.1) are polynomials in the
variables. Begin by observing that (2.1) actually holds over the polynomial (sub)ring

R0 ∶= Q[A1 , . . . , Ak , D i j , Q(l)i , P(l)i ],

but the above proof used the invertibility of the polynomials A1 , . . . , Ak , det(D i j)k
i , j=1.

Now use that Q is an infinite field; thus, the following result applies.
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Proposition 2.4 The following are equivalent for a field F.

(1) The polynomial ring F[x1 , . . . , xn] (for some n ⩾ 1) equals the ring of polynomial
functions from affine n-space An

F ≅ Fn to F.
(2) The preceding statement holds for every n ⩾ 1.
(3) F is infinite.

Moreover, the nonzero-locus L of any nonzero polynomial in F[x1 , . . . , xn] with F

an infinite field, is Zariski dense in An
F. In other words, if a polynomial in n variables

equals zero on L, then it vanishes on all of An
F ≅ Fn . ∎

Proof-sketch Clearly (2) '⇒ (1); and that the contrapositive of (1) '⇒ (3)
holds follows from the fact that over a finite field Fq , the nonzero polynomial xq

1 − x1
equals the zero function. The proof of (1) '⇒ (3) is by induction on n ⩾ 1, and is
left to the reader (or see, e.g., standard textbooks, or even [16]) – as is the proof of the
final assertion. ∎

By the equivalence in Proposition 2.4, the above polynomial ring R0 equals the
ring of polynomial functions in the same number of variables, so (2.1) now holds
over the ring of polynomial functions in the above k + k2 + 2K variables – but only
on the nonzero-locus of the polynomial (det D)∏i A i , since we used A−1

i and the
invertibility of D in the above proof.

Now for the final touch: as (det D)∏i A i is a nonzero polynomial, its nonzero-
locus is Zariski dense in affine space Ak+k2+2K

Q (by Proposition 2.4). Since the differ-
ence of the polynomials in (2.1) (this is where we use that det(⋅) is a polynomial!)
vanishes on the above nonzero-locus, it does so for all values of A i and the other
variables. Therefore, (2.1) holds in the ring R′0 of polynomial functions with coefficients
in Q, hence upon restricting to the polynomial subring of R′0 with integer (not just
rational) coefficients – since the polynomials on both sides of (2.1) have integer
coefficients. Finally, the proof is completed by specializing the variables A i to specific
scalars a i in an arbitrary unital commutative ring R, and similarly for the other
variables.

Theorem 2.3, when specialized to p(l)i = q(l)i = 1 for all 1 ⩽ i ⩽ k and 1 ⩽ l ⩽ n i ,
reveals how to convert the sizes nx i in the blowup-matrix DX[n] into entries of the
related matrix N(a, D). This helps prove a result in the introduction – that det DX[n]
is a polynomial in n.

Proof of Theorem B Everything but the final sentence follows from Theorem 2.3,
specialized to

R = R, n i = nx i , d i j = d(x i , x j) ∀i ≠ j, d i i = 2d(x i , X/{x i}) = −a i ,

D =DX = (d i j)k
i , j=1 , p(l)i = q(l)i = 1 ∀1 ⩽ l ⩽ n i .

(A word of caution: d i i ≠ d(x i , x i), and hence DX ≠ DX : they differ by a diagonal
matrix.)

In particular, pX(n) is a multi-affine polynomial in qT
i pi = n i . We also write out

the blowup-polynomial, useful here and below:
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pX(n) = det N(aX ,DX), where aX = (DX −DX)(1, 1, . . . , 1)T ,
(2.2)

and so N(aX ,DX) = diag((nx i − 1)2d(x i , X/{x i}))i + (nx i d(x i , x j))k
i , j=1 .

Now the constant term is obtained by evaluating det N(aX , 0k×k), which is easy since
N(aX , 0k×k) is diagonal. Similarly, the coefficient of nx i is obtained by setting all other
nx i′

= 0 in det N(aX ,DX). Expand along the ith column to compute this determinant;
now adding these determinants over all i yields the claimed formula for the linear
term. ∎

As a further refinement of Theorem B, we isolate every term in the multi-affine
polynomial pX(n). Two consequences follow: (a) a formula relating the blowup-
polynomials for a metric space X and its subspace Y ; and (b) a sufficient condition
for two monomials in pX(n) to have equal coefficients. In order to state and prove
these latter two results, we require the following notion.

Definition 2.5 We say that a metric subspace Y of a finite metric space (X , d) is
admissible if for every y ∈ Y , there exists y′ ∈ Y such that d(y, X/{y}) = d(y, y′).

For example, in every finite simple connected unweighted graph G with the
minimum edge-distance as its metric, a subset Y of vertices is admissible if and only
if the induced subgraph in G on Y has no isolated vertices.

Proposition 2.6 Notation as above.
(1) Given any subset I ⊆ {1, . . . , k}, the coefficient in pX(n) of ∏i∈I nx i is

det(DX)I×I ∏
j/∈I
(−2d(x j , X/{x j})) = det(DX)I×I ∏

j/∈I
(−d j j),

with (DX)I×I the principal submatrix of DX formed by the rows and columns
indexed by I.

(2) Suppose I ⊆ {1, . . . , k}, and Y = {x i ∶ i ∈ I} is an admissible subspace of X. Then,

pY({nx i ∶ i ∈ I}) = pX(n)∣nx j=0 ∀ j/∈I ⋅∏
j/∈I
(−2d(x j , X/{x j}))−1 .

In particular, if a particular monomial ∏i∈I0 nx i does not occur in pY(⋅) for some
I0 ⊆ I, then it does not occur in pX(⋅) either.

(3) Suppose two admissible subspaces of X, consisting of points (y1 , . . . , y l) and
(z1 , . . . , z l), are isometric (here, 1 ⩽ l ⩽ k). If moreover

l
∏
i=1

d(y i , X/{y i}) =
l
∏
i=1

d(z i , X/{z i}),(2.3)

then the coefficients in pX(n) of ∏l
i=1 ny i and ∏l

i=1 nz i are equal.

The final assertion strengthens the (obvious) observation that if Ψ ∶ X → X is an
isometry, then pX(⋅) ≡ pΨ(X)(⋅) – in other words, the polynomial pX(⋅) is invariant
under the action of the permutation of the variables (nx ∶ x ∈ X) induced by Ψ. This
final assertion applies to blowup-polynomials of unweighted graphs with “locally
homeomorphic neighborhoods,” e.g., to interior points and intervals in path graphs
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(or more generally, banded graphs). See the opening discussion in Section 4.3, as well
as Proposition 4.11.

Proof
(1) It suffices to compute the coefficient of∏i∈I nx i in pX(n) = det N(aX ,DX), where

a i = −2d(x i , X/{x i}) ∀1 ⩽ i ⩽ k, and we set all nx j , j /∈ I to zero. To evaluate this
determinant, notice that for j /∈ I, the jth row contains only one nonzero entry,
along the main diagonal. Thus, expand the determinant along the jth row for every
j /∈ I; this yields ∏ j/∈I(−d j j) times the principal minor N(aX ,DX)I×I . Moreover,
the coefficient of ∏i∈I nx i in the expansion of det N(aX ,DX)I×I is the same as
that in expanding det N(0,DX)I×I , and this is precisely det(DX)I×I .

(2) Let us use aX ,DX and aY ,DY for the appropriate data generated from X and Y ,
respectively. Then the admissibility of Y indicates that (aX)I = aY and (DX)I×I =
DY . Now a direct computation reveals:

pX(n)∣nx j=0 ∀ j/∈I = det(ΔaY + ΔnYDY)∏
j/∈I
(−d j j).

This shows the claimed equation, and the final assertion is an immediate conse-
quence of it.

(3) Let I′ , I′′ ⊆ {1, . . . , k} index the points (y1 , . . . , y l) and (z1 , . . . , z l), respectively.
Similarly, let DY ,DZ denote the respective l × l matrices (e.g., with off-diagonal
entries d(y i , y j) and d(z i , z j), respectively). The admissibility of the given sub-
spaces implies that (DX)I′×I′ =DY and (DX)I′′×I′′ =DZ . Now use the isometry
between the y i and z i (up to relabeling) to deduce that detDY = detDZ . Via the
first part above, it remains to prove that

∏
j/∈I′
(−2d(x j , X/{x j})) = ∏

j/∈I′′
(−2d(x j , X/{x j})).

But this indeed holds, since multiplying the left- and right-hand sides of this
equation by the corresponding sides of (2.3) yields 2−l ∏x∈X(−2d(x , X/{x})) on
both sides (once again using admissibility). here

∎

We provide some applications of Proposition 2.6 in later sections; for now, we apply
it to prove that the blowup delta-matroid of X is linear.

Proof of Corollary 1.10 It is immediate from Proposition 2.6(1) that the blowup
delta-matroid of X is precisely the linear delta-matroid MDX (see the paragraph
preceding Corollary 1.10). ∎

We conclude this section by showing another result in the introduction, which
studies when pX(n) is symmetric in the variables nx .

Proof of Proposition 1.6 First suppose dX is the discrete metric times a constant
c > 0. Then all a i = −2c = d i i . Hence,

DX = c1k×k + c Idk '⇒ N(aX ,DX) = −2c Idk +diag(nx1 , . . . , nxk)DX ,
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and this is a rank-one update of the diagonal matrix Δ ∶= c diag(nx1 , . . . , nxk) − 2c Idk .
Hence,

pX(n) = det N(aX ,DX) = det(Δ) + c ⋅ (1, . . . , 1)adj(Δ)(nx1 , . . . , nxk)T

= ck (
k
∏
i=1
(nx i − 2) +

k
∑
i=1

nx i ∏
i′≠i
(nx i′

− 2)) ,(2.4)

and this is indeed symmetric in the nx i .
Conversely, suppose pX(n) is symmetric in n. If ∣X∣ = k ⩽ 2, then the result is

immediate. Also note that the assertion (2) for k ⩾ 3 follows from that for k = 3 – since
if the distances between any three distinct points are equal, then d(x , y) = d(x , y′) =
d(x′ , y′) for all distinct x , y, x′ , y′ ∈ X (verifying the remaining cases is easier). Thus,
we suppose henceforth that ∣X∣ = k = 3. For ease of exposition, in this proof, we
denote d′i j ∶= d(x i , x j) for 1 ⩽ i , j ⩽ 3. Also assume by relabeling the x i (if needed)
that 0 < d′12 ⩽ d′13 ⩽ d′23. Then

N(aX ,DX) =
⎛
⎜
⎝

(nx1 − 1)2d′12 nx1 d′12 nx1 d′13
nx2 d′12 (nx2 − 1)2d′12 nx2 d′23
nx3 d′13 nx3 d′23 (nx3 − 1)2d′13

⎞
⎟
⎠

.

