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Under adverse pressure gradient (APG) conditions, the outer regions of turbulent boundary
layers (TBLs) are characterized by an increased velocity defect Ue − U, an outwards shift
of the peak value of the Reynolds shear stress −〈uv〉 and an appearance of the outer peak
value of the Reynolds normal stress 〈uu〉. Here Ue is the TBL edge velocity. Scaling
APG TBLs is challenging due to the non-equilibrium effects caused by changes in the
APG. To address this, the response distance of TBLs to non-equilibrium conditions is
utilized to extend the Zagarola–Smits scaling Uzs = Ue(δ

∗/δ) and ensure that the original
properties of the Zagarola–Smits scaling are maintained as Re → ∞. Here δ∗ is the
displacement thickness and δ is the boundary layer thickness. Based on the established
correlation between Ue − U and −〈uv〉, the scaling is extended to −〈uv〉. Furthermore,
considering the coupling relationship between Reynolds stress components, the scaling is
extended to encompass each Reynolds stress component. The proposed consistent scaling
is verified using five non-equilibrium databases and five near-equilibrium databases,
successfully collapsing the data of the TBL outer region. The pressure gradient parameter
β = (δ∗/ρu2

τ )(dPe/dx) of these databases spans two orders of magnitude. Here Pe is the
boundary layer edge pressure, uτ is the friction velocity and ρ is the density. Finally, the
influence of the APG on the inner and outer regions of TBLs is analysed using the mean
momentum balance equation. The analysis suggests that the shift of the −〈uv〉 peak to the
outer region under APG conditions is due to an insufficient inertia term near the inner
region to balance the APG. It is observed that the APG promotes interaction between the
inner and outer regions of TBLs, but the inner and outer regions still retain distinctive
properties.
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1. Introduction

The combined effect of an adverse pressure gradient (APG) and viscosity can cause
flow separation. Flow separation can cause significant changes in flow properties and
interfere with the force prediction of objects in engineering practice (Mani & Dorgan
2023). Studying APG turbulent boundary layers (TBLs) can elucidate the behaviour of
TBLs before flow separation.

The first step in studying APG TBLs is to describe the strength of the APG using
pressure gradient parameters. The Clauser pressure gradient parameter (Clauser 1954) is
the classic measure and is defined as

β = δ∗

ρu2
τ

dPe

dx
. (1.1)

Here, δ∗ is the displacement thickness and Pe is the boundary layer edge pressure;
uτ = √

τw/ρ, where τw is the shear stress at the wall and ρ is the density; β can also
be considered the ratio of the time scale of the TBL outer region to the time scale of the
potential flow outside the TBL (Maciel, Rossignol & Lemay 2006; Romero et al. 2022b).
Alternatively, it can be considered as the ratio of the excess pressure force exerted on
the TBL to the wall shear stress, which can be obtained from the right-hand side of the
momentum equation after the Kármán momentum integration (Devenport & Lowe 2022).
Here β approaches infinity as flow separation approaches. Different states of the TBL
can be described by defining different pressure gradient parameters. Maciel et al. (2018)
suggested that suitable pressure gradient parameters could be constructed by selecting
velocity and length scales based on the properties of the TBL outer region and then using
a set of consistent non-dimensional parameters to describe the APG TBL. Therefore, the
choice of appropriate scales is important for turbulence research.

According to classic theory, the TBL can be divided into inner and outer regions
(Tennekes & Lumley 1972). The inner region is dominated by the viscous term. The
velocity scale is uτ and the length scale is ν/uτ . The outer region is dominated by the
inertial term. The velocity scale is the TBL edge velocity Ue and the boundary layer
thickness δ is a length scale. Turbulent motions range in size from the width of the
boundary layer thickness δ to much smaller scales, which become increasingly smaller
relative to the boundary layer thickness δ with increasing Reynolds number (Pope 2000).
As the flow approaches separation, the wall friction gradually decreases until reaching
zero, and uτ approaches zero as well. Numerous related studies have found that uτ no
longer serves as a suitable scale for velocity in the APG TBL (Gungor et al. 2016; Maciel
et al. 2018; Gungor, Maciel & Gungor 2022; Romero et al. 2022b). Therefore, it becomes
imperative to identify new scales that are suitable for APG conditions.

The difficulty in scaling APG TBLs arises from the fact that most APG TBLs exist in
non-equilibrium states, and the profiles of physical quantities developed in the streamwise
direction are dissimilar. Castillo & George (2001) considered TBLs to be in an equilibrium
state when the pressure gradient parameter Λ = (δ/ρU2

e dδ/dx)(dPe/dx) remains constant,
and most experiments tend to exhibit this state. They proposed utilizing Ue to scale the
velocity defect and U2

e (dδ/dx) to scale the Reynolds shear stress in the outer region
of the TBL through similarity analysis. However, Maciel et al. (2006) disagreed with
the aforementioned viewpoint and proposed a generalized criterion for flow equilibrium.
Bobke et al. (2017) examined the differences in TBLs under various APG development
processes. They discovered that even with the same pressure gradient parameter and
Reynolds number, the mean velocity profile and Reynolds stress differed due to the distinct
development of upstream flow. A comprehensive review by Devenport & Lowe (2022)
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provided an in-depth assessment of the characteristics of equilibrium and non-equilibrium
TBLs. Flow equilibrium is a concept similar to flow self-similarity, and flow self-similarity
can be seen as a sufficient condition for flow equilibrium. If suitable scaling can be
identified such that the flow variables exhibit self-similarity under this scaling set, then
the flow will attain an equilibrium state (Maciel et al. 2006). However, achieving complete
self-similarity in general APG TBLs is challenging unless carefully designed experimental
or numerical simulation conditions are met. Additionally, the scaling of Reynolds shear
stress poses greater difficulties compared with the mean velocity in the majority of
similarity analysis studies.

Buschmann & Gad-el Hak (2006) conducted a comprehensive review of advancements
in the scaling of wall-bounded flows at that time. They concluded that Zagarola–Smits
(ZS) scaling Uzs = Ueδ

∗/δ showed promise. The ZS scaling originated from the scaling
research performed by Zagarola & Smits (1997) on pipe flow. By extending it to TBLs
and through theoretical analysis and numerous experiments, it was determined that the
ZS scaling could also yield good consistency in APG TBLs (Castillo & George 2001;
Castillo & Walker 2002; Aubertine & Eaton 2005; Maciel et al. 2006; Lögdberg, Angele &
Alfredsson 2008). Panton (2005) analysed the ZS scaling in terms of composite expansions
and proposed that its gauge function exhibits higher-order effects, reducing the Reynolds
number dependence of the velocity defect. Maciel et al. (2006) argued that in the context of
asymptotic TBL behaviour, the ZS scaling is equivalent to uτ rather than Ue as Re → ∞.
Monkewitz, Chauhan & Nagib (2008) showed that Uzs/uτ approaches a constant at Reδ∗ >

104. Wei & Maciel (2018) examined the success of the ZS scaling specifically under zero
pressure gradient (ZPG) conditions and attributed it to the balanced leading terms in the
mean continuity equation. Maciel et al. (2018) further suggested that for APG TBLs, the
evolution of the three force ratios in the flow can be accurately characterized when the
outer region velocity scale is selected as Uzs. One of the force ratios is the pressure gradient
parameter

βzs = δ

ρU2
zs

dPe

dx
. (1.2)

In recent years, researchers have explored alternative methods to construct scaling
frameworks for APG TBLs. Romero et al. (2022a) introduced a mixed scaling approach,
while Schatzman & Thomas (2017) proposed an embedded shear layer scaling method
utilizing defects. The inflection point position of the mean velocity profile in this method
corresponds to both the peak position of the Reynolds shear stress −〈uv〉 and the outer
peak position of the Reynolds normal stress 〈uu〉, illustrating the similarity between the
outer region of APG TBLs and free shear flows (Gungor et al. 2016; Kitsios et al. 2017;
Gungor et al. 2022). More recently, Wei & Knopp (2023) employed a similar scaling form
but made changes to the velocity and length scales throughout the scaling process.

