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Weighted nonlinear flag manifolds as
coadjoint orbits

Stefan Haller® and Cornelia Vizman

Abstract. A weighted nonlinear flag is a nested set of closed submanifolds, each submanifold
endowed with a volume density. We study the geometry of Fréchet manifolds of weighted nonlinear
flags, in this way generalizing the weighted nonlinear Grassmannians. When the ambient manifold
is symplectic, we use these nonlinear flags to describe a class of coadjoint orbits of the group of
Hamiltonian diffeomorphisms, orbits that consist of weighted isotropic nonlinear flags.

1 Introduction

The nonlinear Grassmannian Grg(M), consisting of all smooth submanifolds in a
manifold M which are diffeomorphic to a closed manifold S, has a natural Fréchet
manifold structure. Nonlinear Grassmannians, a.k.a. differentiable Chow manifolds
or shape spaces, play an important role in computer vision [1, 20] and continuum
mechanics [21]. They have also been used to describe coadjoint orbits of diffeomor-
phism groups [8]. Further coadjoint orbits of diffeomorphism groups can be described
using weighted nonlinear Grassmannians, i.e., spaces of submanifolds equipped with
volume densities. For instance, weighted nonlinear Grassmannians of isotropic sub-
manifolds in a symplectic manifold have been used to describe coadjoint orbits of the
Hamiltonian group [7, 15, 26], and weighted nonlinear Grassmannians of isotropic
submanifolds in a contact manifold have been identified with coadjoint orbits of the
contact group [10].

Nonlinear Grassmannians have been generalized to spaces of nonlinear flags in
[9]. Given a collection of closed manifolds 8 = (Si,...,S,), a nonlinear flag of type
8 in M is a sequence of nested embedded submanifolds N € --- € N, in M, with N;
diffeomorphic to S;, for all i. The space of all nonlinear flags of type § in M is a Fréchet
manifold in a natural way, denoted by Flags(M). Manifolds of low-dimensional
nonlinear flags have appeared as shape spaces in [3, 12, 23]. Symplectic nonlinear flags
have been used to describe coadjoint orbits of the Hamiltonian group [9].
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2 S. Haller and C. Vizman

In this article, we study manifolds of weighted nonlinear flags, motivated by the
fact that one can use them to describe new coadjoint orbits of the Hamiltonian group.
Considering submanifolds N; equipped with nowhere zero densities v;, one obtains
the manifold Flagg' (M) of weighted nonlinear flags. We describe its Fréchet manifold
structure in two ways: as a splitting smooth submanifold in the Cartesian product of
weighted nonlinear Grassmannians of type S; in M, and as a locally trivial smooth
fiber bundle over Flagg (M) associated with the principal bundle of nonlinear frames
of type 8 in M. To each weighted nonlinear flag, one associates a compactly supported
distribution on M by the Diff (M) equivariant inclusion

(11)  J:Flagd' (M) = C*(M)*,  (J((N,v1)s-. s (Nryvr)), f Z;[ fvi.

We aim at describing the Diff (M) orbits in Flagg (M ). Under the Diff (M) action,
the diffeomorphism type of the inclusions Nj € --- € N, remains invariant, and the
total volumes of the connected components of N;\N;_; with respect to v; remain

br—1

invariant as well, for all i. This suggests to fix embeddings S; — Sy = --- —> §,
and volume densities y; on S;, and to consider the Diff (M) invariant subspace
Flag‘S ,u(M) consisting of all weighted nonlinear flags diffeomorphic to the model
(8,1, u), where 1 = (11,...,1,-1) and y = (f1, ..., 4y ). Using a Moser-type argument,
we will show that these are exactly the weighted nonlinear flags for which the
volumes of corresponding connected components in N;\N;_; and in S;\t;_1(S;-1)
coincide. A more precise statement, using homologically weighted nonlinear flags, is
formulated in Theorem 2.15. This description permits to show that FlagS Lu(M)isa

splitting smooth submanifold of finite codimension in Flagg (M) (see Theorem 2.11).
Furthermore, the Diff (M) action on Flagy ", ,u(M) admits local smooth sections. In

particular, every Diff (M) orbit is a union of connected components in Flagg', W (M).
For a symplectic manifold M, we are interested in the orbits of the Hamiltonian
group Ham (M) acting on Flagg’t ,u(M). Clearly, the open subset of weighted sym-

plectic nonlinear flags Flagstsymp(M ) is invariant under this action. Although the
Hamiltonian group acts locally transitive on unweighted symplectic nonlinear flags
[9, Proposition 4.4], the action on Flagst VP (M) is not locally transitive, not even in
the Grassmannian case [7, Section 4]. Some orbits turn out to be nice submanifolds,
e.g., when the weights are provided by the Liouville volume forms (cf. Remark 2.6),
but the general orbit is considerably more singular.

In this paper, we will consider the action of the Hamiltonian group on the
invariant set of weighted isotropic nonlinear flags Flath **(M). In view of the tubular
neighborhood theorem for isotropic embeddings [25], this is a splitting smooth sub-
manifold in FlagS (M) IfH (S,;R) = 0, the action is locally transitive. In general,
the orbits of the Hamiltonian group provide a smooth foliation of codimension
dim H'(S,;R) in Flag‘g’tli’s:(M ), the analogue of Weinstein’s isodrastic foliation in
the Grassmannian case [26]. Each isodrastic leaf of weighted nonlinear flags comes
equipped with a canonical symplectic form, and the map J in (L.1) restricts to an
equivariant moment map for the Ham. (M) action, thus identifying the leaf with a
coadjoint orbit of the Hamiltonian group (see Theorem 3.15). Moreover, this coadjoint
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orbit is a splitting symplectic submanifold in a product of coadjoint orbits of weighted
submanifolds of type S; in M (see Remark 3.16). The lowest-dimensional examples
are the coadjoint orbits of Ham,(R?) consisting of pointed weighted vortex loops,
treated in [4]. We give more examples with nested spheres or tori, and provide explicit
descriptions of the corresponding coadjoint orbits of the Hamiltonian group.

The results on weighted nonlinear flags sketched above generalize well-known
results on weighted nonlinear Grassmannians, which correspond to r = 1. Many of the
proofs presented in this article proceed by induction on the depth r of the nonlinear
flags. Often a relative version of the corresponding result on nonlinear Grassmannians
is required for the induction step. These relative versions are not readily available in
the literature and often require new arguments. Lemma 2.12, for instance, is crucial in
the proof of Proposition 2.10, and Lemma 3.7 is used in the proof of Proposition 3.14.
Similar relative versions also play an important role in the study of unweighted
nonlinear flags (see [9, Lemma 2.1] used, e.g., in the proof of [9, Proposition 2.9]). In
Remark 2.14, we indicate the significance of a relative version of a well-known result
on the group of volume-preserving diffeomorphisms [11] which appears naturally in
this context. To the best of our knowledge, the latter relative version is still open.

2 Manifolds of weighted nonlinear flags

A nonlinear flag is a sequence of nested closed submanifolds N; € --- € N, in a
smooth manifold M. A weighted nonlinear flag is a nonlinear flag together with
a volume density v; on each submanifold Nj;. Integrating against test functions
f € C=(M), a weighted nonlinear flag provides a compactly supported distribution
on M with mild singularities, 3;_; [y fvi.

We will show that the space of all weighted nonlinear flags in M is a Fréchet
manifold in a natural way. In fact, this is the total space of a locally trivial smooth
bundle over the manifold of nonlinear flags discussed in [9]. The natural Diff (M)
action on the base of this bundle is locally transitive [9, Proposition 2.9(a)]. The main
aim of this section is to describe the Diff (M) orbits in the space of weighted nonlinear
flags (see Theorem 2.11).

2.1 Weighted nonlinear Grassmannians

In this section, we recall some basic facts about the manifolds of weighted submani-
folds that appear in [7, 15, 26]. These weighted nonlinear Grassmannians constitute a
special case of the weighted nonlinear flags to be introduced in Section 2.2. We present
them here in a manner that readily generalizes to the setting of nonlinear flags.

Let Sbe a closed manifold of dimension k, allowed to be nonconnected and nonori-
entable. For each manifold M, we let Grg(M) denote the nonlinear Grassmannian of
type S in M, i.e., the space of all smooth submanifolds in M that are diffeomorphic to
S. Moreover, we let Embg(M) denote the space of all parametrized submanifolds of
type S in M, i.e., the space of all smooth embeddings of S into M. Both, Embg (M)
and Grg(M), are Fréchet manifolds in a natural way. Furthermore, the Diff(M)
equivariant map

(2.1 Embgs(M) — Grs(M), ¢~ ¢(S),
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is a smooth principal bundle with structure group Diff (S), a Fréchet Lie group (see
[2, 6,18,19] and [14, Theorem 44.1]).
For each closed k-dimensional manifold S, let

Den(S) := T (|Als) = QF(S;05)

denote the space of all smooth densities on S. Here, Og denotes the orientation bundle
of Sand |Als = A¥T*S ® O (see, e.g., [16]). Densities on S are the geometric quantities
which can be integrated over S in a coordinate independent way, without specifying an
orientation or even assuming orientability. We denote by Deny (S) the space of volume
densities, i.e., the space of nowhere vanishing densities. Clearly, this is an open subset
in the Fréchet space Den(S).

We define the weighted nonlinear Grassmannian of type S in M by

(2.2) Gr'(M) = {(N,v) |N6Grs(M),veDenX(N)},

that is, the space of all submanifolds of type S in M, decorated with a nowhere zero
density. We equip this space with the structure of a Fréchet manifold by declaring the
natural bijection

(23)  Gr§'(M) = Embg(M) xpigr(s) Deny (S), (9(S), @xpt) < [, ],

to be a diffeomorphism. Here, the right-hand side denotes the total space of the bundle
associated with the nonlinear frame bundle in (2.1) and the natural Diff (S) action on
Deny (S). In particular, the canonical forgetful map

(2.4) Gr{'(M) - Grs(M), (N,v) = N,

becomes a locally trivial smooth bundle with typical fiber Deny(S). Indeed, it
corresponds to the bundle projection of the associated bundle Embg (M) xp;gr(s)
Deny (S) — Grs(M) via the identification in (2.3).

There is a canonical Diff (M) equivariant map

JAGr (M) > T, W)= [ g

This map is injective, and its image consists of compactly supported distributions with
mild singularities: J(N, v) is supported on N, and its wave front set coincides with the
conormal bundle of N.

Let y € Deny (S) be a volume density. The space

Gr‘g’f#(M) = {(N, v) € Gr{' (M) | (Su)= (N,v)}

is called the nonlinear Grassmannian of weighted submanifolds of type(S, y) in M.
It consists of all weighted submanifolds (N, v) in M such that there exists a diffeo-
morphism § — N taking u to v. Denoting the Diff(S) orbit of u by Den(S),, the
identification in (2.3) restricts to a canonical bijection

(2.5) Gr‘g’fy(M) = Embg (M) xpjg(s)y Den(S) .