Since pX(n) = det N(aX ,DX) is symmetric in the nx i , we equate the coefficients of
nx1 nx2 and nx2 nx3 , to obtain

−2 ⋅ d′13 ⋅ (3(d′12)2) = −2 ⋅ d′12 ⋅ (4d′12d′13 − (d′23)2).

Simplifying this yields: d′12d′13 = (d′23)2, and since d′23 dominates d′12 , d′13, the three
distances d′12 , d′13 , d′23 are equal. This proves the converse for ∣X∣ = k = 3, hence for all
k ⩾ 3. ∎

3 Real-stability of the blowup-polynomial

The proofs in Section 2 were mostly algebraic in nature: although they applied
to metric spaces, all but the final proof involved no inequalities. We now show
Theorem C: pX(⋅) is always real-stable.

We begin by mentioning some properties with respect to which blowups behave
well. These include iterated blowups, the blowup-polynomial, and the modified dis-
tance matrix DX and its positivity. (As Theorem A indicates, the property of being
Euclidean is not such a property.) We first introduce another “well-behaved” matrix
CX for a finite metric space, parallel to DX and the vector aX , which will be useful here
and in later sections.

Definition 3.1 Given a finite metric space X = {x1 , . . . , xk}, recall the vector aX ∈ Rk

as in (2.2) and define the symmetric matrix CX ∈ Rk×k , via

aX = − 2(d(x1 , X/{x1}), . . . , d(xk , X/{xk})) = (−2d(x , X/{x}))x∈X ,

CX ∶= (−ΔaX)−1/2DX(−ΔaX)−1/2 .
(3.1)
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In other words, −aX is the diagonal vector of the modified distance matrix DX , and

(CX)i j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, if i = j,
d(x i , x j)

2
√

d(x i , X/{x i})d(x j , X/{x j})
, otherwise.(3.2)

Lemma 3.2 Fix a finite metric space (X , d) and an integer tuple n = (nx ∶ x ∈ X) ∈
ZX
>0.

(1) Fix a positive integer mx i for each x ∈ X and 1 ⩽ i ⩽ nx , and let m ∶= (mx i)x , i
denote the entire collection. Then (X[n])[m] is isometrically isomorphic to X[n′],
where n′ = (∑nx

i=1 mx i ∶ x ∈ X). Here, the ith copy of x in X[n] is copied mx i times
in (X[n])[m].

(2) In particular, the blowup-polynomial of an iterated blowup is simply the original
blowup-polynomial in a larger number of variables, up to a constant:

pX[n](m) ≡ pX(n′)∏
x∈X

anx−1
x ,(3.3)

where the coordinates of n′ = (∑nx
i=1 mx i ∶ x ∈ X) are sums of variables.

(3) Now write X = {x1 , . . . , xk} as above. Then the matrices DX[n],CX[n] are both
block k × k matrices, with (i , j) block, respectively, equal to

d i j1nxi×nx j
and c i j1nxi×nx j

,

where DX = (d i j)k
i , j=1 ,CX = (c i j)k

i , j=1.
(4) The following are equivalent:

(a) The matrix DX is positive semidefinite.
(b) The matrix DX[n] is positive semidefinite for some (equivalently, every) tuple n

of positive integers.
(c) The matrix CX is positive semidefinite.
(d) The matrix CX[n] is positive semidefinite for some (equivalently, every) tuple n

of positive integers.

Proof
(1) In studying (X[n])[m], for ease of exposition, we write Y ∶= X[n], Z ∶=

(X[n])[m]. Also write yx i for the ith copy of x in Y, and zx i j for the jth copy of yx i
in Z, with 1 ⩽ i ⩽ nx and 1 ⩽ j ⩽ mx i . We now compute dZ(zx i j , zx′ i′ j′), consider-
ing three cases. First, if x ≠ x′, then this equals dY(yx i , yx′ i′) = dX(x , x′). Next,
if x = x′ but i ≠ i′, then it equals dY(yx i , yx i′) = 2d(x , X/{x}). Finally, suppose
x = x′ and i = i′ but j ≠ j′. Then

dZ(zx i j , zx′ i′ j′) = 2dY(yx i , Y/{yx i}),

and it is not hard to show, by considering all distances in Y, that this equals
2dX(x , X/{x}). These three cases reveal that dZ(zx i j , zx′ i′ j′) equals the distance
in X[n′] between the copies of x , x′ ∈ X, and the proof is complete.

(2) We show (3.3) using the previous part and the next part, and via Zariski density
arguments as in the proof of Theorem 2.3. Define n j ∶= nx j in this proof for
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convenience. Thus, we work more generally in the setting where X = {x1 , . . . , xk},
but the arrays

aX = (ax1 , . . . , axk)T , DX = (drs)k
r ,s=1 , m = (m j1 , . . . , m jn j)k

j=1

consist of indeterminates. Let K ∶= ∑k
j=1 n j , and define WK×k to be the block

matrix

W ∶=
⎛
⎜⎜⎜
⎝

1n1×1 0n1×1 . . . 0n1×1
0n2×1 1n2×1 . . . 0n2×1
⋮ ⋮ ⋱ ⋮

0nk×1 0nk×1 . . . 1nk×1

⎞
⎟⎟⎟
⎠

.

Now ΔaX[n] = diag(ax1 Idn1 , . . . , axk Idnk), and a straightforward computation
(using the next part) shows that DX[n] =WDXW

T .
Notice that if one works over the field

Q({ax j , m ji ∶ 1 ⩽ j ⩽ k, 1 ⩽ i ⩽ n j}, {drs ∶ 1 ⩽ r, s ⩽ k}),

then the following polynomial is nonzero:

(detDX)
k
∏
j=1

ax j

k
∏
j=1

n j

∏
i=1

m ji .(3.4)

Thus, we now compute:

pX[n](m) = det(ΔaX[n] + ΔmDX[n]) = det(ΔaX[n] + ΔmWDXW
T).

Using (3.4) and Schur complements, this equals

det(Δm) ⋅ det(Δ−1
m ΔaX[n] −W
WT D−1

X
)det(DX).

Using an alternate Schur complement, we expand this latter expression as

det(Δm) ⋅ det(Δ−1
m )det(ΔaX[n])det(D−1

X +WT ΔmΔ−1
aX[n]

W) ⋅ det(DX).

Now defining n′j ∶= ∑
n j
i=1 m ji as in the assertion, we have

WT ΔmΔ−1
aX[n]

W = diag(a−1
x1

n′1 , . . . , a−1
xk

n′k) = Δ−1
aX

Δn′ .

Thus, the above computation can be continued:

pX[n](m) = det(ΔaX[n])det(D−1
X + Δ−1

aX
Δn′)det(DX)

=
k
∏
j=1

an j
x j ⋅ det(Idk +Δ−1

aX
Δn′DX)

=
k
∏
j=1

an j−1
x j ⋅ det(ΔaX + Δn′DX) = pX(n′)

k
∏
j=1

an j−1
x j .

This proves the result over the function field (over Q) in which the entries
ax j , m ji , drs are variables. Now, we repeat the Zariski density arguments as in
the proof of Theorem 2.3, working this time with the nonzero polynomial given
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in (3.4). This shows the result over an arbitrary commutative ring – in particular,
over R.

(3) The key observation is that the diagonal entries of DX[n] corresponding to the
copies of x ∈ X, all equal 2dX(x , X/{x}), which is precisely the corresponding
diagonal entry in DX . From this, the assertion for DX[n] is immediate, and that
for CX[n] is also straightforward.

(4) We first prove the equivalence for the D-matrices. The preceding part implies
that DX is a principal submatrix of DX[n], hence is positive semidefinite if DX[n]
is. Conversely, given v ∈ Rnx1+ ⋅ ⋅ ⋅ +nxk , write vT = (vT

1 , . . . , vT
k ), with all v i ∈ Rnxi .

Let w i ∶= vT
i 1nxi

, and denote by w ∶= (w1 , . . . , wk)T the “compression” of v. Now
compute

vTDX[n]v =
k
∑

i , j=1
vT

i d i j1nxi×nx j
v j =

k
∑

i , j=1
w i d i jw j = wTDXw ,

and this is nonnegative (for all v) since DX is positive semidefinite. Hence so is
DX[n].

This proves the equivalence for the D-matrices. Now for any metric space
Y (e.g., Y = X or X[n]), the matrix CY = (−ΔaY )−1/2DY(−ΔaY )−1/2 is positive
semidefinite if and only if DY is. This concludes the proof. ∎

Remark 3.3 The proof of Lemma 3.2(2) using Zariski density indicates a similar,
alternate approach to proving the formula for det M(A, D) in Theorem 2.3. The
difference, now, is that the rank-one expansion of the matrix D is no longer needed,
and can be replaced by the use of the two block-diagonal matrices

W(p1 , . . . , pk) ∶=
⎛
⎜⎜⎜
⎝

(p1)n1×1 0n1×1 . . . 0n1×1
0n2×1 (p2)n2×1 . . . 0n2×1
⋮ ⋮ ⋱ ⋮

0nk×1 0nk×1 . . . (pk)nk×1

⎞
⎟⎟⎟
⎠

and a similar matrix W(q1 , . . . , qk), so that M(A, D) = diag({A i ⋅ Idn i}) +
W({pi}) ⋅D ⋅W({qi})T .

Lemma 3.2(2) immediately implies the following consequence (which can also be
shown directly).

Corollary 3.4 Fix a finite metric space (X , d). For all integer tuples n ∈ ZX
>0, the

blowup-polynomial of X[n] has total degree at most ∣X∣.

In other words, no monomials of degree ∣X∣ + 1 or higher occur in pX[n], for any
tuple n.

We now prove the real-stability of pX(⋅).