To derive consistent scaling for non-equilibrium APG TBLs, it is necessary to carefully
consider the changes in APG TBLs relative to ZPG conditions. These changes primarily
manifest in the outer region of TBLs (Gungor et al. 2022). As the velocity defect Ue − U
increases under intense APG conditions, a half-power-law region is found to exist above
the logarithmic region in the mean velocity profile (Townsend 1961). Furthermore, the
peak of the Reynolds shear stress −〈uv〉 shifted outwards, along with the appearance
of an outer peak in the Reynolds normal stress 〈uu〉. The 〈uu〉 component has garnered
significant attention in the field of turbulence research due to its substantial contribution
to turbulent kinetic energy and its role as an energy source for redistribution processes. The
discovery of the presence of the outer peak in the 〈uu〉 profile, which indicates the existence
of very-large-scale motions in the outer region of TBLs at high Reynolds numbers, is
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considered a major breakthrough in understanding turbulence structures and interactions.
However, the distinction and relationship between the outer peak of 〈uu〉 induced by the
APG and the high-Reynolds-number effect remains an apparent issue (Bobke et al. 2017).
Vila et al. (2020) demonstrated that the APG and Reynolds number exhibit a more intricate
overlapping effect on the outer peak of 〈uu〉.

This study uses the above changes in TBLs to derive consistent outer scaling for velocity
defect and each component of Reynolds stress over a wide range of APGs. To achieve
this, we extended the ZS scaling, taking into account the response distance of TBLs to
non-equilibrium conditions. The proposed consistent scaling is then applied to the velocity
defect and each Reynolds stress component, resulting in successful data collapses during
extensive verification. The pressure gradient parameter β of the used databases has a
range of two orders of magnitude. Section 2 describes the databases used in this study.
Section 3 presents and analyses a set of consistent scaling suitable for a wide range of
APGs. Section 4 discusses the impact of APGs on TBLs from momentum and energy
perspectives. Section 5 provides a conclusion based on the scaling study and analysis of
the properties of APG TBLs.

2. Databases

This study focuses on incompressible flow. To verify the results, we utilized ten typical
APG TBL databases consisting of both experimental and numerical simulation data. These
databases cover a wide range of pressure gradients. The experimental data include three
sets on a horizontally placed axisymmetric cylindrical surface (Dengel & Fernholz 1990).
They showed similar distributions of pressure gradient parameters. The distinguishing
factor was the variation in flow friction coefficients near separation. For the computation
of pressure gradient-induced separation and reattachment in a flat-plate TBL using direct
numerical simulation (DNS), a common practice introduced by Coleman et al. (2018) is
employed. The flow characteristics resembled a two-dimensional separation bubble, and
separation and reattachment were induced by velocity transpiration (suction and blowing)
along the top boundary. Coleman (2021) showed that when the velocity transpiration at
the top wall was solely suction, it did not generate a favourable pressure gradient. All
the aforementioned databases demonstrated the separation of the TBL under continuous
influences of the APG and viscosity, with variations in the pressure gradient parameter β

spanning up to two orders of magnitude. They are non-equilibrium databases. We also
utilized five near-equilibrium databases to verify the results. They were well-resolved
large-eddy simulations (LES) conducted by Bobke et al. (2017). The pressure gradient was
imposed through the free-stream velocity Utop(x) = C(x − x0)

m, where C is a constant, x0
is a virtual origin and m is the power-law exponent. As shown in table 1, b1 represents
x0 = 110 and m = −0.14, b2 represents x0 = 110 and m = −0.18, m13 represents x0 = 60
and m = −0.13, m16 represents x0 = 60 and m = −0.16, m18 represents x0 = 60 and
m = −0.18. Here Reθ is the momentum thickness Reynolds number and H is the shape
factor; H also serves as a pressure gradient parameter, reflecting the degree of TBL
distortion due to the accumulated effects of the APG (Coleman et al. 2018).

The specific definition of near equilibrium and non-equilibrium is an interesting topic.
Here, we consider the flow to be near equilibrium if the distribution of Utop(x) follows
the power-law definition (Mellor & Gibson 1966; Townsend 1976). If a near-equilibrium
flow has a constant β, it is independent of the flow history. It allows pressure gradient
and Reynolds number effects to be separated and a characterization of the Reynolds
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Name Type Reθ β βzs H Researchers

EXP1-1 Exp. 1298–4642 0.1–23.5 0.04–0.48 1.5–2.1 Dengel & Fernholz (1990)
EXP1-2 Exp. 1260–4161 0.1–15.3 0.04–0.42 1.5–1.9 Dengel & Fernholz (1990)
EXP1-3 Exp. 1275–4543 0.2–26.8 0.06–0.52 1.5–2.3 Dengel & Fernholz (1990)
DNS2018 DNS 1743–8194 0.0–123.5 0.02–0.71 1.4–2.7 Coleman, Rumsey & Spalart (2018)
DNS2021 DNS 4275–11705 0.8–27.5 0.04–0.60 0.4–2.1 Coleman (2021)
b1 LES 1778;2977 1.1;0.9 0.10;0.10 1.6;1.6 Bobke et al. (2017)
b2 LES 1991;3529 2.2;1.9 0.12;0.11 1.7;1.7 Bobke et al. (2017)
m13 LES 1393;2940 1.6;1.0 0.13;0.09 1.7;1.6 Bobke et al. (2017)
m16 LES 2728;3536 2.5;2.0 0.11;0.10 1.8;1.7 Bobke et al. (2017)
m18 LES 1468;2019 2.9;4.0 0.17;0.13 1.8;1.9 Bobke et al. (2017)

Table 1. Experimental and numerical simulation databases used in this study.

number effects in a given pressure gradient configuration. However, the pressure gradient
parameter β of the non-equilibrium databases spans two orders of magnitude.

To generate pressure gradients over a flat no-slip surface, Coleman et al. (2018) and
Coleman (2021) used a transpiration profile Vtop(x) (suction and blowing) acting through
a virtual parallel plane offset by a fixed distance Y from the no-slip surface. This distance Y
is used to make the length scales of the flow non-dimensional. Here U∞ is the free-stream
velocity of the ZPG TBL in DNS2018 and DNS2021. Figure 1 shows the development of
flow physical quantities affected by the non-equilibrium APG effects in the streamwise
direction. As shown in figure 1(a), it is evident that the TBL edge velocity Ue/U∞
steadily decreases, while the boundary layer thickness δ/Y , displacement thickness δ∗/Y
and momentum thickness θ/Y continue increasing. The shape factor H maintains a finite
value until flow separation. The long dash line shows that flow separation occurs at
approximately x/Y = −1.43, where the flow is continuously influenced by the APG.
Determining the edge of APG TBLs is challenging. Integration of the spanwise vorticity in
the normal direction is used to define the generalized velocity in DNS2018 and DNS2021.
The boundary layer thickness is defined as the height at which 99.5 % of the generalized
edge velocity is reached (Coleman et al. 2018). The combined effect of the continuous
accumulation of APG induces distortions in the mean velocity profile of the TBL. As
shown in figure 1(b), the development of the pressure gradients in the streamwise direction
is compared. Here xmin is the x coordinate of the first point in the database; δav is the
average boundary layer thickness from the first to the last point in the database (Maciel
et al. 2018). The non-equilibrium databases with different deceleration rates are used to
verify the results. Figures 1(c) and 1(d) show the pressure gradient parameters derived
from different length and velocity scales. The β continues to increase due to the decrease
in uτ , while the βzs reflects the changes in the pressure gradient well. In the proximity of
flow separation, the APG does not reach a local maximum but rather remains relatively
small (Alving & Fernholz 1996), and this gentle pressure gradient persists until flow
reattachment. This observation suggests a tendency for the flow to be in equilibrium prior
to separation (Castillo, Wang & George 2004; Dróżdż & Elsner 2017).