It is well known [22] that the Diff (S)o orbit of y is a convex subset that consists of all
volume densities on S that represent the same cohomology class as 4 in H*(S; O5), the
de Rham cohomology with coefficients in the orientation bundle. Hence, the Diff (S)
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orbit of y coincides with the set of all volume densities on S that are in the preimage
of H*(8;0s)(4)> the (finite) Diff(S) orbit of [u] in H*(S;Os), under the Diff(S)
equivariant linear map

(2.6) hs:Den(S) - H*(S;05),  hs(a) = [a].

More succinctly,

2.7) Den(S),, = Deny(S) n k' (H*(8:05)14]) -

Hence, Den(S), is an open subset in a finite union of parallel closed affine subspaces
with finite codimension. In particular, Den(S), is a splitting smooth submanifold in
Den, ($) with finite codimension dim H*(S; O5) and with tangent spaces

(2.8) T, Den(S),, = ker hs = dQ¥7(S; Os).

Using (2.5), we conclude that Gr‘s”fﬂ (M) is a splitting smooth submanifold in Grg* (M)

with finite codimension dim H*(S; Og). Moreover, the canonical forgetful map in
(2.4) restricts to a locally trivial smooth fiber bundle Grfgvfﬂ(M ) = Grs(M) with
typical fiber Den(S),.

The space of homologically weighted submanifolds of type S in M is defined as

Gry"' (M) := {(N,[v]) : N € Grs(M), [v] € H*(N;On) } .
Using the canonical bijection
(2.9) Gr§"" (M) = Embs (M) xpigecsy H*(S;0s),

we turn Gri*'(M) into a smooth vector bundle of finite rank dim H*(S;Og) over
Grg(M). The canonical Diff (M) equivariant map

hars(my  GI§ (M) = Grg™ (M), (N,v) = (N, [v]),

is a smooth bundle map over Grg(M). Indeed, via the diffecomorphisms in (2.5) and
(2.9), it corresponds to the map induced by (2.6).

The space of homologically weighted submanifolds of type(S,[u]) in M is defined
by

Gry'fy) (M) = {(N, [v]) € Gr§™ (M) - (N, [v]) = (S. [u]) }

and consists of all homologically weighted submanifolds (N, [v]) such that there
exists a diffeomorphism S — N taking the cohomology class [¢] to [v]. As (2.9)
restricts to a bijection

Gr}slﬁ](M) = Embg (M) xpige(sy H* ($505) (1>

we see that Gr?ﬁd (M) is a finite covering of Grg(M). Using (2.7), we conclude

(2.10) Gr¥%, (M) = hgk, (an) (Grf;j”[;] (M)) :

It is well known that the Diff (M) action on Embg(M) admits local smooth
sections (see, for instance, [9, Lemma 2.1(c)]). Furthermore, the (transitive) Diff (S)
action on Den(S), also admits local smooth sections. The latter can be shown using
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Moser’s method of proof in [22, Section 4] (see Lemma 2.12). Using Lemma A.1 in the
Appendix, we conclude that the natural Diff (M) action on Gr‘g’fy (M) admits local
smooth sections. In particular, this action is locally transitive. Hence, each connected
component of Grgfﬂ (M) is a Diff (M), orbit. Consequently, each Diff.(M) or

Diff (M) orbit in GrYSny (M) is a union of connected components.
Remark 2.1 Poincaré duality provides a canonical Diff (S) equivariant isomorphism
H*(8;05) = Ho(S; R).

Hence, specifying a cohomology class [4] € H*(S; O5) amounts to specifying the total
volume of y on each connected component of S.

Example 2.2 If S is connected, then H*(S; O5) = R and the Diff(S) action is trivial
on this cohomology. Hence, the orbit H*(S; Os)[4] is @ one-point set, and

(2.11) Den(S), = {rx € Deny(8): f[ya= [ !4}

is connected. Correspondingly,

GrVSV’tH(M) ={(N,v) eGr{"(M) : [yv=[su}.

This is the case considered in [7, 15, 26].

If S is built out of two diffeomorphic connected components, then H*(S; Og) = R?
and any diffeomorphism swapping the two connected components acts nontrivially
on this cohomology. If 4 has equal total volume on the two connected components,
then the orbit H*(S; Os),] is a one-point set and Den(S), is connected. Otherwise,
H*(S; Os)[u] consists of two points and, by (2.7), Den(S), has two connected
components.

Remark 2.3 Suppose u € Deny(S). It is well known that Diff(S, 4), the group
of diffeomorphisms preserving p, is a splitting Lie subgroup in Diff(S) (see [11,
Theorem I11.2.5.3 on page 203]). Moreover, the map provided by the action, Diff (S) —
Den(S), f = fip, is a smooth principal bundle with structure group Diff (S, u). Via
(2.5), this implies that the surjective and Diff (M) equivariant map

Embs(M) > Gr§\, (M), ¢ = (9(S), p+p)
is smooth principal bundle with structure group Diff (S, y).

Remark 2.4 Suppose (N,v) € Gr§'(M) and let Gr' (M) y,,) denote its Diff . (M)
orbit. Combining the preceding remark with the fact that the Diff.(M) action on
Embg(M) admits local smooth sections [9, Lemma 2.1(c)], we see that the map
provided by the action,

Diﬂ:c(M) g Grgt(M)(N,v)> f g (f(N),f*V) >

is a smooth principal bundle with structure group Diff.(M, N, v), the group of dif-
feomorphisms preserving N and v. The latter is a splitting Lie subgroup in Diff . (M),
for it coincides with the preimage of Diff (N, v) under the canonical bundle projection
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Diff (M, N) — Diff (N) (see [9, Lemma 2.1(d)]). Hence, each orbit may be regarded
as a homogeneous space,

Grg' (M) (n,) = Diff (M) / Diff (M, N, v).
2.2 Weighted nonlinear flag manifolds
Fix natural numbers k; such that
(2.12) 0<ki<ky<--- <k,

and let 8 = (Sy,...,S;) be a collection of closed smooth manifolds with dim S; = k;.
For a smooth manifold M, we let

Flags (M) := {(Nl,...,N,) € lL[Grsi(M)

i=1

Vi:N; ¢ Ni+1}
denote the space of nonlinear flags of type 8 in M, and we write

Frs(M) := {(gol,...,(pr) € ﬁEmbsi(M)

i=1

Vi:i(Si)c §9i+1(8i+1)}

for the space of nonlinear frames of type § in M. In [9, Proposition 2.3], it has
been shown that Flags (M) and Frg(M) are splitting smooth submanifolds of
[1;., Grs,(M) and []}_; Embg, (M), respectively. Moreover, the canonical Diff (M)
equivariant map

(2.13) Frs(M) — Flagg (M), (o155 0:) = (@1(S1)5 -5 0:(Sr))»

is a smooth principal fiber bundle with structure group

Diff(8) := [ ] Diff (S;).

i=1
We denote the space of weighted nonlinear flags of type 8 in M by
(214)  Flagg' (M) := {((Nl,vl), oo (Nrovp)) € [T G (M)

i=1

Vi: N,’ c Ni+1} .

This is a splitting smooth submanifold in ]}, Gr§' (M), for it coincides with the
preimage of the splitting smooth submanifold Flags (M) under the bundle projec-
tion [T} Gr§ (M) — [1}_, Grs,(M). Moreover, the canonical Diff (M) equivariant
forgetful map

(215)  Flagg'(M) - Flagg(M), (N, v1),..., (N, v,)) = (Ni,...,Ny),

is a smooth fiber bundle with typical fiber

(2.16) Den, (8) := lL[DenX(S,-).
i=1
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The latter is a Diff(8) invariant open subset in the Fréchet space Den(8) :=
[1:_; Den(S;). Furthermore, the canonical Diff (M) equivariant bijection

(2.17) Flags' (M) = Frs(M) xpisr(sy Denx(8),
((91(8)s (91)t1) s+ (@r(S), (90)4ttr)) < (9125 90)s (s - )],

is a diffeomorphism between Flaggt (M) and the bundle associated with the nonlinear
frame bundle in (2.13) and the canonical Diff (8) action on Deny(8). Indeed, this is
just the bundle diffeomorphism [T_, Gr§' (M) = [T}, Embs, (M) xpig(s,) Deny (S;)
obtained by taking the product of the diffeomorphisms in (2.3), restricted over the
submanifold Flagg (M) in its base [T}, Grs,(M).

We have a canonical Diff (M) equivariant map

(218) J:Flagg' (M) - C=(M)*, (J((Ni,w)s...., (Nrvr)), f) :=2[I\]ifv,».

The image of ] consists of compactly supported distributions on M with mild singu-
larities. More precisely, the wave front set of J((Ny, v1), ..., (N,,v,)) coincides with
the union of the conormal bundles of Ny, ..., N,.

Lemma 2.5 The map in (2.18) is injective.

Proof Suppose J((Ny,v1), ..., (N, v,)) = J((N7,v1),..., (N, v.)). Proceeding by
induction on r, it suffices to show N, = N/ and v, = v/.

To show N, = N;, we assume by contradiction that there exists x € N, with
x ¢ Ny. Using (2.12), we see that N,\N,_; is dense in N,. Thus, we may w.l.o.g.
assume x ¢ N,_;. Moreover, v,(x) # 0 as v, does not vanish on N,. Hence, if f
is a smooth bump function supported on a sufficiently small neighborhood of x,
then (J((N1,v1),..., (N, v,)), f) = [Nr fv. #0and (J((N{,v]),....(N.,v.)), f) =
0. Since this contradicts our assumption, we conclude N, = N;.

To show v, =v], we assume by contradiction that there exists x e N, =
N; with v,(x) #v,.(x). As before, we may wlo.g. assume x ¢ N,; and x ¢
N/_;. Hence, if f is a smooth bump function supported in a sufficiently
small neighborhood of x, then (J((Ni,v1),..., (N»,v,)), f) = [y fvr # [y fv; =
(JC(N{,v1), ..., (N7, v.)), f). Since this contradicts our assumption, we conclude
V=V [

Remark 2.6  Suppose w is a symplectic form on M, and let Flagg ™" (M) denote the
manifold of symplectic nonlinear flags of type 8 (cf. [9, Section 4.2]). Recall that this
is the open subset consisting of all flags (Ny, ..., N, ) € Flagg (M) such that w restricts
to a symplectic form on each N;. Hence, k; must be even and w*/? pulls back to a
volume form on N; which in turn gives rise to a volume density v; = |13 w*/?| on N;.
Consequently, the symplectic form w provides a Symp(M, w) equivariant injective
smooth map (section)

(2.19) Flagd™ (M) — Flagg' (M)
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which is right inverse to the restriction of the canonical bundle projection in (2.15).
Composing the map in (2.19) with ] in (2.18), we obtain the moment map considered
in [9, equation (38)].

Remark 2.7 A Riemannian metric ¢ on M induces a volume density on every
submanifold of M. Hence, g provides a smooth section Flagg (M) — Flags' (M) of
the canonical bundle projection in (2.15), which is Isom(M, g) equivariant (cf. [26,
Section 6]).

