
Proceedings of the Edinburgh Mathematical Society (2006) 49, 87–100 c©
DOI:10.1017/S0013091504000938 Printed in the United Kingdom

LOW-REGULARITY SOLUTIONS FOR
THE OSTROVSKY EQUATION

ZHAOHUI HUO1 AND YUELING JIA2

1Department of Mathematics, School of Sciences,
Beijing University of Aeronautics and Astronautics, Beijing 100083,

People’s Republic of China (huozhaohui@yahoo.com.cn)
2National Key Laboratory of Computational Physics, Institute of Applied Physics

and Computational Mathematics, PO Box 8009, Beijing 100088,
People’s Republic of China (jiayueling@yahoo.com.cn)

(Received 20 September 2004)

Abstract The well-posedness of the Ostrovsky equation is considered. Local well-posedness for data in
H̃s(R) (s � − 1

8 ) and global well-posedness for data in L̃2(R) are obtained.

Keywords: Ostrovsky equation; Fourier restriction norm; Cauchy problem; low-regularity solutions

2000 Mathematics subject classification: Primary 35A07; 35D10; 35G25; 35Q53

1. Introduction

Our aim is to study low-regularity solutions to the Cauchy problem of the Ostrovsky
equation:

(ut − βuxxx + (u2)x)x = γu, (x, t) ∈ R × R, (1.1)

u(x, 0) = u0(x) ∈ H̃s(R), (1.2)

where β and γ are real constants and βγ �= 0. The space H̃s is defined by

H̃s =
{

f ∈ Hs(R) : F−1
x

(
f̂(ξ)

ξ

)
∈ Hs(R)

}

with the norm

‖f‖H̃s = ‖f‖Hs +
∥∥∥∥F−1

x

(
f̂(ξ)

ξ

)∥∥∥∥
Hs

.

Integrating Equation (1.1) with respect to x over R for γ �= 0, we obtain that∫
u(x, t) dx = 0.

That means that any local solution of (1.1) satisfies the above identity.
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The Ostrovsky equation [10] governs the propagation of weakly nonlinear long surface
and internal waves of small amplitude in a rotating fluid. The liquid is assumed to
be incompressible and inviscid. After suitable scaling, the equation can be written as
above [6]. Parameter β determines the type of dispersion:

(i) β = −1 (negative dispersion) in the cases of surface and internal waves in the ocean
and surface waves in a shallow channel with an uneven bottom; and

(ii) β = 1 (positive dispersion) in the cases of capillary waves on the surface of a liquid
or oblique magneto-acoustic waves in plasma [1,5,6].

Equation (1.1) models the situation when nonlinearity, dispersion and rotation are taken
into account but dissipation is ignored.

Denote the homogeneous derivative of order s with respect to variable x by Ds
x. Rewrite

Equation (1.1) in the following way:

ut − βuxxx + (u2)x = γD−1
x u. (1.3)

Setting γ = 0 in (1.3) we can obtain the Korteweg–de Vries (KdV) equation

ut − βuxxx + (u2)x = 0. (1.4)

Regarding the low-regularity solution of the KdV equation, Kenig et al . [9] found that
the Cauchy problem of the KdV equation is locally well-posed for data in Hs (s > − 3

4 )
by using the so-called Fourier restriction norm (Bourgain function spaces).

The Fourier restriction norm method was first introduced by Bourgain [3,4] to study
the KdV and nonlinear Schrödinger equations in the periodic case. It was simplified by
Kenig et al . [8,9].

Recently, Varlamov and Liu [13] found that the problem (1.1), (1.2) is locally well-
posed in the space H̃s (s > 3

2 ) with the condition γ > 0 by using the method of parabolic
regularization.

In this paper, we consider the well-posedness of problem (1.1), (1.2) in H̃s (s � − 1
8 )

without the restriction γ > 0 (here the condition γ > 0 is also redundant). We obtain
our results using the Fourier restriction norm method.

Therefore, we use the integral equivalent formulation of the problem

u(x, t) = S(t)u0 −
∫ t

0
S(t − t′)∂x(u2)(t′) dt′, (1.5)

where
S(t) = F−1

x e−it(βξ3+(γ/ξ))Fx

is the unitary operator associated with the linear equation. For simplicity, denote the
phase function by φ(ξ) = βξ3 + (γ/ξ).