Proof of Theorem C We continue to use the notation in the proof of Theorem B, with
one addition: for expositional clarity, in this proof, we treat pX(⋅) as a polynomial in
the complex variables z j ∶= nx j for j = 1, . . . , k. Thus,

pX(z1 , . . . , zk) = det N(aX ,DX) = det(ΔaX + ΔzDX),
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where a j = −2d(x j , X/{x j}) < 0 ∀ j and Δz ∶= diag(z1 , . . . , zk). We compute

pX(z) = det(Δz)det(DX − (−ΔaX)Δ−1
z )

=
k
∏
j=1

z j ⋅ det(−ΔaX)1/2 det ((−ΔaX)−1/2DX(−ΔaX)−1/2 − Δ−1
z )det(−ΔaX)1/2

= det(−ΔaX)
k
∏
j=1

z j ⋅ det
⎛
⎝
CX +

k
∑
j=1
(−z−1

j )E j j
⎞
⎠

,

where E j j is the elementary k × k matrix with ( j, j) entry 1 and all other entries zero.
We now appeal to two facts. The first is a well-known result of Borcea–Brändén

[5, Proposition 2.4] (see also [11, Lemma 4.1]), which says that if A1 , . . . , Ak , B are
equi-dimensional real symmetric matrices, with all A j positive semidefinite, then the
polynomial

f (z1 , . . . , zk) ∶= det
⎛
⎝

B +
k
∑
j=1

z jA j
⎞
⎠

(3.5)

is either real-stable or identically zero. The second is the folklore result that “inversion
preserves stability” (since the upper half-plane is preserved under the transformation
z ↦ −1/z of C×). That is, if a polynomial g(z1 , . . . , zk) has z j-degree d j ⩾ 1 and is real-
stable, then so is the polynomial

zd1
1 ⋅ g(−z−1

1 , z2 , . . . , zk)

(this actually holds for any z j). Apply this latter fact to each variable of the multi-affine
polynomial f (⋅) in (3.5) – in which d j = 1, B = CX , and A j = E j j ∀ j. It follows that the
polynomial

z1 ⋅ ⋅ ⋅ zk ⋅ f (−z−1
1 , . . . ,−z−1

k ) =
k
∏
j=1

z j ⋅ det
⎛
⎝
CX +

k
∑
j=1
(−z−1

j )E j j
⎞
⎠

= det(−ΔaX)−1 pX(z)

is real-stable, and the proof is complete. ∎

Remark 3.5 For completeness, we briefly touch upon other notions of stability
that are standard in mathematics (analysis, control theory, differential/difference
equations): Hurwitz stability and Schur stability. Recall that a real polynomial in one
variable is said to be Hurwitz stable (resp. Schur stable) if all of its roots lie in the open
left half-plane (resp. in the open unit disk) in C. Now the univariate specializations
uX(n) = pX(n, n, . . . , n) are not all either Hurwitz or Schur stable. As a concrete
example: in the simplest case of the discrete metric on a space X, equation (2.4) implies
that uX(n) = (n − 2)k−1(n − 2 + kn), and this vanishes at n = 2, 2

k+1 .
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4 Combinatorics: graphs and their partially symmetric
blowup-polynomials

We now take a closer look at a distinguished sub-class of finite metric spaces:
unweighted graphs. In this section, we will show Theorems D–F. To avoid having to
mention the same quantifiers repeatedly, we introduce the following definition (used
in the opening section).
Definition 4.1 A graph metric space is a finite, simple, connected, unweighted
graph G, in which the distance between two vertices is the number of edges in a
shortest path connecting them.

Every graph metric space G is thus a finite metric space, and so the results in the
previous sections apply to it. In particular, to every graph metric space G = (V , E) are
naturally associated a (to the best of our knowledge) novel graph invariant

pG(n) = pG({nv ∶ v ∈ V}) ∶= det(2Δn − 2 IdV +ΔnDG) = det(−2 IdV +ΔnDG)
(4.1)

(which we showed is real-stable), as well as its univariate specialization (which is thus
real-rooted)

uG(n) = pG(n, n, . . . , n) = det((2n − 2) IdV +nDG) = det(−2 IdV +nDG)(4.2)

and its “maximum root” αmax(uG) ∈ R. Here, DG is the distance matrix of G (with
zeros on the diagonal) and DG = DG + 2 IdV is the modified distance matrix.

4.1 Connections to the distance spectrum; pG recovers G

We begin with an observation (for completeness), which ties into one of our original
motivations by connecting the blowup-polynomial uG to the distance spectrum of G,
i.e., to the eigenvalues of the distance matrix DG . The study of these eigenvalues began
with the work of Graham and Lovász [20], and by now, is a well-developed program
in the literature (see, e.g., [3]). Our observation here is the following.
Proposition 4.2 Suppose G = (V , E) is a graph metric space. A real number n is a root
of the univariate blowup-polynomial uG , if and only if 2n−1 − 2 is an eigenvalue of the
distance matrix DG , with the same multiplicity.

Alternately, λ ≠ −2 is an eigenvalue of DG if and only if 2
2+λ is a root of uG .

Proof First, note from the definitions that uG(0) = det(−2 IdV) ≠ 0. We now
compute

uG(n) = det(−2 IdV +n(2 IdV +DG)) = (2n)∣V ∣ det(IdV + 1
2 DG − n−1 IdV).

Thus, n is a (nonzero) root of uG if and only if n−1 is an eigenvalue of IdV + 1
2 DG . The

result follows from here. ∎
In the distance spectrum literature, much work has gone into studying the largest

eigenvalue of DG , called the “distance spectral radius” in the literature, as well as the
smallest eigenvalue of DG . An immediate application of Proposition 4.2 provides an
interpretation of another such eigenvalue.
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Figure 1: Two non-isometric graphs on six vertices with co-spectral blowups.

Corollary 4.3 The smallest eigenvalue of DG which is strictly greater than −2, is
precisely 2

αmax(uG)
− 2.

We refer the reader to further discussions about αmax(uG) in and around
Proposition A.4.

Following these observations that reinforce our motivating connections between
distance spectra and the blowup-polynomial, we now move on to the proof of
Theorem D. Recall, this result shows that (the homogeneous quadratic part of) pG
recovers/detects the graph and its isometries – but uG does not do so.

Proof of Theorem D We prove the various assertions in serial order. One implication
for the first assertion was described just above the theorem-statement. Conversely,
suppose pG(n) ≡ pΨ(G)(n). Fix vertices v ≠ w ∈ V , and equate the coefficient of nv nw
on both sides using Proposition 2.6:

(−2)∣V ∣−2 det( 2 d(v , w)
d(v , w) 2 ) = (−2)∣V ∣−2 det( 2 d(Ψ(v), Ψ(w))

d(Ψ(v), Ψ(w)) 2 ) ,

since dG(v , V/{v}) = 1 ∀v ∈ V . Thus d(Ψ(v), Ψ(w)) = d(v , w) for all v , w ∈ V , so Ψ
is an isometry.

The second assertion is shown as follows. By Proposition 2.6, the vertex set can
be obtained from the nonzero monomials nv nw (since every edge yields a nonzero
monomial). In particular, ∣V ∣ is recovered. Again by Proposition 2.6, there is a bijection
between the set of edges v ∼ w in G and the monomials nv nw in pG(n)with coefficient
3(−2)∣V ∣−2. Thus, all quadratic monomials in pG(n) with this coefficient reveal the
edge set of G as well.

Finally, to show that uG does not detect the graph G, consider the two graphs H, K
in Figure 1.

Both graphs have vertex sets {1, . . . , 6}, and are not isomorphic. Now define (see
Remark 4.4):

H′ ∶= H[(2, 1, 1, 2, 1, 1)], K′ ∶= K[(2, 1, 1, 1, 1, 2)].
Then H′ , K′ are not isometric, but a direct computation reveals:

uH′(n) = uK′(n) = −320n6 + 3, 712n5 − 10, 816n4 + 10, 880n3 − 1, 664n2 − 2, 048n + 256.

∎
Remark 4.4 The graphs H′ , K′ in the preceding proof were not accidental or
providential, but stem from the recent paper [18], which is part of the literature
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on exploring which graphs are distance co-spectral (see the Introduction). In the
discussion preceding [18, Figure 1], the authors verified that the graphs H′ /≅ K′ used
in the preceding proof are indeed distance co-spectral. This result, combined with
Proposition 4.2, leads to the above use of H′ , K′ in proving that uG cannot detect G
up to isometry.

Remark 4.5 As the proof of Theorem D reveals, for any graph metric space G =
(V , E), the Hessian of the blowup-polynomial carries the same information as the
matrix DG ∈ ZV×V

>0 :

H(pG) ∶= ((∂nv ∂nv′
pG)(0))v ,v′∈V = (−2)∣V ∣1∣V ∣×∣V ∣ − (−2)∣V ∣−2D○2G ,(4.3)

where D○2G is the entrywise square of the modified distance matrix DG .

4.2 Complete multipartite graphs via real-stability

The next result we show is Theorem E (described in the title of this subsection). Before
doing so, we define the three classes of polynomials alluded to in Corollary 1.7, as
promised there (and for the self-sufficiency of this paper).

(1) Brändén–Huh [12] defined a polynomial p ∈ R[x1 , . . . , xk] to be Lorentzian if p(⋅)
is homogeneous of some degree d, has nonnegative coefficients, and given any
indices 0 ⩽ j1 , . . . , jd−2 ⩽ k, if

g(x1 , . . . , xk) ∶= (∂x j1
. . . ∂x jd−2

p) (x1 , . . . , xk),

then the Hessian matrixHg ∶= (∂x i ∂x j g)k
i , j=1 ∈ Rk×k is Lorentzian. (This last term

means that Hg is nonsingular and has exactly one positive eigenvalue.)
(2) Suppose p ∈ R[x1 , . . . , xk] has nonnegative coefficients. Gurvits [23] defined p to

be strongly log-concave if for all α ∈ Zk
⩾0, either the derivative ∂α(p) ∶=

k
∏
i=1

∂α i
x i
⋅ p

is identically zero, or log(∂α(p)) is defined and concave on (0,∞)k .
(3) Suppose p ∈ R[x1 , . . . , xk] has nonnegative coefficients. Anari, Oveis Gharan, and

Vinzant [2] defined p to be completely log-concave if for all integers m ⩾ 1 and

matrices A = (a i j) ∈ [0,∞)m×k , either the derivative ∂A(p) ∶=
m
∏
i=1

⎛
⎝

k
∑
j=1

a i j∂x j

⎞
⎠
⋅ p

is identically zero, or log(∂A(p)) is defined and concave on (0,∞)k .

Having written these definitions, we proceed to the main proof.