2.3 Reduction of structure group

It will be convenient to use a reduction of the structure group for the principal frame
bundle in (2.13). To this end, we fix embeddings 1;: S; - S;yyand putt = (1g,...,41).

We begin by recalling some facts from [9, Proposition 2.10]. The space of nonlinear
flags of type (8, 1) in M,

(51352£> E>Sr) }’

Fla M) :={(Ny,...,N,) € Flag. (M
gS,t( ) {( 1 ) gS( ) g(ngNzg"'gNr)

consists of all nonlinear flags (Ny, . . ., N, ) in M such that there exist diffeomorphisms
Si = Ni, 1< i <r intertwining 1; with the canonical inclusion N; € N;;. This is a
Diff (M) invariant open and closed subset in Flag (M). The space of parametrized
nonlinear flags (nonlinear frames) of type (8, 1) in M,

Frg, (M) := {(¢1,...,9,) € Frs(M)|Vi: ¢; = i1 01},

is a splitting smooth submanifold of Frg(M). Moreover, the map Frs , (M) —
Flagg (M) obtained by restriction of (2.13) is a smooth principal bundle with struc-
ture group

(2.20) Diff(8;1) := {(gl, s 8r) € ﬁDiff(S,-)

i=1

Vi:igiyiot =1 Ogi}~
The latter is a splitting Lie subgroup in Diff(8) with Lie algebra

(2.21) X(8;1) = {(Zh s Zy) € lL[%(Si)

Viizi+101i = Tl,'OZi}.

We obtain a Diff (M) equivariant commutative diagram
FI‘S), (M)C—> Frg (M)
(2.22) Diff(s;:)i lDiff(S)

Flags,, (M) Flagg (M),

which may be regarded as a reduction of the structure group for (2.13) along the
inclusion Diff(8;+) ¢ Diff(8) over Flagg (M) (see [9, Proposition 2.10] for more
details).
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Remark 2.8 'The Diff (M) equivariant bijection

(2.23) Frs,(M) = Embg, (M), (01, 9:) = ¢y,

is a diffeomorphism [9, Proposition 2.10(b)]. Correspondingly, we have a group
isomorphism

(2.24) Diff(8;:) = Diff (S 2), (g1,----8r) = &

where Diff (S,;Z) denotes the subgroup of all diffeomorphisms of S, preserving the
nonlinear flag ¥ = (%,...,%,.1) in S,, where Z; := (1,10 - -+ 014;)(S;). The latter
is a splitting Lie subgroup of Diff(S,) (see [9, Proposition 2.9(b)]), and (2.24) is a
diffeomorphism of Lie groups [9, Proposition 2.10(a)]. The Lie algebra of Diff(8;:)
can be identified in a similar way with X(S,; ), the Lie algebra of vector fields on S,
that are tangent to 2y,...,Z,_;.

We are interested in the reduction of structure group (2.22) because the Diff. (M)
action on Frg , (M) admits local smooth sections. This follows from [9, Lemma 2.1(c)]
and the diffeomorphlsm in (2.23).

Let Flagy' (M) denote the preimage of Flag s,,(M) under the bundle projection in
(2.15). Restr1ct1ng the diffeomorphism in (2.17) over Flagg (M) and combining this
with the diffeomorphism in (2.23), we obtain a Diff (M) equivariant diffeomorphism
of bundles over Flagg (M),

(2.25) Flag‘gi(M) = Embg, (M) xpg(s, ) Deny(8).
2.4 The Diff (M) action on the space of weighted nonlinear flags

In this section, we aim at describing the Diff (M) orbits in Flagg (M) (see Theorem

2.11).

Let ¢ =(i1,...,1,-1) be a collection of embeddings ¢; : S; - Si41 and suppose
p=(t1,-..,u,) € Deny(8). We define the space of weighted flags of type (8,1, u) in
M by

FlagS ! y( )

(Sll—1> —>S,,y1,...,yr) }’

={((N1,vl), (N eagl ()| [0t

that is, the space of all weighted flags ((Ny,v1),...,(N,,v,)) in M such that there
exist diffeomorphisms S; - N;, 1 < i < r, intertwining ¢; with the canonical inclusion
N; € Ni41, and taking y; to v;.

Denoting the Diff(8, ) orbit of y by Den(S8),,,, the diffeomorphism in (2.25)
restricts to a Diff (M) equivariant bijection

(2.26) FlagS , H(M) Embsg, (M) XDiff(8,1) Den(8),, -

Consider the finite-dimensional vector space

(2.27) H(8,1) = [TH (Si,1i21(Si-1): Os,) = [] Ho (Si\ti=1(Siz1); R) .
i-1 i1
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Here, the left-hand side denotes relative de Rham cohomology with coeflicients in the
orientation bundle, and we are using the convention Sy = @. The Diff (8, 1) equivariant
identification on the right-hand side indicates Poincaré-Lefschetz duality. We have a
Diff (8, ¢) equivariant linear map

(2.28) hs,:Den(8) - H(S,1), hs, (g1 pir) = ([l [ue]) -

Pinning down the class [¢] := hs,,(y#) thus amounts to specifying the integrals of y;
over each connected component of S;\t;_1(S;_;) fori=1,...,r.

Remark 2.9 (Large codimensions) If the codimensions dim(S;) — dim(S;-;) are
all strictly larger than one, then H* (S;,1;_1(Si_1); Os,) = H* (S;;05,) = Ho(Si; R),
and

H(S8,1) = ﬁHk‘ (8i;0s,) = ﬁHo (SsR).

i=1 i=1

Hence, in this case, the cohomology space H(S, ) does not depend on the embed-
dings 1.

Proposition 2.10  In this situation, the following hold true:

(a) The Diff(8,1)o orbit of u coincides with the convex set Den, (8) n hg',([u]). In
particular, this orbit is a splitting smooth submanifold in Deny(8) with finite
codimension dim H(S, 1).

(b) The Diff (8, 1) action on Den,(8) n k', ([#]) admits local smooth sections.

(c) Denotingthe (finite) Diff(8; 1) orbit of [] by H(8, t)[,,), the Diff (8; 1) orbit of u is

(2.29) Den(8),,, = Den(8) nhg', (H(S,1)u)-

In particular, Den(8),,, is a splitting smooth submanifold in Den, (8) with finite
codimension dim H(S, 1) and with tangent spaces

(2.30)
Ty Den(8),, =kerhs, = {(dy,...,dy,) : yi € Q47 (S1505,), 17 1y: = 0}

Moreover, the Diff (8, 1) action on Den(8),,, admits local smooth sections.
(d) The canonical inclusion Den(8),, < [1j-, Den(S;),, is a splitting smooth
submanifold of finite codimension.

We postpone the proof of this proposition and proceed with the main result in this
section.

Theorem 2.11 In this situation, the following hold true:

(a) The space Flag‘gi’y (M) is a splitting smooth submanifold in Flag‘gfl (M) with finite
codimension dim H(8, 1).

(b) The canonical Diff (M) equivariant forgetful map Flagg’tl,# (M) — Flagg (M) isa
locally trivial smooth fiber bundle with typical fiber Den(S8), .

(c) The canonical inclusion Flagg', (M) < [Ti_, Gy, ,, (M) is a splitting smooth sub-
manifold.

https://doi.org/10.4153/50008414X23000585 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X23000585

12 S. Haller and C. Vizman

(d) The Diff.(M) action on Flag‘g’tw(M) admits local smooth sections. In particular,
each connected component of Flagg)t,) (M) is a Dift (M)o orbit. Furthermore,

every Diff (M) or Diff (M) orbit in Flag‘g’tl’”(M) is a union of connected com-
ponents.

Proof Parts (a) and (b) follow by combining (2.25) and (2.26) with Proposition
2.10(c).

Part (c) follows from Proposition 2.10(d) and the reduction of structure groups in
(2.22) via the diffeomorphisms in (2.5) and (2.26) (see also (2.23)).

Let us finally turn to part (d). By Proposition 2.10(c), the (transitive) Diff(8;:)
action on Den(8),, admits local smooth sections. The Diff (M) action on
Embg, (M) admits local smooth sections too (cf. [9, Lemma 2.1(c)]). Using Lemma
A.l, we conclude that the Diff,(M) action on Flagy', (M) admits local smooth

S,1,u
sections (cf. (2.25)). [

We will prove Proposition 2.10 by induction on the depth of the flags, using the
following crucial lemma whose proof we postpone.

Lemma 2.12  Let S be a closed submanifold of N such that dim(S) < dim(N) = n, and
consider the Diff (N, S) equivariant linear map

h:Den(N) - H"(N, S;Oy), h(p) = [u].
Then, for each k € H*(N, S; Oy), the natural Diff (N, S)g action on
(2.31) Diff(S) x (Den«(N) nh™'(k))
admits local smooth sections.

Proof of Proposition 2.10 We proceed by induction on r using Lemma 2.12. Let
us denote the truncated sequences by 8" := (S,...,S,-1), ¢’ :== (1> ..., tr-1), and
i := (11, .., ty-2). By induction, the Diff (8',1")o action on Den,(8') nhg ,([¢'])
admits local smooth sections. Hence, there exist an open neighborhood U’ of 4’ in
Den,(8") nhg! ,([4']) and a smooth map

Den, (8') n k!, ([u']) 2 U" <> DIfE(8';1')o,
such that for all i’ € U’, we have

(2.32) ('(@")), u'=4" and o'(y)=id.

Recall that Diff (8’,(') is a splitting Lie subgroup in Diff(S,_;) (cf. [9, Proposi-
tions 2.9(b) and 2.10(a)]). Using [9, Lemma 2.1(d)], this implies that Diff(8,:) is
a splitting Lie subgroup in Diff(S,, t,-1(S,-1)). Hence, restricting a local smooth
section as in Lemma 2.12, we see that the Diff(8,t)o action on Diff(8',/") x
(Den(S,) nh™'([¢,])) admits local smooth sections. In other words, there exist an
open neighborhood V of the identity in Diff (8';"), an open neighborhood U” of u,
in Den, (S,) N h~([4,]), and a smooth map

Diff(8';1") x (Deny(S,) nh™"([u,])) 2 V x U” LN Diff(8;1)o,
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such that for all g € V and ji, € U”, we have

(2.33) " (g, @) - (id, pr) = (g, fir) and  o"(id, u,) = id.

Hence, U :=(¢’)(V)x U” is an open neighborhood of y in Den,(8)n
hg.,([#]), and

Den,(8) nhg',([u]) 2 U > Diff(8;1)o,
o(fis . orfiy) = 0" (0" (fn, .., firr), ir)
is a local smooth section for the Diff(8; 1), action on Den, (8) n kg, ([¢]), i.e.,

o(p)=id  and  o(@).u =
for all jieU. By convexity, Den,(8)nhg' ([u]) is connected. Therefore, the
Diff (8;1), action is transitive on Den, (8) n kg, ([¢]). This shows (a) and (b). Part
(c) follows immediately.

