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Abstract

We prove that sums of length about q3/2 of Hecke eigenvalues of automorphic forms on SL3(Z) do
not correlate with q-periodic functions with bounded Fourier transform. This generalizes the earlier
results of Munshi and Holowinsky–Nelson, corresponding to multiplicative Dirichlet characters,
and applies, in particular, to trace functions of small conductor modulo primes.
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(secondary)

1. Introduction

Let ϕ be a cuspform for SL3(Z) which is an eigenfunction of all Hecke operators.
For any prime number q and any primitive Dirichlet character χ modulo q , we
can then define the twisted L-function L(ϕ ⊗ χ, s), which is an entire function
satisfying a functional equation relating s to 1 − s. In a recent breakthrough,
Munshi [20, 21] solved the subconvexity problem for these twisted L-functions
L(ϕ ⊗ χ, s) in the conductor aspect.

THEOREM 1.1 (Munshi). Let s be a complex number such that Re s = 1/2. For
any prime q, any primitive Dirichlet character χ modulo q and for any ε > 0, we
have

L(ϕ ⊗ χ, s)� q3/4−1/308+ε, (1.1)

where the implied constant depends on ϕ, s and ε.
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This result was recently analyzed in depth by Holowinsky and Nelson [12],
who discovered a remarkable simplification (and strengthening) of Munshi’s ideas.
They proved the following.

THEOREM 1.2 (Holowinsky–Nelson). With notation and assumptions as in
Theorem 1.1, we have

L(ϕ ⊗ χ, s)� q3/4−1/36+ε, (1.2)

where the implied constant depends on ϕ, s and ε.

REMARK 1. We mention further variants, simplifications and improvements by
Aggarwal et al. [1], Holowinsky et al. [11], Lin [17] and Sun and Zhao [23].

Let (λ(m, n)) denote the Hecke eigenvalues of ϕ. By the approximate
functional equation for the twisted L-functions, the bound (1.2) is essentially
equivalent to the bound∑

n>1

λ(1, n)χ(n)V
(

n
q3/2

)
� q3/2−δ, (1.3)

for δ < 1/36, where V is any smooth compactly supported function and the
implied constant depends on ϕ, δ and V .

From the perspective of such sums, motivated by the previous work of Fouvry
et al. [6], which relates to automorphic forms on GL2, it is natural to ask whether
this bound (1.3) holds when χ is replaced by a more general trace function K :
Fq → C. Our main result shows that this is the case and, in fact, extends the
result to a much wider range of q-periodic functions by obtaining estimates only
in terms of the size of the discrete Fourier transform modulo q .

Precisely, for any function V with compact support on R, we set

SV (K , X) :=
∑
n>1

λ(1, n)K (n)V
(

n
X

)
. (1.4)

We will assume that V : R → C satisfies the following conditions for some
parameter Z > 1:

supp(V ) ⊂]1, 2[ and V (i)(x)� Z i for all i > 0, (1.5)

where the implied constant depends only on i .
For any integer q > 1 and any q-periodic function K : Z→ C, we denote by

K̂ (n) =
1

q1/2

∑
x∈Fq

K (x)e
(

nx
q

)
, (1.6)
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for n ∈ Z, its (unitarily normalized) discrete Fourier transform modulo q . We
write ‖K̂‖∞ for the maximum of |K̂ (n)| for n ∈ Z. We then have the discrete
Fourier inversion formula

K (x) =
1

q1/2

∑
n∈Fq

K̂ (n)e
(
−

nx
q

)
for x ∈ Z.

Our main result is a general bound for (1.4) which matches precisely the bound
of Holowinsky and Nelson [12] in the case of a multiplicative character.

THEOREM 1.3. Let ϕ be an SL3(Z)-invariant Hecke eigencuspform with Hecke
eigenvalues (λ(m, n)). Let q be a prime number and K : Z→ C be a q-periodic
function. Let V be a smooth, compactly supported function satisfying (1.5) for
some Z > 1. Assume that

Z 2/3q4/3 6 X 6 Z−2q2.

For any ε > 0, we have

SV (K , X)� ‖K̂‖∞Z 10/9q2/9+εX 5/6, (1.7)

where the implied constant depends only on ε, ϕ and the implicit constants
in (1.5).

REMARK 2. (1) Suppose that we vary q and apply this bound with functions K
modulo q that have absolutely bounded Fourier transforms. Take X = q3/2.
We then obtain the bound

SV (K , q3/2)� Z 10/9q3/2−1/36+ε

for any ε > 0.

(2) For the bound (1.7) to be nontrivial (that is, assuming K to be absolutely
bounded, better than X ), it is enough that

X > Z 20/3q4/3+δ

for some δ > 0.

(3) As in the paper [8] of Fouvry, Kowalski, Michel, Raju, Rivat and
Soundararajan, where the main estimate is also phrased in Fourier-theoretic
terms only, the motivating examples of functions K satisfying uniform
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bounds on their Fourier transforms are the trace functions of suitable `-adic
sheaves modulo q . (Although the size of K enters in [8] as well as that of its
Fourier transform.) The simplest example is K (n) = χ(n), which recovers
the bound of Munshi (up to the value of the exponent) and Holowinsky–
Nelson, since the values of the Fourier transform are normalized Gauss sums
of modulus 6 1. We recall some other examples in Section 3.

We can deduce from Theorem 1.3 a weak but nontrivial bound for the first
moment of the twisted central L-values, with an additional twist by a discrete
Mellin transform. We first recall the definition

Kl3(n) =
1
q

∑
x,y,z∈F×q

xyz=n

e
(

x + y + z
q

)

for a hyper-Kloosterman sum with two variables modulo a prime q .

COROLLARY 1.4. Let ϕ be an SL3(Z)-invariant cuspidal Hecke eigenform with
Hecke eigenvalues (λ(m, n)). Let q be a prime number and let χ 7→ M(χ) be a
function of Dirichlet characters modulo q.

Let K and L be the q-periodic functions defined by K (0) = L(0) = 0 and

K (n) =
q1/2

q − 1

∑
χ (mod q)

χ(n)M(χ)

L(n) =
1

q1/2

∑
x∈Fq

K (x)Kl3(nx)

for n coprime to q. We then have

1
q − 1

∑
χ (mod q)

M(χ)L(ϕ ⊗ χ, 1/2)� (‖K̂‖∞ + ‖L̂‖∞)q2/9+ε,

for any ε > 0, where the implied constant depends on ϕ and ε.

A further natural application concerns the symmetric square lift of a GL2-
cuspform of level 1. Precisely, let ψ be a cuspidal Hecke eigenform for SL2(Z)
with Hecke eigenvalues (λ(n))n>1. We have the following.

COROLLARY 1.5. Let K and V be as above and assume that Z 2/3q4/3 6 X 6
Z−2q2. Then, for any ε > 0, we have∑

n>1

λ(n2)K (n)V
(

n
X

)
� ‖K̂‖∞Z 10/9q2/9+εX 5/6

+ ‖K‖∞Z 1/3q2/3 X 1/2+ε,
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where the implied constant depends only on ε, ψ and the implicit constants
in (1.5).

REMARK 3. As pointed out to us by Blomer, when K = χ is a Dirichlet character,
a stronger bound should be available: for χ quadratic, one has (see [2]) the
stronger subconvex bound for the central value

L(sym2(ψ)⊗ χ, s)�s q3/4−1/8+o(1), Re s = 1/2. (1.8)

This would amount to a bound of the shape∑
n>1

λ(n2)χ(n)V
(

n
q3/2

)
�Z q3/2−1/8+ε.

The bound (1.8) actually extends to any character χ (mod q) by the same method,
using the Petrow–Young variant of the Conrey–Iwaniec method [3, 22]. However,
since this approach uses positivity of central values, it is not entirely clear yet
whether this could be extended to general trace functions.

From this corollary, one can easily derive an estimate for twists of the arithmetic
function λ(n)2 = |λ(n)|2, which is related to λ(n2) by the convolution identity

λ(n)2 =
∑
ab=n

λ(a2). (1.9)

However, in terms of L-functions, a straightforward estimate concerns sums
of length close to q2 and not q3/2 anymore (it amounts, when K = χ , to a
subconvexity estimate for L( f ⊗ f ⊗ χ, 1

2 ), which results directly from the
factorization of this L-function of degree 4).

One can however recover a bound for sums of length about q3/2 with more work,
and here we require that K be a trace function (more precisely, a nonexceptional
trace function, in the sense of [4, page 1686]).

COROLLARY 1.6. Let V be as above. Let K be the trace function of an `-adic
sheaf F modulo q which is a geometrically irreducible middle-extension sheaf,
pure of weight 0, on the affine line over Fq . Assume that the sheaf F is not
geometrically isomorphic to the tensor product Lψ ⊗ Lχ of an Artin–Schreier
sheaf and a Kummer sheaf.