Proof of Theorem E We prove the cyclic chain of implications:

(4) '⇒ (1) '⇒ {(1), (2)} '⇒ (3) '⇒ (2) '⇒ (4) ⇐⇒ (5).

We begin with a short proof of (1) '⇒ (2) via Lorentzian polynomials from
Corollary 1.7. It was shown in [12, pp. 828–829] that if (1) holds then p̃G is Lorentzian
(see also [15, Theorem 6.1]), and in turn, this implies (2) by definition (or by loc. cit.).
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We next show that (3) '⇒ (2). Observe that

pG(−z1 , . . . ,−zk) ⋅ (−1)k

pG(−1, . . . ,−1) ⋅ (−1)k ≡ p̃G(1, z1 , . . . , zk)
p̃G(1, 1, . . . , 1) .(4.4)

Now if (3) holds, then p̃G(1, 1, . . . , 1) = (−1)k pG(−1, . . . ,−1) > 0, so the polynomial

(−1)k pG(−z1 , . . . ,−zk) = p̃G(1, z1 , . . . , zk)

has all coefficients nonnegative, using (3) and (4.4). Since pG(⋅) is multi-affine (or by
inspecting the form of p̃G(⋅)), this shows (3) '⇒ (2). Now to show {(1), (2)} '⇒
(3), note that the sum of all coefficients in p̃G(⋅) equals

p̃G(1, 1, . . . , 1) = (−1)k pG(−1, . . . ,−1),

and by (2), this dominates the “constant term” of pG , i.e.,

(−1)k pG(−1, . . . ,−1) ⩾ p̃G(1, 0, . . . , 0) = (−1)k pG(0, . . . , 0)
= (−1)k ∏

v∈V
(−2d(v , V/{v})) > 0.

In particular, (−1)k pG(−1, . . . ,−1) > 0, proving a part of (3). Hence using (2) and
(4.4), all coefficients of the “reflected” polynomial are nonnegative; and the normal-
ization shows that the coefficients sum to 1. It remains to show that the “reflected”
polynomial pG(−z)/pG(−1, . . . ,−1) is real-stable. Once again, using (4.4) and that
(−1)k pG(−1, . . . ,−1) > 0, it suffices to show that p̃G(1, z1 , . . . , zk) is real-stable. But
this follows from (1) by specializing to z0 ↦ 1 ∈ R. This finally shows that (1) and (2)
together imply (3).

We next show the equivalence of (4) and (5). If G = Kk , then DG = Idk +1k×k is
positive semidefinite. Hence so is DKk[n] for all n, by Lemma 3.2(4). The converse
follows from [28, Theorem 1.1], since DG = DG + 2 Id∣V(G)∣.

Finally, we will show (2) '⇒ (4) '⇒ (1). First, assume (2) p̃G(⋅) has nonneg-
ative coefficients. Fix a subset J ⊆ {1, . . . , k}; using Proposition 2.6(1), the coefficient
of zk−∣J∣

0 ∏ j∈J z j equals

(−1)k−∣J∣ ⋅ det(DG)J×J ∏
j∈{1,. . . ,k}/J

(−d j j) = det(DG)J×J ∏
j∈{1,. . . ,k}/J

2dG(v j , V/{v j}).

By the hypotheses, this expression is nonnegative for every J ⊆ {1, . . . , k}. Hence, DG
has all principal minors nonnegative (and is symmetric), so is positive semidefinite,
proving (4).

Finally, if (4) DG is positive semidefinite, then so is CG . As above, write CG =
(−ΔaG )−1/2DG(−ΔaG )−1/2, and compute using that−ΔaG is a positive definite diagonal
matrix:

p̃G(z0 , z1 , . . . , zk) = det(z0 ⋅ (−ΔaG ) + ΔzDG)
= det(−ΔaG )1/2 det(z0 Idk +ΔzCG)det(−ΔaG )1/2

= det(−ΔaG )det(z0 Idk +ΔzCG).(4.5)
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(As an aside, the second factor in the final expression was termed as the multivariate
characteristic polynomial of CG , in [12, Section 4.4].)

Now CG has a positive semidefinite square root
√
CG by the hypotheses. We claim

that

det(z0 Idk +Δz
√
CG
√
CG) = det(z0 Idk +

√
CG Δz

√
CG);

this follows by expanding the determinant of ( z0 Idk −
√
CG

Δz
√
CG Idk

) in two different

ways, both using Schur complements. Therefore – and as in the proof of Theorem C –
we have

p̃G(z0 , z1 , . . . , zk) = det(−ΔaG )det(z0 Idk +
√
CG Δz

√
CG)

= det(−ΔaG )det
⎛
⎝

z0 Idk +
k
∑
j=1

z j
√
CG E j j

√
CG
⎞
⎠

.
(4.6)

Now the coefficient of each z j , j ⩾ 0 inside the above determinant is a positive
semidefinite matrix. It follows by [5, Proposition 2.4] (see the text around (3.5)) that
p̃G(⋅) is real-stable, proving (1).

This proves the equivalence. The final assertion is immediate from (4) via
Lemma 3.2(4). ∎

Remark 4.6 The assertions in Theorem E and Corollary 1.7 are thus further equiv-
alent to CG being a correlation matrix. Moreover, Theorem C (except the final
equivalent assertion (5)) and Corollary 1.7 hold more generally: for arbitrary finite
metric spaces. We leave the details to the interested reader.

Remark 4.7 The proof of Theorem E also reveals that inspecting the coefficients in
the polynomial pG(⋅) or p̃G(⋅) helps identify the principal minors of DG (or CG) that
are negative, zero, or positive.

4.3 Symmetries; monomials with zero coefficients

The results in this paper are developed with the goal of being used in proving the
main theorems in the opening section. The only exceptions are one of the appendices
(below), and this present subsection, in which our goal is to provide further intuition
for blowup-polynomials of graph metric spaces G. To do so, we study a concrete family
of graph metric spaces K(l)k – for which we compute the blowup-polynomials and
reveal connections to symmetric functions. In addition, these computations lead to the
study of certain monomials whose coefficients in pG vanish – this provides intuition
for proving Theorem F.

We begin from the proof of Theorem D, which shows that the blowup-polynomial
of G is a partially symmetric polynomial, in the sense of being invariant under the
subgroup Isom(G) (of isometries of G) of SV(G) (the permutations of V(G)). For
instance, pG(n) is symmetric in n for G a complete graph; whereas pG possesses
“cyclic” symmetries for G a cycle; and so on.
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In addition to these global symmetries (i.e., isometries) of G, there also exist “local
symmetries.” For example, suppose G = Pk is a path graph, with vertex x i adjacent to
x i±1 for 1 < i < k. For any 1 < i ⩽ j < k, the coefficient of the monomials

nx i−1 nx i . . . nx j and nx i nx i+1 . . . nx j+1

are equal, by Proposition 2.6(3). A similar result holds more generally for banded
graphs with bandwidth d ⩾ 1, in which a vertex x i is adjacent to x j if and only if
0 < ∣i − j∣ < d and 1 ⩽ i , j ⩽ k.

Example 4.8 We now use this principle of symmetry to compute the blowup-
polynomial for a two-parameter family of graph metric spaces

G = K(l)k , 0 ⩽ l ⩽ k − 2.

(This will shortly be followed by another application: a sufficient condition for when
certain monomials do not occur in pG(n).) Here, K(l)k denotes the complete graph
Kk from which the edges (1, 2), . . . , (1, l + 1) have been removed. This leads to three
types of vertices:

{1}, {2, . . . , l + 1}, {l + 2, . . . , k},

and correspondingly, the isometry group Isom(K(l)k ) ≅ S l × Sk−l−1. Notice that the
vertices 2, . . . , k form a complete induced subgraph of K(l)k .

The graphs K(l)k are all chordal (i.e., do not contain an induced m-cycle for any
m ⩾ 4), and include as special cases: complete graphs (for l = 0) as well as complete
graphs with one pendant vertex (for l = k − 2). The “almost complete graph” K(1)k
(missing exactly one edge) is another special case, important from the viewpoint of
matrix positivity: it was crucially used in [22] to compute a graph invariant which
arose out of analysis and positivity, for every chordal graph. This was termed the
critical exponent of a graph in [22], and seems to be a novel graph invariant.

By the remarks above, the blowup-polynomial in the nv i (which we will replace by
n i , 1 ⩽ i ⩽ k for convenience) will be symmetric separately in {n2 , . . . , n l+1} and in
{n l+2 , . . . , nk}. In particular, since the polynomial is multi-affine in the n i , the only
terms that appear will be of the form

nε1
1 er(n2 , . . . , n l+1)es(n l+2 , . . . , nk),(4.7)

where ε1 = 0 or 1, and er(⋅) is the elementary symmetric (homogeneous, multi-affine,
and, in fact, real-stable) polynomial for every r ⩾ 0 (with e0(⋅) ∶= 1).

With this preparation, we can state and prove the following result for the
graphs K(l)k .

Proposition 4.9 Fix nonnegative integers k, l such that 0 ⩽ l ⩽ k − 2. With K(l)k as
defined above, and denoting nv i by n i for convenience (with 1 ⩽ i ⩽ k), we have
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pK(l)
k
(n) =

l
∑
r=0

k−l−1
∑
s=0

[(−2)k−r−s(1 + r + s)] er(n2 , . . . , n l+1)es(n l+2 , . . . , nk)

+ n1
l
∑
r=0

k−l−1
∑
s=0

[(−2)k−r−s−1(1 − r)(s + 2)] er(n2 , . . . , n l+1)es(n l+2 , . . . , nk).

Notice that setting n1 = 0, we obtain the blowup-polynomial of the complete graph
Kk−1, in the variables n2 , . . . , nk . This clearly equals (via r + s ↝ s):

k−1
∑
s=0
(−2)k−s(1 + s)es(n2 , . . . , nk),

and it also equals the expression in (2.4) (modulo relabeling of the variables) since the
underlying metric spaces are isometric. A similar computation holds upon working
with l = 0.

Proof of Proposition 4.9 We begin by exploiting the symmetries in K(l)k , which
imply that given a subset I ⊆ {1, . . . , k}, the coefficient of ∏i∈I n i depends only on
the three integers

ε1 ∶= 1(1 ∈ I), r ∶= #(I ∩ {2, . . . , l + 1}), s ∶= #(I ∩ {l + 2, . . . , k}).