To see (d), let A denote the preimage of []}_, Hki (Si; oS,—)[y,-] under the canonical
linear surjection H(S,t) — [1i_, H*(S;;Os,). Hence, A is a finite union of affine
subspaces in H(8, 1). In view of (2.7), we have [T;_,; Den(S;),, = Den,(8) n g (A).
Combining this with (2.29), we conclude that Den(8),,, is a splitting smooth sub-
manifold in [T;_, Den(S;),, with finite codimension dim A. ]

Let us next establish the following infinitesimal version of Lemma 2.12.

Lemma 2.13  Let S be a closed submanifold of N such that dim(S) < dim(N) = n. Sup-
pose € Deny(N), y € Q" '(N, $;0y) := {a € Q(N;Oy) : tia = 0}, and Z € X(S).
Then there exists a vector field X € X(N) such that Lxy = dy and X|s = Z.

Proof Let ZeX(N) be any extension of Z ie, Z|s=Z. Note that iyue
Q"}(N; Oy) vanishes when pulled back to S; hence, the same holds for B := y — iy €
Qnil(N; ON)

Let us first construct § € Q" '(N;Oy) such that dj = dB and j|s = 0. To this
end, we fix a smooth homotopy h: N x [0,1] - N such that hj = idy, h¢|s = ids, and
such that hy maps a neighborhood of S into S. Consider the corresponding chain
homotopy ¢: Q* (N; On) - Q*1(N;Oy) defined by ¢(a) := fol 1715, h* o dt, where
11N - N x [0,1] denotes the inclusion at t, that is, 1,(x) := (x,t). Then ¢(a)|s =
0 and d(¢(a)) + ¢(da) = hia — hya, for all forms a € Q*(N;Oy). In particular,
da =d (hja + ¢(da)). Defining j := hyB + ¢(dB), we obtain dj = df. Moreover,
hgBls = 0 because f3 vanishes when pulled back to S, and hence j|s = 0, as desired.

Defining a vector field Y € X(N) by iyp := J, we obtain Y|s = 0Oand Lyy = diyy =
dj =d(y-izu) = dy — Lyu. Hence, the vector field X := Z + Y has the desired prop-
erties. [

Proof of Lemma 2.12 Recall that the infinitesimal Diff (N, S) action on Diff (S) x
Den(N) is

Cx(fom) = (Rug (f)s~Lxu)

where X € X(N,S), f € Diff (S), and u € Den(S). Here, for Z € Tjq Diff (S) = X(S),
we let Rz (f) denote the right invariant vector field on Diff (S) such that Rz (id) = Z.

https://doi.org/10.4153/50008414X23000585 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X23000585

14 S. Haller and C. Vizman

Note that the vector field Z in the proof of Lemma 2.13 can be chosen to depend
smoothly (and linearly) on Z. Hence, the proof of said lemma actually provides a
smooth map

G : Ta Diff () x T (Deny(N) nh™'(k)) - X(N, S)
such that (5(7,4,)(id, 4) = (Z,dy) for all Z e X(S) = Tig Diff(S), u € Den,(N) n
h7'(k),and dy € dQ" (N, $;Ox) = T, (Deny(N) n h™!()). Combining this with
the right trivialization of T Diff (S), we obtain a smooth map

o : T(Diff(S) x (Den.(N) n h™'(x))) > X(N, )

such that (a(z,é) (f>u)=(Z,¢) for all feDiff(S), Z € Ty Diff(S), u € Den,(N) n
h™'(k), and & € T, (Den,(N) n h™'(k)). As Diff(N, S) is a regular Lie group, we
may apply Lemma A.2 to conclude that the Diff (N, S), action on (2.31) admits local
smooth sections. [ ]

This completes the proof of Theorem 2.11.

Remark 2.14 In view of Remark 2.3, we expect that the isotropy subgroup

(2.34) Diff (850, pt) = {(g1>- .., &) € DIff(8,1) | Vi: gf i = i}
is a splitting Lie subgroup of Diff (8; 1) with Lie algebra
(2.35) XS 6u) ={(Z1,....2,) € X(8,1) | Vi: Lyu; = 0},

and the surjective map provided by the action, Diff(8,:) - Den(8),,,, is a locally
trivial smooth principal fiber bundle with structure group Diff (8;4, ¢). This would
follow in a rather straightforward manner, via induction on the depth of the flags,
if one could show that the isotropy group {f € Diff(N,S): f|s =id, f*u=u} is
a splitting Lie subgroup in Diff(N, S), whenever S is a closed submanifold of N
and y is a volume density on N. The proof in [11, Theorem III.2.5.3 on page 203]
covers the case S = @. However, the adaptation of said proof to nontrivial S is not
entirely straightforward, and we will not attempt to prove this here. Note that via
the diffeomorphism in (2.24), the group Diff(8;1, ) corresponds to the subgroup of
Diff(S,; Z) consisting of all diffcomorphisms that preserve y, and whose restriction
to X; preserves (1,1 0 -+ 01;).p;, for1 < i < r— 1. Similarly, the Lie algebra X(8;1, u)
can be identified to the corresponding subalgebra of X(S,; 2).

If the expectation formulated in the preceding paragraph were indeed true, then
the surjective and Diff (M) equivariant map

(236) Embg, (M) = Frs,, (M) — Flagg', (M),

(2.37) (1o r9) = ((@1(80). (91)wt) 102 (9,(S)s (9)er)),

would be a locally trivial smooth principal fiber bundle with structure group
Diff(8;1, u) (see (2.26)). Moreover, generalizing Remark 2.4, the isotropy group of
a weighted flag (N, v),

Diff (M;N,v) := {g e Diffc(M) | Vi : g(N;) = Ni, gl3, vi = vi}»
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would be a splitting Lie subgroup of Diff. (M), for it coincides with the preimage of
Diff(8; 1, ) under the bundle projection Diff. (M; N) — Diff (N, 1) (cf. [9, Lemma
2.1(d) and Propositions 2.9(b) and 2.10(a)]). Furthermore, the orbit map Diff (M) —
Flagy (M )(N,v) provided by the action would be a locally trivial smooth principal
bundle with structure group Diff.(M;N,v). Hence, the Diff.(M) orbit of (N, v)
could be regarded as a homogeneous space

Flagg' (M) () = Diff (M) / Diffc (M; N, v).
2.5 A homological description

In this section, we give a more explicit description of the manifold Flag‘gi, P (M).
IfN = (Ny,...,N,) is a nonlinear flag of type 8 in M, we put

H(N) := HHki (Ni,Ni_;0n,) = [[ Ho (N:\N;i_;;R),

i=1 i=1
with the convention that Ny = @.
We define the space of homologically weighted flags of type 8 in M by

Flagh"' (M) := {(N,[v]) : N e Flagg (M), [v] e HN) }..
Note that we have a Diff (M) equivariant forgetful map
(2.38) Plaggwt (M) — Flagg (M),
as well as a Diff (M) equivariant map

(2.39) hrrag, (ur) : Flagh' (M) — Flagg™ (M), (N,v) » (N, [v]).

Let Flagg‘zt(M ) denote the preimage of the open subset Flagg (M) under the

projection in (2.38). Using the canonical Diff (M) equivariant identifications

(2.40) Flag?,v,t(M) = Embg, (M) xpisecs,) H(S, 1),

we equip FlangIWt(M ) with the structure of a smooth vector bundle of finite (possibly

nonconstant) rank over Flagg (M) and with projection (2.38). The map in (2.39) is
a smooth bundle map over Flags(M). Indeed, via the identifications in (2.25) and
(2.40), the map hg,, in (2.28) induces a bundle map Flag‘g; (M) > Flag}évjt(M) which
coincides with the restriction of (2.39).

We define the space of homologically weighted flags of type (8,1, [u]) in M by

(56582 =5, [ul) }

hwt L hwt
FlagS,t,[y](M) = {(N’ [V]) € FlagS (M) ~ (N1 c N2 c...c Nr, [V])

that is, the space of all homologically weighted flags (N, [v]) in M such that there exist
diffeomorphisms S; — N;, 1< i < r, intertwining ¢; with the canonical inclusion N; €
Ny and taking [u] € H(S, 1) to [v] € H(N). The diffeomorphism in (2.40) restricts
to a bijection

(2.41) Flagg"' [, (M) = Embs, (M) xpige(s;) H(S, 1) ().
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Hence, since the orbit H(S, t)[,] is finite, Flag}swjf[ 4(M) is a Diff (M) invariant closed

submanifold in Flagg‘zt(M ) of codimension dim H(S, ) by (2.40). Moreover, the
forgetful map

(2.42) Flagg"'(,1(M) — Flagg (M)

is a Diff (M) equivariant covering map with finite fibers.
We complement Theorem 2.11 with the following.

Theorem 2.15 In this situation, we have
- hwt
Flag‘gi,‘u (M) = hFllagS (M) (Flags‘:\:,[y] (M)) .

Proof This follows from the identity (2.29) in Proposition 2.10(c), using (2.26) and
(2.41). [ |

Remark 2.16 If the action of Diff (8, 1) on H(S, 1) is trivial, then the Diff (S, 1) and
Diff (8, ) orbits in Deny(8) coincide in view of Proposition 2.10, and the forgetful
(covering) map in (2.42) is a diffeomorphism, Flagg‘xt[y](M) = FlagS)I(M). This
happens in particular when all S;\i(S;_;) are connected, as in Examples 2.17 and
2.18. Under the latter connectedness assumption, H(S, ) = R" via the isomorphism

]+ (o, o -» o, or) and
Den(8),,, = {(x € Den,(8): fo a; = fsi #i}_

Moreover, Theorem 2.15 ensures that

(2.43) Flagy', (M) = {(N,v) e Flag§",(M) : [y, vi = [5, i} -

This also applies in the situation of Remark 2.9, provided each model manifold §;
is connected. A description for nested spheres in the same vein can be found in
Example 2.19.

Example 2.17 (Nested tori) If (8,:) denotes the standard (meridional) embed-
dings between tori, T c T' ¢ --- c T", then H(S,:) = R"*! via the isomorphism
(] = (Js i)-

Example 2.18 (Nested projective spaces) If (8,) denotes the standard embeddings
between projective spaces, P° P! c --- c P", then H(8,:) = R™! via the isomor-
phism [u] = ([p: 41)-

Example 2.19 (Nested spheres [13])  If (8, 1) denotes the standard equatorial embed-
dings between spheres, S ¢ §' € --- ¢ 8", then H(S, 1) = R2"*) The 2(r + 1) num-
bers assigned to [] € H(S, t) by this isomorphism are

(ag,aq,ai,ar,...,a;,a,) = (fsg HO)fsﬂ VOrst ‘”bfs{ .‘”1"-"[5; A“r’fsg ‘“r)’

where S’ and S’ denote the northern and southern hemispheres of S’, respectively.
Considering reflections on hyperplanes, we see that for each 0 < i < r there exists a
diffeomorphism in Diff(8, 1) swapping S’ with S*, but leaving all other hemispheres
S¥ invariant. Such a diffeomorphism interchanges a; with a7, but leaves all other
numbers aj unchanged. Hence, the Diff(8,:) orbit H(S,:)[,] has 2° elements,
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where s is the number of 0 < i < r with a} # a;. Actually, the Diff(S,:) action on
H(S, 1) 2 R¥*D factorizes through a (Z,)*"*V action by switching or not the
numbers a} and a;. We obtain a description similar to the one in (2.43):

{.[N+ v”[N‘ vit ={aj,a; },
(2.44) FlagS , M(M) (N,v) € Flags (M) where Nr denote the connected
components of N;\N;_;

3 Coadjoint orbits of the Hamiltonian group

Throughout this section, (M, w) denotes a symplectic manifold. The nonlinear Grass-
mannian of all isotropic submanifolds of type S, in M, denoted by Grs°(M), is a
splitting smooth submanifold in Grg, (M) which is invariant under the Hamiltonian
group. In fact, the Ham(M) orbits provide a smooth foliation of finite codimension
in Grg® (M) which is called the isodrastic foliation [15, 26].