Figure 2 shows the development of the flow physical quantities in the streamwise
direction. The Ue/U∞ steadily decreases, while the δ/δ∗∞, δ∗/δ∗∞ and θ/δ∗∞ continue
increasing. The dδ/dx and H from all the five databases remains almost constant, which
is characteristic of a near-equilibrium flow. The β remains constant over a considerable
streamwise distance in b1 and b2. It is observed that the development of the βzs from
all the five databases is very similar. The research positions correspond to those of
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Figure 1. Streamwise development of the flow physical quantities. (a) Data from DNS2018. Long dash means
flow separation. (b) Pressure gradient from all the non-equilibrium databases. (c) Pressure gradient parameters
from DNS2018. (d) Pressure gradient parameters from DNS2021.

Bobke et al. (2017). Here U∞ is the free-stream velocity at the inlet and δ∗∞ is the
displacement thickness of the laminar inflow. The TBL edge and the boundary layer
thickness are determined by means of Vinuesa et al. (2016).

3. Results

In non-equilibrium flows the outer region of the TBL is influenced by the upstream history
effect (Knopp et al. 2021). Due to the complex interaction between the APG and inertial
forces, the outer region of the TBL exhibits an increasing velocity defect and an outwards
shift of the peak Reynolds stress (Devenport & Lowe 2022). Consequently, it becomes
imperative to identify suitable quantities to characterize the non-equilibrium effects of the
TBL and develop suitable scaling for a wide range of APG conditions. In near-equilibrium
flow the pressure gradient parameter remains almost constant in the streamwise direction.
With the constant values of β, it is possible to separate the pressure gradient from the
Reynolds number effects and consider it as a certain state that can be investigated over a
wide range of Reynolds numbers (Bobke et al. 2017; Pozuelo et al. 2022). In the first four
subsections we present a set of consistent scaling for the outer region of the TBL. The
pressure gradient parameter β exhibits a range spanning two orders of magnitude. In the
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Figure 2. Streamwise development of the flow physical quantities. Data from all the near-equilibrium
databases: b1, brown line; b2, orange line; m13, green line; m16, blue line; m18, purple line. (a) Boundary layer
thickness δ/δ∗∞, displacement thickness δ∗/δ∗∞ and momentum thickness θ/δ∗∞. (b) The TBL edge velocity
Ue/U∞ and shape factor H. (c) Pressure gradient parameter β. (d) Pressure gradient parameter βzs.

final subsection, the scaling is applied to the near-equilibrium flow. The scaled physical
quantities encompass the velocity defect and each component of the Reynolds stress.

3.1. Velocity defect
The ZS scaling has been recognized as a potentially suitable scaling for a wide range of
flow types (Wei & Maciel 2018). It is defined as

Uzs = Ue
δ∗

δ
=

∫ δ

0
(Ue − U) dy

δ
. (3.1)
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Figure 3. The velocity defect scaled by Uzs, with blue symbols +; Uzs_apg, orange symbols ×. The range of β

for all the non-equilibrium databases is from 0.4 to 28.2.

When the ZS scaling is employed as the velocity defect scaling and integrated, the area
enclosed by the x axis is equal to one:

∫ δ

0

Ue − U
Uzs

d
(y
δ

)
= δ

δ∗

∫ δ

0

Ue − U
Ue

d
(y
δ

)
= 1. (3.2)

This integral operation effectively averages the rapidly changing velocity distribution
within the TBL. The ZS scaling presents the opportunity to derive the boundary layer
thickness δ as the characteristic length scale for the outer region. Maciel et al. (2018)
discussed the significance of this set of scales for APG TBLs.

Even in APG TBLs, the ZS scaling still demonstrates potential when compared with
scales such as Ue or uτ . One interpretation is that the outer region of the TBL exhibits
properties similar to those of free shear flow when the velocity defect gradually increases
with the APG (Gungor et al. 2014). Notably, the scaling for free shear flow follows the
form of Um, which is reminiscent of the original formulation of the ZS scaling proposed by
Zagarola & Smits (1997) in their study of pipe flow. The blue symbols in figure 3 show the
results of applying the ZS scaling to the velocity defect data. This reveals that when dealing
with APG TBLs exhibiting strong non-equilibrium characteristics, ZS scaling requires
further refinements. A more reasonable scaling should begin by considering the physical
nature of the flow and incorporating a suitable pressure gradient parameter to refine the
ZS scaling.

In the context of non-equilibrium flows, the adjusted distance of the boundary layer can
be estimated using δ∗(dPe/dx). This quantity compares the excess pressure exerted on the
boundary layer fluid with the pressure faced by the potential flow it replaces. Dividing
it into the momentum defect per unit area ρθUe, we obtain the time scale for pressure
gradient adjustment (Devenport & Lowe 2022). Multiplying this by Ue converts it into a
length scale:

LP = ρθU2
e

δ∗ dPe

dx

. (3.3)
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Comparing the boundary layer thickness with this scale, we can determine the ratio of
the normal diffusion of the TBL to the degree of convection in the streamwise direction
influenced by the non-equilibrium effect:

δ

LP
= δδ∗

ρθU2
e

dPe

dx
= H

δ

ρU2
e

dPe

dx
. (3.4)

This correction term should not affect the properties of the ZS scaling itself at an infinite
Reynolds number. Since the ZS scaling represents an averaging process across the normal
direction of the flow and is the leading term according to the asymptotic behaviour of the
TBL, the correction should be a higher-order quantity compared with the ZS scaling itself
at infinite Reynolds numbers. Maciel et al. (2006) introduced various flow scales of the
classic turbulence theory. The length scale of the outer region of the TBL is denoted as

Lo = δ, (3.5)

while the length scale of the potential flow outside the TBL is assumed to be

Le = − Ue

dUe

dx

. (3.6)

The ratio between these two scales approaches zero as Re → ∞. Therefore, it is proven
that the correction term approaches zero as Re → ∞, where the shape factor H approaches
unity:

H
δ

ρU2
e

dPe

dx
= −H

δ

Ue

dUe

dx
= H

Lo

Le
→ 0. (3.7)

By adding this correction term to the ZS scaling, the complete scaling form for the velocity
defect of non-equilibrium APG TBLs is

Uzs_apg = Ue
δ∗

δ

(
1 + H

δ

ρU2
e

dPe

dx

)
. (3.8)

Equation (3.8) represents a novel scaling due to the inclusion of the second term.
As the orange symbols show in figure 3, the velocity defect data collapse over a large
pressure gradient range from β = 0 to β = 28.2. The proposed scaling is superior to the
original ZS scaling in the range of approximately y/δ = 0.2 to y/δ = 0.6. To quantify the
improvement, we integrate the scaled velocity defect again:∫ δ

0

Ue − U
Uzs_apg

d
(y
δ

)
= δ

δ∗
(

1 + H
δ

ρU2
e

dPe

dx

) ∫ δ

0

Ue − U
Ue

d
(y
δ

)
= 1

1 + H
δ

ρU2
e

dPe

dx

.

(3.9)

The area enclosed by the x axis is no longer one. Figure 4 shows that the correction term
H(δ/ρU2

e )(dPe/dx) gradually increases as the flow approaches separation. It finally tends
to 0.1, which means that the additional term we have added to the ZS scaling is about 10 %
of the original scaling. Bobke et al. (2017) discovered that even with the same pressure
gradient parameter and Reynolds number, the mean velocity profile and Reynolds stress
differed due to the distinct development of upstream flow. History effects are crucial for
non-equilibrium flows. Although this correction term may not seem large, it includes the
ratio of normal diffusion to streamwise convection, which gradually increases as the flow
approaches separation, reflecting the different degrees of deceleration experienced by the
boundary layer.
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Figure 4. Streamwise development of the ZS scaling, new scaling and correction term H(δ/ρU2
e )(dPe/dx).