One finds that the function φ(ξ) has a singularity at ξ = 0 and non-zero points where
φ′(ξ) = 0 and φ′′(ξ) = 0, which is in contrast to the phase functions of the semigroup
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of the linear KdV equation and makes the problem much more difficult. Therefore, we
need to use Fourier restriction operators

PNf =
∫

|ξ|�N

eixξ f̂(ξ) dξ, P(ε,N)f =
∫

ε�|ξ|�N

eixξ f̂(ξ) dξ, ∀N � ε > 0, (1.6)

to eliminate the singularity.
Moreover, the operators will be used to decompose nonlinear term ∂x(u2). To deal

with the term, we first decompose it as the high-frequency part and the corresponding
low-frequency one as follows:

∂x(u2) = PN{∂x(u2)} + P(0,N){∂x(u2)}. (1.7)

Next, we continue to decompose each term on the right-hand side of (1.7) as the sum-
mation of those products which consist of each factor acted on by the Fourier restriction
operators PN or PN . We will estimate each resulting term with different methods to
overcome the obstacles.

Definition 1.1. For s, b ∈ R, the space Xs,b is the completion of the Schwartz function
space on R

2 with respect to the norm

‖u‖Xs,b
= ‖S(−t)u‖Hs

xHb
t

= ‖〈ξ〉s〈τ + φ(ξ)〉bFu‖L2
ξL2

τ
,

where 〈 · 〉 = (1 + | · |).

We define the modified Bourgain function space X̃s,b in a similar way to the definition
of H̃s:

‖u‖X̃s,b
= ‖〈ξ〉s〈τ + φ(ξ)〉bFu‖L2

ξL2
τ

+ ‖〈ξ〉s|ξ|−1〈τ + φ(ξ)〉bFu‖L2
ξL2

τ

= ‖u‖Xs,b
+ ‖D−1

x u‖Xs,b
.

In our arguments, we will use the trivial embedding relation

‖u‖X̃s1,b1
� ‖u‖X̃s2,b2

whenever s1 � s2, b1 � b2.
Let ψ ∈ C∞

0 (R) with ψ = 1 on [− 1
2 , 1

2 ] and suppψ ⊂ [−1, 1]. Define ψδ(·) = ψ(δ−1(·))
for some δ ∈ R.

Define A ∼ B using the statement A � C1B and B � C1A for some constant C1 > 0,
and define A 	 B through the statement A � (1/C2)B for some large enough constant
C2 > 0.

Denote û(τ, ξ) = Fu by the Fourier transform of u in both variables t and x, and F(·)u

by the Fourier transform of u only in the (·) variable.
Let us introduce some variables:

σ = τ + βξ3 +
γ

ξ
, σ1 = τ1 + βξ3

1 +
γ

ξ1
, σ2 = τ2 + βξ3

2 +
γ

ξ2
.
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From the above variables, it is easy to obtain

σ − σ1 − σ2 = 3βξξ1ξ2

(
1 − γ

ξ2
1 + ξ2

2 + ξ1ξ2

3β(ξξ1ξ2)2

)
. (1.8)

Throughout this paper, we define
∫

�
dδ, the convolution integral, to be∫

ξ=ξ1+ξ2; τ=τ1+τ2

dτ1 dτ2 dξ1 dξ2.

Next, we will give some useful notation for multilinear expressions [12]. Let Z be any
abelian additive group with an invariant measure dξ. For any integer k � 2, we define
Γk(Z) to be the ‘hyperplane’

Γk(Z) = {(ξ1, . . . , ξk) ∈ Zk : ξ1 + · · · + ξk = 0},

and define a [k; Z]-multiplier to be any function m : Γk(Z) → C.
If m is a [k; Z]-multiplier, then we define ‖m‖[k;Z] to be the best constant, such that

the inequality ∣∣∣∣
∫

Γk(Z)
m(ξ)

k∏
j=1

fj(ξj)
∣∣∣∣ � ‖m‖[k;Z]

k∏
j=1

‖fj‖L2(Z)

holds for all test functions fj defined on Z.
It is clear that ‖m‖[k;Z] determines a norm on m for test functions at least; we are

interested in obtaining the good boundedness on the norm. In this paper, we let Z =
R × R.

We now give the statement of the main results.