If Z−4/3q4/3+8γ /3 6 X 6 Z−2q2, then we have∑
n>1

λ(n)2 K (n)V
(

n
X

)
� X 2/3+εq1/3

+ Z 5/6 X 7/8+εq1/6
+ X 1+εq−γ
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for any ε > 0, where the implied constant depends only on ψ , ε and the
conductor c(F) of F.

REMARK 4. (1) Suppose that Z is fixed. The estimate is then nontrivial as long
as X � q4/3+δ; for X = q3/2, it saves a factor q1/48 over the trivial bound.

(2) The assumption that F is not exceptional means intuitively that K is not
proportional to the product of an additive and a multiplicative character
modulo q . We then have, in particular,

‖K‖∞ + ‖K̂‖∞ � 1,

where the implied constant depends only on the conductor of F.

REMARK 5. (1) The reader may wonder why this paper is much shorter than [6]
and (with the exception of Corollary 1.6) requires much less input from
algebraic geometry in the case of trace functions. One reason is that we
are considering (essentially) sums of length q3/2, whereas the coefficient
functions K are q-periodic. This means that periodicity properties of the
summand K (n) have a nontrivial effect, whereas they do not for the sums
of length about q which are considered in [6] in the context of GL2.
Moreover, observe that an analogue of Theorem 1.3, with an estimate that
depends (in terms of K ) only on the size of the Fourier transform K̂ , is false
in the setting of [6], that is, for sums∑

n>1

λ(n)K (n)V
(

n
X

)
with X of size about q , where λ(n) are the Hecke eigenvalues of a
cuspform ψ for SL2(Z) (as in Corollary 1.5). Indeed, if we take X = q and
define K to be the q-periodic function that coincides with the (real-valued)
function n 7→ λ(n) for 1 6 n 6 q , then K has discrete Fourier transform
of size � log q by the well-known Wilton estimate (see, for example, [13,
Theorem 5.3], when ψ is holomorphic), and, yet,∑

n6q

K (n)λ(n) =
∑
n6q

|λ(n)|2 � q

by the Rankin–Selberg method.
On the other hand, the same bound of Wilton combined with discrete Fourier
inversion implies quickly that if K is any q-periodic function, then∑

n6q3/2

λ(n)K (n)� q1+1/4+ε
‖K̂‖∞
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for any ε > 0. However, the natural length for applications is q in the GL2

case.

(2) The most obvious function K for which Theorem 1.3 gives trivial results
is an additive character K (n) = e(an/q) for some integer a ∈ Z since the
Fourier transform takes one value of size q1/2. However, a useful estimate
also exists in this case: Miller [18] has proved that∑

n>1

λ(1, n)e(αn)V
(

n
X

)
�ϕ,Z X 3/4+ε

for X > 2, any α ∈ R and any ε > 0, where the implied constant is
independent of α. This is the generalization to GL3 of the bound of Wilton
mentioned in the first remark.

(3) Using either the functional equation for the L-functions L(ϕ ⊗ χ, s) or the
Voronoi summation formula, one can show that the estimate of Miller implies
a bound of the shape

SV (Kl2(a·; q), X)�ϕ,Z (q X)εX 1/4q3/4

for any ε > 0, where

Kl2(n; q) =
1

q1/2

∑
x∈F×q

eq(x + nx)

is a normalized Kloosterman sum. This bound is nontrivial as long as X > q .
Since Kl2 is a trace function that is bounded by 2 and has Fourier transform
bounded by 1, this gives (in a special case) a stronger bound than what
follows from Theorem 1.3.

(4) Remark (2) suggests a direct approach by the discrete Fourier inversion
formula, which gives∑

n6X

λ(1, n)K (n) =
1
√

q

∑
06h<q

K̂ (h)
∑
n6X

λ(1, n)e
(

nh
q

)
.

A nontrivial bound for X ≈ q3/2 in terms of ‖K̂‖∞ would then follow from
a bound ∑

n6X

λ(1, n)e
(

nh
q

)
� Xα

for additive twists of the Fourier coefficients where α < 2/3.
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Unsurprisingly, in the case of GL2, although we have the best possible estimate
of Wilton (with the analogue of α being 1/2), the resulting estimate for a sum of
length q is trivial.

The plan of the paper is as follows: we will explain the idea and sketch
the key steps of the proof in Section 2. Section 3 recalls the most important
examples of trace functions, for which K has small Fourier transform and
hence for which Theorem 1.3 is nontrivial. Section 4 presents a key Fourier-
theoretic estimate and some reminders concerning automorphic forms and the
Voronoi summation formula for GL3. Then the last sections complete the proof
of Theorem 1.3 following the outline presented previously and explain how to
deduce Corollaries 1.4, 1.5 and 1.6 (the last of which requires further ingredients).

Notation. For any z ∈ C, we define e(z) = exp(2π i z). If q > 1, then we denote
by eq(x) the additive character modulo q defined by eq(x) = e(x/q) for x ∈ Z.
We often identify a q-periodic function defined on Z with a function on Z/qZ.

For any finite abelian group A, we use the notation f̂ for the unitary Fourier
transform defined on the character group Â of A by

f̂ (ψ) =
1
√
|A|

∑
x∈A

f (x)ψ(x).

We have then the Plancherel formula ‖ f ‖2 = ‖ f̂ ‖2, where

‖ f ‖2 =
∑
x∈A

| f (x)|2, ‖ f̂ ‖2 =
∑
ψ∈ Â

| f̂ (ψ)|2.

For any integrable function on R, we denote its Fourier transform by

V̂ (y) =
∫

R
V (x)e(−xy) dx .

We recall the Poisson summation formula when performed with a q-periodic
function K in addition to a smooth function V with fast decay at infinity: for
any X > 1, we have∑

n∈Z

K (n)V
(

n
X

)
=

X
q1/2

∑
h∈Z

K̂ (h)V̂
(

h X
q

)
. (1.10)

This follows directly from the usual Poisson formula and the definition of K̂ after
splitting the sum into congruence classes modulo q .
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2. Principle of the proof

We use a direct generalization of the method of Holowinsky and Nelson [12]
that led to Theorem 1.2. Although it was motivated by Munshi’s approach, based
on the use of the Petersson formula as a tool to express the delta symbol, there is
no remaining trace of this point of view; however, we refer to [12, Appendix B]
for a detailed and insightful description of the origin of this streamlined method,
starting from Munshi’s.

2.1. Amplification. The first step is to realize the q-periodic function K
within a one-parameter family of q-periodic functions. Precisely, let K̂ be the
Fourier transform of K (see (1.6)) and define

K̂ (z, h) :=

{
K̂ (z)eq(−hz) q - z
K̂ (0) q | z

(2.1)

for (z, h) ∈ Z2. Then put

K (n, h) =
1

q1/2

∑
z∈F×q

K̂ (z, h)eq(−nz) (2.2)

for (n, h) ∈ Z2. By the discrete Fourier inversion formula, we have

K (n, 0) = K (n)−
K̂ (0)
q1/2

. (2.3)

More generally, for any probability measure $ on F×q , the average

K$ (n, h) =
∑
l∈F×q

$(l)K (n, lh)

satisfies K$ (n, 0) = K (n) − K̂ (0)
q1/2 . It follows that, for any parameter H > 1, we

can express the sum SV (K , X) as the difference of double sums

SV (K , X) =
∑
l∈L

$(l)
∑
|h|6H

SV (K (·, hl), X)−
∑
l∈L

$(l)
∑

0<|h|6H

SV (K (·, hl), X),

up to an error� X/q1/2. We write this difference as

SV (K , X) = F − O,

say. One then needs to select a suitable probability measure $ , and then the two
terms are handled by different methods. It should be emphasized that no main
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term arises (which would have to be canceled in the difference between the two
terms).

REMARK 6. The argument is reminiscent of the amplification method, the
function K (n) = K (n, 0) being ‘amplified’ (up to a small error) within the family
(K (n, h))|h|6H .

2.2. Bounding F. As in [12], we consider a probability measure $

corresponding to a product structure: we average over pairs (p, l) of primes
such that p ∼ P and l ∼ L and take $(x) proportional to the number of
representations x = pl (mod q), where p ∼ P and l ∼ L are primes (their sizes
being parameters 1 6 P, L < q/2 to be chosen later).

The treatment of F is essentially the same as in [12, 17]. By applying the
Poisson summation formula to the h-variable, with dual variable r , we see that
the function

(n, r, p, l) 7→ K̂ (−plr)λ(1, n)eq(nplr)

appear. We then appeal to the classical ‘reciprocity law’ for additive exponentials,
namely

eq(nplr) ≈ erl(−npq),

trading the modulus q for the modulus rl, which will be significantly smaller than
q . We then apply the Voronoi summation formula for the cuspform ϕ on the n-
variable (this is the only real automorphic input), which transforms the additive
phase erl(−npq) into Kloosterman sums of modulus rl. We then obtain further
cancellation by smoothing out the resulting variable (dual to n) by using Cauchy–
Schwarz and detecting cancellations on averages of products of Kloosterman
sums, where the product structure of the averaging set is essential.