Now using (4.7), it follows that the blowup-polynomial indeed has the desired
form:

pK(l)
k
(n) =

l
∑
r=0

k−l−1
∑
s=0

a0,r ,s er(n2 , . . . , n l+1)es(n l+2 , . . . , nk)

+ n1
l
∑
r=0

k−l−1
∑
s=0

a1,r ,s er(n2 , . . . , n l+1)es(n l+2 , . . . , nk),

for some coefficients aε1 ,r ,s ∈ R. It remains to compute these coefficients, and we
begin with the coefficients a0,r ,s . By a computation akin to the proof of Proposition
2.6(1), these are obtained by specializing n1 = 0, which leads to a power of (−2)
times a principal minor of DK(l)

k
not involving its first row or column. But this is the

determinant of a principal submatrix of

Idk−1 +1(k−1)×(k−1)

of size (r + s) × (r + s), and so a direct computation implies the desired formula:

a0,r ,s = (−2) ⋅ (−2)k−r−s−1 ⋅ (1 + r + s).

It remains to compute a1,r ,s , which equals (−2)k−r−s−1 times the determinant of the
block matrix

Dr ,s ∶=
⎛
⎜
⎝

2 21T
r×1 1T

s×1
21r×1 Idr +1r×r 1r×s
1s×1 1s×r Ids +1s×s

⎞
⎟
⎠
= (2 vT

v Cr ,s
) ∈ R(1+r+s)×(1+r+s) ,
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where v ∶= (21T
r×1 1T

s×1)T ∈ Rr+s , and Cr ,s = Idr+s +1(r+s)×(r+s) denotes the principal
submatrix of Dr ,s obtained by removing its first row and column. Now C−1

r ,s = Id−(1 +
r + s)−11(r+s)×(r+s), so using Schur complements,

detDr ,s

= det Cr ,s ⋅ det (2 − vT C−1
r ,sv)

= 2(1 + r + s) − (21r×1
1s×1

)
T

((1 + r + s) Idr −1r×r −1r×s
−1s×r (1 + r + s) Ids −1s×s

)(21r×1
1s×1

) ,

and a straightforward (if careful) calculation reveals this quantity to equal
(1 − r)(s + 2). ∎

Example 4.10 As an additional example, we compute the blowup-polynomial for
several other graphs at once. The path graph P3 is a special case of the star graphs
K1,k−1, and in turn, these as well as the cycle graph C4 are special cases of complete
bipartite graphs Kr ,s . As Kr ,s = K2[(r, s)] is a blowup, we can use Lemma 3.2(2) and
equation (2.4) for k = 2, to obtain

pKr ,s(n1 , . . . , nr ; m1 , . . . , ms)

= (−2)r+s−2 ⎛
⎝

3
r
∑
i=1

n i ⋅
s
∑
j=1

m j − 4
r
∑
i=1

n i − 4
s
∑
j=1

m j + 4
⎞
⎠

.
(4.8)

As one observes by visual inspection, the coefficient in Proposition 4.9 of n1n2
times any monomial in the (“type-3”) node-variables n l+2 , . . . , nk , vanishes. Similarly,
in (4.8), there are many coefficients that vanish – in fact, every coefficient of total
degree at least 3. These facts can be explained more simply, by the following result
about zero terms in the blowup-polynomial.

Proposition 4.11 Suppose G , H are graph metric spaces, and n ∈ ZV(G)
>0 a tuple of

positive integers, such that G[n] isometrically embeds as a subgraph metric space
inside H. Also suppose nv ⩾ 2 for some v ∈ V(G), and v1 , v2 ∈ G[n] are copies of v. Then
for every subset of vertices {v1 , v2} ⊆ S ⊆ V(G[n]), the coefficient of ∏s∈S ns in pH(⋅)
is zero.

For example, for H the path graph P4 with vertices a − b − c − d, the coefficients
of na nc , na nb nc , and nb nd , nb nc nd in pH(n) are all zero, since the path subgraphs
a − b − c and b − c − d are both isomorphic to the graph blowup K2[(1, 2)].

This result also extends to arbitrary finite metric spaces.

Proof By Proposition 2.6, the coefficient of nS (whose meaning is clear from
context) in pH({nw ∶ w ∈ V(H)}) is a scalar times det(DH)S×S . Since G[n] is a metric
subspace of H, it suffices to show that det(DG[n])S×S = 0, since this matrix agrees with
(DH)S×S . But since v1 , v2 ∈ V(G[n]) are copies of v ∈ V(G), the matrix DG[n] has
two identical rows by Lemma 3.2(3). It follows that det(DG[n])S×S = 0, and the proof
is complete. ∎
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4.4 The tree-blowup delta-matroid

We conclude this section by proving Theorem F about the delta-matroid M′(T) for
every tree, which seems to be unstudied in the literature. We then explore (a) if this
delta-matroid equals the blowup delta-matroid MDT ; and (b) if this construction can
be extended to arbitrary graphs.

To motivate the construction of M′(T), which we term the tree-blowup delta-
matroid, we begin by applying Proposition 4.11 with G = P2 = K2 and G[n] = P3. An
immediate consequence is the following.

Corollary 4.12 If a, b, c ∈ V(H) are such that b is adjacent to a, c but a, c are not
adjacent, then na nc and na nb nc have zero coefficients in pH(n).

In light of this, we take a closer look atDX for X = Pk a path graph. Given an integer
k ⩾ 1, the path graph Pk has vertex set {1, . . . , k}, with vertices i , j adjacent if and only
if ∣i − j∣ = 1.

Recall from [10] that the set system MDX (defined a few lines before Corollary 1.10)
is a linear delta-matroid for every finite metric space – in particular, for every graph
metric space, such as Pk . It turns out (by inspection) that Corollary 4.12 describes all of
the principal minors of DPk which vanish – i.e., the complement of the delta-matroid
MDPk

in the power-set of {1, . . . , k} – for small values of k. While this may or may not
hold for general k, the same construction still defines a delta-matroid, and one that is
hitherto unexplored as well.

Proposition 4.13 Given an integer k ⩾ 3, define the set system

B(Pk) ∶= 2{1, . . . ,k}/ { {i , i + 1, i + 2}, {i , i + 2} ∶ 1 ⩽ i ⩽ k − 2} .

Then B(Pk) is a delta-matroid.

We now strengthen this result to the case of arbitrary trees (for completeness, recall
that a tree is a finite connected graph without a cycle Cn for n ⩾ 3). We begin with a
few basic observations on trees, which help in the next proofs. Every pair of vertices
in T is connected by a unique path in T. Moreover, every connected sub-graph of T
is a tree, and every (nonempty) set I of vertices of T is contained in a unique smallest
sub-tree T(I), called its Steiner tree. We also recall that a leaf, or a pendant vertex, is
any vertex with degree one, i.e., adjacent to exactly one vertex.

Definition 4.14 Let T = (V , E) be a finite connected, unweighted, tree with the
(unique) edge-distance metric. We say that a subset of vertices I ⊆ V is infeasible if
there exist vertices v1 ≠ v2 in I, such that the Steiner tree T(I) has v1 , v2 as leaves, both
adjacent to the same (unique) vertex.

With this terminology at hand, Theorem F asserts that the feasible subsets of V
form a delta-matroid. Note, if T = Pk is a path graph, then M′(T) equals the delta-
matroid B(Pk) above.

The proof of Theorem F requires a preliminary result, which characterizes when a
graph G is a nontrivial blowup, and which then connects this to the distance spectrum
of G.
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Proposition 4.15 Suppose G = (V , E) is a graph metric space. Then each of the
following statements implies the next:
(1) G is a nontrivial blowup, i.e., a blowup of a graph metric space H with ∣V(H)∣ <

∣V(G)∣.
(2) G contains two vertices v , w with the same set of neighbors. (In particular,

dG(v , w) = 2.)
(3) −2 is an eigenvalue of the distance matrix DG .
(4) The blowup-polynomial has total degree strictly less than ∣V ∣.
In fact (1) ⇐⇒ (2) '⇒ (3) ⇐⇒ (4), but all four assertions are not equivalent.

Proof We show the implications (2) '⇒ (1) '⇒ (2) '⇒ (3) '⇒ (4) '⇒ (3).
If (2) holds, and H is the induced subgraph of G on V(G)/{w}, then it is easy to
see that G = H[n], where nv′ = 1 for v′ ≠ v, nv = 2, and w is the other copy of v. This
shows (1); conversely, if (1) holds then there exist two vertices v ≠ w ∈ V(G) that are
copies of one another. But then v , w share the same neighbors, so 0 < dG(v , w) ⩽ 2.
If dG(v , w) = 1 then v , w are neighbors of each other but not of themselves, which
contradicts the preceding sentence. This shows that (1) '⇒ (2).

Now suppose (2) holds, and hence so does (1). By Lemma 3.2(3), DG = DG +
2 IdV has two identical rows, so is singular. This shows (3). (This implication is also
mentioned in [3, Theorem 2.34].) Finally, (3) holds if and only if DG is singular as
above. By Proposition 2.6(1), this is if and only if the coefficient of the unique top-
degree monomial∏v∈V(G) nv in pG(n) vanishes, which shows that (3) ⇐⇒ (4).

To show (3) does not imply (2), consider the path graph P9 (with edges {i , i + 1}
for 0 < i < 9). It is easy to check that detDP9 = 0, so that (3) holds; and also that (2)
does not hold. ∎

Specializing Proposition 4.15 to trees, we obtain the following.

Corollary 4.16 A tree T is a blowup of a graph G if and only if (a) G is a sub-tree of T,
and (b) the only vertices of G which are “copied” are a set of leaves of G.

Proof One way is easily shown, and for the “only if ” part, the key observation is that
if a vertex adjacent to at least two others is copied, then this creates a four-cycle in the
blowup. (An equally short proof is that this result is a special case of Proposition 4.15
(1) ⇐⇒ (2).) ∎
Proof of Theorem F If T has two nodes (so T = K2), then M′(T) = 2V , which is
a delta-matroid. Thus, suppose henceforth that ∣V ∣ ⩾ 3. Since M′(T) contains all
singleton subsets of V, the only nontrivial step is to verify the symmetric exchange
axiom. Suppose A ≠ B ∈M′(T) and x ∈ AΔB. We divide the analysis into two cases;
in what follows, given a subset I ⊆ V , we will denote by TI the subgraph of T induced
on the vertex set I, and by T(I) the Steiner tree of I (as above).
(1) x ∈ B/A.