Theorem 1.2. Let s � − 1
8 , b be close enough to 1

2 satisfying b > 1
2 . Then there

exists some constant T > 0, and problem (1.1), (1.2) admits a unique local solution
u(x, t) ∈ C([0, T ]; H̃s) ∩ X̃s,b with u0 ∈ H̃s. Moreover, given t ∈ (0, T ), the mapping
u0 → u is Lipschitz continuous from H̃s to C([0, T ]; H̃s).

Multiplying (1.3) by u and integrating it over R, we deduce that

1
2

d
dt

( ∫
|u(t, x)|2 dx

)
=

∫
( 1
2γ((D−1

x u)2)x − 1
2β((ux)2)x − 2

3 (u3)x) dx = 0.

Hence it follows the law of conservation momentum:∫
|u(t, x)|2 dx = const.

We then have global well-posedness of problem (1.1), (1.2) for data in L̃2.

Theorem 1.3. For s = 0, the solution obtained in Theorem 1.2 can be extended to a
global one.
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2. Preliminary estimates

In this section, several estimates will be deduced. We will use the following notation:

‖f‖Lp
xLq

t
=

( ∫ ∞

−∞

( ∫ ∞

−∞
|f(x, t)|q dt

)p/q

dx

)1/p

,

‖f‖Lq
t Lp

x
=

( ∫ ∞

−∞

( ∫ ∞

−∞
|f(x, t)|p dx

)q/p

dt

)1/q

,

‖f‖L∞
t Hs

x
= ‖‖f‖Hs

x
‖L∞

t
, FFρ(ξ, τ) =

f(ξ, τ)
(1 + |τ + βξ3 + (γ/ξ)|)ρ

,

a = max
(

1, 4

√∣∣∣∣6γ

7β

∣∣∣∣, 2

√∣∣∣∣ γ

3β

∣∣∣∣
)

.

Lemma 2.1. The group {S(t)}+∞
−∞ satisfies

‖DxP aS(t)u0‖L∞
x L2

t
� C‖u0‖L2 , (2.1)

‖D−1/4
x P aS(t)u0‖L4

xL∞
t

� C‖u0‖L2 , (2.2)

‖D1/6
x P aS(t)u0‖L6

xL6
t

� C‖u0‖L2 , (2.3)

where the constant C depends on γ and β.

Proof. First we prove (2.1). It follows that

φ(ξ) = βξ3 +
γ

ξ
,

φ′(ξ) = 3βξ2 − γ

ξ2 (ξ �= 0),

φ′′(ξ) = 6βξ + 2
γ

ξ3 (ξ �= 0).

If |ξ| � a, then φ is invertible, and we have

P aS(t)u0 =
∫

|ξ|�a

eixξe−itφ(ξ)û0(ξ) dξ

=
∫

|φ−1|�a

eixφ−1
e−itφû0(φ−1)

1
φ′ dφ

= Ft

(
eixφ−1

χ{|φ−1|�a}û0(φ−1)
1
φ′

)
.

Therefore, using the change of variable ξ = φ−1, we have

‖P aS(t)u0‖2
L2 =

∥∥∥∥Ft

(
eixφ−1

χ{|φ−1|�a}û0(φ−1)
1
φ′

)∥∥∥∥
2

L2

=
∫

|φ−1|�a

|û0(φ−1)|2 1
|φ′|2 dφ

=
∫

|ξ|�a

|û0(ξ)|2
1

|φ′(ξ)|2 φ′(ξ) dξ
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�
∫

|ξ|�a

|û0(ξ)|2
1

|φ′| dξ

� C‖u0‖2
Ḣ−1 .

This implies the estimate (2.1).
Let us turn to the proof of (2.2) next. The first inequality below holds with the help

of Theorem 2.5 in [7]. It can be shown that

‖P aS(t)u0‖2
L4

xL∞
t

� C

∫
|ξ|�a

|û0(ξ)|2
∣∣∣∣ φ′(ξ)
φ′′(ξ)

∣∣∣∣
1/2

dξ

� C

∫
|ξ|�a

|û0(ξ)|2|ξ|1/2 dξ

� C‖u0‖2
H1/4 .

Therefore, we can obtain the estimate (2.2). Finally, (2.3) follows by interpolation
between (2.1) and (2.2). We refer to [2] for more details of interpolation theorems. �

Lemma 2.2 (see [13]). The group {S(t)}+∞
−∞ satisfies

‖S(t)u0‖L6
xL6

t
� C‖u0‖L2 , (2.4)

where the constant C depends on γ and β.