(a) Data from DNS2018. (b) Data form DNS2021.

3.2. Reynolds shear stress −〈uv〉
In ZPG TBL theory the Reynolds shear stress −〈uv〉 is regarded as the cause of the velocity
defect in the TBL. Consequently, uτ is employed to scale both the velocity defect and the
Reynolds shear stress. Scaling −〈uv〉 by u2

τ , its profile appears to plateau close to unity
as the Reynolds number increases, corresponding to the logarithmic region in the mean
velocity profile. This indicates that the dominant force is no longer viscous in the outer
region of the TBL. However, Romero et al. (2022b) found that even a small APG can
cause −〈uv〉+ to exceed unity, where −〈uv〉+ denotes non-dimensional using inner scales.
This can be proven by applying the maximum theorem to the integrated mean momentum
balance (MMB) equation. Appendix A provides an explicit proof. As the flow separation
position is approached, uτ gradually tends to zero. Using uτ as the velocity scale can lead
to the erroneous outcome of an excessively large non-dimensional Reynolds shear stress.
In reality, the magnitude of the Reynolds shear stress remains similar until flow separation
occurs, but its distribution changes, resulting in an outwards shift of the peak value. The
detailed information provided by the MMB analysis is presented in the subsequent section.

To develop an outer scaling for Reynolds shear stress suitable to a wide range of APGs,
it is crucial to address the issue of false amplification of Reynolds stress while ensuring
consistency with the velocity defect scaling. One approach is to build upon the successful
implementation of the ZS scaling for velocity defect. As the flow approaches separation,
the ZS scaling maintains a finite value. The specific scaling form for Reynolds shear stress
originates from the mixing-length hypothesis, resulting in the scaling form of −〈uv〉 as
u2
τ under ZPG conditions. However, in APG TBLs there is no theoretical foundation

supporting the continued use of this squared form. Numerous studies have demonstrated
that various squared velocity scales do not accurately scale the Reynolds shear stress
profile (Maciel et al. 2018). As shown in figure 5, each component of the Reynolds stress
and turbulent kinetic energy utilizing the U2

zs scaling shows no similarity. To apply the ZS
scaling to Reynolds shear stress, a new theoretical analysis should be carried out.

The linearized outer region equation for TBLs proposed by Tennekes & Lumley (1972)
offers valuable insights for further study:

y
dUe

dx
∂

∂y
(Ue − U) − Ue

∂

∂x
(Ue − U) − (Ue − U)

dUe

dx
= −∂〈uv〉

∂y
. (3.10)
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Figure 5. Each Reynolds stress component and turbulent kinetic energy data from all the non-equilibrium
databases scaled by U2

zs. The same colour indicates that they come from the same database. Brown symbols
from DNS2018; orange symbols from DNS2021; green symbols from EXP1-1; blue symbols from EXP1-2;
purple symbols from EXP1-3.

This equation highlights the significant relationship between the Reynolds shear stress and
velocity defect. We find that the combination of Ue and Ue − U appears in each term
on the left-hand side of the equation, while the −〈uv〉 appears on the other side. When
considering non-dimensional scaling for Reynolds stress, an apparent consideration is
employing the form UeUo, where Uo is the scaling of the velocity defect in the TBL outer
region. Here UeUo can be interpreted as a mixed scaling that includes the influence of
large-scale motion, which is enhanced in the outer region. Therefore, the complete scaling
form for the velocity defect of the non-equilibrium APG TBL is

− 〈uv〉zs_apg = UeUzs_apg = U2
e
δ∗

δ

(
1 + H

δ

ρU2
e

dPe

dx

)
. (3.11)

An examination of the scaling at infinite Reynolds numbers reveals that the ratio of the
scaling to U2

e approaches zero as Re → ∞ (Maciel et al. 2006):

−〈uv〉zs_apg

U2
e

= δ∗

δ

(
1 + H

δ

ρU2
e

dPe

dx

)
→ 0. (3.12)

As shown in figure 6, the Reynolds shear stress data collapse after scaling. The
starting position of data collapse is approximately y/δ = 0.45, which is outside the
position where the velocity defect data collapse. This is because (3.10) provides an
approximate description of the outer region of the TBL and holds closer to the TBL edge.
Simultaneously, it can be observed that with an increased pressure gradient, the peak value
of the non-dimensional Reynolds shear stress profile shifts towards the region of collapse.
This indicates that even as the flow approaches separation and the velocity profile of the
TBL becomes distorted, the mixed scaling still reflects the similarity of the profile beyond
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Figure 6. The Reynolds shear stress −〈uv〉 is scaled by −〈uv〉zs_apg. The meaning of the legend is the same as
that for figure 5. The x axis of (a) uses logarithmic coordinates and the x axis of (b) uses normal coordinates.

the peak value of Reynolds shear stress. The scaling itself gradually increases as the flow
approaches separation but remains finite.

3.3. Reynolds normal stress 〈uu〉
The scaling of 〈uu〉 under APG conditions poses a significant matter to consider. Dróżdż
et al. (2020) employed the shape factor as the scaling of the root mean square of 〈uu〉. As
shown in figure 7(a), the peak position of the 〈uu〉 profile aligns with that of −〈uv〉. This
raises the question of whether the −〈uv〉 scaling presented in this study can be directly
used for the 〈uu〉 scaling. The differences in profile shape indicate that the suitable scaling
for −〈uv〉 cannot be directly applied to 〈uu〉. The connection between 〈uu〉 and −〈uv〉
is because −〈uv〉 is a component of the generation term for 〈uu〉. However, as shown in
figure 7(b), the generation term involving −〈uv〉 does not exhibit significant variations in
the outer region under APG conditions. Figure 7(c) shows that the complete generation
term is consistent with the peak position of 〈uu〉 and highlights the importance of dU/dx
in the APG TBL. This analysis serves as a reminder that a suitable scaling for 〈uu〉 must
consider the complete 〈uu〉 transport equation. A reasonable approach would be to subtract
a term from the −〈uv〉 scaling that represents the dissipation effect in the outer region.

Wei (2020) conducted a study on the scaling of turbulent kinetic energy and dissipation
in turbulent wall-bounded flows, proposing mixed scaling for dissipation. Another mixed
scaling Ueuτ is used to scale the 〈uu〉 profile in the inner region of the TBL (De Graaff
& Eaton 2000; Aubertine & Eaton 2005; Volino 2020; Smits et al. 2021). De Graaff &
Eaton (2000) suggested that mixed scaling may be attributed to the energy balance within
the TBL. The total power dissipated by the TBL scales with Ueτw, which is proportional
to Ueu2

τ . Hence, the total rate of energy dissipation by turbulence depends on both Ue
and uτ . Alving & Fernholz (1996) found decreased dissipation around the separation
bubble. This aligns with the ZPG results presented by Robinson (1991), indicating that
dissipation results from stretching due to mean shear. Driver (1991) also arrived at a similar
conclusion. Maciel et al. (2006) further highlighted that pressure and turbulent transport
no longer play a significant dynamic role during the approach to separation.