Suppose £ is an isodrastic leaf in Grg°(M), and let Flagy', lso(M )¢ denote the
preimage of £ under the canonical bundle projection FlagS (M) = Grs, (M). We

will show that the natural Ham, (M) action on Flagg "' (M )| admits local smooth
sections. In particular, each connected component of the latter space is an orbit of
Ham, (M).

The space Flaggiijf(M )|z comes equipped with a canonical weakly non-
degenerate symplectic form, and the restriction of (2.18) provides a Ham(M) equiv-
ariant injective moment map for the Ham, (M) action,

wtiso

JiFlagl' " (M)[c > bam, (M)", (JNv). Xp) =3 [ fu
i=1 Z/Ni

This moment map J maps each connected component of Plaggtfs:(M )|z one-to-

one onto the corresponding coadjoint orbit (see Theorem 3.15). Thereby, we identify
coadjoint orbits of the Hamiltonian group Ham, (M) that can be modeled on weighted
nonlinear flags.

The material in this section is inspired by the results in [7, 15, 26] on weighted
isotropic nonlinear Grassmannians.

3.1 Isodrasts as Ham(M) orbits

In view of the tubular neighborhood theorem for isotropic embeddings [24, 25], the
space Gr® (M) of all isotropic submanifolds of type S in M is a splitting smooth
submanifold of Grg(M) (see, for instance, [15, Section 8]). The tangent space at an
isotropic submanifold N is

Ty Gre (M) = {uy € T(TN*)|txiny @ € Q'(N) closed},

where TN* := TM|y/TN denotes the normal bundle to N.
Weinstein’s [26] isodrastic distribution D on Grs®(M) is given by

(3.1 Dy :={un e I(TN")|iyiuyw € dC7(N)}
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and has finite codimension dim H'(S;R). This is an integrable distribution [15, 26]
whose leaves are orbits of Ham(M). It gives rise to a smooth foliation of Gri®(M)
called the isodrastic foliation. In particular, the Ham(M) orbits in Gri®(M) are
splitting smooth submanifolds.

Restricting the fundamental frame bundle in (2.1), we obtain a principal Diff(S)
bundle Embg°(M) — Grs®(M) with total space Embg°(M), the splitting smooth
submanifold of Embg (M) consisting of all isotropic embeddings. On Embg° (M), we
consider the pullback of the isodrastic distribution D:

(3.2) Dy = {uy eT(¢*TM) : ¢*iy,w e dC™(S)}.

This is an integrable distribution with the same codimension, dim H'(S;R), and the
leaves of D are connected components in the preimage of a leaf of D. According to [15,
26], the group Ham (M) acts transitively on the leaves of D. We need the subsequent
slightly stronger statement in Proposition 3.1.

The Lie algebra of compactly supported Hamiltonian vector fields will be denoted
by ham (M) = {Xy: f € CZ°(M)}. We let Ham (M) denote the group of diffeomor-
phisms obtained by integrating time dependent vector fields in ham (M). For our
purpose, it will not be necessary to consider Ham. (M) as an infinite-dimensional
Lie group (cf. [14, Section 43.13]). By a smooth map (section) into Ham (M), we will
simply mean a smooth map into Diff . (M) that takes values in Ham.(M).

Proposition 3.1 The Ham(M) action on each leaf & € Emby° (M) of the isodrastic
foliation D admits local smooth sections.

Proof To show infinitesimal transitivity, suppose ¢ € Embs°(M) and uy € Dy (cf.
(3.2)). Hence, there exists f € C*(S) such that df = @iy, w. We extend f toa
function f; € C°(M) such that f = fo@. The 1-form  on M along S defined by

(3.3) B=dficg—i,,wel(p"T"M)

vanishes on vectors tangent to ¢(S) € M. Hence, f3 can be seen as a fiberwise linear
function on the normal bundle T¢(S)* whose differential along the zero section ¢(S)
coincides with f itself. Thus, with the help of a tubular neighborhood of ¢(S) in M
and a suitable bump function, we get f, € C2° (M) such that 8 = d f,0¢. It follows from
(3.3) thatd foe =iy, wfor f = fy — fo. We conclude that u, = X rog is the infinitesimal
generator at ¢ for the Hamiltonian vector field X, € ham (M).

Using tubular neighborhoods constructed with the help of a Riemannian metric,
say, we see that the function f may be chosen to depend smoothly on ¢ and u, for ¢ in
a sufficiently small open neighborhood of a fixed isotropic embedding ¢, € €. Hence,
we may apply Lemma A.2 and conclude that the Ham, (M) action admits local smooth
sections. [

Corollary 3.2 'The Ham,(M) action on each leaf L € Gri°(M) of the isodrastic
foliation D admits local smooth sections.

Example 3.3 Every embedded closed curve in the plane is a Lagrangian submanifold
of (R?, w), where w is the canonical area form, thus an element of Gri’(R?). The
isodrastic distribution D has codimension one. The enclosed area a singles out one
isodrast £, ¢ Grs® (R?), i.e., one orbit of Ham, (R?).
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A similar phenomena happens for Lagrangian k-tori in R?*, ie., elements of
Grie (R**), where T* := (S')*. Toany ¢ € Embry (R?F), we assign the symplectic area
a; of the surface in R?* enclosed by the ith meridian ¢;(6) = ¢(1,...,6,...,1) of the
embedded k-torus. These numbers are independent of the choice of the meridian in
its homotopy class and of the surface having the meridian as boundary. The k-tuple
(a1...,ag) is an invariant under isodrastic deformations. Actually, a; is the action
integral of the ith meridian, as defined in [26].

Let &40, S Embiy (R?F) be the space of all isotropic embeddings having sym-
plectic areas ay, ..., ax. It is a union of isodrastic leaves of Lagrangian embeddings,
but it is not necessarily Diff(T*) saturated. The Diff(T*) action on the k-tuples
(a1,...,ay) factorizes through a GL(k,Z) action. Let [ay, ..., ax ] denote the orbit
of (a1,...,ax). We define L4, . 4,1 S Griy (R?F) to be the image of ,,,.._,, under
the principal Diff (T*) bundle projection (2.1). Thus, £ [a1,....a;] i @ union of isodrastic

.....

leaves of Lagrangian k-tori in R?*.

There is also a direct description of Ly, . 4,]- Given a Lagrangian torus N €
Gry (R?F), we choose a base {[y1], ..., [yx]} of Hi(N,Z), where y; are loops in N
with action integrals a;. We observe that the GL(k, Z) orbit [ay, . .., ax] is indepen-

.....

that the orbit of these action integrals is [ai, . . ., a ].
We will also need the following observation.

Lemma 3.4 If L is an isotropic submanifold in M, then the canonical inclusion
Grs(L) € Grg®(M) is a splitting smooth submanifold. Moreover, each connected com-
ponent of Grg(L) is a splitting smooth submanifold in an isodrastic leaf in Grg°®(M).

Proof Suppose N € Grs(L), i.e., N = S is a closed submanifold in L. By the tubular
neighborhood theorem, we may w.l.o.g. assume that L is the total space of a vector
bundle p: L - N, the normal bundle of N in L, and identify N with the zero section
in L. We have a canonical short exact sequence 0 - p*L — TL - p* TN — 0 of vector
bundles over L. Choosing a linear connection on L, we obtain a splitting of this
sequence and thus an isomorphism TL = p*TN & p*L of vector bundles over L.
Dualizing, we obtain an isomorphism T*L = p*T*N @ p*L* of vector bundles over
L. We regard this as a diffeomorphism

T*L2zT"NeLaoL"

that maps the zero section L ¢ T* L identically onto the summand L on the right-hand
side. Via this isomorphism, we have

01 =7, On + 15 K,

where m; and 7, denote the projections from T*"N @& L& L* onto T*N and L& L*,
respectively, 07 € Q'(T*L) and 6y € Q'(T*N) denote the tautological 1-forms, and
k€ Q'(L® L*). Indeed, a straightforward computation yields (&) = £/(C(Tgq - £))
wherex € N, € Ly, ' € L}, &€ Ty (L@ L*),q: L ® L* — L denotes the projection,
and C denotes the linear connection on L, viewed as a fiberwise linear map C: TL —
p*Lover L.
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By the tubular neighborhood theorem for isotropic embeddings [24, 25], we may
assume M = T*L @ p*E and w = 71; d0 + 75 p, where E is a vector bundle over N,
and 77, denote the projections from T*L & p*E onto T* L and p*E, respectively, and p
is a closed 2-form on the total space of p* E. Combining this with the diffeomorphism
in the previous paragraph, we obtain a diffeomorphism

(3.4) M=T"NeoeLoL*®E,
mapping L € M identically onto the summand L on the right-hand side, and such that
w=mdOy+m50,

where m; and 7, denote the projections from T"N@® L& L* @ Eonto T*N and L &
L* @ E, respectively, and ¢ is a closed 2-form on the total space of L & L* & E.

The diffeomorphism in (3.4) provides a (standard) chart for the smooth structure
on Grg(M) centered at N,

[(T"NeLeL"®E) - Grs(M), ¢~ ¢(N).
In this chart, the inclusions Grg(L) ¢ Gri®(M) ¢ Grs(M) become

(3.5)
T(L)c{(a,&) e QY(N)xT(L®L*@®E) :da+&0=0}cQ(N)xI(LeL*®E).

As L is isotropic, o vanishes when pulled back to L. Hence, by the Poincaré lemma,
o = dp for a 1-form f§ on the total space of L & L* & E which vanishes along L. Via
the diffeomorphism of Q'(N) x I'(L ® L* ® E) given by (a, &) — (a — £, ), the
inclusions in (3.5) become linear inclusions,

[(L)cZ'(N)xT(LeL*®E)c Q' (N)xT(Le L* ® E),

where Z'(N) denotes the space of closed 1-forms on N. Clearly, both inclusions admit
complementary subspaces. In particular, Grg (L) is a splitting smooth submanifold in
Gri$°(M). The second assertion follows from the fact that the isodrastic leaf through
N corresponds to the subspace B'(N) x I'(L @ L* @ E) (see [15, Section 8]). ]

3.2 Weighted isotropic nonlinear Grassmannians as coadjoint orbits

In this section, we recall the results in [7, 15, 26] about coadjoint orbits of the Hamil-
tonian group Ham. (M) modeled on weighted isotropic nonlinear Grassmannians of
type S in M, and extend them to a possibly nonconnected model manifold S. Here, we
present them in a manner that readily generalizes to manifolds of weighted nonlinear
flags.