Remark 2.3. We can use the Vau der Corupt lemma [11] to obtain the result.

Lemma 2.4. If ρ > 1
2 , ∀N � ε > 0, then

‖P(ε,N)Fρ‖L2
xL∞

t
� C‖f‖L2

ξL2
τ
, (2.5)

where the constant C depends on N and ε.

Proof. The proof is similar to that of Lemma 2.2 in [8]; the details are omitted
here. �

Lemma 2.5. If ρ > 3
8 , then

‖D1/8
x P aFρ‖L4

xL4
t

� C‖f‖L2
ξL2

τ
, (2.6)

where the constant C depends on β and γ.

Proof. Using the change of variable τ = λ − φ(ξ), we have

Fρ(x, t) =
∫ ∞

−∞

∫ ∞

−∞
ei(xξ+tτ) f(ξ, τ)

(1 + |τ + φ(ξ)|)ρ
dξ dτ

=
∫ ∞

−∞
eitλ

( ∫ ∞

−∞
ei(xξ+tφ(ξ))f(ξ, λ + φ(ξ)) dξ

)
dλ

(1 + |λ|)ρ
.
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Therefore, by (2.3), Minkowski’s integral inequality and taking ρ > 1
2 , one can show

that

‖D1/6
x P aFρ‖L6

xL6
t

� C

∫ +∞

−∞
‖f(ξ, λ + φ(ξ))‖L2

ξ

dλ

(1 + |λ|)ρ
� C‖f‖L2

ξL2
τ
. (2.7)

In fact, we have
‖F0‖L2

xL2
t

� C‖f‖L2
ξL2

τ
. (2.8)

Then (2.6) follows by interpolation between (2.7) and (2.8). �

Lemma 2.6. If ρ > 1
2θ with θ ∈ [0, 1], then

‖Dθ
xP aFρ‖L

2/(1−θ)
x L2

t
� C‖f‖L2

ξL2
τ
, (2.9)

where the constant C depends on β and γ.

Proof. From the argument (2.7) and the inequality (2.1), we have, for ρ > 1
2 ,

‖DxP aFρ‖L∞
x L2

t
� C‖f‖L2

ξL2
τ
. (2.10)

Then (2.9) follows by interpolation between (2.8) and (2.10). �

Lemma 2.7. If

ρ >
1
2

3(q − 2)
2q

,

then, for 2 � q � 6, the following inequality holds:

‖Fρ‖Lq
xLq

t
� C‖f‖L2

ξL2
τ
, (2.11)

where the constant C depends on β and γ.

Proof. From the argument (2.7) and the inequality (2.4), we have, for ρ > 1
2 ,

‖Fρ‖L6
xL6

t
� C‖f‖L2

ξL2
τ
. (2.12)

Then (2.11) follows by interpolation between (2.8) and (2.12). �

Lemma 2.8. Assume that f , f1 and f2 belong to Schwartz space on R
2, then∫

�

¯̂
f(ξ, τ)f̂1(ξ1, τ1)f̂2(ξ2, τ2) dδ =

∫
f̄f1f2(x, t) dxdt. (2.13)

Proof. For simplicity, we only discuss the case of one variable:∫
ξ=ξ1+ξ2

¯̂
f(ξ)f̂1(ξ1)f̂2(ξ2) dδ =

∫
ξ=ξ1+ξ2

ˆ̄f(−ξ)f̂1(ξ1)f̂2(ξ2) dδ

=
∫

ξ1

∫
ξ′
2

∫
ξ′
3

ˆ̄f(−ξ′
3)f̂1(ξ1)f̂2(ξ′

2 − ξ1) dξ1 dξ′
2

= ˆ̄f ∗ f̂1 ∗ f̂2(0) = F f̄f1f2(0)

=
∫

f̄f1f2(x) dx.

�
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Lemma 2.9 (comparison principle [12]). If m and M are [k; Z] multipliers and
satisfy |m(ξ)| � |M(ξ)| for all ξ ∈ Γk(Z), then ‖m‖[k;Z] � ‖M‖[k;Z].