In this part of the argument, the coefficient function K plays a very little role,
and we could just more or less quote the corresponding statements in [12, 17],
if the parameter Z was fixed. Since we wish to keep track of its behavior (for
the purpose of flexibility for potential applications), we have to go through the
computations anew. This is done in detail in Section 6.

2.3. Bounding O. In the sum O, with the averaging performed in the same
way as for F, the key point is that the n-variable in the sum SV (K (·, hl̄, X)) is
very long compared to q . We apply Cauchy’s inequality to smooth it, keeping
the other variables h, p, l inside, thus eliminating the automorphic coefficients
λ(1, n) (for which we only require average bounds, which we borrow from the
Rankin–Selberg theory, our second important automorphic input). This leads
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quickly to the problem of estimating the sum∑∑
p1,h1,l1,p2,h2,l2

∑
n∼X

K (n, h1 p1l1)K (n, h2 p2l2).

We apply the Poisson formula in the n-variable; since X is typically much larger
than q, only the zero frequency in the dual sum contributes. This yields a key sum
of the shape ∑∑

p1,h1,l1,p2,h2,l2

∑
u∈F×q

|K̂ (u)|2eq((h1 p1l̄1 − h2 p2l̄2)u−1)

=

∑∑
p1,h1,l1,p2,h2,l2

K2(h1 p1l̄1 − h2 p2l̄2),

say.
When K is a multiplicative character, as in the work of Holowinsky–Nelson,

the proof is essentially finished then since K̂ (u) is a normalized Gauss sum, with
a constant modulus; hence, K2 is simply a Ramanujan sum, which we can evaluate
explicitly.

In general, we obtain cancellation using a very general Fourier-theoretic bound
for general bilinear forms ∑

m∈Fq

∑
n∈Fq

αmβn K2(m − n),

which involves only L2-norm bounds for the coefficients and L∞-norm bounds
for the Fourier transform of K2 (see Proposition 4.1). The latter, it turns out, is
essentially |K̂ |2, and we can obtain a good estimate purely in terms of ‖K̂‖∞.
This part of the argument is performed in Section 7.

3. Examples of trace functions

Theorem 1.3 certainly applies to ‘random’ q-periodic functions K : Z→ C, for
all reasonable meanings of the word ‘random’; but the basic motivating examples
in number theory are often provided by trace functions. Since there are by now a
number of surveys and discussions of important examples (see, for example, [6,
Section 10], [8, Section 2.2] or [5]), we only recall some of them for concreteness.

– If r > 1 is a fixed integer and χ1, . . . , χr are distinct nontrivial Dirichlet
characters modulo q , of order di > 2, and if f1, . . . , fr , g are polynomials
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in Z[X ] such that either deg(g (mod q)) > 2 or one of the fi (mod q) is not
proportional to a di th power in F̄q[X ], then

K (n) = χ1( f1(n)) · · ·χr ( fr (n))e
(

g(n)
q

)
has Fourier transform of size bounded only in terms of r and the degrees
of the polynomials fi and g. (This is a consequence of the Weil bounds for
exponential sums in one variable.)

Moreover (as is relevant only for Corollary 1.6 in this paper), K is a trace
function, and it is nonexceptional, unless g is of degree 1, r = 1 and f1 is of
degree 6 1.

– Let r > 2. Define Klr (0) = 0 and

Klr (n) =
1

q (r−1)−2

∑
x1,...,xr∈Fq

x1···xr=n

e
(

x1 + · · · + xr

q

)

for n ∈ F×q (these are hyper-Kloosterman sums). Then ‖K̂lr‖∞ 6 cr , where cr

depends only on r (this depends on Deligne’s general proof of the Riemann
Hypothesis over finite fields and on the construction and basic properties of
Kloosterman sheaves).

For all r > 2, the function Klr is a trace function of a nonexceptional sheaf.

We also mention one important principle: if K is the trace function of a Fourier
sheaf F (in the sense of [14]), then K̂ is also such a function for a sheaf FT(F);
moreover, if F has conductor c (in the sense of [6]), then FT(F) has conductor
6 10c2, and, in particular, ‖K̂‖∞ 6 10c2.

Finally, one example that is not usually discussed explicitly (formally, because
it arises from a skyscraper sheaf) is when K (n) = q1/2δn=a (mod q) is the L2-
normalized delta function at a point a ∈ Z. In this case, the Fourier transform
is an additive character, and hence is bounded by one; dividing by q1/2, we obtain
the bound ∑

n>1
n≡a (mod q)

λ(1, n)V
(

n
X

)
� Z 10/9q−5/18+εX 5/6,

under the assumptions of Theorem 1.3; in particular, if X = q3/2 and V
satisfies (1.5) for Z = 1, we get∑

n>1
n≡a (mod q)

λ(1, n)V
(

n
q3/2

)
� q35/36+ε
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for any ε > 0. Note that, under the generalized Ramanujan–Petersson conjecture
λ(1, n) � nε, we would obtain the stronger bound q1/2+ε (and knowing the
approximation λ(1, n)� nθ for some θ < 1/3 would be enough to get a nontrivial
bound). We discuss this case in further detail in Remark 10, in the context of
Corollary 1.4.

4. Preliminaries

4.1. A Fourier-theoretic estimate. A key estimate in Section 7 will arise from
the following general bound (special cases of which have appeared before, for
example, in the case of multiplicative characters for problems concerning sums
over sumsets).

PROPOSITION 4.1. Let A be a finite abelian group, with group operation denoted
additively. Let α, β and K be functions from A to C. We have∣∣∣∣ ∑

m,n∈A

α(m)β(n)K (m − n)
∣∣∣∣ 6 |A|1/2‖K̂‖∞‖α‖2‖β‖2.

Proof. Using orthogonality of characters, we write∑
m,n∈A

α(m)β(n)K (m − n) =
∑

m,n,h∈A

α(m)β(n)K (h)
1
|A|

∑
ψ∈ Â

ψ(h − (m − n)).

Moving outside the sum over ψ , this is equal to

|A|1/2
∑
ψ∈ Â

α̂(ψ−1)β̂(ψ)K̂ (ψ),

whose absolute value is

6 |A|1/2‖K̂‖∞
∑
ψ∈ Â

|̂α(ψ−1)β̂(ψ)| 6 |A|1/2‖K̂‖∞‖α‖2‖β‖2,

by the Cauchy–Schwarz inequality and the discrete Plancherel formula.

4.2. Background on GL3-cuspforms. We refer to [10, Ch. 6] for notations.
Let ϕ be a cuspform on GL3 with level 1 and with Langlands parameters µ = (µ1,

µ2, µ3) ∈ C3. We denote by (λ(m, n))m,n 6=0 its Fourier–Whittaker coefficients and
assume that ϕ is an eigenform of the Hecke operators Tn and T ∗n , normalized so
that λ(1, 1) = 1. The eigenvalue of Tn is then λ(1, n) for n > 1.
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Let θ3 = 5/14. The archimedean parameters and the Hecke eigenvalues are
bounded individually by

|Re (µi)| 6 θ3, |λ(1, p)| 6 3pθ3

for any i and any prime number p (see [15]).
Average estimates follow from the Rankin–Selberg method. We have∑

16n6X

|λ(1, n)|2 � X 1+ε (4.1)

and ∑
16m2n6X

m|λ(m, n)|2 � X 1+ε, (4.2)

for X > 2 and any ε > 0, where the implied constant depends only on ϕ and ε.
(See [19] and [21, Lemma 2].)

The key analytic feature of GL3-cuspforms that we use (as in previous works)
is the Voronoi summation formula for ϕ (originally due to Miller–Schmid, and
Goldfeld–Li independently). Since our use of the ‘archimedean’ part of the
formula is quite mild, we use the same compact formulation as in [12, Section
2.3], where references are given.

Let q > 1 be an integer (not necessarily prime). For n ∈ Z, we denote

Kl2(n; q) =
1
√

q

∑
x∈(Z/qZ)×

e
(

nx + x̄
q

)
,

where x̄ is the inverse of x modulo q .

LEMMA 4.2 (Voronoi summation formula). For σ ∈ {−1, 1}, there exist functions
Gσ , meromorphic on C, holomorphic for Re (s) > θ3, with polynomial growth in
vertical strips Re (s) > α for any α > θ3 such that the following properties hold.

Let a and q > 1 be coprime integers, let X > 0 and let V be a smooth function
on ]0,+∞[ with compact support. We have∑

n>1

λ(1, n)eq(an)V
(

n
X

)

= q3/2
∑

σ∈{−1,1}

∑
n>1

∑
m|q

λ(n,m)
nm3/2

Kl2

(
σna;

q
m

)
Vσ

(
m2n

q3/X

)
,

where

Vσ (x) =
1

2π i

∫
(1)

x−sGσ (s + 1)
(∫

+∞

0
V (y)y−s dy

y

)
ds.
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Note that the functions Gσ depend (only) on the archimedean parameters of ϕ.
We record some properties of the functions Vσ (x); for Z fixed, they are already
explained in [12, Section 2.3].

