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Weighted nonlinear flag manifolds as
coadjoint orbits
Stefan Haller and Cornelia Vizman
Abstract. A weighted nonlinear flag is a nested set of closed submanifolds, each submanifold
endowed with a volume density. We study the geometry of Fréchet manifolds of weighted nonlinear
flags, in this way generalizing the weighted nonlinear Grassmannians. When the ambient manifold
is symplectic, we use these nonlinear flags to describe a class of coadjoint orbits of the group of
Hamiltonian diffeomorphisms, orbits that consist of weighted isotropic nonlinear flags.

1 Introduction

The nonlinear Grassmannian GrS(M), consisting of all smooth submanifolds in a
manifold M which are diffeomorphic to a closed manifold S, has a natural Fréchet
manifold structure. Nonlinear Grassmannians, a.k.a. differentiable Chow manifolds
or shape spaces, play an important role in computer vision [1, 20] and continuum
mechanics [21]. They have also been used to describe coadjoint orbits of diffeomor-
phism groups [8]. Further coadjoint orbits of diffeomorphism groups can be described
using weighted nonlinear Grassmannians, i.e., spaces of submanifolds equipped with
volume densities. For instance, weighted nonlinear Grassmannians of isotropic sub-
manifolds in a symplectic manifold have been used to describe coadjoint orbits of the
Hamiltonian group [7, 15, 26], and weighted nonlinear Grassmannians of isotropic
submanifolds in a contact manifold have been identified with coadjoint orbits of the
contact group [10].

Nonlinear Grassmannians have been generalized to spaces of nonlinear flags in
[9]. Given a collection of closed manifolds S = (S1 , . . . , Sr), a nonlinear flag of type
S in M is a sequence of nested embedded submanifolds N1 ⊆ ⋅ ⋅ ⋅ ⊆ Nr in M, with N i
diffeomorphic to S i , for all i. The space of all nonlinear flags of type S in M is a Fréchet
manifold in a natural way, denoted by FlagS(M). Manifolds of low-dimensional
nonlinear flags have appeared as shape spaces in [3, 12, 23]. Symplectic nonlinear flags
have been used to describe coadjoint orbits of the Hamiltonian group [9].
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In this article, we study manifolds of weighted nonlinear flags, motivated by the
fact that one can use them to describe new coadjoint orbits of the Hamiltonian group.
Considering submanifolds N i equipped with nowhere zero densities ν i , one obtains
the manifold Flagwt

S (M) of weighted nonlinear flags. We describe its Fréchet manifold
structure in two ways: as a splitting smooth submanifold in the Cartesian product of
weighted nonlinear Grassmannians of type S i in M, and as a locally trivial smooth
fiber bundle over FlagS(M) associated with the principal bundle of nonlinear frames
of type S in M. To each weighted nonlinear flag, one associates a compactly supported
distribution on M by the Diff(M) equivariant inclusion

J ∶ Flagwt
S (M) ↪ C∞(M)∗ , ⟨J((N1 , ν1), . . . , (Nr , νr)), f ⟩ ∶=

r
∑
i=1
∫

N i

f ν i .(1.1)

We aim at describing the Diff(M) orbits in Flagwt
S (M). Under the Diff(M) action,

the diffeomorphism type of the inclusions N1 ⊆ ⋅ ⋅ ⋅ ⊆ Nr remains invariant, and the
total volumes of the connected components of N i/N i−1 with respect to ν i remain
invariant as well, for all i. This suggests to fix embeddings S1

ι1�→ S2
ι2�→ ⋅ ⋅ ⋅ ιr−1��→ Sr

and volume densities μ i on S i , and to consider the Diff(M) invariant subspace
Flagwt

S, ι ,μ(M) consisting of all weighted nonlinear flags diffeomorphic to the model
(S, ι, μ), where ι = (ι1 , . . . , ιr−1) and μ = (μ1 , . . . , μr). Using a Moser-type argument,
we will show that these are exactly the weighted nonlinear flags for which the
volumes of corresponding connected components in N i/N i−1 and in S i/ι i−1(S i−1)
coincide. A more precise statement, using homologically weighted nonlinear flags, is
formulated in Theorem 2.15. This description permits to show that Flagwt

S, ι ,μ(M) is a
splitting smooth submanifold of finite codimension in Flagwt

S (M) (see Theorem 2.11).
Furthermore, the Diff(M) action on Flagwt

S, ι ,μ(M) admits local smooth sections. In
particular, every Diff(M) orbit is a union of connected components in Flagwt

S, ι ,μ(M).
For a symplectic manifold M, we are interested in the orbits of the Hamiltonian

group Hamc(M) acting on Flagwt
S, ι ,μ(M). Clearly, the open subset of weighted sym-

plectic nonlinear flags Flagwt symp
S, ι ,μ (M) is invariant under this action. Although the

Hamiltonian group acts locally transitive on unweighted symplectic nonlinear flags
[9, Proposition 4.4], the action on Flagwt symp

S, ι ,μ (M) is not locally transitive, not even in
the Grassmannian case [7, Section 4]. Some orbits turn out to be nice submanifolds,
e.g., when the weights are provided by the Liouville volume forms (cf. Remark 2.6),
but the general orbit is considerably more singular.

In this paper, we will consider the action of the Hamiltonian group on the
invariant set of weighted isotropic nonlinear flags Flagwt iso

S, ι ,μ (M). In view of the tubular
neighborhood theorem for isotropic embeddings [25], this is a splitting smooth sub-
manifold in Flagwt

S, ι ,μ(M). If H1(Sr ;R) = 0, the action is locally transitive. In general,
the orbits of the Hamiltonian group provide a smooth foliation of codimension
dim H1(Sr ;R) in Flagwt iso

S, ι ,μ (M), the analogue of Weinstein’s isodrastic foliation in
the Grassmannian case [26]. Each isodrastic leaf of weighted nonlinear flags comes
equipped with a canonical symplectic form, and the map J in (1.1) restricts to an
equivariant moment map for the Hamc(M) action, thus identifying the leaf with a
coadjoint orbit of the Hamiltonian group (see Theorem 3.15). Moreover, this coadjoint
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orbit is a splitting symplectic submanifold in a product of coadjoint orbits of weighted
submanifolds of type S i in M (see Remark 3.16). The lowest-dimensional examples
are the coadjoint orbits of Hamc(R2) consisting of pointed weighted vortex loops,
treated in [4]. We give more examples with nested spheres or tori, and provide explicit
descriptions of the corresponding coadjoint orbits of the Hamiltonian group.

The results on weighted nonlinear flags sketched above generalize well-known
results on weighted nonlinear Grassmannians, which correspond to r = 1. Many of the
proofs presented in this article proceed by induction on the depth r of the nonlinear
flags. Often a relative version of the corresponding result on nonlinear Grassmannians
is required for the induction step. These relative versions are not readily available in
the literature and often require new arguments. Lemma 2.12, for instance, is crucial in
the proof of Proposition 2.10, and Lemma 3.7 is used in the proof of Proposition 3.14.
Similar relative versions also play an important role in the study of unweighted
nonlinear flags (see [9, Lemma 2.1] used, e.g., in the proof of [9, Proposition 2.9]). In
Remark 2.14, we indicate the significance of a relative version of a well-known result
on the group of volume-preserving diffeomorphisms [11] which appears naturally in
this context. To the best of our knowledge, the latter relative version is still open.

2 Manifolds of weighted nonlinear flags

A nonlinear flag is a sequence of nested closed submanifolds N1 ⊆ ⋅ ⋅ ⋅ ⊆ Nr in a
smooth manifold M. A weighted nonlinear flag is a nonlinear flag together with
a volume density ν i on each submanifold N i . Integrating against test functions
f ∈ C∞(M), a weighted nonlinear flag provides a compactly supported distribution
on M with mild singularities,∑r

i=1 ∫N i
f ν i .