3. Linear estimates

Lemma 3.1 (see [8, 9]). If s ∈ R and 1
2 < b < 1, then, for u0 ∈ H̃s, we have

‖ψ(t)S(t)u0‖X̃s,b
� C‖u0‖H̃s . (3.1)

Lemma 3.2 (see [8, 9]). If s ∈ R, 1
2 < b < 1 and 0 < δ � 1, then we have∥∥∥∥ψδ(t)

∫ t

0
S(t − t′)f(t′) dt′

∥∥∥∥
X̃s,b

� Cδb′−b‖f‖X̃s,b−1
, (3.2)

∥∥∥∥ψδ(t)
∫ t

0
S(t − t′)f(t′) dt′

∥∥∥∥
L̃2

� Cδb′−b‖f‖X̃s,b−1
, (3.3)

‖ψδ(t)F‖X̃s,b
� Cδ1/2−b‖F‖X̃s,b

. (3.4)

Lemma 3.3. If s ∈ R, 1
2 < b < b′ < 1 and 0 < δ � 1, then we have

‖ψδ(t)F‖X̃s,b−1
� Cδb′−b‖F‖X̃s,b′−1

. (3.5)

Proof. For simplicity, let c = 1 − b, d = 1 − b′, then 0 < d < c < 1
2 from the

assumption. It suffices to show that

‖ψδF‖H−c
t

� Cδc−d‖F‖H−d
t

.

By duality, it suffices to show that

‖ψδg‖Hd
t

� δc−d‖g‖Hc
t
, ∀g ∈ Hc

t .

First, we easily obtain
‖ψδg‖L2

t
� Cδc‖g‖Hc

t
.

Next, by interpolation and by using the Hölder and Sobolev inequalities, we prove that

‖ψδg‖Ḣd
t

� C‖ψδg‖1−(c−d)/c

Ḣc
t

‖ψδg‖(c−d)/c

L2
t

� Cδc−d‖ψδg‖1−(c−d)/c

Ḣc
t

‖g‖(c−d)/c
Hc

t
.

Moreover, for ‖ψδg‖Ḣc
t
, we have

‖ψδg‖Ḣc
t

� C(‖ψδ‖L∞
t

‖g‖Hc
t

+ ‖(Dcψδ)g‖L2
t
).

For ‖(Dcψδ)g‖L2
t
, by the Hölder and Sobolev inequalities, we have

‖(Dcψδ)g‖L2
t

� ‖Dcψδ‖L1/c‖g‖Hc
t
.

For ‖Dcψδ‖L1/c , by the Hölder inequality (c = 1
2 − (b − c) + b − 1

2 , for some b > 1
2 ), we

have
‖Dcψδ‖L1/c � Cδb−1/2‖Dcψδ‖L1/(1/2−(b−c)) � C.

This completes the proof. �
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4. The bilinear estimate

One can obtain local well-posedness of problem (1.1), (1.2) by the Picard iteration method
provided that

‖∂x(u1u2)‖X̃s,b−1
� C‖u1‖X̃s,b

‖u2‖X̃s,b

holds for some b > 1
2 . We only need to prove the bilinear estimate above and state the

theorem as follows.

Theorem 4.1. Let b be close enough to 1
2 satisfying b > 1

2 . For 1
2 < b′ and s � − 1

8 ,
we have

‖∂x(u1u2)‖X̃s,b−1
� C‖u1‖X̃s,b′ ‖u2‖X̃s,b′ , (4.1)

where the constant C depends on β and γ.

Remark 4.2. Here, the condition s � − 1
8 is required only because of the mathematical

technique.

Proof. By the definition of X̃s,b, we have

‖∂x(u1u2)‖X̃s,b−1
= ‖∂x(u1u2)‖Xs,b−1 + ‖D−1

x ∂x(u1u2)‖Xs,b−1 .

We only prove the bilinear estimate for the first term, ‖∂x(u1u2)‖Xs,b−1 , on the right-
hand side of the equality, as the proof for the second term is easier than that for the first
term:

‖∂x(u1u2)‖Xs,b−1 � C‖u1‖X̃s,b′ ‖u2‖X̃s,b′ .