One characteristic of APG TBL is the thickening of the TBL due to APG effects
(Tennekes & Lumley 1972). This contributes to an increase in the displacement
thickness δ∗, representing the viscous effect, and the momentum thickness θ , signifying
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Figure 7. (a) Comparison of peak positions of −〈uv〉/U2∞ (dash) and 〈uu〉/U2∞ (solid). (b) Comparison of
peak positions of (−〈uv〉(∂U/∂y))/(U3∞/Y) (dash dot) and 〈uu〉/U2∞ (solid). (c) Comparison of peak positions
of (−〈uv〉(∂U/∂y) − 〈uu〉(∂U/∂x))/(U3∞/Y) (dash dot dot) and 〈uu〉/U2∞ (solid). Data from DNS2018.

momentum loss. The shape factor H, which represents the ratio of these two quantities,
effectively describes the history effects of the TBL, illustrating the continuous impact of
upstream APG accumulation on the velocity profile. It is noteworthy that the pressure
gradient itself becomes small as the flow approaches separation. However, the velocity
defect Ue − U influenced by the pressure gradient becomes significant. To account for the
effect of upstream APG accumulation on the TBL, the APG correction term of the ZS
scaling is considered to be multiplied by H, serving as an amplification factor. The final
scaling form applicable to 〈uu〉 is

〈uu〉zs_apg = U2
e
δ∗

δ

(
1 + H

δ

ρU2
e

dPe

dx

)
− HUeuτ . (3.13)
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Figure 8. Streamwise development of the correction term HUeuτ and new scaling used for −〈uv〉 and 〈uu〉.
(a) Data from DNS2018. (b) Data form DNS2021.

An examination of the 〈uu〉 scaling at an infinite Reynolds number reveals that its ratio
to U2

e approaches zero:

〈uu〉zs_apg

U2
e

= δ∗

δ

(
1 + H

δ

ρU2
e

dPe

dx

)
− H

uτ

Ue
→ 0. (3.14)

As shown in figure 8, the maximum correction term HUeuτ can be up to one third
of the −〈uv〉zs_apg. Figure 7 shows the changes in the Reynolds normal stress profile,
demonstrating that as the flow approaches separation, the various components of the
Reynolds stress tend to exhibit similar shapes, with 〈uu〉 tending to display a single outer
peak. Since uτ tends to zero, the correction term HUeuτ tends to zero. The scaling form
of 〈uu〉 tends to align with that of −〈uv〉, indicating the applicability of the given scaling
over a relatively wide range of pressure gradients.

As shown in figure 9, the scaled data of 〈uu〉 collapses in the outer region and bears a
resemblance to −〈uv〉. The starting position of the collapse is approximately y/δ = 0.45.
As the flow approaches separation, the peak position gradually shifts outwards onto the
collapsed curve. The growth of the outer peak of 〈uu〉 is considered to be a consequence
of the intensified large-scale motion in the outer region under APG conditions. The
attached-eddy hypothesis (Townsend 1976) has gained increased attention (Marusic &
Monty 2019), with the logarithmic form of the outer region 〈uu〉 profile serving as
one of its predictions. The scaled 〈uu〉 profile forms the foundation for quantifying the
contribution of attached eddies. Perry & Marušić (1995) classified the eddies current in
APG TBLs into three types: type A, type B and type C. Yoon et al. (2020) conducted
further research under APG conditions and found that type A eddies exhibit geometric
self-similarity in the APG and ZPG TBLs and are universal structures in wall turbulence.
Their main energy-containing motions are in the logarithmic region and do not contribute
to the outer peak of the 〈uu〉. Type B eddies are characterized by the thickness of the
boundary layer and are enhanced by the APG. They contribute mainly to the outer peak
of the 〈uu〉. Type C eddies are associated with small-scale motions. Future research is
expected to utilize DNS data to verify the relevance of scaling to type B and C eddies
under APG conditions. This will facilitate a more precise quantification of the APG effects
on large-scale motions in a TBL.
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Figure 9. The Reynolds normal stress 〈uu〉 is scaled by 〈uu〉zs_apg. The meaning of the legend is the same as
that for figure 5.

3.4. Other Reynolds stress components and turbulent kinetic energy k
Given the strong correlation observed between Reynolds stress components in the TBL,
it is natural to extend the application of the successful scaling of −〈uv〉 and 〈uu〉 to other
Reynolds stress components. This concept of consistent scaling among Reynolds stress
components can be found in Townsend’s attached-eddy hypothesis. The variation in the
number of peaks and the scales employed in the Reynolds stress profiles elucidate their
distinct physical properties. Inactive components such as the Reynolds normal stress 〈ww〉
and 〈uu〉 use the same scaling, whereas active components such as 〈vv〉 and −〈uv〉 also
use the same scaling (Volino 2020):

〈ww〉zs_apg = 〈uu〉zs_apg = kzs_apg = U2
e
δ∗

δ

(
1 + H

δ

ρU2
e

dPe

dx

)
− HUeuτ , (3.15)

〈vv〉zs_apg = −〈uv〉zs_apg = U2
e
δ∗

δ

(
1 + H

δ

ρU2
e

dPe

dx

)
. (3.16)

The turbulent kinetic energy k is primarily governed by 〈uu〉 and exhibits the same
scaling behaviour, yielding desirable results in the outer region. Figure 10 shows that the
consistent scaling effectively collapses the data of each component of the Reynolds stress.
We introduce a correction term (3.4) for the ZS scaling to construct a novel scaling (3.8),
and then extend it to (3.11), (3.13), (3.15) and (3.16). Consequently, consistent outer scaling
from the velocity defect to each Reynolds stress component in the APG TBL has been
accomplished.

3.5. Apply to near-equilibrium flow
In the first four subsections we described in detail the application of the proposed scaling
in the non-equilibrium flow where the pressure gradient parameter β spans two orders of
magnitude. In this subsection we apply the scaling to the near-equilibrium flow.

Near-equilibrium flow is considered to characterize the Reynolds number effects on
the pressure gradient. Bobke et al. (2017) and Pozuelo et al. (2022) have provided
comprehensive analyses of near-equilibrium flow, investigating the applicability of
different scaling, including the ZS scaling. The ZS scaling is selected again for comparison
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Figure 10. (a,d) The Reynolds shear stress 〈vv〉 scaled by −〈uv〉zs_apg. The meaning of the legend is the same
as that for figure 5. (b,e) The Reynolds normal stress 〈ww〉 scaled by 〈uu〉zs_apg. The meaning of the legend is
the same as that for figure 5. (c,f ) The turbulent kinetic energy k scaled by 〈uu〉zs_apg. Data from DNS2018,
symbol ×; data from DNS2021, symbol +.

in this subsection. As shown in figure 11, the profiles of different streamwise stations
within the same database do not collapse under the inlet scaling. However, an interesting
observation emerges as the databases with different virtual origins and power-law
exponents collapse in similar streamwise positions. As shown in figure 12, when the
ZS scaling is applied, the velocity defect almost collapses into a line. As shown in
figure 13, the proposed new scaling outperforms the ZS scaling in the outer region of
TBLs. The most substantial improvement is observed in the m18 database marked in
purple, which has a higher pressure gradient parameter β compared with the others. The
proposed new scaling effectively collapses the velocity defect and also shows potential for
collapsing other Reynolds stress components above y/δ = 0.7. However, its effectiveness
is not as pronounced as for the non-equilibrium databases. We attribute this to the fact
that the proposed new scaling is primarily influenced by the response distance of TBLs
to non-equilibrium conditions. For near-equilibrium flow, the dominant change in the
streamwise direction is Reynolds numbers. Therefore, the proposed new scaling is more
suitable for the cases with pressure gradient changes, which significantly improves the
performance of the m18 database.

4. Discussion

By analysing the relationship between the velocity defect and Reynolds stress in the
APG TBL, a set of consistent scaling for these physical quantities is derived. To gain a
better understanding of the variations in these quantities within the TBL while under the
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Figure 11. Velocity defect, all Reynolds stress components and turbulent kinetic energy scaled by the
free-stream velocity at the inlet. The same colour indicates that they come from the same database. Brown
symbols from b1; orange symbols from b2; green symbols from m13; blue symbols from m16; purple symbols
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Figure 13. Velocity defect, all Reynolds stress components and turbulent kinetic energy scaled by the new
scaling. The meaning of the legend is the same as that for figure 11.

influence of the APG, this discussion focuses on the momentum and energy perspectives.
It should be noted that the physical quantities presented in this section are non-dimensional
with respect to the free-stream value at the inlet.