If A⊔ {x} ∈M′(T), then we simply choose y = x. Otherwise, A⊔ {x} is
infeasible whereas A is not (i.e., A is feasible). In particular, x /∈ T(A) since
otherwise T(A⊔ {x}) = T(A). Now using Corollary 4.16, this yields a unique
v ∈ A such that v , x are leaves in the sub-tree T(A⊔ {x}). Also denote their
(unique) common adjacent vertex by a ∈ T(A⊔ {x}).
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We now proceed. If v /∈ B, then compute using y = v:

AΔ{x , y} = (A/{v}) ⊔ {x}.

Since v , x were copies, removing v and adding x produces an isomorphic graph:
T(A/{v})⊔{x} ≅ TA, which is indeed in M′(T), as desired.

Otherwise, v ∈ B. In this case, T(B) contains v , x and hence a as well. If now
v , x are leaves in T(B), then B is infeasible, which contradicts the assumption.
Hence, there exists y ∈ B which is separated from a ∈ V by (exactly) one of v , x ∈
B. Clearly, y /∈ A⊔ {x}; now note that AΔ{x , y} = A⊔ {x , y}, and this belongs to
M′(T) by Corollary 4.16 (and the uniqueness of the leaves v , x with a common
adjacent vertex).

(2) The other case is when x ∈ A/B.
Once again, there are two cases, analogous to the two cases above. First, if

A/{x} ∈M′(T), then we simply choose y = x. Otherwise, A/{x} is infeasible
whereas A is not. Using Corollary 4.16, this yields unique v , w ∈ A such that:
• v , w are leaves in T(A/{x}),
• v , w are both adjacent to a (unique) vertex a ∈ T(A/{x}), and
• v separates x from w in T(A).

There are now two sub-cases. First, if v , w ∈ B, then T(B) contains v , w, hence
a. As B ∈M′(T), there again exists y ∈ B which is separated from a ∈ V , now by
(exactly) one of v , w. But then AΔ{x , y} = (A/{x}) ⊔ {y}, and this is in M′(T)
as in the preceding case, by Corollary 4.16 (and the uniqueness of the leaves v , w
with a common adjacent vertex).

The final sub-case is when not both v , w lie in B. Choose an element y ∈
{v , w}/B ⊆ A/B. Now AΔ{x , y} = (A/{x})/{y}, and by the uniqueness of the
leaves v , w (with a common adjacent vertex), this set lacks two leaves at distance
2 from each other in T. Therefore, AΔ{x , y} ∈M′(T), as desired. ∎

As mentioned above, the delta-matroidsMDPk
=M′(Pk) = B(Pk) for small values

of k. It is natural to seek to know if this result holds for all path graphs, and perhaps
even more generally. It turns out that this is false, and the situation is more involved
even for path graphs Pk with k ⩾ 9.

Proposition 4.17 Suppose k ⩾ 3 is an integer. The blowup delta-matroid MDPk
of the

graph metric space Pk coincides with the tree-blowup delta-matroid B(Pk), if and only
if k ⩽ 8.

Proof An explicit (and longwinded) inspection shows that MDPk
= B(Pk) for 3 ⩽

k ⩽ 8. Another direct computation shows that detDP9 = 0. Hence, by Proposition
2.6(2), the coefficient of n1n2 . . . n9 in pPk(n) also vanishes, for all k ⩾ 9. Using
Proposition 2.6(3), it follows that

{i , i + 1, . . . , i + 8} /∈MDPk
, ∀k ⩾ 9, 1 ⩽ i ⩽ k − 8.

But these sets all lie in B(Pk), so B(Pk) ⊋MDPk
for k ⩾ 9. ∎

As also promised above, we next explore the question of extending Theorem F from
trees to arbitrary graphs. The key observation is that the equivalence (1) ⇐⇒ (2) in
Proposition 4.15 extends Corollary 4.16. This suggests how to define a set system in
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Figure 2: A graph on seven vertices.

2V(G) for every graph metric space G, which specializes to the delta-matroid M′(T)
when G = T is a tree.

Definition 4.18 Suppose G = (V , E) is a graph metric space. We say that a subset
I ⊆ V is:
(1) Infeasible of the first kind if there exist vertices v1 ≠ v2 ∈ I and a subset I ⊆ Ĩ ⊆ V ,

such that: (a) the induced subgraph G(Ĩ) on Ĩ is connected in G, and (b) v1 , v2
have the same set of neighbors in G(Ĩ).

(2) Infeasible of the second kind if there exist vertices v1 ≠ v2 ∈ I and a subset I ⊆ Ĩ ⊆ V ,
such that: (a) the induced subgraph G(Ĩ) on Ĩ is a metric subspace of G (hence
connected), and (b) v1 , v2 have the same set of neighbors in G(Ĩ).

Also define M′1(G) (resp. M′2(G)) to comprise all subsets of V that are not infeasible
of the first (resp. second) kind.

For instance, if G = T is a tree, then it is not hard to see that M′1(T) =M′2(T) =
M′(T), which was studied in Theorem F. Thus, a question that is natural given that
theorem, is whether or not M′1(G) and/or M′2(G) is a delta-matroid for every graph G?

This question is also natural from the viewpoint of the blowup-polynomial, in
that if I ⊆ V is infeasible of the second kind, then the coefficient in pG(n) of the
monomial∏i∈I n i is zero by Proposition 4.11. Nevertheless, our next result shows that
this question has a negative answer, already for a graph on seven vertices. Thus, the
construction of M′(T) does not extend to arbitrary graph metric spaces in either of
the above two ways.

Proposition 4.19 There exists a graph G such that neither M′1(G) nor M′2(G) is a
delta-matroid.

Proof Let G denote the graph in Figure 2 on the vertex set V = {u, v1 , v2 , w1 ,
w2 , x , z}. The definitions show that A ∶= V and B ∶= {v2} both lie inM′1(G) ∩M′2(G),
and clearly, x ∈ AΔB = A/B. Moreover, for all y ∈ V , one can verify that AΔ{x , y} =
A/{x , y} (or A/{x} if y = x) is indeed infeasible of the second kind, hence of the first.
(This uses that in the induced subgraph on A/{x , y}, either v1 , v2 are both present, or
w1 , w2 are, and then they are copies of one another.) Hence, the symmetric exchange
axiom fails for both M′1(G) and for M′2(G), proving the result. ∎
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5 Metric geometry: Euclidean blowups

In this section, we explore the blowup-polynomial from the viewpoint of metric
geometry, and prove the final outstanding theorem. Specifically, we understand
which blowups X[n] of a given finite metric space X isometrically embed into some
Euclidean space (Rr , ∥ ⋅ ∥2).

Proof of Theorem A If k = 1, then the result is immediate, since X[n1] comprises
the vertices of a Euclidean simplex, for any n1 ⩾ 2. Thus, we suppose henceforth that
k ⩾ 2.

We first show (2) '⇒ (1). Let j0 ∈ [1, k]/{ j} be such that x j0 = v ∈ V is the
closest point in V to x j . Now a straightforward computation reveals that x′j ∶= 2x j0 −
x j ∈ Rr serves as a blowup of x j in X[n]. This proves (1).

The proof of the reverse implication (1) '⇒ (2) is in steps. We first suppose
nx1 , nx2 ⩾ 2 and arrive at a contradiction. Indeed, now the metric subspace Y[(2, 2)] ⊆
X[n] is also Euclidean, where Y = (x1 , x2). Rescale the metric such that d(x1 , x2) = 1,
and let y i be the blowup of x i in Y[(2, 2)] for i = 1, 2. Then the modified Cayley–
Menger matrix of Y[(2, 2)] with respect to (x1 , y1 , x2 , y2) is

A =
⎛
⎜
⎝

8 4 4
4 2 −2
4 −2 2

⎞
⎟
⎠

.

As det A < 0, it follows by Theorem 1.2 that Y[(2, 2)], and hence X[n] is not Euclidean.
Next, we suppose nx2 ⩾ 3 and again arrive at a contradiction – this time by consid-

ering the Euclidean subspace Y[(1, 3)] ⊆ X[n], where Y = (x1 , x2). Rescale the metric
such that d(x1 , x2) = 1, let y2 , z2 denote the blowups of x2 in Y[(1, 3)], and consider
the modified Cayley–Menger matrix of Y[(1, 3)] with respect to (x1 , x2 , y2 , z2) is

A =
⎛
⎜
⎝

2 −2 −2
−2 2 −2
−2 −2 2

⎞
⎟
⎠

.

As det A < 0, it follows by Theorem 1.2 that Y[(1, 3)], hence X[n] is not Euclidean.
(Note, these two uses of Theorem 1.2 can also be avoided by using “visual Euclidean
geometry.” For instance, in the latter case, x2 , y2 , z2 are the vertices of an equilateral
triangle with edge-length 2, and drawing three unit spheres centered at these vertices
reveals there is no common intersection point x1.)

This shows the existence of the unique index j ∈ [1, k] such that nx j = 2 and (2)(a)
all other nx i = 1. If k = 2, then the result is easy to show, so we now suppose that k ⩾ 3.
Let x j0 denote any point in X/{x j} that is closest to x j . Since X[n] is also Euclidean,
considering the degenerate (Euclidean) triangle with vertices x j0 , x j , and the blowup
x′j of x j shows that these vertices are collinear, and in fact, x j0 = (x j + x′j)/2. In turn,
this implies that a “closest point” x j0 ∈ X to x j (and hence the index j0) is unique.

Next, denote by l ⩾ 1 the dimension of the span V of {x i − x j0 ∶ i ≠ j}. Relabel the
x i via: y0 ∶= x j0 , y1 ∶= x j , and choose any enumeration of the remaining points in X as
y2 , . . . , yk−1, such that y2 − y0 , . . . , y l+1 − y0 form a basis of V. Since X is Euclidean,
a simple check shows that the modified Cayley–Menger matrix of X with respect to
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(y0 , . . . , yk−1) is precisely the Gram matrix

(d(y0 , y i)2 + d(y0 , y i′)2 − d(y i , y i′)2)k−1
i , i′=1 = (2⟨y i′ − y0 , y i − y0⟩)k−1

i , i′=1 .

Now, (2)(b) follows from the claim that if y1 − y0 is in the span of {y i − y0 ∶ 2 ⩽ i ⩽
l + 1}, then this matrix uniquely determines y1 ∈ Rr . To show the claim, write y1 −
y0 = ∑l+1

i=2 c i(y i − y0), and take inner products to obtain the linear system

l+1
∑
i=2
⟨y i′ − y0 , y i − y0⟩c i = ⟨y i′ − y0 , y1 − y0⟩, 2 ⩽ i′ ⩽ l + 1.