We will show that the space of all weighted nonlinear flags in M is a Fréchet
manifold in a natural way. In fact, this is the total space of a locally trivial smooth
bundle over the manifold of nonlinear flags discussed in [9]. The natural Diff(M)
action on the base of this bundle is locally transitive [9, Proposition 2.9(a)]. The main
aim of this section is to describe the Diff(M) orbits in the space of weighted nonlinear
flags (see Theorem 2.11).

2.1 Weighted nonlinear Grassmannians

In this section, we recall some basic facts about the manifolds of weighted submani-
folds that appear in [7, 15, 26]. These weighted nonlinear Grassmannians constitute a
special case of the weighted nonlinear flags to be introduced in Section 2.2. We present
them here in a manner that readily generalizes to the setting of nonlinear flags.

Let S be a closed manifold of dimension k, allowed to be nonconnected and nonori-
entable. For each manifold M, we let GrS(M) denote the nonlinear Grassmannian of
type S in M, i.e., the space of all smooth submanifolds in M that are diffeomorphic to
S. Moreover, we let EmbS(M) denote the space of all parametrized submanifolds of
type S in M, i.e., the space of all smooth embeddings of S into M. Both, EmbS(M)
and GrS(M), are Fréchet manifolds in a natural way. Furthermore, the Diff(M)
equivariant map

EmbS(M) → GrS(M), φ ↦ φ(S),(2.1)
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is a smooth principal bundle with structure group Diff(S), a Fréchet Lie group (see
[2, 6, 18, 19] and [14, Theorem 44.1]).

For each closed k-dimensional manifold S, let

Den(S) ∶= Γ∞(∣Λ∣S) = Ωk(S;OS)

denote the space of all smooth densities on S. Here, OS denotes the orientation bundle
of S and ∣Λ∣S = Λk T∗S ⊗OS (see, e.g., [16]). Densities on S are the geometric quantities
which can be integrated over S in a coordinate independent way, without specifying an
orientation or even assuming orientability. We denote by Den×(S) the space of volume
densities, i.e., the space of nowhere vanishing densities. Clearly, this is an open subset
in the Fréchet space Den(S).

We define the weighted nonlinear Grassmannian of type S in M by

Grwt
S (M) ∶= {(N , ν) ∣ N ∈ GrS(M), ν ∈ Den×(N)} ,(2.2)

that is, the space of all submanifolds of type S in M, decorated with a nowhere zero
density. We equip this space with the structure of a Fréchet manifold by declaring the
natural bijection

Grwt
S (M) = EmbS(M) ×Diff(S) Den×(S), (φ(S), φ∗μ) ↔ [φ, μ],(2.3)

to be a diffeomorphism. Here, the right-hand side denotes the total space of the bundle
associated with the nonlinear frame bundle in (2.1) and the natural Diff(S) action on
Den×(S). In particular, the canonical forgetful map

Grwt
S (M) → GrS(M), (N , ν) ↦ N ,(2.4)

becomes a locally trivial smooth bundle with typical fiber Den×(S). Indeed, it
corresponds to the bundle projection of the associated bundle EmbS(M) ×Diff(S)
Den×(S) → GrS(M) via the identification in (2.3).

There is a canonical Diff(M) equivariant map

J ∶ Grwt
S (M) → C∞(M)∗, ⟨J(N , ν), f ⟩ ∶= ∫

N
f ν.

This map is injective, and its image consists of compactly supported distributions with
mild singularities: J(N , ν) is supported on N, and its wave front set coincides with the
conormal bundle of N.

Let μ ∈ Den×(S) be a volume density. The space

Grwt
S ,μ(M) ∶= {(N , ν) ∈ Grwt

S (M) ∣ (S , μ) ≅ (N , ν)}

is called the nonlinear Grassmannian of weighted submanifolds of type(S , μ) in M.
It consists of all weighted submanifolds (N , ν) in M such that there exists a diffeo-
morphism S → N taking μ to ν. Denoting the Diff(S) orbit of μ by Den(S)μ , the
identification in (2.3) restricts to a canonical bijection

Grwt
S ,μ(M) = EmbS(M) ×Diff(S) Den(S)μ .(2.5)

It is well known [22] that the Diff(S)0 orbit of μ is a convex subset that consists of all
volume densities on S that represent the same cohomology class as μ in Hk(S;OS), the
de Rham cohomology with coefficients in the orientation bundle. Hence, the Diff(S)
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orbit of μ coincides with the set of all volume densities on S that are in the preimage
of Hk(S;OS)[μ], the (finite) Diff(S) orbit of [μ] in Hk(S;OS), under the Diff(S)
equivariant linear map

hS ∶ Den(S) → Hk(S;OS), hS(α) = [α].(2.6)

More succinctly,

Den(S)μ = Den×(S) ∩ h−1
S (Hk(S;OS)[μ]) .(2.7)

Hence, Den(S)μ is an open subset in a finite union of parallel closed affine subspaces
with finite codimension. In particular, Den(S)μ is a splitting smooth submanifold in
Den×(S) with finite codimension dim Hk(S;OS) and with tangent spaces

Tα Den(S)μ = ker hS = dΩk−1(S;OS).(2.8)

Using (2.5), we conclude that Grwt
S ,μ(M) is a splitting smooth submanifold in Grwt

S (M)
with finite codimension dim Hk(S;OS). Moreover, the canonical forgetful map in
(2.4) restricts to a locally trivial smooth fiber bundle Grwt

S ,μ(M) → GrS(M) with
typical fiber Den(S)μ .

The space of homologically weighted submanifolds of type S in M is defined as

Grhwt
S (M) ∶= {(N , [ν]) ∶ N ∈ GrS(M), [ν] ∈ Hk(N ;ON)} .

Using the canonical bijection

Grhwt
S (M) = EmbS(M) ×Diff(S) Hk(S;OS),(2.9)

we turn Grhwt
S (M) into a smooth vector bundle of finite rank dim Hk(S;OS) over

GrS(M). The canonical Diff(M) equivariant map

hGrS(M) ∶ Grwt
S (M) → Grhwt

S (M), (N , ν) ↦ (N , [ν]),

is a smooth bundle map over GrS(M). Indeed, via the diffeomorphisms in (2.5) and
(2.9), it corresponds to the map induced by (2.6).

The space of homologically weighted submanifolds of type(S , [μ]) in M is defined
by

Grhwt
S ,[μ](M) ∶= {(N , [ν]) ∈ Grhwt

S (M) ∶ (N , [ν]) ≅ (S , [μ])}

and consists of all homologically weighted submanifolds (N , [ν]) such that there
exists a diffeomorphism S → N taking the cohomology class [μ] to [ν]. As (2.9)
restricts to a bijection

Grhwt
S ,[μ](M) = EmbS(M) ×Diff(S) Hk(S;OS)[μ],

we see that Grhwt
S ,[μ](M) is a finite covering of GrS(M). Using (2.7), we conclude

Grwt
S ,μ(M) = h−1

GrS(M) (Grhwt
S ,[μ](M)) .(2.10)

It is well known that the Diff c(M) action on EmbS(M) admits local smooth
sections (see, for instance, [9, Lemma 2.1(c)]). Furthermore, the (transitive) Diff(S)
action on Den(S)μ also admits local smooth sections. The latter can be shown using
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Moser’s method of proof in [22, Section 4] (see Lemma 2.12). Using Lemma A.1 in the
Appendix, we conclude that the natural Diff c(M) action on Grwt

S ,μ(M) admits local
smooth sections. In particular, this action is locally transitive. Hence, each connected
component of Grwt

S ,μ(M) is a Diff c(M)0 orbit. Consequently, each Diff c(M) or
Diff(M) orbit in Grwt

S ,μ(M) is a union of connected components.