4.1. Momentum perspective
The initial objective of this study is to establish a set of consistent scaling suitable for the
outer regions of APG TBLs, building upon existing theoretical research on APG TBLs.
During the establishment of the Reynolds shear stress scaling, it is observed that the
peak value of Reynolds shear stress shifted outwards. Existing research suggests that this
position is close to the displacement thickness (Kitsios et al. 2017; Maciel et al. 2018; Vila
et al. 2020). Lighthill (1958) extensively deliberated on the physical significance of the
displacement thickness, considering it to be indicative of vorticity redistribution. We also
note the importance of the peak of the Reynolds shear stress −〈uv〉 and its position in the
scaling proposed by Wei & Knopp (2023). They emphasized the connection between the
proposed scaling and the ZS scaling.

To provide a more detailed explanation of this phenomenon, it is necessary to investigate
the reasons for the variation in the peak position of the Reynolds shear stress with APG.
Due to the complex interaction between the Reynolds shear stress and mean flow, a pivotal
aspect involves analysing the disparity between their interaction modes in the APG TBL
and ZPG TBL. The MMB equation serves as a powerful tool to accomplish this task. By
examining changes in the magnitude of each element of the momentum equation at various
positions in the normal direction of the TBL, a coherent understanding of the TBL can be
gained from the perspective of momentum transport. This approach also facilitates the
extension to the mean energy balance, supporting a rational comprehension of the APG
TBL from an energy transport perspective.
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−〈uv〉 −U ∂U
∂x − V ∂U

∂y
1
ρ

dPe
dx − ∂〈uv〉

∂y ν ∂2U
∂y2

Wall 0 0 Equal 0 Equal
Boundary layer edge 0 Equal Equal 0 0

Table 2. Boundary conditions for each term in the MMB equation. ‘Equal’ means that two terms in the same
row are equal at this position.

y/δ
10–4 10–3 10–2 10–1 100

–0.10

–0.05

0.05

0.10

0.15

0.20 PG 1 2 3 4
MI

VF

TI

0

Figure 14. The distribution of each term in the MMB equation along the TBL normal direction. The pressure
gradient parameter β of data from DNS2018 is 8.0.

The MMB can be understood as the distribution of the TBL equation’s solution in the
normal direction, given the specific boundary conditions outlined in table 2. Assume a
nearly constant passage of the APG through the normal direction of the TBL and ignore
terms containing the Reynolds normal stress in the MMB equation. These are valid except
in the vicinity of flow separation positions (Devenport & Lowe 2022). Here MI is the mean
inertia term, PG is the pressure gradient term, TI is the turbulent inertia term and VF is
the viscous stress term:(

−U
∂U
∂x

− V
∂U
∂y

)
︸ ︷︷ ︸

MI

− 1
ρ

dPe

dx︸ ︷︷ ︸
PG

−∂〈uv〉
∂y︸ ︷︷ ︸

TI

+ν
∂2U
∂y2︸ ︷︷ ︸

VF

= 0. (4.1)

Figure 14 shows that the MI term at position 1 exhibits relatively small values, whereas
the VF, PG and TI terms are balanced. The shape of the TI term closely resembles the VF
term. At position 2, the VF term becomes subdominant, resulting in the appearance of a
logarithmic region in the ZPG TBL. Position 3 corresponds to the peak Reynolds shear
stress −〈uv〉 and the TI term crossing zero. Position 4 aligns with the peak of the MI term,
which corresponds to the negative peak of the TI term. Based on these observations, a
comprehensive analysis of the variations in the MMB under the influence of the APG is
conducted.
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At the TBL edge and the wall, both −〈uv〉 and its derivative become zero, indicating the
presence of at least one peak of −〈uv〉. This peak occurs at position 3, where the TI term
crosses zero. At this position, only the MI and PG terms attain balance. Subsequently, as
−〈uv〉 decreases and the TI term becomes negative, the MI term increases. Eventually,
the TI term must become zero, resulting in the appearance of a new extreme point in
the TI term profile at position 4, where the MI term also increases to reach its extreme
value. Beyond this extreme point, as the TI term diminishes to zero, the MI and PG terms
eventually achieve balance at the boundary layer edge. Close to the wall, the PG term is
balanced by the VF term.

This finding outlines the momentum exchange within the APG TBL from the outer to
the inner region. The MI term balances the PG term in the outer region, facilitating the
generation of Reynolds stress that drives the momentum exchange within the TBL. The
responsibility of balancing the PG term near the wall transfers to the VF term. The TI
term can be understood as an energy sink extracting energy from the mean flow in the
outer region, while the inner region acts as an energy source that resists the influence
of the APG (Romero et al. 2022b). Based on the aforementioned analysis, it is evident
that different positions within the TBL are influenced differently by APG effects. In the
non-equilibrium APG TBL, the inner region tends to adapt to local flow conditions, while
the outer region demonstrates non-equilibrium effects. This occurs as the APG intensifies
the interaction between MI and TI terms in the outer region of the TBLs. The scaling of
−〈uv〉 proposed in this study is suitable for the TBL outer region after TI crosses zero and
provides a basis for further quantitative analysis of the complex interactions of the outer
region.

The above analysis provides an analysis of the momentum exchange process at different
normal positions of the TBL. The following is an MMB analysis of the effect of PG
changes on the position of the TI crossing zero to explain the continuous outwards shift of
the peak position of the Reynolds shear stress with the enhancement of the APG effects.
This makes the proposed scaling applicable to a wider range of APGs. Figure 15(a) shows
that under ZPG conditions, when the TI term crosses zero, only the VF term is capable
of balancing the MI term. In the case of a high Reynolds number, the VF term solely
influences the region close to the wall. To achieve momentum balance at the position of
TI crossing zero, the peak of the Reynolds shear stress −〈uv〉 in the ZPG TBL occurs
in proximity to the wall rather than in the outer region observed under APG conditions.
Additionally, the MI term from this position to the wall is negligible, and the trend of
the TI term aligns with that of the VF term. Following a rapid decay of the VF term, the
−〈uv〉 obtained through TI integration has a sufficiently long normal distance to diminish
towards zero in the outer region. This makes the peak value of the TI term in the outer
region very small. Consequently, the MI term, which balances the TI term in the outer
region, does not develop throughout the entire TBL.

In the presence of the APG within the TBL, after the inevitable decay of the VF
term to zero, the MI term alone is insufficient to balance the PG term, necessitating the
contribution of the TI term. This makes the position where TI crosses zero shift outwards,
separating from the point where the VF term loses its leading order. Here −〈uv〉 begins to
decrease after reaching its peak at the TI crossing the zero position, while the TI term takes
negative values. At this stage, the MI term must balance the TI and PG terms, resulting
in its continued increase and the presence of larger MI terms in the APG TBL. Thus, in
the APG TBL there is no distinct separation between the viscous and inertial regions as
in the ZPG TBL, and the influence of the MI term extends into the inner region of the
TBL. Unlike the ZPG condition, the TBL does not exhibit a distinct process of the VF

982 A17-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

97
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.97


Consistent outer scaling and analysis

y/δ
10–4

–0.4

–0.2

0.2

0.4

0

–0.05

0.05

0

PG

PG

TI
TI

MI
MI

VFVF

10–3 10–2 10–1 100

y/δ
10–4 10–3 10–2 10–1 100

(b)(a)

Figure 15. Comparison of pressure gradient effects on the MMB equation. Data from DNS2018. Results are
shown for (a) β = 0 (brown) and β = 8.0 (orange); (b) β = 28.2 (blue) and β = 123.5 (purple).

term exchanging dominance with the MI term. In the APG TBL the logarithmic region
transforms into a state of scale superposition instead of scale separation.