But the left-hand side is the product of the Gram matrix of {y i′ − y0 ∶ 2 ⩽ i′ ⩽ l + 1}
against the vector (c2 , . . . , c l+1)T . As the vectors y i′ − y0 are independent, their Gram
matrix is invertible, so this system determines all c i uniquely. In particular, if y1 = x j is
in the affine hull of X/{x j}, then X[n] cannot be Euclidean since nx j > 1. This proves
(2)(b).

Finally, since k ⩾ 3, we have l ⩾ 1. Now the definition of the blowup X[n] implies

∥y i − y1∥2
2 = ∥y i − (2y0 − y1)∥2

2 , 2 ⩽ i ⩽ l + 1,

or in other words,

∥(y i − y0) − (y1 − y0)∥2
2 = ∥(y i − y0) + (y1 − y0)∥2

2 .

Simplifying this equality yields that y1 − y0 is orthogonal to y2 − y0 , . . . , y l+1 − y0.
This implies y1 − y0 is orthogonal to all of V – which was the assertion (2)(c). ∎

5.1 Real-closed analogs

For completeness, we now provide analogs of some of the results proved above, over
arbitrary real-closed fields. As this subsection is not used anywhere else in the paper,
we will be brief, and also assume familiarity with real-closed fields; we refer the reader
to the opening chapter of [4] for this.

In this part, we suppose K is a real-closed field, where we denote the nonnegative
elements in K by: r ⩾ 0. Also let K = K[

√
−1] denote an algebraic closure of K, where

we fix a choice of “imaginary” square root i =
√
−1 in K. Then several “real” notions

can be defined over K,K:

(1) A symmetric matrix A ∈ Kk×k is said to be positive semidefinite (resp. positive
definite) if xT Ax ⩾ 0 (resp. xT Ax > 0) for all nonzero vectors x ∈ Kn .

(2) A matrix A ∈ Kk×k is orthogonal if AAT = Idk .
(3) Given z = x + iy ∈ K with x , y ∈ K, we define R(z) ∶= x and I(z) ∶= y.
(4) We say that a multivariable polynomial p ∈ K[z1 , . . . , zk] is stable if

p(z1 , . . . , zk) ≠ 0 whenever I(z j) > 0 ∀ j.

Now (an analog of) the spectral theorem holds for symmetric matrices A = AT ∈
Kk×k . Moreover, every such matrix A is positive semidefinite if and only if it has
nonnegative eigenvalues in K – and if so, then it has a positive semidefinite square
root

√
A. One also has the following.
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Proposition 5.1 Fix an integer k ⩾ 1.
(1) Suppose A1 , . . . , Am , B ∈ Kk×k are symmetric matrices, with all A j positive semidef-

inite. Then the polynomial

p(z1 , . . . , zm) ∶= det
⎛
⎝

B +
m
∑
j=1

z j A j
⎞
⎠

is either stable or identically zero.
(2) Suppose p ∈ K[z1 , . . . , zm] is homogeneous of degree k. If p is stable, then p

is Lorentzian (equivalently, strongly/completely log-concave, whenever log(⋅) is
defined over K).

The two parts of this proposition were proved over K = R in [5, 12], respectively.
Thus, they hold over an arbitrary real closed field K by Tarski’s principle, since all of
these notions can be expressed in the first-order language of ordered fields. Also note
that the equivalence in the second part indeed makes sense over some real-closed
fields, e.g., K = R, or K the field of convergent (real) Puiseux series with rational
powers, where it was proved in [12, Theorem 3.19]. The notions of Lorentzian and
strongly/completely log-concave polynomials over the latter field can be found in [12]
(see page 861).

Remark 5.2 Schoenberg’s Euclidean embeddability result (Theorem 1.2) – stated and
used above – turns out to have an alternate characterization in a specific real-closed
field: the convergent generalized Puiseux series R{t} with real powers. Recall, the
elements of R{t} are series

∞

∑
n=0

cn tαn , c0 , c1 , . . . ∈ R,

satisfying: (a) the exponents α0 < α1 < ⋅ ⋅ ⋅ are real; (b) {−αn ∶ n ⩾ 0, cn ≠ 0} is well-
ordered; and (c) ∑n cn tαn is convergent on a punctured open disk around the origin.
Such a series is defined to be positive if its leading coefficient is positive. It is known
(see, e.g., [41, Section 1.5]) that this field is real-closed; moreover, its algebraic closure
is the degree-2 extension C{t}, where real coefficients in the definition above are
replaced by complex ones. Now, we claim that the following holds.

Theorem 5.3 A finite metric space X = {x0 , x1 , . . . , xk} isometrically embeds inside
Hilbert space �2 (over R) if and only if the matrix EX ∶= (td(x i ,x j)

2)k
i , j=0 is positive

semidefinite in R{t}.

Proof This follows from a chain of equivalences: X is Euclidean-embeddable if and
only if (by [38], via Theorem 1.2) the matrix (−d(x i , x j)2)k

i , j=0 is conditionally positive
semidefinite, if and only if (by [38]) (exp(−λd(x i , x j)2))k

i , j=0 is positive semidefinite
for all λ ⩾ 0, if and only if (replacing e−λ ↝ q ∈ (0, 1) and via [41, Section 1.5]) EX is
positive semidefinite in R{t}. ∎

We conclude this part by formulating the promised tropical version of some of our
results above. As the notion of a K⩾0-valued metric (can be easily defined, but) is not
very common in the literature, we formulate the next result in greater generality.
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Theorem 5.4 Suppose K is a real-closed field, and Δ, M ∈ Kk×k are symmetric matri-
ces, with Δ a positive definite diagonal matrix.
(1) The multi-affine polynomials

p±(z1 , . . . , zk) ∶= det(±Δ + Δz M), z ∈ Kk

are stable, with coefficients in K.
(2) Define the homogenization p̃(z0 , z1 , . . . , zk) ∶= p(z0Δ + Δz M). The following are

equivalent:
(a) p̃ is stable.
(b) p̃ is Lorentzian (equivalently, strongly/completely log-concave, whenever log(⋅)

is defined over K).
(c) All coefficients of p̃ lie in K⩾0.

(d) p(1, . . . , 1) > 0, and the polynomial (z1 , . . . , zk) ↦
p(z1 , . . . , zk)

p(1, . . . , 1) is stable and

has nonnegative coefficients that sum to 1.
(e) The matrix M is positive semidefinite.

One can prove this result from the same result over K = R, via Tarski’s principle.
Alternately, the case of K = R was essentially proved in Theorem E; the slightly
more general versions here (for K = R, with M instead of DG ) require only minimal
modifications to the earlier proofs. These proofs (forK = R) go through over arbitrary
real-closed K with minimal further modifications, given Proposition 5.1.

6 Concluding remarks

We end the paper with some observations. The results in this work reveal several novel
invariants associated with all finite connected unweighted graphs – more generally, to
all finite metric spaces X:
(1) The (real-stable) blowup-polynomials pX(n) and uX(n).
(2) The degrees of pX , uX – notice by Proposition 4.17 that the degrees can be strictly

less than the number of points in X, even when X is not a blowup of a smaller
graph.

(3) The largest root of uX(n) (which is always positive). By Corollary 4.3, for X = G
a graph this equals 2

2+λ , where λ is the smallest eigenvalue of DG above −2.
(4) The blowup delta-matroid MDX ; and for X an unweighted tree, the delta-matroid

M′(X) which is combinatorial rather than matrix-theoretic.
It would be interesting and desirable to explore if – say for X = G a graph metric

space – these invariants can be related to “traditional” combinatorial graph invariants.

A From the matrix CX to the univariate blowup-polynomial

In this section, we show a few peripheral but related results for completeness. As the
proofs of Theorems C and E reveal, the matrix CG = (−ΔaG )−1/2DG(−ΔaG )−1/2 plays
an important role in determining the real-stability and Lorentzian nature of pG(⋅) and
p̃G(⋅), respectively. We thus take a closer look atCG in its own right. Here, we will work
over an arbitrary finite metric space X.
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Proposition A.1 Given a finite metric space X = {x1 , . . . , xk} with k ⩾ 2, the (real)
matrix CX has at least two positive eigenvalues, and this bound is sharp. More strongly,
for any k ⩾ 3, there exists a finite metric space Y = {y1 , . . . , yk} for whichCY has exactly
two positive eigenvalues.
Proof Suppose i ≠ j are such that d(x i , x j) is minimal among the off-diagonal
entries of the distance matrix DX (or DX). Using (3.2), the corresponding principal

2 × 2 submatrix of CX is ( 1 1/2
1/2 1 ). This is positive definite, hence has two positive

eigenvalues. But then so does CX , by the Cauchy interlacing theorem.
We now show that this bound is tight, first for k = 3. Consider a Euclidean isosceles

triangle with vertices x1 , x2 , x3 and edge-lengths 1, a, a for any fixed scalar a > 3. Thus,
X = {x1 , x2 , x3}; now a suitable relabeling of the x i gives

DX =
⎛
⎜
⎝

2 1 a
1 2 a
a a 2a

⎞
⎟
⎠

.

Now detDX = 2a(3 − a) < 0, so detCX = (3 − a)/4 < 0. AsCX has two positive eigen-
values, the third eigenvalue must be negative.