By duality and the Plancherel identity, it suffices to show that

Υ =
∫

�

〈ξ〉s|ξ| f̄(τ, ξ)
〈σ〉1−b

Fu1(τ1, ξ1)Fu2(τ2, ξ2) dδ

=
∫

�

〈ξ〉s|ξ|
〈σ〉1−b

∏2
j=1〈ξj〉s〈σj〉b′ f̄(τ, ξ)f1(τ1, ξ1)f2(τ2, ξ2) dδ

�
∥∥∥∥ 〈ξ〉s|ξ|

〈σ〉1−b
∏2

j=1〈ξj〉s〈σj〉b′

∥∥∥∥
[3;R×R]

‖f‖L2

2∏
j=1

(‖fj‖L2 + ‖|ξ|−1fj‖L2),

for f̄ ∈ L2, f̄ � 0, where
fj = 〈ξj〉s〈σj〉b′

ûj , j = 1, 2;

ξ = ξ1 + ξ2, τ = τ1 + τ2.
One easily obtains that

‖fj‖L2 + ‖|ξ|−1fj‖L2 = ‖uj‖X̃s,b′ .

Theorem 4.1 holds only if the following holds:∥∥∥∥ 〈ξ〉s|ξ|
〈σ〉1−b

∏2
j=1〈ξj〉s〈σj〉b′

∥∥∥∥
[3;R×R]

� C.
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Let

FF j
ρ (ξ, τ) =

fj(ξ, τ)
(1 + |τ + βξ3 + (γ/ξ)|)ρ

, j = 1, 2.

In order to bound the integral Υ , we split the domain of integration into several pieces.
We consider the most interesting case s � 0. Let r = −s. By symmetry, it suffices to

estimate the integral in the domain |ξ1| � |ξ2|.

Situation I. Assume that |ξ| � 4a.

Case 1. If |ξ1| � 2a, then we have |ξ2| � |ξ − ξ1| � 6a. Consequently, the integral Υ

restricted to this domain is bounded by∫
�

|ξ|f̄(τ, ξ)
〈ξ〉r〈σ〉1−b

〈ξ1〉rf1(τ1, ξ1)
〈σ1〉b′

〈ξ2〉rf2(τ2, ξ2)
〈σ2〉b′ dδ � C

∫
�

f̄(τ, ξ)
〈σ〉1−b

f1(τ1, ξ1)
〈σ1〉b′

f2(τ2, ξ2)
〈σ2〉b′ dδ

� C

∫
F̄1−bF

1
b′F 2

b′(x, t) dxdt

� C‖F1−b‖L2
xL2

t
‖F 1

b′‖L4
xL4

t
‖F 2

b′‖L4
xL4

t

� C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
,

which follows by Lemmas 2.7 and 2.8.

Case 2. If 2a � |ξ1| � |ξ2|, then, for r � 1
8 , we have∫

�

|ξ|f̄(τ, ξ)
〈ξ〉r〈σ〉1−b

〈ξ1〉rf1(τ1, ξ1)
〈σ1〉b′

〈ξ2〉rf2(τ2, ξ2)
〈σ2〉b′ dδ

� C

∫
�

f̄(τ, ξ)
〈σ〉1−b

〈ξ1〉rχ|ξ1|�2af1(τ1, ξ1)
〈σ1〉b′

〈ξ2〉rχ|ξ2|�2af2(τ2, ξ2)
〈σ2〉b′ dδ

� C

∫
F̄1−b · D1/8

x P 2aF 1
b′ · D1/8

x P 2aF 2
b′(x, t) dxdt

� C‖F1−b‖L2
xL2

t
‖D1/8

x P 2aF 1
b′‖L4

xL4
t
‖D1/8

x P 2aF 2
b′‖L4

xL4
t

� C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
,

which follows by Lemmas 2.5 and 2.8.

Situation II. Assume that |ξ| � 4a.

Case 1. If |ξ1| � 2a, then |ξ2| � 2a and |ξ| ∼ |ξ2|.

Subcase 1. If 1/10a � |ξ1| � 2a, then∫
�

|ξ|f̄(τ, ξ)
〈ξ〉r〈σ〉1−b

〈ξ1〉rf1(τ1, ξ1)
〈σ1〉b′

〈ξ2〉rf2(τ2, ξ2)
〈σ2〉b′ dδ

� C

∫
�

f̄(τ, ξ)
〈σ〉1−b

χ1/10a�|ξ1|�2af1(τ1, ξ1)
〈σ1〉b′

|ξ2|χ|ξ2|�2af2(τ2, ξ2)
〈σ2〉b′ dδ

� C

∫
F̄1−b · P(1/10a,2a)F

1
b′ · DxP 2aF 2

b′(x, t) dxdt
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� C‖F1−b‖L2
xL2

t
‖P(1/10a,2a)F

1
b′‖L2

xL∞
t

‖DxP 2aF 2
b′‖L∞

x L2
t

� C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
,

which follows by Lemmas 2.4, 2.6 and 2.8.