LEMMA 4.3. Let σ ∈ {−1, 1}. For any j > 0, any A > 1 and any ε > 0, we have

x jV( j)
σ (x)� min

(
Z j+1x1−θ3−ε, Z j+5/2+ε

(
Z 3

x

)A)
for x > 0, where the implied constant depends on ( j, A, ε). Moreover, for x > 1,
we have

x jV( j)
σ (x)� x2/3 min(Z j , x j/3)

where the implied constant depends on j .

Proof. The first inequality in the first bound follows by shifting the contour in
V±(x) to Re s = θ3 − 1+ ε, while the second one follows by shifting contour to
the far right. The second bound follows from [2, Lemma 6].

In particular, we see from the lemma that the functions Vσ (x) decay very
rapidly as soon as x > X δZ 3 for some δ > 0.

REMARK 7. The bound x jV( j)
σ (x) � Z j+1x1−θ3−ε can be replaced by x jV( j)

σ (x)
� Z j x1−ε under the Ramanujan–Selberg conjecture, that is, if Re (µi) = 0 for
all i .

REMARK 8. Let N > 1, and define a congruence subgroup ΓN ⊂ SL3(Z) by

ΓN =

{
γ ∈ SL3(Z)

∣∣∣∣ γ ≡
∗ ∗ ∗∗ ∗ ∗

0 0 ∗

 (mod N )
}
.

Zhou [25] has established an explicit Voronoi summation formula for GL3-
cuspforms that are invariant under ΓN , for additive twists by eq(an) when either
(q, N ) = 1 or N | q . It should then be possible to use this formula to generalize
Theorem 1.3 to such cuspforms by slight adaptations of the argument below.

5. Amplification of the trace function

We now begin the proof of Theorem 1.3. Let q be a prime number and K a
q-periodic function on Z. Let K̂ be its discrete Fourier transform (1.6), which is
also a q-periodic function on Z.
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Let P, L > 1 be two parameters to be chosen later, with 2P < q and 2L < q .
We define auxiliary sets

P := {p ∈ [P, 2P[ | p ≡ 1 (mod 4), prime}
L := {l ∈ [L , 2L[ | l ≡ 3 (mod 4), prime}.

Note that these sets are disjoint. We denote

H =
q2 L
X P

. (5.1)

In the sequel, we assume that H > 1, that is,

X P 6 q2 L . (5.2)

Let W be a smooth function on R that satisfies (1.5) with Z = 1 and, furthermore,
Ŵ (0) = 1.

We now use the notations K (n, h) and K̂ (z, h) and the basic amplification idea
discussed in Section 2.1 (see (2.1) and (2.2)). We define

F =
1
|P||L|

∑
p∈P

∑
l∈L

∑
h∈Z

SV (K (·, hpl), X)Ŵ
(

h
H

)
=

1
|P||L|

∑
p∈P

∑
l∈L

∑
h∈Z

Ŵ
(

h
H

)∑
n>1

λ(1, n)K (n, hpl)V
(

n
X

)
.

Separating the contribution of h = 0 and applying (2.3), we can write

F = SV (K , X)+ O+ O
(

qε‖K̂‖∞X
q1/2

)
, (5.3)

for any ε > 0, where

O =
1
|P||L|

∑
p∈P

∑
l∈L

∑
h 6=0

Ŵ
(

h
H

)∑
n>1

λ(1, n)K (n, hpl)V
(

n
X

)
. (5.4)

Indeed, the contribution of h = 0 is
1
|P||L|

∑
p∈P

∑
l∈L

SV (K (·, 0), X)Ŵ (0)

= SV (K , X)−
K̂ (0)
|P||L|q1/2

∑
p∈P

∑
l∈L

∑
n>1

λ(1, n)V
(

n
X

)

= SV (K , X)+ O
(
‖K̂‖∞X 1+ε

q1/2

)
,

for any ε > 0, by (4.1).

https://doi.org/10.1017/fms.2020.7 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.7


Periodic twists of GL3-automorphic forms 17

6. Evaluation of F

The evaluation of F is close to the arguments of [12] and [17, Section 6]. In
fact, we could extract the desired bounds from these sources (especially [17]) in
the important special case when the parameter Z is fixed as q varies. The reader
who is familiar with one of these references may therefore wish to skip the proof
of the next proposition in a first reading.

PROPOSITION 6.1. Let η > 0. Assume that

X/Z > q1+η (6.1)

and
L 6 P4. (6.2)

Then for any ε > 0, we have

F � qε‖K̂‖∞

(
Z 2 X 3/2 P

q L1/2
+ Z 3/2 X 3/4(q P L)1/4

)
,

where the implied constant depends on ϕ, ε and η.

The remainder of this section is dedicated to the proof of this proposition. We
fix η satisfying (6.1).

We apply the Poisson summation formula to the sum over h in F, for each (p, l).
We obtain∑

h∈Z

K (n, hpl)Ŵ
(

h
H

)
=

H
q1/2

∑
(r,q)=1

K̂ (−plr)eq(nplr)W
(

r
R

)
,

where
R = q/H =

X P
q L

. (6.3)

Hence, it follows that

F =
q3/2 L

X P|P||L|

∑
p∈P

∑
l∈L

∑
(r,q)=1

K̂ (−plr)
∑
n>1

eq(nplr)λ(1, n)V
(

n
X

)
W
(

r
R

)
.

Since l 6 2L < q , we have (q, rl) = 1 in the sums. By reciprocity, we have

eq(nplr) = erl(−npq)eqrl(np)

for n > 1.
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REMARK 9. Note that for n � X , we have

np
qrl
�

X P
q L X P/(q L)

� 1

so that the additive character eqrl(np) does not oscillate.

We define

V1(x) = e
(

x X p
qrl

)
V (x).

We can then rephrase the above as∑
n>1

λ(1, n)erl(−npq)eqrl(np)V
(

n
X

)
=

∑
n>1

λ(1, n)erl(−npq)V1

(
n
X

)
,

and

F =
q3/2 L

X P|P||L|

∑
p,l

∑
r>1

K̂ (−plr)W
(

r
R

)∑
n>1

λ(1, n)erl(−npq)V1

(
n
X

)
.

Let F′ be the contribution to the last expression of those (p, r, l) such that
(p, rl) = 1, and let F′′ be the remaining contribution.

In the case p | r , we can apply the Voronoi formula with modulus rl/p;
estimating the resulting expression directly, one obtains an estimate for the
contribution F′′ to F that is bounded by

F′′ �
‖K̂‖∞Z 2 X 3/2+ε

q P

for any ε > 0 (see [17, Section 6] for a similar computation, where such
contribution is denoted F

]

1).
Now let p be such that (p, rl) = 1. By the Voronoi summation formula

(Lemma 4.2), we have∑
n>1

λ(1, n)erl(−npq)V1

(
n
X

)

= (rl)3/2
∑

σ∈{−1,1}

∑
n>1

∑
m|rl

λ(n,m)
nm3/2

Kl2(σ pqn; rl/m)V1,σ

(
m2n

r 3l3/X

)
.

Therefore, F′ = F′1 + F′
−1, where

F′σ =
q3/2 L

X P|P||L|

∑
p∈P

∑
l∈L

∑
r>1

K̂ (−plr)W
(

r
R

)
(rl)3/2
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×

∑
n>1

∑
m|rl

λ(n,m)
nm3/2

Kl2(σ pqn; rl/m)V1,σ

(
m2n

r 3l3/X

)
.

We rearrange the sums to get

F′σ =
(q RL)3/2 L
X P|P||L|

∑
r>1

(
r
R

)3/2

W
(

r
R

)∑
n,m

λ(n,m)
√

nm

×

∑
p∈P

∑
l∈L
m|rl

(l/L)3/2
√

nm
K̂ (−plr)Kl2(σ pqn; rl/m)V1,σ

(
m2n

r 3l3/X

)
.

Let δ > 0 be a small parameter. For fixed r and l, using the bounds from
Lemma 4.3 with a suitably large value of A, the contribution to the sum over m
and n of (m, n) such that

m2n > qδ
Z 3(rl)3

X
�

qδZ 3 X 2 P3

q3
(6.4)

is� ‖K̂‖∞q−10 (say).
To handle the remaining part of the sum, we apply the Cauchy–Schwarz

inequality to the sum over (m, n), and we obtain

F′σ �
(q RL)3/2 L
X P|P||L|

(∑
r∼R

∑
n,m>1

m2n<qδ Z3 X2 P3/q3

|λ(n,m)|2

nm

)1/2

N1/2
σ + ‖K̂‖∞q−1, (6.5)

where

Nσ =

∑
r,m>1

W
(

r
R

)
1

m2

∑∑
p1,p2,l1,l2
pi∈P,li∈L
m|(rl1,rl2)

(
l1l2

L2

)3/2

K̂ (−p1l1r)K̂ (−p2l2r)

×

∑
n>1

1
n

Kl2(σ p1qn; rl1/m)Kl2(σ p2qn; rl2/m)V1,σ

×

(
m2n

r 3l3
1/X

)
V1,σ

(
m2n

r 3l3
2/X

)
.