As the flow separation position approaches, the APG itself decreases, but the distortion
of the velocity profile continues to increase. This corresponds to a downward trend in the
pressure gradient (Y/ρU2∞)(dPe/dx) and βzs in figure 1(c), while the β is still increasing.
Figure 15(b) shows that the absolute value of the peak VF term decreases in the inner
region of the TBL. This occurs because the VF term at the wall is equal to the PG term,
while the integral over the entire TBL is −u2

τ :
∫ δ

0
ν

∂2U
∂y2 dy = ν

∂U
∂y

∣∣∣∣
δ

0
= −u2

τ . (4.2)

As the flow approaches separation and uτ approaches zero, the area enclosed by the VF
term and the x axis gradually approaches positive and negative cancellation. The decrease
in the VF term leads to a reduction in the TI term within the inner region, while the MI
term also decreases due to the deceleration of flow. This results in a slow decay of the TI
term and continuous outwards shifting of the position where TI crosses zero. Additionally,
above the logarithmic region of the mean velocity profile, a half-power-law region with a
larger velocity gradient appears.

The Reynolds number influences this phenomenon by strengthening the impact of
inertial forces. From the previous analysis, it is evident that as the VF term approaches
zero and the MI term remains weak, the TI term must increase further. Consequently,
by increasing the MI term relative to its previous value, the position where TI crosses
zero can shift inwards. This phenomenon can be observed in figure 16(a). However, as
shown in figure 16(b), when the pressure gradient parameter β remains approximately
unchanged in the near-equilibrium flow, the position of the TI crossing zero remains
almost unchanged. This means that the peak positions of the Reynolds shear stress −〈uv〉
at different streamwise stations remain almost unchanged. Figures 16(c) and 16(d) show
the partial enlargement of TI crossing zero in figures 16(a) and 16(b). Kitsios et al. (2017)
showed that in the near-equilibrium flow with a constant β, the peak position of the −〈uv〉
can be scaled by the displacement thickness δ∗. Figure 2 shows that the ratio of the
displacement thickness δ∗ to the boundary layer thickness δ remains almost constant in
the near-equilibrium flow. Pozuelo et al. (2022) showed that in the near-equilibrium flow
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Figure 16. Comparison of Reynolds number effects on the MMB equation. (a) Orange data from DNS2018,
Reθ = 4352 and β = 8.0; black data from DNS2021, Reθ = 5754. (b) Data from b1: Reθ = 1778 and β = 1.1,
blue; Reθ = 2977 and β = 0.9, brown. (c) Partial enlargement of TI crossing zero in (a). (d) Partial enlargement
of TI crossing zero in (b).

with a constant β, the outer peak position of the Reynolds normal stress 〈uu〉 can be scaled
by the δ∗. And the outer peak position scaled by the δ changes slightly with the Reynolds
number. Figure 11 shows that the outer peak position of the 〈uu〉 is close to that of the
−〈uv〉. This means that although δ∗/δ → 0 as Re → ∞, the peak position of the −〈uv〉
can be approximately measured by the δ in the near-equilibrium flow within the current
Reynolds number range.

In summary, as the flow gradually approaches the separation position, the APG effect
gradually strengthens, and the peak position of Reynolds shear stress −〈uv〉 gradually
shifts outwards. The scaling provided by this study can accurately reflect this phenomenon.

Notably, the hierarchical scaling analysis method introduced by Fife et al. (2005) is
closely connected to the analysis of the MMB. The hierarchical scaling approach aims
to normalize the PG term when three terms in the momentum equation reach the same
order of magnitude near the position TI term crossing zero. This normalization assists
in rescaling the momentum equation. Hierarchical scaling has gradually been applied to
the channel flow, favourable pressure gradient TBL, pipe flow and ZPG TBL. However,
applying this method to the APG, particularly in a strong APG TBL, presents challenges
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in selecting a suitable position to achieve balance among the four terms in the MMB
equation. This is due to the significant separation between the position where the TI term
crosses zero and the VF term loses its dominance. Romero et al. (2022b) examined the
hierarchical scaling of the TBL under weak APG conditions. Further research is expected
to explore whether suitable approaches can extend hierarchical scaling analysis to a strong
APG TBL.

4.2. Energy perspective
In the previous subsection the −〈uv〉zs_apg scaling using the peak shift characteristic of
the Reynolds shear stress is analysed from the momentum perspective. In the process of
extending the scaling to the Reynolds normal stress 〈uu〉, an energy analysis is performed
and 〈uu〉zs_apg scaling with an additional term is proposed, which is consistent with the
form of the −〈uv〉zs_apg scaling. The 〈uu〉zs_apg scaling is also applicable to turbulent
kinetic energy k. Therefore, it is necessary to discuss in detail the relationship between the
Reynolds shear stress −〈uv〉 and the turbulent kinetic energy k in APG TBLs, as well as
the role of the main contribution terms in the turbulent kinetic energy transport equation.
These help clarify the role of consistency scaling.

The Townsend structural parameters a1 = −〈uv〉/k (Townsend 1961) act as limiters
to enhance the nonlinear effects of the turbulence model and improve its computational
efficiency for the APG and separated flow. However, the a1 proposal is based on
the dimensional analysis of ZPG equilibrium turbulence, which does not maintain a
calibration value of 0.31 under APG conditions but instead decreases (Aubertine & Eaton
2005). Figure 17 shows the value of a1, which signifies the efficiency of energy extraction
from the mean flow. Gungor et al. (2016) also discovered that the efficiency of the large
velocity defect TBL in extracting turbulent energy from the mean flow is generally lower
compared with the ZPG TBL. The decrease in a1 primarily results from the increase
in turbulent kinetic energy. This again shows that as the APG changes, the ratio of
−〈uv〉 to 〈uu〉 changes, and the same scaling cannot be used. Furthermore, an analysis of
the premultiplied turbulent kinetic energy generation term Pk = −〈uiuj〉(∂〈Ui〉/∂xj) and
dissipation term −εk = −ν〈(∂ui/∂xj)(∂ui/∂xj)〉 in figure 18 reveals how turbulent kinetic
energy is affected by the APG. The relatively mild APG effects reduce the contributions
of both generation and dissipation terms to the overall TBL. With increasing APG effects,
the primary contributions of both generation and dissipation tend to concentrate outwards.
This is consistent with the appearance of the outer peak of the Reynolds normal stress.
This study conducted a reasonable scaling for the Reynolds normal stress.

5. Conclusions

The APG TBL exhibits several changes compared with the ZPG TBL, including an
increased velocity defect, an outwards shift of the peak Reynolds shear stress and an
appearance of the outer peak of the Reynolds normal stress. Exploring suitable scaling
based on these characteristics for a non-equilibrium TBL, where the APG varies in
the streamwise direction and eventually leads to flow separation, is crucial for further
quantitative research on these issues.

In this study, non-equilibrium and near-equilibrium APG TBLs are investigated using
ten databases that include experiments and numerical simulation. The pressure gradient
parameter β spans two orders of magnitude. By considering the TBL response distance
to non-equilibrium conditions, the ZS scaling extension form for scaling the velocity
defect Ue − U under APG conditions is derived. From an asymptotic perspective, it is
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Figure 17. The distribution of the Townsend structural parameters a1 along the TBL normal direction. Data
from DNS2018.