Remark 2.1 Poincaré duality provides a canonical Diff(S) equivariant isomorphism

Hk(S;OS) = H0(S;R).

Hence, specifying a cohomology class [μ] ∈ Hk(S;OS) amounts to specifying the total
volume of μ on each connected component of S.

Example 2.2 If S is connected, then Hk(S;OS) = R and the Diff(S) action is trivial
on this cohomology. Hence, the orbit Hk(S;OS)[μ] is a one-point set, and

Den(S)μ = {α ∈ Den×(S) ∶ ∫S α = ∫S μ}(2.11)

is connected. Correspondingly,

Grwt
S ,μ(M) = {(N , ν) ∈ Grwt

S (M) ∶ ∫N ν = ∫S μ} .

This is the case considered in [7, 15, 26].
If S is built out of two diffeomorphic connected components, then Hk(S;OS) ≅ R2

and any diffeomorphism swapping the two connected components acts nontrivially
on this cohomology. If μ has equal total volume on the two connected components,
then the orbit Hk(S;OS)[μ] is a one-point set and Den(S)μ is connected. Otherwise,
Hk(S;OS)[μ] consists of two points and, by (2.7), Den(S)μ has two connected
components.

Remark 2.3 Suppose μ ∈ Den×(S). It is well known that Diff(S , μ), the group
of diffeomorphisms preserving μ, is a splitting Lie subgroup in Diff(S) (see [11,
Theorem III.2.5.3 on page 203]). Moreover, the map provided by the action, Diff(S) →
Den(S)μ , f ↦ f∗μ, is a smooth principal bundle with structure group Diff(S , μ). Via
(2.5), this implies that the surjective and Diff(M) equivariant map

EmbS(M) → Grwt
S ,μ(M), φ ↦ (φ(S), φ∗μ) ,

is smooth principal bundle with structure group Diff(S , μ).

Remark 2.4 Suppose (N , ν) ∈ Grwt
S (M) and let Grwt

S (M)(N ,ν) denote its Diff c(M)
orbit. Combining the preceding remark with the fact that the Diff c(M) action on
EmbS(M) admits local smooth sections [9, Lemma 2.1(c)], we see that the map
provided by the action,

Diff c(M) → Grwt
S (M)(N ,ν), f ↦ ( f (N), f∗ν) ,

is a smooth principal bundle with structure group Diff c(M , N , ν), the group of dif-
feomorphisms preserving N and ν. The latter is a splitting Lie subgroup in Diff c(M),
for it coincides with the preimage of Diff(N , ν) under the canonical bundle projection
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Diff c(M , N) → Diff(N) (see [9, Lemma 2.1(d)]). Hence, each orbit may be regarded
as a homogeneous space,

Grwt
S (M)(N ,ν) = Diff c(M)/Diff c(M , N , ν).

2.2 Weighted nonlinear flag manifolds

Fix natural numbers k i such that

0 ≤ k1 < k2 < ⋅ ⋅ ⋅ < kr(2.12)

and let S = (S1 , . . . , Sr) be a collection of closed smooth manifolds with dim S i = k i .
For a smooth manifold M, we let

FlagS(M) ∶= {(N1 , . . . , Nr) ∈
r
∏
i=1

GrS i (M)∣∀i ∶ N i ⊆ N i+1}

denote the space of nonlinear flags of type S in M, and we write

FrS(M) ∶= {(φ1 , . . . , φr) ∈
r
∏
i=1

EmbS i (M)∣∀i ∶ φ i(S i) ⊆ φ i+1(S i+1)}

for the space of nonlinear frames of type S in M. In [9, Proposition 2.3], it has
been shown that FlagS(M) and FrS(M) are splitting smooth submanifolds of
∏r

i=1 GrS i (M) and ∏r
i=1 EmbS i (M), respectively. Moreover, the canonical Diff(M)

equivariant map

FrS(M) → FlagS(M), (φ1 , . . . , φr) ↦ (φ1(S1), . . . , φr(Sr)) ,(2.13)

is a smooth principal fiber bundle with structure group

Diff(S) ∶=
r
∏
i=1

Diff(S i).

We denote the space of weighted nonlinear flags of type S in M by

Flagwt
S (M) ∶= {((N1 , ν1), . . . , (Nr , νr)) ∈

r
∏
i=1

Grwt
S i
(M)∣∀i ∶ N i ⊆ N i+1} .(2.14)

This is a splitting smooth submanifold in ∏r
i=1 Grwt

S i
(M), for it coincides with the

preimage of the splitting smooth submanifold FlagS(M) under the bundle projec-
tion ∏r

i=1 Grwt
S i
(M) → ∏r

i=1 GrS i (M). Moreover, the canonical Diff(M) equivariant
forgetful map

Flagwt
S (M) → FlagS(M), ((N1 , ν1), . . . , (Nr , νr)) ↦ (N1 , . . . , Nr),(2.15)

is a smooth fiber bundle with typical fiber

Den×(S) ∶=
r
∏
i=1

Den×(S i).(2.16)
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The latter is a Diff(S) invariant open subset in the Fréchet space Den(S) ∶=
∏r

i=1 Den(S i). Furthermore, the canonical Diff(M) equivariant bijection

Flagwt
S (M) = FrS(M) ×Diff(S) Den×(S),(2.17)

((φ1(S1), (φ1)∗μ1) , . . . , (φr(Sr), (φr)∗μr)) ↔ [(φ1 , . . . , φr), (μ1 , . . . , μr)] ,

is a diffeomorphism between Flagwt
S (M) and the bundle associated with the nonlinear

frame bundle in (2.13) and the canonical Diff(S) action on Den×(S). Indeed, this is
just the bundle diffeomorphism∏r

i=1 Grwt
S i
(M) = ∏r

i=1 EmbS i (M) ×Diff(S i) Den×(S i)
obtained by taking the product of the diffeomorphisms in (2.3), restricted over the
submanifold FlagS(M) in its base∏r

i=1 GrS i (M).
We have a canonical Diff(M) equivariant map

J ∶ Flagwt
S (M) → C∞(M)∗, ⟨J((N1 , ν1), . . . , (Nr , νr)), f ⟩ ∶=

r
∑
i=1
∫

N i

f ν i .(2.18)

The image of J consists of compactly supported distributions on M with mild singu-
larities. More precisely, the wave front set of J((N1 , ν1), . . . , (Nr , νr)) coincides with
the union of the conormal bundles of N1 , . . . , Nr .

Lemma 2.5 The map in (2.18) is injective.

Proof Suppose J((N1 , ν1), . . . , (Nr , νr)) = J((N ′1 , ν′1), . . . , (N ′r , ν′r)). Proceeding by
induction on r, it suffices to show Nr = N ′r and νr = ν′r .

To show Nr = N ′r , we assume by contradiction that there exists x ∈ Nr with
x ∉ N ′r . Using (2.12), we see that Nr/Nr−1 is dense in Nr . Thus, we may w.l.o.g.
assume x ∉ Nr−1. Moreover, νr(x) ≠ 0 as νr does not vanish on Nr . Hence, if f
is a smooth bump function supported on a sufficiently small neighborhood of x,
then ⟨J((N1 , ν1), . . . , (Nr , νr)), f ⟩ = ∫Nr

f νr ≠ 0 and ⟨J((N ′1 , ν′1), . . . , (N ′r , ν′r)), f ⟩ =
0. Since this contradicts our assumption, we conclude Nr = N ′r .