We will prove the bound

Nσ � qε‖K̂‖2
∞

(
Z 4 R P L +

Z 3 R3/2q3 L3

X 2 P

)
(6.6)
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for any ε > 0. If we select δ > 0 small enough in terms of ε, then by the Rankin–
Selberg bound (4.2), we deduce that

F′σ �
q3/2+εZ εL5/2 R2

X P|P||L|
N1/2
σ + ‖K̂‖∞q−1 (6.7)

for any ε > 0. We conclude, using (6.5) and recalling that R = X P/(q L), that

F′σ �
qε‖K̂‖∞R2(q L)3/2

X P2

(
Z 4 R P L +

Z 3 R3/2q3 L3

X 2 P

)1/2

� qε‖K̂‖∞

(
Z 2 X 3/2 P

q L1/2
+ Z 3/2 X 3/4(q P L)1/4

)
,

for any ε > 0. Assuming (6.6), this concludes the proof of Proposition 6.1.

6.1. Proof of (6.6). We will now investigate the inner sum over n in Nσ , and
then perform the remaining summations (over r , m, pi , li ) essentially trivially. We
let

U =
qδ/2 Z 3/2 X P3/2

q3/2

so that the sum over m has been truncated to m 6 U .
Let F be a smooth nonnegative function on R which is supported on [1/2, 3]

and equal to 1 on [1, 2]. Let Y > 1 be a parameter with

Y 6
qδZ 3 X 2 P3

m2q3
, (6.8)

and define

WY (x) =
1
x
V1,σ

(
m2xY
r 3l3

1/X

)
V1,σ

(
m2xY
r 3l3

2/X

)
F(x).

We study the sums

PY =
1
Y

∑
n>1

Kl2(p1qn; rl1/m)Kl2(p2qn; rl2/m)WY

(
n
Y

)
and their combinations

NY,σ =
∑
r>1

∑
16m6U

W
(

r
R

)
1

m2

∑∑
p1,p2,l1,l2
pi∈P,li∈L
m|(rl1,rl2)

(
l1l2

L2

)3/2

K̂ (−p1l1r)K̂ (−p2l2r)PY .

(6.9)
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We will prove the following bound: for any ε > 0, if δ is chosen small enough,
we have

NY,σ � qεZ 4
‖K̂‖2

∞
R P L + qε‖K̂‖2

∞

Z 3 R3/2q3 L3

X 2 P
. (6.10)

Performing a dyadic partition of unity on the n variable in Nσ , we deduce (6.6).

6.2. Bounding PY . We apply the Poisson summation formula (1.10) with
modulus r [l1, l2]/m to get

PY =
1

r [l1, l2]/m

∑
n∈Z

C(n, p1, p2, l1, l2, r,m)ŴY

(
nY

r [l1, l2]/m

)
, (6.11)

where

C(n, p1, p2, l1, l2, r,m)

=

∑
β (mod r [l1,l2]/m)

Kl2(p1qβ; rl1/m)Kl2(p2qβ; rl2/m) er [l1,l2]/m(βn),

with pi denoting the inverse of pi modulo rli/m. We write

PY = P0 + P1,

where

P0 =
1

r [l1, l2]/m
C(0, p1, p2, l1, l2, r,m)ŴY (0)

is the contribution of the term n = 0 and P1 is the remainder in (6.11). We show
below that for any ε > 0, if δ is chosen small enough, we have

P0 � δ l1=l2p1=p2
(qr)εZ 4

+ δ l1=l2
p1 6=p2

P0 � qεZ 4 m
rl

(
rl
m
, p2 − p1

)
(6.12)

and that

P1 � q2εZ 3

(
r [l1, l2]1

m

)1/2 m2q3

X 2 P3
. (6.13)

Using (6.12) in the sum (6.9), we find that the contribution to NY,σ of P0 is
bounded by

∑
r>1

W
(

r
R

) ∑
16m6U

1
m2

∑∑
p1,p2,l

pi∈P,l∈L
m|rl

(
l
L

)3

K̂ (−p1lr)K̂ (−p2lr)P0
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� qεZ 4
‖K̂‖2

∞

∑
r�R

∑
16m6U

1
m2

∑
l∈L
m|rl

(∑
p∈P

1+
m
rl

∑
p1,p2∈P
p1 6=p2

(
rl
m
, p2 − p1

))

� qεZ 4
‖K̂‖2

∞

(
R P L +

∑
r�R

1
r

∑
16m6U

1
m

∑
l∈L
m|rl

1
l

∑
d|rl/m

ϕ(d)
∑

p1,p2∈P
p1≡p2 (mod d)

1
)

� qεZ 4
‖K̂‖2

∞
(R P L + P2)� qεZ 4

‖K̂‖2
∞

R P L . (6.14)

Here R P L = X P2/q � P2 since X satisfies (6.1). Using (6.13), we find that the
contribution of P1 to Nσ,Y is bounded by

� qεZ 3
‖K̂‖2

∞

∑
r�R

∑
16m6U

1
m2

∑
p1,p2,l1,l2
m|(rl1,rl2)

(
r [l1, l2]

m

)1/2 m2q3

X 2 P3

� qεZ 3
‖K̂‖2

∞
R

q3

X 2 P3
(P2 L2)(RL2)1/2 � qε‖K̂‖2

∞

Z 3 R3/2q3 L3

X 2 P
.

(6.15)

Combining (6.14) and (6.15), we obtain (6.10).

6.3. Proof of (6.12) and (6.13). The next two lemmas evaluate the
archimedean and non-archimedean Fourier transforms which occur in (6.11).

LEMMA 6.2. With notation as above, in particular (6.8), let j > 0 be an integer
and let ε > 0.

(1) We have
ŴY (0)� qδZ 4. (6.16)

(2) We have

x jW
( j)
Y (x)�


Z 2+ j

(
m2Y q3

X 2 P3

)2−2θ3−ε

if Y <
X 2 P3

m2q3
,(

m2Y q3

X 2 P3

)4/3+ j/3

if Y >
X 2 P3

m2q3
,

(6.17)

where the implied constants depend on (ϕ, j, ε).

(3) If 1 6 |n| 6 qδZ r [l1,l2]
mY , then we have

ŴY

(
nY

r [l1, l2]/m

)
� qδZ 2 m2Y q3

X 2 P3
.
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Proof. Since FY has support in [1/2, 3], part (1) follows from Vσ (x) � x2/3

for x > 1 and the fact that

m2xY
r 3l3

i /X
�

m2Y
X 2 P3/q3

� qδZ 3.

Part (2) is obtained using the estimates

x jV
( j)
± (x)� Z j+1x1−θ3−ε if 0 < x < 1,

x jV
( j)
± (x)� x2/3+ j/3 if x > 1

(see Lemma 4.3), noting again that (rl)3

X ∼
X2 P3

q3 .
From (6.17), for any n such that 1 6 |n| 6 qδZ r [l1,l2]

mY , we get the estimates

ŴY

(
nY

r [l1, l2]/m

)
�


Z 2

(
m2Y q3

X 2 P3

)2−2θ3−ε

if Y <
X 2 P3

m2q3
,(

m2Y q3

X 2 P3

)4/3

if Y >
X 2 P3

m2q3
.

Since m2Y q3/(X 2 P3)� qδZ 3, the second bound is also

� qδ/3 Z
m2Y q3

X 2 P3
.

Together with the first bound, this implies part (3) of the lemma.

LEMMA 6.3. Let n ∈ Z, p1, p2 primes, l1, l2 primes, r > 1 and m > 1 be integers
with m | rli .

(1) We have
C(0, p1, p2, l1, l2, r,m) = 0

unless l1 = l2.

(2) For l prime with m | rl, we have

|C(0, p1, p2, l, l, r,m)| 6 (rl/m, p2 − p1).

(3) Let

∆ = q
l2
2 p2 − l2

1 p1

(l1, l2)2
.

We have

|C(n, p1, p2, l1, l2, r,m)| 6 2O(ω(r))

(
r [l1, l2]

m

)1/2
(∆, n,m/rl1,m//rl2)

(n,m/rl1,m/rl2)1/2
.
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(4) Suppose that ∆ = 0. If (p1, p2) are ≡ 1 (mod 4) and (l1, l2) are ≡ 3 (mod 4),
then p1 = p2 and l1 = l2. For p prime and l prime with m | rl, we have

|C(n, p, p, l, l, r,m)| 6 2O(ω(r))

(
rl
m

)1/2(
n,

rl
m

)1/2

.