Let S be a closed k-dimensional manifold. The preimage of Grs®(M) under the
canonical bundle projection Gr¢'(M) — Grg(M) is a splitting smooth submanifold
in Gry'(M) which will be denoted by Gr§'**°(M). The diffeomorphism in (2.3)
restricts to a diffeomorphism of bundles over Gri®(M),

Gr§"*° (M) = Embg® (M) xpie(s) Dens(S).

https://doi.org/10.4153/50008414X23000585 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X23000585

Weighted nonlinear flag manifolds as coadjoint orbits 21

The preimage of Gr®(M) under the canonical bundle projection Grg', (M) -
Grs(M) is a splitting smooth submanifold in Gry', (M) which will be denoted
by Gr tlso(M ) and will be referred to as the nonlinear Grassmannian of weighted

isotropic submanifolds of type (S, u) in M. The diffeomorphism in (2.5) restricts to
a diffeomorphism of bundles over Gri®(M),

Gry,* (M) = Bmbg® (M) xpise(s) Den(S) .

We recall the Diff (S) equivariant linear map ks : Den(S) - H*(S,Os), hs(a) =
[«] in (2.6), with kernel dQ*7!(S, O5), which we restrict to Den,(S). The product
of integrable distributions D x ker Thg on Embg®(M) x Den,(S) descends to an
integrable distribution

D:=D xpige(s) ker Thg

on Grg'*°(M), of codimension dim H'(S;R) + dim H*(S;Og). The image of D
under the forgetful map Gr¥'*°(M) — Grg®(M) is the isodrastic distribution D in
(3.1). In view of (2.7), each leaf G of D is a connected component in the prelmage of
an isodrast £ in Grs° (M) under the bundle projection er“s" (M) - Gr§°(M), for

some volume density y on S. Hence, each leaf G of D is a sphttlng smooth submamfold
of codimension dim H'(S; R) in Gry',* (M).

According to [15, 26], the group Ham(M ) acts transitively on the leaves of D. We
need the following slightly stronger statement.

Proposition 3.5 The Ham. (M) action on each leaf G ¢ Gry" 50 (M) of the isodrastic
foliation D admits local smooth sections.

Proof Suppose £ is an isodrastic leaf in Gr§®(M), and let Gry" lso(M )|z denote
its preimage under the bundle projection er“s"(M ) = Gr°(M). It suffices to

show that the Ham, (M) action on Gr§'; u (M)|c admits local smooth sections. The
diffeomorphism in (2.5) restricts to a dlﬂeomorphmm

(3.6) W“”(M)Lg = Emby°(M)|¢ *pitr(s) Den(8) .

By Proposition 3.1, the Ham.(M) action on Emb°(M)|. admits local smooth
sections. According to Proposition 2.10(b), the Diff(S) action on Den(S), admits
local smooth sections too. Using Lemma A.l in the Appendix, we conclude that
the Ham (M) action on the associated bundle in (3.6) admits local smooth
sections. |

Lemma 3.6 [15] The leafwise differential 2-form on (Embg®(M) x Den,(S),
D x ker Thg), given by

B7) Qg,a)((Ug,dA), (v, dy)) := /S(w(uq,,vq,)oc—go*iu(pw/\y+g0*ivww/\/\),

is closed and Diff (S) invariant. Moreover, its kernel is spanned by the infinitesimal
generators of the Diff(S) action.

In Section 3.4, we will need the following relative version of part of Lemma 3.6.
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Lemma 3.7 Let X be a closed submanifold in S of codimension at least one. Sup-
pose (¢, «) € EmbS®(M) x Den,(S) and (uyp,dA) € Dy x ker Tyhs. If the leafwise
differential 2-form (3.7) vanishes for all (v4,dy) € Dy x ker Tyhg with 15y =0 and
Volz = 0, then (uy, d)) is the infinitesimal generator of some Z € X(S) at (¢, «), i.e.,
(ug,dA) = (T9oZ,Lza).

Proof Choosing v, =0 in (3.7), we obtain [s(¢*i,,w)Ay=0 for all ye
Q*1(S, 05) with i%y = 0. Since the codimension of ¥ in § is at least one, this yields
¢*iy,w = 0; hence, u, takes values in the symplectic orthogonal to ¢(S) in M. In
particular, (3.7) yields

(3.8) [w(uq,,vq,)oc+f<p*iv¢wA/l:0
s s

for all v, with vz = 0.

To show that u, is tangential to ¢(S), we assume by contradiction that there is
a point x € S such that u,(x) is not tangent to ¢(S). Since the codimension of X is
at least one, we may assume x ¢ X. We now consider tangent vectors v, € D, taking
values in the symplectic orthogonal to ¢(S), i.e., 9*i,,w = 0, supported in S\Z. The
isotropic embedding theorem of Weinstein [25] allows to choose v, such that in
addition w(uge,v,) € C*°(S) is a nonzero nowhere negative function. Plugging v,
in (3.8), we obtain [ w(ug,vy)a > 0, leading to a contradiction. Thus, there exists
Z € X(S) with u, = TgoZ.

For each h € C*°(S) with dh|s = 0, there exists v, € D, with vy|z = 0 such that
¢*iy,w = dh. Plugging this into the identity in (3.8) and using Stokes theorem yields
Jshd(A —iza) = 0. In particular, this holds for all & with supp(h) N X = @. As the
codimension of ¥ is at least one, this implies d (A — iz«) = 0,and hencedA = Lza. =

By Lemma 3.6, the leafwise differential 2-form Q in (3.7) descends to a leafwise
symplectic form Q on (Gr§'**°(M), D). Thus, every leaf G of the isodrastic distri-
bution D in Gr§'"*°(M) is endowed with a symplectic form, the restriction of ),
which we denote by the same letter. By Proposition 3.5, § is an orbit for the Ham, (M)
action on the weighted isotropic nonlinear Grassmannian Gry'**°(M). This action is
Hamiltonian with injective and Symp (M) equivariant moment map [15]

(3.9) ]:ggGrvSvtiSO(M)_)bamc(M)*, (](N,v),Xf>:foV.

Here, we use the Symp(M) equivariant isomorphism ham (M) = C°(M) where
the latter denotes the Lie algebra of all compactly supported functions on M for
which the integral with respect to the Liouville form vanishes on all closed connected
components of M.

For connected S, the subsequent theorem is due to Weinstein [26] in the Lagrangian
case and due to Lee [15] for isotropic submanifolds.

Theorem 3.8 [15, 26]  The moment map J: (G, Q) — ham (M)* in (3.9) is one-to-
one onto a coadjoint orbit of the Hamiltonian group Ham,(M). The Kostant-Kirillov-
Souriau symplectic form wxxs on the coadjoint orbit satisfies J* wxks = Q.

In this generality, the theorem follows from the discussion above and the following
folklore result (see, for instance, the Appendix in [9]):
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Proposition 3.9 Suppose the action of G on (M, Q) is transitive with injective equiv-
ariant moment map ] : M — g*. Then ] is one-to-one onto a coadjoint orbit of G.
Moreover, it pulls back the Kostant-Kirillov-Souriau symplectic form wxgs on the
coadjoint orbit to the symplectic form Q.

The same coadjoint orbits of the Hamiltonian group, under the additional restric-
tion H'(S;R) = 0 on the closed connected manifold S, can be obtained via symplectic
reduction in the Marsden-Weinstein ideal fluid dual pair [5, 17], as shown in [7].
With a choice of an ambient Riemannian metric, the reduced symplectic form can
be expressed as a sum of three terms (see [7, Theorem 4.1]). These are analogous to
the three summands appearing in our natural approach via the associated bundle
construction (see (3.7)), which avoids the auxiliary Riemannian metric.

3.3 Manifolds of isotropic nonlinear flags

In this section, we extend the constructions of the previous section to nonlinear flags.

As in Section 2.3, we let t = (11, ..., 1,-1) denote a collection of fixed embeddings
1;:S; — Siy1. Welet Flaglso (M) denote the preimage of Griy® (M) under the canonical
bundle projection Flagg (M) — Grs, (M) (cf. [9, Remark 2.11]). This is a splitting
smooth submanifold in Flags) (M) called the manifold of isotropic nonlinear flags of
type (8,1) in M. Using Lemma 3.4, and proceeding by induction on the depth of the
flag, one readily shows that the canonical inclusion

(3.10) Flags® (M) ¢ ]‘[ Grs° (M)

is a splitting smooth submanifold. _

Let FlagWt *°(M) denote the preimage of Flagg", (M) under the canonical bun-
dle projection Flaggfl(M ) — Flagg (M). This is a splitting smooth submanifold in
Flagg',(M) called the manifold of weighted isotropic nonlinear flags of type (S,1)
in M. The diffeomorphism in (2.25) restricts to a diffeomorphism of bundles over
Flag180 (M),

Flagy',** (M) = Bmby® (M) xpige(s;) Denx(8).

The canonical inclusion Flagw“s"(M ) € [T}-, Gr{"*° (M) is a splitting smooth sub-
manifold in view of (3.10).

As in Section 2.4, we fix = (p1, ..., pt) € Deny(8), and let Flagg', lso(M) denote
the preimage of FlagiSS’Ol (M) under the canonical bundle projection Flags)h W (M) —
Flagg  (M). This is a splitting smooth submanifold in Flag‘g;, (M) called the mani-
fold of weighted isotropic nonlinear flags of type (8, 1, u) in M. The diffeomorphism in
(2.26) restricts to a diffeomorphism

(311) Flag‘g;tS‘:(M) = Emblssro(M) XDiff(S;l) Den(S),,y.

Using (3.10) and proceeding as in the proof of Theorem 2.11(c), one readily shows
wtiso

that the canonical inclusion Flagg°'(M) ¢ I}, Gr§! lso(M ) is a splitting smooth
submanifold.
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Recall the Diff (8; 1) equivariant linear map hg, : Den(8) — H(S, ) in (2.28) with
kernel

ker Ths,, = {(dy1,...,dy,) : yi € Q571(S;;05.), 17 ,yi = 0},

whose restriction to Den,(8) we also denote by hs,. The product with the iso-
drastic distribution gives the integrable distribution D x ker Thg,, on Embg° (M) x
Den,(8), of finite codimension dim H'(S,; R) + dim H(8, :). This Diff(8;:) invari-
ant distribution descends to an integrable distribution

D = D xpigr(sy) ker Ths,,

of the same codimension on Flagg)tliso(M ). The image of D under the forgetful map

is an integrable distribution on Flagissf’,(M ) of codimension dim H'(S,;R), which
coincides with the distribution that descends from the Diff(S;:) invariant isodrastic
distribution D on Embissr0 (M) by the principal I?undle projection. Using Proposition
2.10(c) and (3.11), we see that each leaf F of D is a connected component in the
preimage of an isodrast £ in Gr§®(M) under the bundle projection Flaggi‘)s’f (M) -

Grg°(M), for some volume density p on 8. Hence, each leaf F of D is a splitting
smooth submanifold of codimension dim H'(S,;R) in Flagg’tlisﬂo (M).