To show νr = ν′r , we assume by contradiction that there exists x ∈ Nr =
N ′r with νr(x) ≠ ν′r(x). As before, we may w.l.o.g. assume x ∉ Nr−1 and x ∉
N ′r−1. Hence, if f is a smooth bump function supported in a sufficiently
small neighborhood of x, then ⟨J((N1 , ν1), . . . , (Nr , νr)), f ⟩ = ∫Nr

f νr ≠ ∫N ′r f ν′r =
⟨J((N ′1 , ν′1), . . . , (N ′r , ν′r)), f ⟩. Since this contradicts our assumption, we conclude
νr = ν′r . ∎

Remark 2.6 Suppose ω is a symplectic form on M, and let Flagsymp
S
(M) denote the

manifold of symplectic nonlinear flags of type S (cf. [9, Section 4.2]). Recall that this
is the open subset consisting of all flags (N1 , . . . , Nr) ∈ FlagS(M) such that ω restricts
to a symplectic form on each N i . Hence, k i must be even and ωk i/2 pulls back to a
volume form on N i which in turn gives rise to a volume density ν i = ∣ι∗N i

ωk i/2∣ on N i .
Consequently, the symplectic form ω provides a Symp(M , ω) equivariant injective
smooth map (section)

Flagsymp
S
(M) → Flagwt

S (M)(2.19)
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which is right inverse to the restriction of the canonical bundle projection in (2.15).
Composing the map in (2.19) with J in (2.18), we obtain the moment map considered
in [9, equation (38)].

Remark 2.7 A Riemannian metric g on M induces a volume density on every
submanifold of M. Hence, g provides a smooth section FlagS(M) → Flagwt

S (M) of
the canonical bundle projection in (2.15), which is Isom(M , g) equivariant (cf. [26,
Section 6]).

2.3 Reduction of structure group

It will be convenient to use a reduction of the structure group for the principal frame
bundle in (2.13). To this end, we fix embeddings ι i ∶ S i → S i+1 and put ι = (ι1 , . . . , ιr−1).

We begin by recalling some facts from [9, Proposition 2.10]. The space of nonlinear
flags of type (S, ι) in M,

FlagS, ι(M) ∶=
⎧⎪⎪⎨⎪⎪⎩
(N1 , . . . , Nr) ∈ FlagS(M)

...........

(S1
ι1�→ S2

ι2�→ ⋅ ⋅ ⋅ ιr−1��→ Sr)
≅ (N1 ⊆ N2 ⊆ ⋅ ⋅ ⋅ ⊆ Nr)

⎫⎪⎪⎬⎪⎪⎭
,

consists of all nonlinear flags (N1 , . . . , Nr) in M such that there exist diffeomorphisms
S i → N i , 1 ≤ i ≤ r intertwining ι i with the canonical inclusion N i ⊆ N i+1. This is a
Diff(M) invariant open and closed subset in FlagS(M). The space of parametrized
nonlinear flags (nonlinear frames) of type (S, ι) in M,

FrS, ι(M) ∶= {(φ1 , . . . , φr) ∈ FrS(M)∣∀i ∶ φ i = φ i+1 ○ ι i} ,

is a splitting smooth submanifold of FrS(M). Moreover, the map FrS, ι(M) →
FlagS, ι(M) obtained by restriction of (2.13) is a smooth principal bundle with struc-
ture group

Diff(S; ι) ∶= {(g1 , . . . , gr) ∈
r
∏
i=1

Diff(S i)∣∀i ∶ g i+1 ○ ι i = ι i ○ g i} .(2.20)

The latter is a splitting Lie subgroup in Diff(S) with Lie algebra

X(S; ι) = {(Z1 , . . . , Zr) ∈
r
∏
i=1

X(S i)∣∀i ∶ Z i+1 ○ ι i = Tι i ○ Z i} .(2.21)

We obtain a Diff(M) equivariant commutative diagram

FrS, ι(M)

Diff(S;ι)
��

� � �� FrS(M)

Diff(S)
��

FlagS, ι(M)
� � �� FlagS(M),

(2.22)

which may be regarded as a reduction of the structure group for (2.13) along the
inclusion Diff(S; ι) ⊆ Diff(S) over FlagS, ι(M) (see [9, Proposition 2.10] for more
details).
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Remark 2.8 The Diff(M) equivariant bijection

FrS, ι(M) = EmbSr(M), (φ1 , . . . , φr) ↦ φr ,(2.23)

is a diffeomorphism [9, Proposition 2.10(b)]. Correspondingly, we have a group
isomorphism

Diff(S; ι) = Diff(Sr ; Σ), (g1 , . . . , gr) ↦ gr ,(2.24)

where Diff(Sr ; Σ) denotes the subgroup of all diffeomorphisms of Sr preserving the
nonlinear flag Σ = (Σ1 , . . . , Σr−1) in Sr , where Σ i ∶= (ιr−1 ○ ⋅ ⋅ ⋅ ○ ι i)(S i). The latter
is a splitting Lie subgroup of Diff(Sr) (see [9, Proposition 2.9(b)]), and (2.24) is a
diffeomorphism of Lie groups [9, Proposition 2.10(a)]. The Lie algebra of Diff(S; ι)
can be identified in a similar way with X(Sr ; Σ), the Lie algebra of vector fields on Sr
that are tangent to Σ1 , . . . , Σr−1.

We are interested in the reduction of structure group (2.22) because the Diff c(M)
action on FrS, ι(M) admits local smooth sections. This follows from [9, Lemma 2.1(c)]
and the diffeomorphism in (2.23).

Let Flagwt
S, ι(M) denote the preimage of FlagS, ι(M) under the bundle projection in

(2.15). Restricting the diffeomorphism in (2.17) over FlagS, ι(M) and combining this
with the diffeomorphism in (2.23), we obtain a Diff(M) equivariant diffeomorphism
of bundles over FlagS, ι(M),

Flagwt
S, ι(M) = EmbSr(M) ×Diff(S, ι) Den×(S).(2.25)

2.4 The Diff(M) action on the space of weighted nonlinear flags

In this section, we aim at describing the Diff(M) orbits in Flagwt
S (M) (see Theorem

2.11).
Let ι = (ι1 , . . . , ιr−1) be a collection of embeddings ι i ∶ S i → S i+1 and suppose

μ = (μ1 , . . . , μr) ∈ Den×(S). We define the space of weighted flags of type (S, ι, μ) in
M by

Flagwt
S, ι ,μ(M)

∶=
⎧⎪⎪⎨⎪⎪⎩
((N1 , ν1), . . . , (Nr , νr)) ∈ Flagwt

S (M)
...........

(S1
ι1�→ ⋅ ⋅ ⋅ → Sr , μ1 , . . . , μr)

≅ (N1 ⊆ ⋅ ⋅ ⋅ ⊆ Nr , ν1 , . . . , νr)

⎫⎪⎪⎬⎪⎪⎭
,

that is, the space of all weighted flags ((N1 , ν1), . . . , (Nr , νr)) in M such that there
exist diffeomorphisms S i → N i , 1 ≤ i ≤ r, intertwining ι i with the canonical inclusion
N i ⊆ N i+1, and taking μ i to ν i .

Denoting the Diff(S, ι) orbit of μ by Den(S)ι ,μ , the diffeomorphism in (2.25)
restricts to a Diff(M) equivariant bijection

Flagwt
S, ι ,μ(M) = EmbSr(M) ×Diff(S, ι) Den(S)ι ,μ .(2.26)

Consider the finite-dimensional vector space

H(S, ι) ∶=
r
∏
i=1

Hk i (S i , ι i−1(S i−1);OS i ) =
r
∏
i=1

H0 (S i/ι i−1(S i−1);R) .(2.27)
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Here, the left-hand side denotes relative de Rham cohomology with coefficients in the
orientation bundle, and we are using the convention S0 = ∅. The Diff(S, ι) equivariant
identification on the right-hand side indicates Poincaré–Lefschetz duality. We have a
Diff(S, ι) equivariant linear map

hS, ι ∶Den(S) → H(S, ι), hS, ι(μ1 , . . . , μr) ∶= ([μ1], . . . , [μr]) .(2.28)

Pinning down the class [μ] ∶= hS, ι(μ) thus amounts to specifying the integrals of μ i
over each connected component of S i/ι i−1(S i−1) for i = 1, . . . , r.