In particular, C(0, p, p, l, l, r,m)� r ε rl
m for any ε > 0.

Proof. Part (1) follows by direct computation (the sum vanishes unless [l1, l2] = l1

and [l1, l2] = l2). If n = 0 and l1 = l2, then

|C(0, p1, p2, l, l, r,m)| =
∣∣∣∣ ∑

x mod rl/m
(x,rl/m)=1

e
(
(p2 − p1)x

rl/m

)∣∣∣∣
=

∣∣∣∣ ∑
d|(rl/m,p2−p1)

dµ
(

rl
md

)∣∣∣∣ 6 (rl/m, p2 − p1)

by a classical bound for Ramanujan’s sum, which proves (2). Finally, part (3) is
a special case of [12, Lemma A.2 (A.3)] (applied with (ξ, s1, s2) = (n, rl1/m,
rl2/m), and (a1, b1, a2, b2) = (q, p1, q, p2) in the definition of∆). If∆ = 0, then
necessarily p1 = p2 and l1 = l2, and we obtain (4) immediately.

6.3.1. Estimation of P0. Note that P0 = 0 unless l1 = l2. If that is the case, we
denote l = l1 = l2. We then have two bounds for P0. If we have also p1 = p2,
then the quantity∆ of Lemma 6.3(3) is zero. Since ŴY (0)� qεZ 4 for any ε > 0
(provided δ > 0 is chosen small enough) by Lemma 6.2(1), we obtain

P0 � qεZ 4 m
rl
|C(0, p1, p1, l, l, r,m)| � (qr)εZ 4

by the last part of Lemma 6.3(4).
On the other hand, if p1 6= p2, we have ∆ 6= 0; hence,

P0 � qεZ 4 m
rl

(
rl
m
, p2 − p1

)
by Lemma 6.3(1) (which shows that the sum C(0, p1, p2, l1, l2, r,m) is zero
unless l1 = l2) and (2).

6.3.2. Estimation of P1. Using Lemma 6.2(2) for a suitable value of j , we
obtain first

P1 =
1

r [l1, l2]/m

∑
16|n|6qδ Z r [l1,l2]

mY

C(n, p1, p2, l1, l2, r,m)ŴY

(
nY

r [l1, l2]/m

)
+O(q−1)
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for any ε > 0 if δ is chosen small enough. Then, by Lemmas 6.3 and 6.2(3), we
deduce that

P1 � qε+2δ 1
(r [l1, l2]/m)1/2

∑
16|n|6qδ Z r [l1,l2]

mY

(∆, n, rl1/m, rl2/m)
(n, rl1/m, rl2/m)1/2

Z 2m2Y q3

X 2 P3

� q2εZ 3

(
r [l1, l2]1

m

)1/2 m2q3

X 2 P3

if δ < ε/2.

7. Estimate of O

In this section, we bound the sum O defined in (5.4). Our goal is the following.

PROPOSITION 7.1. Let η > 0 be a parameter such that (6.1) holds. Let ε > 0.
If δ is a sufficiently small positive real number and if P, L , X satisfy

X P 6 q2 L , q1+δL2 < X/8, qδPHL < q/8, (7.1)

then we have

O� qε‖K̂‖∞
q X 1/2

P
, (7.2)

where the implied constant depends on ϕ and ε.

We start by decomposing O into

O = O1 + O2

according to whether the prime l divides h or not; in other words,

O1 =
1
|P||L|

∑
p∈P

∑
l∈L

∑
h 6=0

Ŵ
(

hl
H

)∑
n>1

λ(1, n)K (n, hp)V
(

n
X

)
O2 =

1
|P||L|

∑
p∈P

∑
l∈L

∑
h 6=0
(h,l)=1

Ŵ
(

h
H

)∑
n>1

λ(1, n)K (n, hpl)V
(

n
X

)
.

Both of these sums will be handled in a similar way in the next two subsections,
beginning with the most difficult one.
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7.1. Bounding O2. In the sum O2, we first use the bound

Ŵ (x)� (1+ |x |)−A

for any A > 1 and x ∈ R, and∑
n>1

λ(1, n)K (n, hpl)V
(

n
X

)
� X 1+εq1/2

‖K̂‖∞ � q5/2+2ε
‖K̂‖∞

for any ε > 0 (by (4.1) and discrete Fourier inversion) to truncate the sum over h
to |h| 6 qδH , for some δ > 0 that may be arbitrarily small.

Let T > 0 be a smooth function with compact support such that T (x) = ‖V ‖∞
for x ∈ [1/2, 3] and such that T satisfies (1.5) with a fixed value of Z . We then
have |V | 6 T .

In the sum O2, we split the h-sum into O(log q) dyadic sums. We then apply
the Cauchy–Schwarz inequality to smooth the n-variable, and we obtain

O2 �
log3 q

P L

(∑
n∼X

|λ(1, n)|2
)1/2

max
16H ′6qδH

R
1/2
H ′ �

X 1/2 log3 q
P L

max
16H ′6qδH

R
1/2
H ′ ,

by (4.1) again, where

RH ′ =
∑∑

p1,h1,l1,p2,h2,l2

∑
n>1

K (n, h1 p1l1)K (n, h2 p2l2)Ŵ
(

h1

H

)
Ŵ
(

h2

H

)
T
(

n
X

)
,

with the variables in the sums constrained by the conditions

pi ∈ P, li ∈ L, H ′ < hi 6 2H ′, (li , hi) = 1.

For x ∈ Fq , we define

ν(x) =
∑

(p,h,l)∈P×[H ′,2H ′[×L,
(h,l)=1

phl≡x (mod q)

Ŵ
(

h
H

)
(7.3)

so that we have

RH ′ =
∑∑
x1,x2∈Fq

ν(x1)ν(x2)
∑
n>1

K (n, x1)K (n, x2)T
(

n
X

)
. (7.4)

We apply the Poisson summation formula (1.10) for the sum over n. This results
in the formula∑

n>1

K (n, x1)K (n, x2)T
(

n
X

)
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=
X
√

q

∑
h∈Z

(
1
√

q

∑
n (mod q)

K (n, x1)K (n, x2)e
(

nh
q

))
T̂
(

h X
q

)
.

Observe that for any h ∈ Z, we have

1
√

q

∑
n (mod q)

K (n, x1)K (n, x2)e
(

nh
q

)
=

1
√

q

∑
u (mod q)

K̂ (u, x1)K̂ (u + h, x2),

where K̂ (u, x) is defined as in (2.1). In particular, this quantity is bounded by
q1/2
‖K̂‖2

∞
.

Now, for all h 6= 0 and all A > 1, we have

T̂
(

h X
q

)
�A

(
q Z
h X

)A

6

(
q Z
X

)A

6 q−Aη,

by (6.1), where the implied constant depends on A. Hence, taking A large enough
in terms of η, the contribution of all h 6= 0 to the sum over n is� ‖K̂‖2

∞
q−5, and

the total contribution to RH ′ is (using very weak bounds on ν(x))

� ‖K̂‖2
∞

q−3(PHL)2 � ‖K̂‖2
∞

q−1

by (7.1).
The remaining contribution to RH ′ from the frequency h = 0 is

X
√

q

∑∑
x1,x2∈Fq

ν(x1)ν(x2)
1
√

q

∑
u∈Fq

K̂ (u, x1)K̂ (u, x2)T̂ (0).

LEMMA 7.2. For any (x1, x2) ∈ Fq × Fq , we have

1
√

q

∑
u∈Fq

K̂ (u, x1)K̂ (u, x2) = L(x1 − x2)

where

L(x) =
1
√

q

∑
u∈F×q

|K̂ (u)|2eq(−ūx)+
1
√

q
|K̂ (0)|2.

Moreover, we have

L̂(h) = |K̂ (0)|2δh≡0 (mod q) + |K̂ (h̄)|2δh 6≡0 (mod q),

and, in particular, |L̂(h)| 6 ‖K̂‖2
∞

for all h ∈ Fq .
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Proof. The first formula is an immediate consequence of the definition (2.1), and
the second results from a straightforward computation.

LEMMA 7.3. We have

‖ν‖2
2 =

∑
x∈Fq

ν(x)2 � qε+δPHL

for any ε > 0.

Proof. From the last condition in (7.1), we have the implications

h2 p2l2 = h1 p1l1 (mod q)⇐⇒ l1h2 p2 ≡ l2h1 p1 (mod q)⇐⇒ l1h2 p2 = l2h1 p1.

(7.5)
Therefore, if (p1, h1, l2) are given, the number of possibilities for (p2, h2, l1) is
� qε for any ε > 0. The bound∑

x∈F×q

ν(x)2 � qεP H ′L 6 qε+δPHL

follows immediately.