Finally, for k > 3, we continue to use X = {x1 , x2 , x3} as in the preceding paragraph,
and consider the blowup Y ∶= X[(1, 1, k − 2)]. By Lemma 3.2(3), DY is a block 3 × 3
matrix with the (3, 3) block of size (k − 2) × (k − 2). Let V ⊆ Rk denote the subspace
of vectors whose first two coordinates are zero and the others add up to zero; then V ⊆
kerDY and dim V = k − 3. On the ortho-complement V⊥ ⊆ Rk (with basis e1 , e2, and
e3 + ⋅ ⋅ ⋅ + ek), DY acts as the matrix DX ⋅ diag(1, 1, k − 2). Thus, the remaining three
eigenvalues of DY are those of DX ⋅ diag(1, 1, k − 2), or equivalently, of its conjugate

C ∶= diag(1, 1,
√

k − 2) ⋅DX ⋅ diag(1, 1,
√

k − 2),

which is real symmetric. Moreover,DX has a negative eigenvalue, hence is not positive
semidefinite. But then the same holds for C, hence for DY , and hence for CY . From
above,CY has at least two positive eigenvalues, and it has a kernel of dimension at least
k − 3 because DY does. ∎

The next result starts from the calculation in equation (4.6). The second deter-
minant in the final expression is reminiscent of an important tool used in proving
the Kadison–Singer conjecture in [31] (via Weaver’s conjecture KS2): the mixed
characteristic polynomial of a set of positive semidefinite matrices A j ∈ Rk×k :

μ[A1 , . . . , Am](z0) ∶=
⎛
⎝

m
∏
j=1
(1 − ∂z j)

⎞
⎠

det
⎛
⎝

z0 Idk +
m
∑
j=1

z jA j
⎞
⎠

CCCCCCCCCCCz1= ⋅ ⋅ ⋅ =zm=0

.(A.1)

In the setting of Theorem E, where CX is positive semidefinite, the matrices A j in
question – see (4.6) – are

√
CX E j j

√
CX , which are all positive semidefinite. It turns

out that their mixed characteristic polynomial is intimately connected to both CX and
to uX(⋅).
Proposition A.2 Suppose (X , d) is a finite metric space such that DX (equivalently,
CX) is positive semidefinite. Up to a real scalar, the mixed characteristic polynomial of
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the matrices {
√
CX E j j

√
CX ∶ 1 ⩽ j ⩽ k} equals the characteristic polynomial of CX , as

well as the “inversion” zk
0 uX(z−1

0 ) of the univariate blowup-polynomial.

Proof We begin with the following claim: If p(z0 , z1 , . . . , zk) is a polynomial, then

⎛
⎝

k
∏
j=1
(1 − ∂z j)

⎞
⎠
(p)(z0 , z1 , . . . , zk)

CCCCCCCCCCCz1= ⋅ ⋅ ⋅ =zk=0

= MAPz1 , . . . ,zk(p)(z0 , z1 , . . . , zk)∣z1= ⋅ ⋅ ⋅ =zk=−1 .

(A.2)

Here, the operator MAPz1 , . . . ,zk kills all higher-order terms in z1 , . . . , zk , and retains
only the “multi-affine” monomials∏k

j=0 zm j
j with all m1 , . . . , mk ⩽ 1 (but arbitrary m0).

To show the claim, write

p(z0 , z1 , . . . , zk) = ∑
m∈Zk

⩾0

am(z0)
k
∏
j=1

zm j
j ,

where each am(z0) is a polynomial. Now note that applying a differential “monomial
operator” and then specializing at the origin kills all but one monomials:

∏
i∈I

∂z i

⎛
⎝

k
∏
j=1

zm j
j
⎞
⎠

CCCCCCCCCCCz1= ⋅ ⋅ ⋅ =zk=0

= 1(m i = 1 ∀i ∈ I) ⋅ 1(m j = 0 ∀ j /∈ I), ∀I ⊆ {1, . . . , k}.

Thus, applying∏k
i=1(1 − ∂z i ) and specializing at the origin will kill all but the multi-

affine (in z1 , . . . , zk) monomials in p. Consequently, we may replace p on the left-hand
side in (A.2) by

q(z0 , . . . , zk) ∶= MAPz1 , . . . ,zk(p)(z0 , z1 , . . . , zk) = ∑
J⊆{1,. . . ,k}

aJ(z0)∏
j∈J

z j ,

say, where each aJ(z0) is a polynomial as above. Now compute

⎛
⎝

k
∏
j=1
(1 − ∂z j)

⎞
⎠

q(z0 , z1 , . . . , zk)
CCCCCCCCCCCz1= ⋅ ⋅ ⋅ =zk=0

= ∑
I⊆{1,. . . ,k}

(−1)∣I∣∏
i∈I

∂z i ⋅ ∑
J⊆{1, . . . ,k}

aJ(z0)∏
j∈J

z j

CCCCCCCCCCCCz1= ⋅ ⋅ ⋅ =zk=0

= ∑
J⊆{1,. . . ,k}

(−1)∣J∣aJ(z0) = q(z0 ,−1,−1, . . . ,−1).

This shows the claim. Using this, we and assuming that DX is positive semidefinite,
we show the first assertion – that the mixed characteristic polynomial of the matrices√
CX E j j

√
CX is the characteristic polynomial of CX :

μ[{
√
CX E j j

√
CX ∶ 1 ⩽ j ⩽ k}](z0) = det

⎛
⎝

z0 Idk +
k
∑
j=1
(−1)

√
CX E j j

√
CX
⎞
⎠

= det(z0 Idk −CX).
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This shows one assertion. Next, using (4.5) specialized at z1 = ⋅ ⋅ ⋅ = zk = −1, this
expression also equals (up to a scalar) the inversion of uX , as asserted:

= det(−ΔaX)−1 det(z0 ⋅ (−ΔaX) −DX) = det(ΔaX)−1zk
0 det(ΔaX + z−1

0 DX)
= det(ΔaX)−1zk

0 uX(z−1
0 ). ∎

We conclude this section by briefly discussing another invariant of the metric space
(X , d), one that is related to the matrix CX and the polynomial uX(⋅).

Definition A.3 Given a finite metric space (X , d), define αmax(X) ∈ R to be the
largest root, or “maxroot,” of (the real-rooted polynomial) uX(⋅).

Notice that uX(x + αmax(X)) has only nonpositive roots, and (say after dividing by
its leading coefficient,) only nonnegative coefficients. In particular, these coefficients
yield a (strongly) log-concave sequence for every finite metric space – e.g., for every
finite connected unweighted graph.

Proposition A.4 Given a finite metric space X = {x1 , . . . , xk} with k ⩾ 2, the root
αmax(X) is positive. In particular, uX(⋅) has monomials with both positive and negative
coefficients.

Furthermore, given any integer n ⩾ 1, we have

αmax(X[n(1, 1, . . . , 1)]) = αmax(X)
n

.

For example, for X the k-point discrete metric space (soDX = 1k×k + Idk is positive
definite) – or equivalently, the complete graph Kk – we have αmax(X) = 2, by the
computation in equation (2.4).

Proof Recall that uX(x) = det(ΔaX + xDX), and so uX(0) = ∏k
i=1 a i ≠ 0. Now, if α

is any root of uX (hence real and nonzero), we obtain similarly to the preceding proofs
in this section:

0 = uX(α) = αk det(−ΔaX) ⋅ det(CX − α−1 Idk),(A.3)

where CX = (−ΔaX)−1/2DX(−ΔaX)−1/2 as above. But since CX has at least two positive
eigenvalues (by Proposition A.1), uX has at least two positive roots, and hence
αmax(X) > 0.

The next statement follows directly by Theorem B, which implies that the constant
and linear terms in uX have opposite signs. More information is obtained by using
Descartes’ rule of signs (see, e.g., [17]), which implies that there are at least two sign
changes in the coefficients of uX .

It remains to compute αmax(X[n(1, 1, . . . , 1)]). Using Lemma 3.2(3),

DX[n(1,1, . . . ,1)] =DX ⊗ 1n×n , CX[n(1,1, . . . ,1)] = CX ⊗ 1n×n ,

the Kronecker products, under a suitable relabeling of indices. In particular, the
eigenvalues of the latter Kronecker product are the Minkowski product of the spectra
σ(CX) and σ(1n×n) = {n, 0, 0, . . . , 0}. We now make a series of reductions:

α ∈ R is a positive root of uX[n(1, . . . ,1)],
if and only if α−1 is a positive eigenvalue of CX[n(1,1, . . . ,1)] (using (A.3)),
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if and only if (from above) α−1 equals n times a positive eigenvalue of CX ,
if and only if 1

nα is a positive eigenvalue of CX ,
if and only if nα is a positive root of uX (again using (A.3)).

Since αmax(X) > 0, this proves the result. ∎

B Monoid morphism computations toward Theorem 2.3

Here, we show parts (1) and (3) of Theorem 2.3, for completeness. For (1), begin by
using Lemma 2.2 to check that ((1, . . . , 1)T , 0k×k) is indeed the identity element of
Mn(R); clearly, it is sent under the given map Ψ ∶ (a, D) ↦ M(a, D) to IdK . Next,
given (a, D), (a′ , D′) ∈Mn(R), and 1 ⩽ i ⩽ k, first compare the (i , i) blocks of their
Ψ-images in part (1):

M((a, D) ○ (a′ , D′))i i = a i a′i Idn i +(a i d′i i + d i i a′i +
k
∑
l=1

d i l ⋅ qT
l pl ⋅ d′l i)pi qT

i ,

whereas on the other side,

(M(a, D)M(a′ , D′))i i

= (a i Idn i +d i i pi qT
i )(a′i Idn i +d′i i pi qT

i ) +∑
l≠i

d i l pi qT
l ⋅ pl qT

i ⋅ d′l i

= (a i Idn i +d i i pi qT
i )(a′i Idn i +d′i i pi qT

i ) + pi qT
i ⋅ ∑

l≠i
d i l ⋅ qT

l pl ⋅ d′l i .

It is easily verified that these two quantities are equal.
For the off-diagonal blocks, fix 1 ⩽ i ≠ j ⩽ k and compute

M((a, D) ○ (a′ , D′))i j = (a i d′i j + d i j a′j +
k
∑
l=1

d i l ⋅ qT
l pl ⋅ d′l j)pi qT

j ,

whereas on the other side,

(M(a, D)M(a′ , D′))i j

= (a i i Idn i ⋅d′i jpi qT
j + d i i pi qT

i ⋅ d′i jpi qT
j )

+ (d i jpi qT
j ⋅ a′j j Idn j +d i jpi qT

j ⋅ d′j jp jqT
j ) + pi qT

j ⋅ ∑
l≠i , j

d i l d′l i qT
l pl .

Once again, it is easy to check that both expressions are equal.
We now show Theorem 2.3(3); denote the right-hand side in it by

X ∶= M((a−1
1 , . . . , a−1

n )T ,−Δ−1
a DN(a, D)−1),

noting that all a i ∈ R×. To show (3), using (1) it suffices to show that the composition
on the other side yields the identity, i.e.,

((a−1
1 , . . . , a−1

n )T ,−Δ−1
a DN(a, D)−1) ○ (a, D) = ((1, . . . , 1)T , 0k×k).

The equality of the first components is obvious; now check using Lemma 2.2 that the
second component on the left-hand side equals

Δ−1
a ⋅ D + (−Δ−1

a DN(a, D)−1)N(a, D) = 0k×k ,

which concludes the proof.
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