Remark 2.9 (Large codimensions) If the codimensions dim(S i) − dim(S i−1) are
all strictly larger than one, then Hk i (S i , ι i−1(S i−1);OS i ) = Hk i (S i ;OS i ) = H0(S i ;R),
and

H(S, ι) =
r
∏
i=1

Hk i (S i ;OS i ) =
r
∏
i=1

H0 (S i ;R) .

Hence, in this case, the cohomology space H(S, ι) does not depend on the embed-
dings ι.

Proposition 2.10 In this situation, the following hold true:
(a) The Diff(S, ι)0 orbit of μ coincides with the convex set Den×(S) ∩ h−1

S, ι([μ]). In
particular, this orbit is a splitting smooth submanifold in Den×(S) with finite
codimension dim H(S, ι).

(b) The Diff(S, ι)0 action on Den×(S) ∩ h−1
S, ι([μ]) admits local smooth sections.

(c) Denoting the (finite) Diff(S; ι) orbit of [μ] by H(S, ι)[μ], the Diff(S; ι) orbit of μ is

Den(S)ι ,μ = Den×(S) ∩ h−1
S, ι (H(S, ι)[μ]) .(2.29)

In particular, Den(S)ι ,μ is a splitting smooth submanifold in Den×(S) with finite
codimension dim H(S, ι) and with tangent spaces

Tα Den(S)ι ,μ = ker hS, ι = {(dγ1 , . . . , dγr) ∶ γ i ∈ Ωk i−1(S i ;OS i ), ι∗i−1γ i = 0} .
(2.30)

Moreover, the Diff(S, ι) action on Den(S)ι ,μ admits local smooth sections.
(d) The canonical inclusion Den(S)ι ,μ ⊆ ∏r

i=1 Den(S i)μ i is a splitting smooth
submanifold of finite codimension.

We postpone the proof of this proposition and proceed with the main result in this
section.

Theorem 2.11 In this situation, the following hold true:
(a) The space Flagwt

S, ι ,μ(M) is a splitting smooth submanifold in Flagwt
S, ι(M) with finite

codimension dim H(S, ι).
(b) The canonical Diff(M) equivariant forgetful map Flagwt

S, ι ,μ(M) → FlagS, ι(M) is a
locally trivial smooth fiber bundle with typical fiber Den(S)ι ,μ .

(c) The canonical inclusion Flagwt
S, ι ,μ(M) ⊆ ∏

r
i=1 Grwt

S i ,μ i
(M) is a splitting smooth sub-

manifold.

https://doi.org/10.4153/S0008414X23000585 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000585


Weighted nonlinear flag manifolds as coadjoint orbits 1675

(d) The Diff c(M) action on Flagwt
S, ι ,μ(M) admits local smooth sections. In particular,

each connected component of Flagwt
S, ι ,μ(M) is a Diff c(M)0 orbit. Furthermore,

every Diff(M) or Diff c(M) orbit in Flagwt
S, ι ,μ(M) is a union of connected com-

ponents.

Proof Parts (a) and (b) follow by combining (2.25) and (2.26) with Proposition
2.10(c).

Part (c) follows from Proposition 2.10(d) and the reduction of structure groups in
(2.22) via the diffeomorphisms in (2.5) and (2.26) (see also (2.23)).

Let us finally turn to part (d). By Proposition 2.10(c), the (transitive) Diff(S; ι)
action on Den(S)ι ,μ admits local smooth sections. The Diff c(M) action on
EmbSr(M) admits local smooth sections too (cf. [9, Lemma 2.1(c)]). Using Lemma
A.1, we conclude that the Diff c(M) action on Flagwt

S, ι ,μ(M) admits local smooth
sections (cf. (2.25)). ∎

We will prove Proposition 2.10 by induction on the depth of the flags, using the
following crucial lemma whose proof we postpone.

Lemma 2.12 Let S be a closed submanifold of N such that dim(S) < dim(N) = n, and
consider the Diff(N , S) equivariant linear map

h ∶ Den(N) → Hn(N , S;ON), h(μ) = [μ].

Then, for each κ ∈ Hn(N , S;ON), the natural Diff(N , S)0 action on

Diff(S) × (Den×(N) ∩ h−1(κ))(2.31)

admits local smooth sections.

Proof of Proposition 2.10 We proceed by induction on r using Lemma 2.12. Let
us denote the truncated sequences by S′ ∶= (S1 , . . . , Sr−1), μ′ ∶= (μ1 , . . . , μr−1), and
ι′ ∶= (ι1 , . . . , ιr−2). By induction, the Diff(S′ , ι′)0 action on Den×(S′) ∩ h−1

S′ , ι′([μ′])
admits local smooth sections. Hence, there exist an open neighborhood U ′ of μ′ in
Den×(S′) ∩ h−1

S′ , ι′([μ′]) and a smooth map

Den×(S′) ∩ h−1
S′ , ι′([μ′]) ⊇ U ′ σ ′�→ Diff(S′; ι′)0 ,

such that for all μ̃′ ∈ U ′, we have

(σ ′(μ̃′))∗ μ′ = μ̃′ and σ ′(μ′) = id .(2.32)

Recall that Diff(S′ , ι′) is a splitting Lie subgroup in Diff(Sr−1) (cf. [9, Proposi-
tions 2.9(b) and 2.10(a)]). Using [9, Lemma 2.1(d)], this implies that Diff(S, ι) is
a splitting Lie subgroup in Diff(Sr , ιr−1(Sr−1)). Hence, restricting a local smooth
section as in Lemma 2.12, we see that the Diff(S, ι)0 action on Diff(S′ , ι′) ×
(Den×(Sr) ∩ h−1([μr])) admits local smooth sections. In other words, there exist an
open neighborhood V of the identity in Diff(S′; ι′), an open neighborhood U ′′ of μr
in Den×(Sr) ∩ h−1([μr]), and a smooth map

Diff(S′; ι′) × (Den×(Sr) ∩ h−1([μr])) ⊇ V ×U ′′ σ ′′�→ Diff(S; ι)0 ,
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such that for all g ∈ V and μ̃r ∈ U ′′, we have

σ ′′(g , μ̃r) ⋅ (id, μr) = (g , μ̃r) and σ ′′(id, μr) = id .(2.33)

Hence, U ∶= (σ ′)−1(V) ×U ′′ is an open neighborhood of μ in Den×(S) ∩
h−1
S, ι([μ]), and

Den×(S) ∩ h−1
S, ι([μ]) ⊇ U σ�→ Diff(S; ι)0 ,

σ(μ̃1 , . . . , μ̃r) ∶= σ ′′(σ ′(μ̃1 , . . . , μ̃r−1), μ̃r)
is a local smooth section for the Diff(S; ι)0 action on Den×(S) ∩ h−1

S, ι([μ]), i.e.,

σ(μ) = id and σ(μ̃)∗μ = μ̃,

for all μ̃ ∈ U . By convexity, Den×(S) ∩ h−1
S, ι([μ]) is connected. Therefore, the

Diff(S; ι)0 action is transitive on Den×(S) ∩ h−1
S, ι([μ]). This shows (a) and (b). Part

(c) follows immediately.
To see (d), let A denote the preimage of∏r

i=1 Hk i (S i ;OS i )[μ i] under the canonical
linear surjection H(S, ι) → ∏r

i=1 Hk i (S i ;OS i ). Hence, A is a finite union of affine
subspaces in H(S, ι). In view of (2.7), we have∏r

i=1 Den(S i)μ i = Den×(S) ∩ h−1
S, ι(A).