We can now combine these two lemmas with Proposition 4.1 to deduce that

X
√

q

∣∣∣∣∑∑
x1,x2∈Fq

ν(x1)ν(x2)
1
√

q

∑
u∈Fq

K̂ (u, x1)K̂ (u, x2)T̂ (0)
∣∣∣∣ 6 X‖L̂‖∞‖ν‖2

2|T̂ (0)|

� qε‖K̂‖2
∞

XPHL

for any ε > 0, by taking δ small enough in terms of ε. Hence, we obtain

O2 � qε‖K̂‖∞X
(

H
P L

)1/2

� q1+ε
‖K̂‖∞

X 1/2

P
. (7.6)

7.2. Bounding O1 and the end of the proof of Proposition 7.1. The
treatment of O1 is similar to that of O2 but simpler, and so we will be brief. We
have

O1 =
1
|L|

∑
l∈L

1
|P|

∑
p∈P

∑
h 6=0

Ŵ
(

h
H/ l

)∑
n>1

λ(1, n)K (n, hp)V
(

n
X

)
.

We bound the sum over p for each individual l ∈ L, with h � H/ l � H/L , by
repeating the arguments of the previous section with H replaced by H/ l and L
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replaced by 1. We obtain

O1 � ‖K̂‖∞qεX
(

H
P L

)1/2

� q1+ε
‖K̂‖∞

X 1/2

P
(7.7)

for any ε > 0, as in the previous case.
Finally, since O = O1 + O2, this bound combined with (7.6) implies

Proposition 7.1.

8. End of the proof

We can now finish the proof of our main theorem. We recall that X, Z are such
that

Z 2/3q4/3 6 X 6 Z−2q2. (8.1)

In particular, Z 6 q1/4 and

X > Z 2/3q4/3 > Zq1+1/4
;

therefore, (6.1) holds for η = 1/4.
Assuming that the conditions (7.1) hold and combining (5.3), Proposition 6.1

and Proposition 7.1, we deduce the estimate

SV (K , X)� qε‖K̂‖∞

(
Z 2 X 3/2 P

q L1/2
+ Z 3/2 X 3/4(q P L)1/4 +

q X 1/2

P

)
for any ε > 0. When L = Z 2/3 X P/q5/3, the first two terms are equal to
Z 5/3 X P1/2/q1/6. For P = q7/9/(X 1/3 Z 10/9), they are also equal to the third term
which is Z 10/9q2/9 X 5/6. Moreover, the conditions (8.1) and Z 6 q1/4 imply then
by simple computations that

1 6 P, 1 6 L , L 6 P4, X P 6 q2 L

(for instance, X 3 Z 10 6 Z 10(q2/Z 2)3 = Z 4q6 6 q7 gives P > 1), and then we get

q1+δL2 <
X
8

for δ = 1/18, provided q is large enough (since q L2
= q−7/9 Z−8/9 X 4/3 6

X (X 1/3q−7/9) 6 Xq−1/9 using X 6 q2). By (5.1), this also implies that qδPHL <
q/8. Hence, this choice of the parameters satisfies (7.1). We finally conclude that

SV (K , X)� ‖K̂‖∞Z 10/9q2/9+εX 5/6

for any ε > 0.
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9. Applications

In this section, we prove Corollaries 1.4 and 1.5.

9.1. Proof of Corollary 1.4. Applying the approximate functional equation
for L(ϕ ⊗ χ, s) in the balanced form, we immediately express the first moment

1
q − 1

∑
χ (mod q)

M(χ)L(ϕ ⊗ χ, 1/2)

in terms of the sums
1
√

q

∑
n>1

λ(1, n)
√

n
K (n)V

(
n

q3/2

)
and

1
√

q

∑
n>1

λ(1, n)
√

n
L(n)V

(
n

q3/2

)
,

for suitable test functions satisfying (1.5) for Z = 1, where

K (n) =
q1/2

q − 1

∑
χ (mod q)

M(χ)χ(n), L(n) =
q1/2

q − 1

∑
χ (mod q)

τ(χ)3 M(χ)χ(n),

in terms of the normalized Gauss sum τ(χ). An elementary computation shows
that this function L coincides with the function in the statement of Corollary 1.4.
Since, moreover, the λ(1, n) are the Hecke eigenvalues of the dual cuspform ϕ̃,
the corollary follows from Theorem 1.3 applied to K and L .

REMARK 10. (1) If

M(χ) =
1
√

q

∑
x∈F×q

K (x)χ(x)

is the discrete Mellin transform of the trace function K of a Fourier sheaf F
that is a middle-extension sheaf on Gm of weight 0 and if no sheaf of the
form [x 7→ x−1

]
∗D(K`3) is among the geometrically irreducible components

of F, then both ‖K̂‖∞ and ‖L̂‖∞ are bounded in terms of the conductor of F
only, and we obtain

1
q − 1

∑
χ (mod q)

M(χ)L(ϕ ⊗ χ, 1/2)� q2/9+ε

for any ε > 0, where the implied constant depends only on ε, ϕ and the
conductor of F.
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(2) Applying the approximate functional equation in a balanced form may not
always be the best move. For instance, consider the important special case
where M(χ) = 1. We are then evaluating the first moment

1
q − 1

∑
χ (mod q)

L(ϕ ⊗ χ, 1/2) (9.1)

of the central values of the twisted L-functions. Then we are working with
the functions

K (n) = q1/2δn≡1 (mod q), L(n) = Kl3(n; q),

whose Fourier transforms are bounded by absolute constants. Hence, the
above leads to

1
q − 1

∑
χ (mod q)

L(ϕ ⊗ χ, 1/2)� q2/9+ε

for any ε > 0, where the implied constant depends on ϕ and ε.
On the other hand, the approximate functional equation in the unbalanced form

yields sums of the shape∑
n≡1 (mod q)

λ(1, n)
√

n
V
(

n
Y q3/2

)
and

1
√

q

∑
n>1

λ(1, n)
√

n
Kl3(n; q)V

(
nY
q3/2

)
,

for some parameter Y > 0 at our disposal. Assuming the Ramanujan–Petersson
conjecture for ϕ and ϕ̃ and using Deligne’s bound |Kl3(n; q)| 6 3 for (n, q) = 1,
we obtain the much stronger bound

1
q − 1

∑
χ (mod q)

L(ϕ ⊗ χ, 1/2) = 1+ (qY )ε(Y 1/2/q1/4
+ q1/4/Y 1/2)� qε

for any ε > 0, on choosing Y = q1/2.
Note that, again under the Ramanujan–Petersson conjecture for ϕ and its dual,

we would obtain an asymptotic formula for the first moment (9.1), provided we
could obtain an estimate for SV (Kl3, X) with a power-saving in terms of q , when
X is a bit smaller than q . Results of this type are however currently only known
if ϕ is an Eisenstein series (starting from the work [9] of Friedlander and Iwaniec
for the ternary divisor function; see also the papers of Fouvry et al. [7], Kowalski
et al. [16] and Zacharias [24]).

This illustrates the importance of the problem of obtaining nontrivial bounds
for short sums in Theorem 1.3. However, we expect that much more refined
properties of trace functions and their associated sheaves will be necessary for
such a purpose (as indicated by Remark 5).
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9.2. Proof of Corollary 1.5. The symmetric square ϕ of ψ has Hecke
eigenvalues

λ(1, n) =
∑
d2|n

λ

(
n2

d2

)
, (9.2)

and, hence, by Möbius inversion, we have

λ(n2) =
∑
d2|n

µ(d)λ
(

1,
n
d2

)
.

We deduce that∑
n>1

λ(n2)K (n)V
(

n
X

)
=

∑
d>1

µ(d)
∑
n>1

K (nd2)λ(1, n)V
(

nd2

X

)
.

For

1 6 d 6
X 1/2

Z 1/3q2/3
,

we can apply Theorem 1.3 to the sum over n and the q-periodic function L(n) =
K (nd2), with X replaced by X/d2. Since q - d , we have L̂(x) = K̂ (d̄2x) for
any x ∈ Z so that ‖L̂‖∞ = ‖K̂‖∞, and we get∑

d6X1/2/(Z1/3q2/3)

µ(d)
∑
n>1

K (nd2)λ(1, n)V
(

nd2

X

)
� ‖K̂‖∞Z 10/9q2/9+ε

∑
d>1

X 5/6

d5/3

� ‖K̂‖∞Z 10/9q2/9+εX 5/6

for any ε > 0.
Since V has compact support in [1/2, 3], the sum over n is empty if d >

√
3X .

Since ∑
n>1

K (nd2)λ(1, n)V
(

nd2

X

)
� ‖K‖∞

(
X
d2

)1+ε

for any ε > 0, by the Rankin–Selberg bound (4.1), we can estimate the remaining
part of the sum as follows:∑

X1/2/(Z1/3q2/3)<d6
√

3X

µ(d)
∑
n>1

K (nd2)λ(1, n)V
(

nd2

X

)

� ‖K‖∞X 1+ε
∑

X1/2/(Z1/3q2/3)<d6
√

3X

1
d2+2ε

� ‖K‖∞X 1/2+εZ 1/3q2/3

for any ε > 0.
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REMARK 11. The additional dependency on ‖K‖∞ seems to be unavoidable in
Corollary 1.5.