10–4

–0.0010

0.0010

0.0015

–0.0005

0.0005

–
(
y/

δ)
ε

k 
(y

/
δ)

P k

0

10–3 10–2 10–1

y/δ
100

β = 0

β = 0

β = 1.1

β = 1.1

β = 2.7

β = 2.7

β = 8.0

β = 8.0

β = 28.2

β = 28.2

β = 123.5

β = 123.5

Figure 18. Premultiplied turbulent kinetic energy generation term, solid line; dissipation term, long dashed.
Data from DNS2018.

confirmed that the original form of the ZS scaling is recovered at an infinite Reynolds
number, aligning with the classic two-layer framework of TBLs. Moreover, by linearizing
the outer region equation of the TBL and based on the relationship between the velocity
defect and Reynolds shear stress, the scaling is extended to Reynolds shear stress −〈uv〉.
The peak positions of the Reynolds shear stress −〈uv〉 and Reynolds normal stress 〈uu〉
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are consistent and approximately equal to the displacement thickness. In terms of energy
transport, the relationship between the 〈uu〉 peak and −〈uv〉 is analysed, and the scaling
is extended to 〈uu〉 by subtracting a term from the −〈uv〉 scaling. The Reynolds stress
scaling satisfies the asymptotic property at an infinite Reynolds number. Finally, inspired
by the Townsend attached-eddy hypothesis, the scaling is extended to encompass other
Reynolds stress components and turbulent kinetic energy, resulting in data collapses in the
outer region of the TBL. Figures 3, 6, 9, 10 and 13 show consistent scaling from velocity
defects to each Reynolds stress component for non-equilibrium and near-equilibrium APG
TBLs.

To further investigate the changes in physical quantities within an APG TBL,
assessments are conducted from the perspectives of momentum and energy. The MMB
equation provides a detailed analysis of the change process of Reynolds stress and other
terms in the momentum equation influenced by the APG, as shown in figure 15. The
shift of the −〈uv〉 peak to the outer region under APG conditions is attributed to the
insufficient inertia term near the inner region to balance the APG. The ratio of −〈uv〉
to turbulent kinetic energy k decreases. From a global perspective, the energy change
process in the APG TBL is observed by premultiplying the turbulent energy term. As the
APG effects strengthen, the contribution of the turbulent kinetic energy generation and
dissipation terms to the entire TBL initially decreases and then concentrates outwards.
The aforementioned study highlights the distinct effects of the APG on different normal
positions of the TBL. The outer and inner regions of the TBL interact with each other and
possess relatively independent properties under the influence of the APG.

This study primarily focuses on the outer region of the APG TBL, and further research
is needed to address two key issues. First, it is necessary to investigate whether a consistent
scaling can be applied to the inner region of a TBL under APG conditions. The scaling of
the inner peak in 〈uu〉 under ZPG conditions, as discussed by Chen & Sreenivasan (2021)
using the finite dissipation law, has received considerable attention. Extending this scaling
to APG conditions requires considering the impact of the inertial term infiltrating the inner
layer, as described in the previous analysis. This is important because the inner region
−〈uv〉 plays a crucial role in the generation of 〈uu〉. Second, it is essential to examine the
relationship between the peak values of the Reynolds stress components and the Reynolds
number and pressure gradient parameters, as well as quantify their correlation with the
large-scale motion within the TBL. The scaling proposed in this study is just the initial
step in quantitative research on APG TBLs. In comparison to ZPG TBLs, which have
more comprehensive theory and modelling, it is expected that quantitative research on
APG TBLs will be conducted over a wider range of Reynolds numbers.
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Appendix A. Proof of the maximum value of −〈uv〉+ > 1 under APG conditions

The non-dimensional MMB equation using inner scales is

− ∂〈uv〉+
∂y+ + ∂2U+

∂y+2 = ν

ρu3
τ

dPe

dx
−

(
−U+ ∂U+

∂x+ − V+ ∂U+

∂y+

)
. (A1)

Integrating (A1) from y+ = 0 to y∗+, where y∗+ is the position of the maximum value
of −〈uv〉+:

− 〈uv〉∗+ + ∂U∗+

∂y∗+ − 1 = ν

ρu3
τ

dPe

dx
y∗+ −

∫ y∗+

0

(
−U+ ∂U+

∂x+ − V+ ∂U+

∂y+

)
dy+. (A2)

As shown in figure 14, the −U+(∂U+/∂x+) − V+(∂U+/∂y+) term is an increasing
function from y+ = 0 to y∗+ and reaches its maximum value (ν/ρu3

τ )(dPe/dx) in this
interval at y∗+. Using the maximum value theorem, we obtain

ν

ρu3
τ

dPe

dx
y∗+ >

∫ y∗+

0

(
−U+ ∂U+

∂x+ − V+ ∂U+

∂y+

)
dy+. (A3)

Note that the ∂U∗+/∂y∗+ value at y∗+ can be ignored; therefore, the maximum value of
−〈uv〉+ > 1 under APG conditions is

− 〈uv〉∗+ − 1 = ν

ρu3
τ

dPe

dx
y∗+ −

∫ y∗+

0

(
−U+ ∂U+

∂x+ − V+ ∂U+

∂y+

)
dy+>0. (A4)

REFERENCES

ALVING, A.E. & FERNHOLZ, H.H. 1996 Turbulence measurements around a mild separation bubble and
downstream of reattachment. J. Fluid Mech. 322, 297–328.

AUBERTINE, C.D. & EATON, J.K. 2005 Turbulence development in a non-equilibrium turbulent boundary
layer with mild adverse pressure gradient. J. Fluid Mech. 532, 345–364.

BOBKE, A., VINUESA, R., ÖRLÜ, R. & SCHLATTER, P. 2017 History effects and near equilibrium in
adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 820, 667–692.

BUSCHMANN, M.H. & GAD-EL HAK, M. 2006 Recent developments in scaling of wall-bounded flows. Prog.
Aerosp. Sci. 42 (5-6), 419–467.

CASTILLO, L. & GEORGE, W.K. 2001 Similarity analysis for turbulent boundary layer with pressure gradient:
outer flow. AIAA J. 39 (1), 41–47.

CASTILLO, L. & WALKER, D.J. 2002 Effect of upstream conditions on the outer flow of turbulent boundary
layers. AIAA J. 40 (7), 1292–1299.

CASTILLO, L., WANG, X. & GEORGE, W.K. 2004 Separation criterion for turbulent boundary layers via
similarity analysis. Trans. ASME J. Fluids Engng 126 (3), 297–304.

CHEN, X. & SREENIVASAN, K.R. 2021 Reynolds number scaling of the peak turbulence intensity in wall
flows. J. Fluid Mech. 908, R3.

CLAUSER, F.H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aeronaut. Sci. 21 (2), 91–108.
COLEMAN, G.N. 2021 Numerical simulation of pressure-induced separation of turbulent flat-plate boundary

layers: definition and overview of new cases with suction-only transpiration and a step in Reynolds number.
Tech Rep. NASA, Langley Research Center, Hampton, VA.

COLEMAN, G.N., RUMSEY, C.L. & SPALART, P.R. 2018 Numerical study of turbulent separation bubbles
with varying pressure gradient and Reynolds number. J. Fluid Mech. 847, 28–70.

DE GRAAFF, D.B. & EATON, J.K. 2000 Reynolds-number scaling of the flat-plate turbulent boundary layer.
J. Fluid Mech. 422, 319–346.

DENGEL, P. & FERNHOLZ, H.H. 1990 An experimental investigation of an incompressible turbulent boundary
layer in the vicinity of separation. J. Fluid Mech. 212, 615–636.

DEVENPORT, W.J. & LOWE, K.T. 2022 Equilibrium and non-equilibrium turbulent boundary layers. Prog.
Aerosp. Sci. 131, 100807.

982 A17-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

97
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.97


Consistent outer scaling and analysis

DRIVER, D.M. 1991 Reynolds shear stress measurements in a separated boundary layer flow. AIAA Paper
91-1787.
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