Combining this with (2.29), we conclude that Den(S)ι ,μ is a splitting smooth sub-
manifold in∏r

i=1 Den(S i)μ i with finite codimension dim A. ∎
Let us next establish the following infinitesimal version of Lemma 2.12.

Lemma 2.13 Let S be a closed submanifold of N such that dim(S) < dim(N) = n. Sup-
pose μ ∈ Den×(N), γ ∈ Ωn−1(N , S;ON) ∶= {α ∈ Ω(N ;ON) ∶ ι∗S α = 0}, and Z ∈ X(S).
Then there exists a vector field X ∈ X(N) such that LX μ = dγ and X∣S = Z.

Proof Let Z̃ ∈ X(N) be any extension of Z, i.e., Z̃∣S = Z. Note that iZ̃ μ ∈
Ωn−1(N ;ON) vanishes when pulled back to S; hence, the same holds for β ∶= γ − iZ̃ μ ∈
Ωn−1(N ;ON).

Let us first construct γ̃ ∈ Ωn−1(N ;ON) such that dγ̃ = dβ and γ̃∣S = 0. To this
end, we fix a smooth homotopy h∶N × [0, 1] → N such that h1 = idN , ht ∣S = idS , and
such that h0 maps a neighborhood of S into S. Consider the corresponding chain
homotopy ϕ∶Ω∗(N ;ON) → Ω∗−1(N ;ON) defined by ϕ(α) ∶= ∫

1
0 ι∗t i∂ t h∗α dt, where

ιt ∶N → N × [0, 1] denotes the inclusion at t, that is, ιt(x) ∶= (x , t). Then ϕ(α)∣S =
0 and d(ϕ(α)) + ϕ(dα) = h∗1 α − h∗0 α, for all forms α ∈ Ω∗(N ;ON). In particular,
dα = d (h∗0 α + ϕ(dα)). Defining γ̃ ∶= h∗0 β + ϕ(dβ), we obtain dγ̃ = dβ. Moreover,
h∗0 β∣S = 0 because β vanishes when pulled back to S, and hence γ̃∣S = 0, as desired.

Defining a vector field Y ∈ X(N) by iY μ ∶= γ̃, we obtain Y ∣S = 0 and LY μ = diY μ =
dγ̃ = d(γ − iZ̃ μ) = dγ − LZ̃ μ. Hence, the vector field X ∶= Z̃ + Y has the desired prop-
erties. ∎
Proof of Lemma 2.12 Recall that the infinitesimal Diff(N , S) action on Diff(S) ×
Den(N) is

ζX( f , μ) = (RX∣S ( f ),−LX μ) ,

where X ∈ X(N , S), f ∈ Diff(S), and μ ∈ Den(S). Here, for Z ∈ Tid Diff(S) = X(S),
we let RZ( f ) denote the right invariant vector field on Diff(S) such that RZ(id) = Z.
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Note that the vector field Z̃ in the proof of Lemma 2.13 can be chosen to depend
smoothly (and linearly) on Z. Hence, the proof of said lemma actually provides a
smooth map

σ̃ ∶ Tid Diff(S) × T (Den×(N) ∩ h−1(κ)) → X(N , S)
such that ζσ̃(Z ,dγ)(id, μ) = (Z , dγ) for all Z ∈ X(S) = Tid Diff(S), μ ∈ Den×(N) ∩
h−1(κ), and dγ ∈ dΩn−1(N , S;ON) = Tμ (Den×(N) ∩ h−1(κ)). Combining this with
the right trivialization of T Diff(S), we obtain a smooth map

σ ∶ T(Diff(S) × (Den×(N) ∩ h−1(κ))) → X(N , S)

such that ζσ(Z ,ξ)( f , μ) = (Z , ξ) for all f ∈ Diff(S), Z ∈ Tf Diff(S), μ ∈ Den×(N) ∩
h−1(κ), and ξ ∈ Tμ (Den×(N) ∩ h−1(κ)). As Diff(N , S) is a regular Lie group, we
may apply Lemma A.2 to conclude that the Diff(N , S)0 action on (2.31) admits local
smooth sections. ∎

This completes the proof of Theorem 2.11.

Remark 2.14 In view of Remark 2.3, we expect that the isotropy subgroup

Diff(S; ι, μ) ∶= {(g1 , . . . , gr) ∈ Diff(S, ι) ∣ ∀i ∶ g∗i μ i = μ i}(2.34)

is a splitting Lie subgroup of Diff(S; ι) with Lie algebra

X(S, ι, μ) = {(Z1 , . . . , Zr) ∈ X(S, ι) ∣ ∀i ∶ LZ i μ i = 0} ,(2.35)

and the surjective map provided by the action, Diff(S, ι) → Den(S)ι ,μ , is a locally
trivial smooth principal fiber bundle with structure group Diff(S; ι, μ). This would
follow in a rather straightforward manner, via induction on the depth of the flags,
if one could show that the isotropy group { f ∈ Diff(N , S) ∶ f ∣S = id, f ∗μ = μ} is
a splitting Lie subgroup in Diff(N , S), whenever S is a closed submanifold of N
and μ is a volume density on N. The proof in [11, Theorem III.2.5.3 on page 203]
covers the case S = ∅. However, the adaptation of said proof to nontrivial S is not
entirely straightforward, and we will not attempt to prove this here. Note that via
the diffeomorphism in (2.24), the group Diff(S; ι, μ) corresponds to the subgroup of
Diff(Sr ; Σ) consisting of all diffeomorphisms that preserve μr and whose restriction
to Σ i preserves (ιr−1 ○ ⋅ ⋅ ⋅ ○ ι i)∗μ i , for 1 ≤ i ≤ r − 1. Similarly, the Lie algebraX(S; ι, μ)
can be identified to the corresponding subalgebra of X(Sr ; Σ).

If the expectation formulated in the preceding paragraph were indeed true, then
the surjective and Diff(M) equivariant map

EmbSr(M) = FrS, ι(M) → Flagwt
S, ι ,μ(M),(2.36)

(φ1 , . . . , φr) ↦ ((φ1(S1), (φ1)∗μ1) , . . . , (φr(Sr), (φr)∗μr)),(2.37)

would be a locally trivial smooth principal fiber bundle with structure group
Diff(S; ι, μ) (see (2.26)). Moreover, generalizing Remark 2.4, the isotropy group of
a weighted flag (N, ν),

Diff c(M;N, ν) ∶= {g ∈ Diff c(M) ∣ ∀i ∶ g(N i) = N i , g∣∗N i
ν i = ν i} ,
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would be a splitting Lie subgroup of Diff c(M), for it coincides with the preimage of
Diff(S; ι, μ) under the bundle projection Diff c(M;N) → Diff(N, ιN) (cf. [9, Lemma
2.1(d) and Propositions 2.9(b) and 2.10(a)]). Furthermore, the orbit map Diff c(M) →
Flagwt

S (M)(N,ν) provided by the action would be a locally trivial smooth principal
bundle with structure group Diff c(M;N, ν). Hence, the Diff c(M) orbit of (N, ν)
could be regarded as a homogeneous space

Flagwt
S (M)(N,ν) = Diff c(M)/Diff c(M;N, ν).

2.5 A homological description

In this section, we give a more explicit description of the manifold Flagwt
S, ι ,μ(M).