Subcase 2. If |ξ1| � 1/10a, then we split the domain of integration into two pieces.

(i) If |ξ1 · ξ2| � 4a2, then the integral Υ is bounded by

C

∫
�

f̄(τ, ξ)
〈σ〉1−b

f1(τ1, ξ1)
〈σ1〉b′

|ξ2|χ|ξ2|�2af2(τ2, ξ2)
〈σ2〉b′ dδ

� C

∫
�

f̄(τ, ξ)
〈σ〉1−b

f1(τ1, ξ1)
〈σ1〉b′ |ξ1|

f2(τ2, ξ2)
〈σ2〉b′ dδ

� C

∫
F̄1−b · D−1

x F 1
b′ · F 2

b′(x, t) dxdt

� C‖F1−b‖L2
xL2

t
‖D−1

x F 1
b′‖L4

xL4
t
‖DxP 2aF 2

b′‖L4
xL4

t

� C‖f‖L2
ξL2

τ
‖|ξ|−1f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
,

which follows by Lemmas 2.7 and 2.8.

(ii) If |ξ1 · ξ2| � 4a2, then from the identities (1.8), it follows that

max(|σ|, |σ1|, |σ2)| � C|ξξ1ξ2|.

For simplicity, we assume that
|σ| � C|ξξ1ξ2|.

Then, for 2(1 − b) � 7
8 , the integral Υ is bounded by∫

�

|ξ|f̄(τ, ξ)

〈ξ〉r|ξξ1ξ2|1−b

〈ξ1〉rf1(τ1, ξ1)
〈σ1〉b′

〈ξ2〉rf2(τ2, ξ2)
〈σ2〉b′ dδ

� C

∫
�

f̄(τ, ξ)
f1(τ1, ξ1)
〈σ1〉b′ |ξ1|

|ξ2|1/8χ|ξ2|�2af2(τ2, ξ2)
〈σ2〉b′ dδ

� C

∫
F̄0 · D−1

x F 1
b′ · D1/8

x P 2aF 2
b′(x, t) dxdt

� C‖F0‖L2
xL2

t
‖D−1

x F 1
b′‖L4

xL4
t
‖D1/8

x P 2aF 2
b′‖L4

xL4
t

� C‖f‖L2
ξL2

τ
‖|ξ|−1|f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
,

which follows by Lemmas 2.4, 2.6 and 2.8.

Case 2. If 2a � |ξ1| � |ξ2|, then from the identities (1.8), it follows that, if |ξ| � a,
|ξ1| � a and |ξ2| � a, then

max(|σ|, |σ1|, |σ2)| � C|ξξ1ξ2|.

This implies that one of the following cases always occurs:
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(a) |σ| � C|ξξ1ξ2|,

(b) |σ1| � C|ξξ1ξ2|,

(c) |σ2| � C|ξξ1ξ2|.

In this domain (Case 2), the integral Υ is bounded by∫
�

|ξ|1−rχ|ξ|�4af̄(τ, ξ)
〈σ〉1−b

〈ξ1〉rχ|ξ1|�2af1(τ1, ξ1)
〈σ1〉b′

〈ξ2〉rχ|ξ2|�2af2(τ2, ξ2)
〈σ2〉b′ dδ.

We consider the three cases (a), (b) and (c) separately.
If (a) holds, for r + b − 1 � 1

8 and r � b, we obtain∫
�

|ξ|1−rχ|ξ|�4af̄(τ, ξ)
(|ξ1| |ξ2| |ξ|)1−b

〈ξ1〉rχ|ξ1|�2af1(τ1, ξ1)
〈σ1〉b′

〈ξ2〉rχ|ξ2|�2af2(τ2, ξ2)
〈σ2〉b′ dδ

� C

∫
�

|ξ|b−rχ|ξ|�4af̄(τ, ξ)
|ξ1|r+b−1χ|ξ1|�2af1(τ1, ξ1)

〈σ1〉b′

|ξ2|r+b−1χ|ξ2|�2af2(τ2, ξ2)
〈σ2〉b′ dδ

� C

∫
F̄0 · D1/8

x P 2aF 1
b′ · D1/8

x P 2aF 2
b′(x, t) dxdt

� C‖F0‖L2
xL2

t
‖D1/8

x P 2aF 1
b′‖L4

xL4
t
‖D1/8

x P 2aF 2
b′‖L4

xL4
t

� C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
,

which follows by Lemmas 2.5 and 2.8.
This means that, if r + b − 1 � 1

8 , r � b, then we have∥∥∥∥ |ξ|〈ξ1〉r〈ξ2〉r

〈σ〉1−b〈ξ〉r〈σ1〉b′〈σ2〉b′

∥∥∥∥
[3;R×R]

� C.