10. Proof of Corollary 1.6

The proof of Corollary 1.6 requires additional ingredients besides Theorem 1.3.
We will be somewhat brief in handling these additional arguments (especially
standard analytic arguments) since similar computations have been performed in
a number of other papers (for example [4]).

First, in terms of the Hecke eigenvalues λ(m, n) of the symmetric square ψ
of ϕ, we have the identity

λ(n)2 =
∑

d2bc=n

µ(d)λ(1, c)

(see (9.2) and (1.9)). Thus, we have

∑
n>1

λ(n)2 K (n)V
(

n
X

)
=

∑
d,m,n>1

µ(d)λ(1, n)K (d2mn)V
(

d2mn
X

)
.

We bound the contribution of the integers n divisible by q using the Kim–
Sarnak bound [15] for λ(1, n), which shows that it is

� ‖K‖∞X 1+εq−1+7/32,

for any ε > 0, and hence is negligible. We may therefore restrict the sum on the
right-hand side to integers such that (dmn, q) = 1.

For a fixed value of d 6 D, coprime to q , we consider the sum

Td,x =
∑

m,n>1

λ(1, n)K (d2mn)V
(

d2mn
X

)
. (10.1)

We need to estimate the sum of Td,x over d > 1.
Let D > 1 be some small parameter to be fixed later. The contribution of the

integers d > D is bounded trivially and is

∑
d>D

Td,X �
‖K‖∞X 1+ε

D

for any ε > 0.
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We now fix d 6 D, coprime to q . We handle the sum Td,X by a smooth dyadic
partition of unity on the m-variable. This reduces the problem to estimates of
O(log X) sums of the form

Sd,M =
∑

m,n>1
(mn,q)=1

λ(1, n)K (d2mn)V
(

d2mn
X

)
W
(

m
M

)
, (10.2)

where W is smooth and compactly supported in [1/2, 5/2]. We set

N =
X

d2 M
so that n ∼ N in the sum.

The estimate for (10.2) splits in three cases, depending on the size of M .

10.1. When M is small. We assume that X
d2m > X

D2 M > Z 2/3q4/3 or, in other
words, that

D2 M 6
X

Z 2/3q4/3
. (10.3)

We can then apply Theorem 1.3, and we derive

Sd,M � ‖K‖∞q7/32−1 X 1+ε

d2
+ ‖K̂‖∞Z 10/9q2/9+ε

∑
m∼M

(
X

d2m

)5/6

� ‖K‖∞X εq7/32−1 X
d2
+ ‖K̂‖∞X εZ 10/9

(
X
d2

)5/6

q2/9 M1/6 (10.4)

for any ε > 0 (the first term corresponds to removing the constraint (n, q) = 1).

10.2. When M is in the Fourier range. If M > q1/2, then it is beneficial
to apply the Poisson summation formula to the m-variable. As in the previous
case, the cost of removing the condition (m, q) = 1 is � ‖K‖∞q7/32−1 X 1+ε/d2

for ε > 0. The Poisson summation formula implies that∑
m>1

K (d2mn)V
(

d2mn
X

)
W
(

m
M

)
� ‖K̂‖∞

(
M

q1/2
+ q1/2

)
,

and, therefore, (10.2) is bounded by

Sd,M � ‖K‖∞X εq7/32−1 X
d2
+ ‖K̂‖∞X ε X

d2

(
1

q1/2
+

q1/2

M

)
(10.5)

for any ε > 0.
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10.3. When M is large but not in Fourier range. If M 6 q1/2, thinking of
the prototypical case when X ∼ q3/2 and D is close to one, the n-sum is of length
close to q , so the natural move is to smooth the n-sum and then use the Poisson
summation formula on the resulting sums.

Thus, we apply the Cauchy–Schwarz inequality to (10.2), leaving the n variable
outside, namely

|Sd,M |
2
�

∑
n∼X/d2 M

|λ(1, n)|2

×

∑∑
mi∼M
(mi ,q)=1

∑
n>1

K (d2m1n)K (d2m2n)V
(

d2m1n
X

)
V
(

d2m2n
X

)
. (10.6)

Here, we have dropped the constraint (n, q) = 1 on the right-hand side by
positivity and replaced the expressions W

(
mi
M

)
by the summation conditions

m i ∼ M .
By the Poisson summation formula, we have

∑
n>1

K (d2m1n)K (d2m2n)V
(

d2m1n
X

)
V
(

d2m2n
X

)
=

N
q1/2

∑
h∈Z

K̂(2)(h)W
(

h
q/(X/d2 M)

)
, (10.7)

where W(y) is a smooth function depending on d,m1,m2, rapidly decaying as
y →∞, and

K̂(2)(h) =
1
√

q

∑
n∈Fq

K (d2m1n)K (d2m2n)e
(

nh
q

)
.

To go further, we use the assumption of Corollary 1.6 that K is the trace
function of a middle-extension `-adic sheaf F that is not exceptional. Indeed,
from [4, Theorem 6.3], we can deduce that there exists a set B ⊂ F×q such that |B|
is bounded in terms of the conductor of F only and such that whenever

m1/m2 (mod q) 6∈ B, (10.8)

then we have
‖K̂(2)‖∞ � 1

where the implied constant depends on the conductor of F only.
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Returning to (10.6), we apply the bound (10.7) to the pairs (m1,m2) which
satisfy (10.8) and apply the trivial bound otherwise.

We see then that the contribution to the second factor of (10.6) of the ‘diagonal’
pairs not satisfying (10.8) is bounded by

� X εM
(

M
q
+ 1

)
X/M

d2

for any ε > 0, while the contribution of the pairs (m1,m2) satisfying (10.8) is
bounded by

� X εM2

(
X/M
d2q1/2

+ q1/2

)
,

for any ε > 0, where in both cases the implied constant depends only on ε and on
the conductor of F.

Collecting these bounds, we obtain from (10.6) the bound

Sd,M �
X 1+ε

d2

(
1

M1/2
+

1
q1/4
+ q1/4 M1/2 d

X 1/2

)
, (10.9)

for any ε > 0, where the implied constant depends only on ε and on the conductor
of F.

10.4. End of the proof. Now we can combine the previous bounds. Let η > 0
and δ with 0 < δ < 1/4 be parameters to be determined later.

– If M 6 q2δ, we then apply the bound (10.4) (and the dyadic decomposition
of Td,x in a combination of sums Sd,M ) to derive∑

d6D

Td,X � X 1+εq7/32−1
+ Z 10/9 X 5/6+εq2/9+δ/3, (10.10)

under the condition that
X > Z 2/3 D2q4/3+2δ (10.11)

(see (10.3)).

– If M > q1/2+η, we apply the bound (10.5) and sum over d 6 D to find that∑
d6D

Td,X � X 1+ε

(
1

q1/2
+

q1/2

M

)
� X 1+εq−η (10.12)

in that case.
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– If q2δ 6 M < q1/2+η, we then apply the bound (10.9) and sum over d 6 D,
obtaining

∑
d6D

Td,X � X 1+ε

(
1
qδ
+

1
q1/4
+

q1/2+η/2

X 1/2

)
� X 1+ε

(
q−δ +

q1/2+η/2

X 1/2

)
. (10.13)

This covers all of the ranges for M . We now choose η, δ > 0 such that the bound
in (10.12) is equal to the second term in (10.13) and the first term in (10.13) is
consistent with the second term in (10.10). That is, we choose qη = (X/q)1/3 and
qδ = X1/8

Z5/6q1/6 . Therefore, we have in all cases, the estimate∑
d6D

Td,X � X 2/3+εq1/3
+ Z 5/6 X 7/8+εq1/6

+ X 1+εq7/32−1,

for any ε > 0, under the assumption that

X � D8/3q4/3 Z−4/3,

and the implied constant depends only on ε and the conductor of F.
Finally, we combine this with the previously noted estimate

∑
d>D

Td,X �
‖K‖∞X 1+ε

D

(recall that for a nonexceptional trace function, we have ‖K̂‖∞ � 1 where the
implied constant depends only on the conductor of F) to conclude that

∑
n>1

λ(n)2 K (n)V
(

n
X

)
� X 2/3+εq1/3

+ Z 5/6 X 7/8+εq1/6
+ X 1+ε/D.

We take D = qγ for some small γ > 0, and then we have

∑
n>1

λ(n)2 K (n)V
(

n
X

)
� X 2/3+εq1/3

+ Z 5/6 X 7/8+εq1/6
+ X 1+εq−γ ,

provided that
X � q4/3+8γ /3/Z 4/3,

where the implied constant depends only on ε and the conductor of F.
This concludes the proof of Corollary 1.6.
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[4] É. Fouvry, E. Kowalski and Ph. Michel, ‘Algebraic trace functions over the primes’, Duke
Math. J. 163(9) (2014), 1683–1736.
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