If N = (N1 , . . . , Nr) is a nonlinear flag of type S in M, we put

H(N) ∶=
r
∏
i=1

Hk i (N i , N i−1;ON i ) =
r
∏
i=1

H0 (N i/N i−1;R) ,

with the convention that N0 = ∅.
We define the space of homologically weighted flags of type S in M by

Flaghwt
S (M) ∶= {(N, [ν]) ∶ N ∈ FlagS(M), [ν] ∈ H(N)} .

Note that we have a Diff(M) equivariant forgetful map

Flaghwt
S (M) → FlagS(M),(2.38)

as well as a Diff(M) equivariant map

hFlagS(M) ∶ Flagwt
S (M) → Flaghwt

S (M), (N, ν) ↦ (N, [ν]).(2.39)

Let Flaghwt
S, ι (M) denote the preimage of the open subset FlagS, ι(M) under the

projection in (2.38). Using the canonical Diff(M) equivariant identifications

Flaghwt
S, ι (M) = EmbSr(M) ×Diff(S, ι) H(S, ι),(2.40)

we equip Flaghwt
S (M) with the structure of a smooth vector bundle of finite (possibly

nonconstant) rank over FlagS(M) and with projection (2.38). The map in (2.39) is
a smooth bundle map over FlagS(M). Indeed, via the identifications in (2.25) and
(2.40), the map hS, ι in (2.28) induces a bundle map Flagwt

S, ι(M) → Flaghwt
S, ι (M)which

coincides with the restriction of (2.39).
We define the space of homologically weighted flags of type (S, ι, [μ]) in M by

Flaghwt
S, ι ,[μ](M) ∶=

⎧⎪⎪⎨⎪⎪⎩
(N, [ν]) ∈ Flaghwt

S (M)
...........

(S1
ι1�→ S2

ι2�→ ⋅ ⋅ ⋅ → Sr , [μ])
≅ (N1 ⊆ N2 ⊆ ⋅ ⋅ ⋅ ⊆ Nr , [ν])

⎫⎪⎪⎬⎪⎪⎭
,

that is, the space of all homologically weighted flags (N, [ν]) in M such that there exist
diffeomorphisms S i → N i , 1 ≤ i ≤ r, intertwining ι i with the canonical inclusion N i ⊆
N i+1 and taking [μ] ∈ H(S, ι) to [ν] ∈ H(N). The diffeomorphism in (2.40) restricts
to a bijection

Flaghwt
S, ι ,[μ](M) = EmbSr(M) ×Diff(S;ι) H(S, ι)[μ] .(2.41)
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Hence, since the orbit H(S, ι)[μ] is finite, Flaghwt
S, ι ,[μ](M) is a Diff(M) invariant closed

submanifold in Flaghwt
S, ι (M) of codimension dim H(S, ι) by (2.40). Moreover, the

forgetful map

Flaghwt
S, ι ,[μ](M) → FlagS, ι(M)(2.42)

is a Diff(M) equivariant covering map with finite fibers.
We complement Theorem 2.11 with the following.

Theorem 2.15 In this situation, we have

Flagwt
S, ι ,μ(M) = h−1

FlagS(M)
(Flaghwt

S, ι ,[μ](M)) .

Proof This follows from the identity (2.29) in Proposition 2.10(c), using (2.26) and
(2.41). ∎
Remark 2.16 If the action of Diff(S, ι) on H(S, ι) is trivial, then the Diff(S, ι)0 and
Diff(S, ι) orbits in Den×(S) coincide in view of Proposition 2.10, and the forgetful
(covering) map in (2.42) is a diffeomorphism, Flaghwt

S, ι ,[μ](M) = FlagS, ι(M). This
happens in particular when all S i/ι(S i−1) are connected, as in Examples 2.17 and
2.18. Under the latter connectedness assumption, H(S, ι) = Rr via the isomorphism
[μ] ↦ (∫S1

μ1 , . . . , ∫Sr
μr) and

Den(S)ι ,μ = {α ∈ Den×(S) ∶ ∫S i
α i = ∫S i

μ i} .

Moreover, Theorem 2.15 ensures that

Flagwt
S, ι ,μ(M) = {(N, ν) ∈ Flagwt

S, ι(M) ∶ ∫N i
ν i = ∫S i

μ i} .(2.43)

This also applies in the situation of Remark 2.9, provided each model manifold S i
is connected. A description for nested spheres in the same vein can be found in
Example 2.19.

Example 2.17 (Nested tori) If (S, ι) denotes the standard (meridional) embed-
dings between tori, T0 ⊆ T1 ⊆ ⋅ ⋅ ⋅ ⊆ Tr , then H(S, ι) = Rr+1 via the isomorphism
[μ] ↦ (∫Ti μ i).
Example 2.18 (Nested projective spaces) If (S, ι) denotes the standard embeddings
between projective spaces, P0 ⊆ P1 ⊆ ⋅ ⋅ ⋅ ⊆ Pr , then H(S, ι) = Rr+1 via the isomor-
phism [μ] ↦ (∫Pi μ i).
Example 2.19 (Nested spheres [13]) If (S, ι) denotes the standard equatorial embed-
dings between spheres, S0 ⊆ S1 ⊆ ⋅ ⋅ ⋅ ⊆ Sr , then H(S, ι) = R2(r+1). The 2(r + 1) num-
bers assigned to [μ] ∈ H(S, ι) by this isomorphism are

(a+0 , a−0 , a+1 , a−1 , . . . , a+r , a−r ) = (∫S0
+

μ0 , ∫S0
−

μ0 , ∫S 1
+

μ1 , ∫S 1
−

μ1 , . . . , ∫S r
+

μr , ∫S r
−

μr) ,

where S i
+ and S i

− denote the northern and southern hemispheres of S i , respectively.
Considering reflections on hyperplanes, we see that for each 0 ≤ i ≤ r there exists a
diffeomorphism in Diff(S, ι) swapping S i

+ with S i
−, but leaving all other hemispheres

Sk
± invariant. Such a diffeomorphism interchanges a+i with a−i , but leaves all other

numbers a±k unchanged. Hence, the Diff(S, ι) orbit H(S, ι)[μ] has 2s elements,
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where s is the number of 0 ≤ i ≤ r with a+i ≠ a−i . Actually, the Diff(S, ι) action on
H(S, ι) ≅ R2(r+1) factorizes through a (Z2)2(r+1) action by switching or not the
numbers a+i and a−i . We obtain a description similar to the one in (2.43):

Flagwt
S, ι ,μ(M) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(N, ν) ∈ Flagwt

S, ι(M)
..............

{∫N+i ν i , ∫N−i ν i} = {a+i , a−i },
where N±i denote the connected

components of N i/N i−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.(2.44)

3 Coadjoint orbits of the Hamiltonian group

Throughout this section, (M , ω) denotes a symplectic manifold. The nonlinear Grass-
mannian of all isotropic submanifolds of type Sr in M, denoted by Griso

Sr
(M), is a

splitting smooth submanifold in GrSr(M) which is invariant under the Hamiltonian
group. In fact, the Ham(M) orbits provide a smooth foliation of finite codimension
in Griso

Sr
(M) which is called the isodrastic foliation [15, 26].

Suppose L is an isodrastic leaf in Griso
Sr
(M), and let Flagwt iso

S, ι ,μ (M)∣L denote the
preimage of L under the canonical bundle projection Flagwt

S, ι ,μ(M) → GrSr(M). We
will show that the natural Hamc(M) action on Flagwt iso

S, ι ,μ (M)∣L admits local smooth
sections. In particular, each connected component of the latter space is an orbit of
Hamc(M).