However, if r � 1
8 , then by Lemma 2.9 we have∥∥∥∥ |ξ|〈ξ1〉r〈ξ2〉r

〈σ〉1−b〈ξ〉r〈σ1〉b′〈σ2〉b′

∥∥∥∥
[3;R×R]

� C.

In fact, if r1 � r2, by ξ = ξ1 + ξ2 we obtain

|ξ|〈ξ1〉r1〈ξ2〉r1

〈σ〉1−b〈ξ〉r1〈σ1〉b′〈σ2〉b′ � C
|ξ|〈ξ1〉r2〈ξ2〉r2

〈σ〉1−b〈ξ〉r2〈σ1〉b′〈σ2〉b′ .

If (b) holds, for r + b′ � 1, r − b′ � 1
16 , then we get∫

�

|ξ|1−rχ|ξ|�4af̄(τ, ξ)
〈σ1〉1 − b

|ξ1|rχ|ξ1|�2af1(τ1, ξ1)
(|ξ1| |ξ2| |ξ|)b′

〈ξ2〉rχ|ξ2|�2af2(τ2, ξ2)
〈σ2〉b′ dδ

� C

∫
�

|ξ|1−b′−rχ|ξ|�4af̄(τ, ξ)
〈σ1〉1−b

χ|ξ1|�2af1(τ1, ξ1)
|ξ2|2(r−b′)χ|ξ2|�2af2(τ2, ξ2)

〈σ2〉b′ dδ

� C

∫
F̄1−b · F 1

0 · D1/8
x P 2aF 2

b′(x, t) dxdt
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� C‖F1−b‖L4
xL4

t
‖F 1

0 ‖L2
xL2

t
‖D1/8

x P 2aF 2
b′‖L4

xL4
t

� C‖f‖L2
ξL2

τ
‖f1‖L2

ξL2
τ
‖f2‖L2

ξL2
τ
,

which follows by Lemmas 2.5, 2.7 and 2.8.
In a similar way to the treatment of (a) above, if r � 1

8 , by Lemma 2.9, we get∥∥∥∥ |ξ|〈ξ1〉r〈ξ2〉r

〈σ〉1−b〈ξ〉r〈σ1〉b′〈σ2〉b′

∥∥∥∥
[3;R×R]

� C.

If (c) holds, the argument is similar to case (b). This completes the proof of Theo-
rem 4.1. �

5. The proof of Theorem 1.2

Now we turn to the proof of Theorem 1.2.
For u0 ∈ H̃s (s � − 1

8 ), we define the operator

Φ(u) = ψ1(t)S(t)u0 + ψ1(t)
∫ t

0
S(t − t′)ψδ(t′)∂x(u2)(t′) dt′

and the set
B = {u ∈ X̃s,b : ‖u‖X̃s,b

� 2C‖u0‖H̃s}.

In order to show that Φ is a contraction mapping on B, we first prove

Φ(B) ⊂ B.

By Theorem 4.1 and Lemmas 3.1–3.3 for 1
2 < b < b′ < 1, we have the next chain of

inequalities:

‖Φ(u)‖X̃s,b
� C‖u0‖H̃s + Cδb′−b‖u‖2

X̃s,b
� C‖u0‖H̃s + Cδb′−b‖u0‖H̃s‖u‖X̃s,b

.

Therefore, if we fix δ such that Cδb′−b‖u0‖H̃s � 1
2 , then we have

Φ(B) ⊂ B.

For u, v ∈ B, reasoning in an analogous way to above, it follows that

‖Φ(u) − Φ(v)‖X̃s,b
� Cδb′−b(‖u‖X̃s,b

+ ‖v‖X̃s,b
)‖u − v‖X̃s,b

� 1
2‖u − v‖X̃s,b

.

Therefore, Φ is a contraction mapping on B. There exists a unique fixed point which
solves the Cauchy problem (1.1), (1.2) for T < 1

2δ.
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