Remark 3.10 1f H'(S;;R) =0, then the leaves of the isodrastic foliation D are the
connected components of Flag‘g;i’o(M ).

Proposition 3.11  The Ham, (M) action on each leaf F < FlaggiiSO (M) of the isodrastic
foliation D admits local smooth sections.

Proof Suppose £ is an isodrastic leaf in Gr®(M), and let Flag‘g)tlf:)(M )|z denote
its preimage under the canonical projection Flag‘s”,tl) (M) = Grs, (M). It suffices to

show that the Ham (M) action on Flag

wtiso (M)|; admits local smooth sections. The

S,i,U
diffeomorphism in (3.11) restricts to a diffeomorphism
(3.12) Flagg“f,fjf(M)| £ = Emb§®(M)|z xpise(s;) Den(8),u-

By Proposition 3.1, the Ham, (M) action on Embissro(M )|z admits local smooth sec-
tions. According to Proposition 2.10(c), the Diff (8; ) action on Den(8),,, admits local
smooth sections too. With the help of Lemma A.1, we conclude that the Ham (M)
action on the associated bundle (3.12) admits local smooth sections. [

Corollary 3.12 'The Ham (M) action on each leaf of the isodrastic foliation on
180

Flags® (M) admits local smooth sections.

3.4 Weighted isotropic nonlinear flag manifolds as coadjoint orbits

In this section, we describe coadjoint orbits of the Hamiltonian group consisting of
weighted isotropic nonlinear flags.
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We aim at defining a leafwise symplectic form Q on (Flaggfliso(M ), D). We start
with leafwise differential 2-forms Q; on (Embissi0 (M) x Deny(S;), D; x ker Thg,), for
i=1,...,r defined as in Lemma 3.6. Let j; := t,_j0- - -o1; € Emb(S;, S,). We consider

qgi = j; xpr;: EmbiSSrO(M) x Deny(8) — EmbfgsiO(M) x Deny (S;),
which maps the distribution D x ker Thg , to D; x ker Thg,. Then
(3.13) Q=) q7Q;
i=1
is a closed leafwise differential 2-form on (Embissf(M ) x Deny(8), D x ker Thg,,).

Remark 3.13 The image under Tq; of the distribution D x ker Thg, is, in general,
strictly included in the distribution D; x ker Thg,. The reason is that the projection
on the ith factor pr; : ker Ths , — ker Thg, is not surjective in general. This happens,
for instance, in the setting of Example 3.19, where 1: {1,...,k} - S' with k >2:
the projection on the second factor is d{y € C*(S') : yoi = 0}, strictly included in
ker Thgi = dC>(S').

The Diff (8;:) action on Embissr"(M) x Deny (8),

(3.14) g (9. (a:)) = (pogr, (&7 @i)), for g = (gi,.... &) € Diff (81),
has infinitesimal generators of the form
(3.15) (z(¢,(a;)) =(ToZ,,(Lz,a;)), for Z = (Zy,..., Z,) € X(8;1).

They belong to the integrable distribution D x ker Thsg ,. Notice that q; = j7 x pr, is
equivariant over the homomorphism g € Diff(8;1) — g; € Diff(S;), because j;og; =
gr0j; for all i. Now, from the Diff (S;) invariance of Q; and (3.13), we deduce the
Diff (8; 1) invariance of Q).

Proposition 3.14  The kernel of the leafwise differential 2-form Q on (Embissf’(M ) x
Den, (8), Dxker Ths,,) in (3.13) is spanned by the infinitesimal generators of the
Diff (8;1) action (3.14) on Embg° (M) x Den, (8).

Proof The contraction of Q) with an infinitesimal generator {7, given in (3.15),
vanishes for all Z € X(8;¢). This follows from the analogous statement for 2; and the
infinitesimal generators {z, on Embg° (M) x Den, (S;) in Lemma 3.6, together with
the fact that the infinitesimal generators {7 and (z, are g; related (cf. (3.13)).

To prove the converse implication, we will proceed by induction on 7, the length
of 8, using Lemma 3.7. The formula for the leafwise 2-form in Lemma 3.6 provides a
similar formula for Q:

g o (s (410, (v (@9)) = 3 [ it v

(3.16) —Z[s]’?(<p*iu¢w)Ay,~+2[Sj;’((p*iv¢w)A/\i.
i=1 7 9i i=1 Y 9i
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Suppose (ug, (dA;)) is in the kernel of Q(,, (4,)). Considering y; = -+ = y,_; = 0, we
obtain

(3.17) fsw(uq,,vq,)ar—fs (p*iuq,w/\yr+/;(p*iww/\/\,:0,

for all y, with 1y, =0, and all v, with v,|, _ (s,_,)=0. By Lemma 3.7, there
exists Z, € X(S,) such that T o Z, = u, and Lz a, = dA,. Using Lemma 3.6, we
conclude that (3.17) holds for all y, and v,. Combining this with (3.16), we see that
(ugp 0 1r-1,(dA;)) is in the kernel of the leafwise differential 2-form Q’((p%_b(m))
on (Embissro_l(M) x Deny (8"), D’ x ker Thgr,,/) where 8’ =(S;,...,S,-1) and // =
(45> tr—2). By induction, there exists Z' = (Z;,...,2Z,1) € X(8',1') such that
T(@otr_1)0Zr_y = tgot,—y and Lz,a; = dA; for i =1,...,r — 1. Combining this with
T¢ o Z, = u, and using the injectivity of T¢, we obtain T, j0Z,_; = Z,01,_;. Hence,
Z=(Zy,...,Z:) € X(8,1) and (uy, (dA;)) is the infinitesimal generator at (¢, («;)).
This ensures that the kernel of Q) is spanned by the infinitesimal generators of the
Diff (8; ) action. |

As a consequence, Q) descends to a leafwise symplectic form Q on the associated
bundle

(Flagg'*° (M), D) = (Embg® (M) xpige(s,i) Deny (8), D xpige(s,) ker Ths,,).

wtiso

The restriction of Q) to (Flagg', (M), D) is a leafwise symplectic form as well. Thus,

every leaf of D is symplectic. ) .

Let F denote a leaf of the isodrastic distribution D on Flagy',** (M), equipped with
the symplectic form Q. Restricting (2.18), we obtain a Symp (M) equivariant smooth
map

(3.18) J:F = ham (M)", (](N,v),Xf):Zr:/N fvi,
i=1 N

where we identify ham (M) = Cg°(M) as in (3.9). This is a moment map for
the (Hamiltonian) action of Ham, (M) on (F, Q). Indeed, this follows readily by
combining (3.13) with the expression for the moment map in (3.9). Moreover, J is
injective according to Proposition 2.5. By Proposition 3.11, the Ham.(M) action on
J is transitive. Using Proposition 3.9, we thus obtain the following generalization of
Theorem 3.8.

Theorem 3.15 The moment map J: (F, Q) — ham_(M)* in (3.18) is one-to-one onto
a coadjoint orbit of the Hamiltonian group Ham(M). The Kostant-Kirillov-Souriau
symplectic form wgxs on the coadjoint orbit satisfies J* wgks = Q.

Remark 3.16 1In Section 3.3, we have seen that the inclusion

. r .
Flagy (M) < [T 631 (M)
i=1

is a splitting smooth submanifold. The symplectic leaf F described in Theorem 3.15 is
a splitting symplectic submanifold of a product [1;_; §; of symplectic leaves described
in Theorem 3.8. To show that this is indeed a splitting smooth submanifold, one can
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proceed as in the proof of Theorem 2.11(c), using the fact that each isodrastic leaf
in Flagg, (M) is a splitting smooth submanifold in a product of isodrastic leaves in

i, GrisSiO(M ). The latter can be show by induction on the depth of the flag using
Lemma 3.4.

Remark 3.17 'The leafwise symplectic form Q on Flagg’tliso(M ) can be seen as a

Poisson structure whose symplectic leaves are the isodrasts F from Theorem 3.15
(see Remark 3.4 in [26] about isodrasts in the nonlinear Grassmannian of weighted
Lagrangian submanifolds). Restricting (2.18), we obtain a Poisson moment map

J: Flagy! (M)  bam (M)", (J(Nv). X)) = [ foi
i=1 i

for the Poisson action of Ham (M) on weighted isotropic nonlinear flags, where we
identify ham_ (M) = C5° (M) as before.

Example 3.18 Let M be a symplectic manifold that possesses isotropic submanifolds
diffeomorphic to the sphere S with r >1. We use the setting of Example 2.19 to
describe some coadjoint orbits of Ham. (M) consisting of nested weighted spheres.
Since H'(S";R) = 0, by Remark 3.10, each connected component of Flagg' SO(M)isa

Lu
coadjoint orbit of Ham,(M). Similarly to (2.44), we get

) _ {fNj Vi’fN; vit ={ai,a;},
Flagg', ) (M) = { (N, v) € Flagg,**(M)| where N# denote the connected
components of N;\N;_;

Example 3.19 The coadjoint orbits of Ham,(R?) consisting of pointed vortex loops,
studied in [4], are the lowest-dimensional examples of coadjoint orbits of weighted
nonlinear flags as described in Theorem 3.15.

Their type is (8,¢), with ¢: {I,...,k} - S%, 1(i) = t; consecutive points on the
circle. We get the cohomology space

H(S,1) = RF x R,

where the class [u] € H(S,1) is identified with its integrals over connected com-
ponents of {1,...,k} resp. S'\{#,..., tx}. These are T; = Jiiy o and w; = ftf”l 1,
for i =1,...,k. The Diff(8, ) action on H(S,:) factorizes through an action of the
dihedral group D, on R¥ x R¥, More precisely, one let the dihedral group act on a
regular k-gon, with I; assigned to the vertex i and w; assigned to the edge [ i, i + 1]. For
generic density 4 € Den, (8), the orbit H(S8, 1), consists of 2k elements. The orbit is
aone-point setifand only if It =--- =Ty and wy = -+ = wy.

Let us denote the weighted flags of type (8, t) in R? by (({x1, ..., xx }, vo), (C,w1)).
The area a enclosed by the curve C singles out one isodrast £, c Gra’(R?),
as in Example 3.3. Theorem 3.15 implies that each connected component of
Flag?' *°(R?)|, is a coadjoint orbit of Ham,(R?). Using the above description of

S, u
Diff (8, 1) action on H(S, 1), we get
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wt i 2
FlagS,l,Zo (R )|La
x; consecutive points in C € £,
(3.19) =3 (x5 %63 v0), (Cyv1)) 3o € Dy such that
Sy vo=0(Li), [ v = a(wi)

In particular, the invariants are the area a enclosed by the loop C, the point vorticities

I;, and the net vorticities w; = fx’:‘“ v; between two consecutive points on the loop.

Example 3.20 Let L[, 4,1 be a union of isodrastic leaves of Lagrangian 2-tori in
R*, as in Example 3.3, with [a;, a,] the GL(2, Z) orbit of the pair of action integrals
(a1, a;) € R% Let S, be a disjoint union of k circles, S, = T? the 2-torus,and 1 : §; — S,
the embedding that maps the ith circle to the circle {¢;} x S! ¢ T?, with consecutive
points t, ..., t; € S*. For fixed density yu € Den,(8), we aim at describing the coad-
joint orbits of Ham,(R*) that are connected components of Flaggii)s’f(R‘lﬂ Liayay)- 1O
this end, we need the isomorphism

H(S,1) 2 RF x RF

given by integration of y; over the components of S; and of y, over the torus surface
between two successive embedded circles. As in the previous example, the Diff (S, 1)
action on H(S, 1) factorizes through the dihedral group. One can now express these
coadjoint orbits of Ham, (IR*) as in (3.19), with the help of the dihedral group. Thus,
the invariants are: the GL(2,7Z) orbit of the two action integrals for the embedded
2-torus, the total weights of the k isotopic loops on the torus, and the partial weights
between two such consecutive loops on the torus.

A Transitive actions on associated bundles

The manifolds and Lie groups in this appendix may be infinite-dimensional and are
assumed to be modeled on convenient vector spaces as in [14].

Recall that a smooth G action on M is said to admit local smooth sections if every
point x¢ in M admits an open neighborhood U and a smooth map ¢ : U — G such
that g(x)xo = x, for all x € U. Clearly, such an action is locally and infinitesimally
transitive. Due to the lack of a general implicit function theorem, one cannot expect
the converse implication to hold for general Fréchet manifolds.

LemmaA.1 Let P — B be a principal G-bundle endowed with the action of a Lie group
H on P that commutes with the principal G action. Suppose the structure group G acts
on another manifold Q, and consider the canonically induced H action on the associated
bundle P xg Q. If the H action on P and the G action on Q both admit local smooth
sections, then the H action on P xg Q admits local smooth sections too.

Proof Suppose & € P xg Q. As the canonical projection PxQ - Pxg Q is a
locally trivial smooth bundle [14, Theorem 3712], there exist an open neighborhood
U of &y and smooth maps 7: U - Pand p : U — Q such that for all £ € U we have

[72(8), p(E)] = &.

Put po := (&) € P and qo := p(&) € Q. As the H action on P admits local sections,
there exist an open neighborhood V of py in P and a smooth map ¢’ : V - H such
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that

o'(po)=en and  o'(p)po=p;

for all pe V. As the G action on Q admits local sections, there exist an open
neighborhood W of qo in Q and a smooth map ¢” : W — G such that

0"(q0)=ec and  0"(q)q0 = g,

for all ¢ € W. Possibly replacing U with a smaller neighborhood of &, we may assume
that for all £ € U we have p(&) € W and n(&)o” (p(&)) € V. Hence,0: U - H,

(&) =" (n(§)a" (p(£)))

is a well-defined smooth map. For £ € U we obtain

a(§)& = 0(E)[po,q0] = [¢(§)po> go] = [0 (m()a" (p(£))) po> 90]
= [m(§)a"(p(£)), a0] = [7(&), 0" (p(€))q0] = [7(§), p(§)] = &.

Hence, o is the desired local smooth section of the H action on P xg Q. [ ]
We will denote the fundamental vector fields of a smooth G action on M by
Cx(x) = 2o exp(£X),
where X € gand x € M.

Lemma A.2 Let G be a regular Lie group acting on a smooth manifold M. Suppose
every point xo in M admits an open neighborhood U and a smooth map o : TM|y — g
such that

(A1) (U(X) (x) =X,
forall x € U and X € Ty M. Then the G action on M admits local smooth sections.

Proof We will construct alocal section using an argument due to Moser [22, Section
4]. Suppose c: [0,1] - U is a smooth curve. We seek a smooth curve g:[0,1] - G

such that

(A.2) c(t) = g(t)c(0).
Differentiating, we obtain

(A.3) c'(t) = (o (c(1))s

where ¢(t) := %| n=:g(h)g(t)™! denotes the right logarithmic derivative of g.

Since G is regular [14, Definition 38.4], there exists a unique smooth curve
g=Evol" (60c’) in G such that ¢(t) = o(c'(¢)) and g(0) = e. Using (A.1), we see
that (A.3) and, thus, (A.2) hold true. Evaluating at ¢ = 1, we obtain a smooth map

s:C*([0,1],U) - G, s(c):=g(1)=evol" (coc).

By construction, ¢(1) = s(¢)c(0), for all smooth curves ¢ : [0,1] - U.

To obtain a local smooth section for the G action on M, it suffices to compose s
with a smooth map U — C*([0,1], U), x = ¢, satisfying c,(0) = xo and ¢, (1) = x.
The latter can readily be constructed using a chart for M centered at xo = 0. Indeed,
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shrinking U so that it becomes star-shaped with center x( = 0 in such a chart, we may
use ¢, (1) = tx. |

Acknowledgment The first author would like to thank the West University of
Timisoara for the warm hospitality. The second author would like to thank the
University of Vienna for the warm hospitality. We thank an anonymous referee for
very helpful suggestions.

References

[1] M. Bauer, M. Bruveris, and P. W. Michor, Overview of the geometries of shape spaces and
diffeomorphism groups. J. Math. Imaging Vision 50(2014), 60-97.

[2] E.Binz and H. R. Fischer, The manifold of embeddings of a closed manifold. With an appendix by

P. Michor. In: Differential geometric methods in mathematical physics (proc. internat. conf.,

tech. Univ. Clausthal, Clausthal-Zellerfeld, 1978), Lecture Notes in Physics, 139, Springer,

Berlin-New York, 1981, pp. 310-329.

L. Ciuclea, A. B. Tumpach, and C. Vizman, Shape spaces of nonlinear flags. In: F. Nielsen and

F. Barbaresco (eds.), Geometric science of information. GSI 2023, Lecture Notes in Computer

Science, 14071, Springer, Cham, 2023.

[4] I Ciuclea and C. Vizman, Pointed weighted vortex loops in 2D ideal fluids. ]. Phys. A Math. Theor.
56(2023), 245201.

[5] F. Gay-Balmaz and C. Vizman, Dual pairs in fluid dynamics. Ann. Glob. Anal. Geom. 41(2012),
1-24.

[6] F. Gay-Balmaz and C. Vizman, Principal bundles of embeddings. Ann. Glob. Anal. Geom.
46(2014), 293-312.

[7] F. Gay-Balmaz and C. Vizman, Isotropic submanifolds and coadjoint orbits of the Hamiltonian
group. J. Symp. Geom. 17(2019), 663-702.

[8] S. Haller and C. Vizman, Non-linear Grassmannians as coadjoint orbits. Math. Ann. 329(2004),
771-785.

[9] S. Haller and C. Vizman, Non-linear flag manifolds as coadjoint orbits. Ann. Glob. Anal. Geom.
58(2020), 385-413.

[10] S. Haller and C. Vizman, A dual pair for the contact group. Math. Z. 301(2022), 2937-2973.

[11] R.S.Hamilton, The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. 7(1982),
65-222.

[12] 1. H. Jermyn, S. Kurtek, H. Laga, and A. Srivastava, Elastic shape analysis of three-dimensional

objects. Synth. Lect. Comput. Vision 12(2017), 1-185.

S.Jung, I. Dryden, and J. S. Marron, Analysis of principal nested spheres. Biometrika 99(2012),

551-568.

[14] A. Kriegl and P. W. Michor, The convenient setting of global analysis, Mathematical Surveys and
Monographs, 53, American Mathematical Society, Providence, RI, 1997.

[15] B. Lee, Geometric structures on spaces of weighted submanifolds. SIGMA 5(2009), Article no. 099,
46 pp.

[16] J. M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, Springer, New
York, 2003.

[17] J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for
incompressible fluids. Phys. D 7(1983), 305-323.

[18] P. W. Michor, Manifolds of smooth maps. II1. The principal bundle of embeddings of a noncompact
smooth manifold. Cah. Topol. Géom. Diff. 21(1980), 325-337.

[19] P. W. Michor, Manifolds of differentiable mappings, Shiva Mathematics Series, 3, Shiva Publishing
Ltd., Nantwich, 1980.

[20] P. W. Michor, Manifolds of mappings and shapes. In the legacy of Bernhard Riemann after one
hundred and fifty years. Vol. II, Advanced Lectures in Mathematics, 35.2, International Press,
Somerville, MA, 2016, pp. 459-486.

[21] P. W. Michor, Manifolds of mappings for continuum mechanics. In: R. Segev and M. Epstein (eds.),
Geometric continuum mechanics, Advances in Mechanics and Mathematics, 42, Birkhiuser,
Basel, 2020, pp. 3-75.

[22] J. Moser, On the volume elements on a manifold. Trans. Amer. Math. Soc. 120(1965), 286-294.

)

(13

https://doi.org/10.4153/50008414X23000585 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X23000585

Weighted nonlinear flag manifolds as coadjoint orbits 31

[23] J. Strait, S. Kurtek, E. Bartha, and S. N. MacEachern, Landmark-constrained elastic shape analysis
of planar curves. J. Amer. Stat. Assoc. 112(2017), 521-533.

[24] A. Weinstein, Lectures on symplectic manifolds. Expository lectures from the CBMS regional
conference held at the University of North Carolina, March 8-12, 1976, Regional Conference Series
in Mathematics, 29, American Mathematical Society, Providence, RI, 1977.

[25] A. Weinstein, Neighborhood classification of isotropic embeddings. J. Diff. Geom. 16(1981), 125-128.

[26] A. Weinstein, Connections of Berry and Hannay type for moving Lagrangian submanifolds. Adv.
Math. 82(1990), 133-159.

Department of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
e-mail: stefan.haller@univie.ac.at

Department of Mathematics, West University of Timisoara, Bulevardul Vasile Parvan 4, 300223 Timisoara,

Romania
e-mail: cornelia.vizman@e-uvt.ro

https://doi.org/10.4153/50008414X23000585 Published online by Cambridge University Press


mailto:stefan.haller@univie.ac.at
mailto:cornelia.vizman@e-uvt.ro
https://doi.org/10.4153/S0008414X23000585

	1 Introduction
	2 Manifolds of weighted nonlinear flags
	2.1 Weighted nonlinear Grassmannians
	2.2 Weighted nonlinear flag manifolds
	2.3 Reduction of structure group
	2.4 The Diff(M) action on the space of weighted nonlinear flags
	2.5 A homological description

	3 Coadjoint orbits of the Hamiltonian group
	3.1 Isodrasts as Ham(M) orbits
	3.2 Weighted isotropic nonlinear Grassmannians as coadjoint orbits
	3.3 Manifolds of isotropic nonlinear flags
	3.4 Weighted isotropic nonlinear flag manifolds as coadjoint orbits

	A Transitive actions on associated bundles