The space Flagwt iso
S, ι ,μ (M)∣L comes equipped with a canonical weakly non-

degenerate symplectic form, and the restriction of (2.18) provides a Ham(M) equiv-
ariant injective moment map for the Hamc(M) action,

J∶Flagwt iso
S, ι ,μ (M)∣L ↪ hamc(M)∗ , ⟨J(N, ν), X f ⟩ =

r
∑
i=1
∫

N i

f ν i .

This moment map J maps each connected component of Flagwt iso
S, ι ,μ (M)∣L one-to-

one onto the corresponding coadjoint orbit (see Theorem 3.15). Thereby, we identify
coadjoint orbits of the Hamiltonian group Hamc(M) that can be modeled on weighted
nonlinear flags.

The material in this section is inspired by the results in [7, 15, 26] on weighted
isotropic nonlinear Grassmannians.

3.1 Isodrasts as Ham(M) orbits

In view of the tubular neighborhood theorem for isotropic embeddings [24, 25], the
space Griso

S (M) of all isotropic submanifolds of type S in M is a splitting smooth
submanifold of GrS(M) (see, for instance, [15, Section 8]). The tangent space at an
isotropic submanifold N is

TN Griso
S (M) = {uN ∈ Γ(TN⊥)∣ι∗N iuN ω ∈ Ω1(N) closed},

where TN⊥ ∶= TM∣N/TN denotes the normal bundle to N.
Weinstein’s [26] isodrastic distribution D on Griso

S (M) is given by

DN ∶= {uN ∈ Γ(TN⊥)∣ι∗N iuN ω ∈ dC∞(N)}(3.1)
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and has finite codimension dim H1(S;R). This is an integrable distribution [15, 26]
whose leaves are orbits of Ham(M). It gives rise to a smooth foliation of Griso

S (M)
called the isodrastic foliation. In particular, the Ham(M) orbits in Griso

S (M) are
splitting smooth submanifolds.

Restricting the fundamental frame bundle in (2.1), we obtain a principal Diff(S)
bundle Embiso

S (M) → Griso
S (M) with total space Embiso

S (M), the splitting smooth
submanifold of EmbS(M) consisting of all isotropic embeddings. On Embiso

S (M), we
consider the pullback of the isodrastic distribution D:

Dφ ∶= {uφ ∈ Γ(φ∗TM) ∶ φ∗ iuφ ω ∈ dC∞(S)} .(3.2)

This is an integrable distribution with the same codimension, dim H1(S;R), and the
leaves ofD are connected components in the preimage of a leaf ofD. According to [15,
26], the group Ham(M) acts transitively on the leaves of D. We need the subsequent
slightly stronger statement in Proposition 3.1.

The Lie algebra of compactly supported Hamiltonian vector fields will be denoted
by hamc(M) = {X f ∶ f ∈ C∞c (M)}. We let Hamc(M) denote the group of diffeomor-
phisms obtained by integrating time dependent vector fields in hamc(M). For our
purpose, it will not be necessary to consider Hamc(M) as an infinite-dimensional
Lie group (cf. [14, Section 43.13]). By a smooth map (section) into Hamc(M), we will
simply mean a smooth map into Diff c(M) that takes values in Hamc(M).
Proposition 3.1 The Hamc(M) action on each leaf E ⊆ Embiso

S (M) of the isodrastic
foliation D admits local smooth sections.

Proof To show infinitesimal transitivity, suppose φ ∈ Embiso
S (M) and uφ ∈Dφ (cf.

(3.2)). Hence, there exists f̄ ∈ C∞(S) such that d f̄ = φ∗ iuφ ω. We extend f̄ to a
function f1 ∈ C∞c (M) such that f̄ = f1○φ. The 1-form β on M along S defined by

β = d f1○φ − iuφ ω ∈ Γ(φ∗T∗M)(3.3)

vanishes on vectors tangent to φ(S) ⊆ M. Hence, β can be seen as a fiberwise linear
function on the normal bundle Tφ(S)⊥ whose differential along the zero section φ(S)
coincides with β itself. Thus, with the help of a tubular neighborhood of φ(S) in M
and a suitable bump function, we get f2 ∈ C∞c (M) such that β = d f2○φ. It follows from
(3.3) that d f ○φ = iuφ ω for f = f1 − f2. We conclude that uφ = X f ○φ is the infinitesimal
generator at φ for the Hamiltonian vector field X f ∈ hamc(M).

Using tubular neighborhoods constructed with the help of a Riemannian metric,
say, we see that the function f may be chosen to depend smoothly on φ and uφ , for φ in
a sufficiently small open neighborhood of a fixed isotropic embedding φ0 ∈ E. Hence,
we may apply Lemma A.2 and conclude that the Hamc(M) action admits local smooth
sections. ∎
Corollary 3.2 The Hamc(M) action on each leaf L ⊆ Griso

S (M) of the isodrastic
foliation D admits local smooth sections.

Example 3.3 Every embedded closed curve in the plane is a Lagrangian submanifold
of (R2 , ω), where ω is the canonical area form, thus an element of Griso

S 1 (R2). The
isodrastic distribution D has codimension one. The enclosed area a singles out one
isodrast La ⊆ Griso

S 1 (R2), i.e., one orbit of Hamc(R2).
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A similar phenomena happens for Lagrangian k-tori in R
2k , i.e., elements of

Griso
Tk (R2k), whereTk ∶= (S1)k . To any φ ∈ Embiso

Tk (R2k), we assign the symplectic area
a i of the surface in R

2k enclosed by the ith meridian φ i(θ) = φ(1, . . . , θ , . . . , 1) of the
embedded k-torus. These numbers are independent of the choice of the meridian in
its homotopy class and of the surface having the meridian as boundary. The k-tuple
(a1 , . . . , ak) is an invariant under isodrastic deformations. Actually, a i is the action
integral of the ith meridian, as defined in [26].

Let Ea1 , . . . ,ak ⊆ Embiso
Tk (R2k) be the space of all isotropic embeddings having sym-

plectic areas a1 , . . . , ak . It is a union of isodrastic leaves of Lagrangian embeddings,
but it is not necessarily Diff(Tk) saturated. The Diff(Tk) action on the k-tuples
(a1 , . . . , ak) factorizes through a GL(k,Z) action. Let [a1 , . . . , ak] denote the orbit
of (a1 , . . . , ak). We define L[a1 , . . . ,ak] ⊆ Griso

Tk (R2k) to be the image of Ea1 , . . . ,ak under
the principal Diff(Tk) bundle projection (2.1). Thus,L[a1 , . . . ,ak] is a union of isodrastic
leaves of Lagrangian k-tori in R

2k .
There is also a direct description of L[a1 , . . . ,ak]. Given a Lagrangian torus N ∈

GrS
Tk(R2k), we choose a base {[γ1], . . . , [γk]} of H1(N ,Z), where γ i are loops in N

with action integrals a i . We observe that the GL(k,Z) orbit [a1 , . . . , ak] is indepen-
dent of the choices andL[a1 , . . . ,ak] is the space of all Lagrangian tori in GrS

Tk(R2k) such
that the orbit of these action integrals is [a1 , . . . , ak].

We will also need the following observation.

Lemma 3.4 If L is an isotropic submanifold in M, then the canonical inclusion
GrS(L) ⊆ Griso

S (M) is a splitting smooth submanifold. Moreover, each connected com-
ponent of GrS(L) is a splitting smooth submanifold in an isodrastic leaf in Griso

S (M).

Proof Suppose N ∈ GrS(L), i.e., N ≅ S is a closed submanifold in L. By the tubular
neighborhood theorem, we may w.l.o.g. assume that L is the total space of a vector
bundle p∶ L → N , the normal bundle of N in L, and identify N with the zero section
in L. We have a canonical short exact sequence 0→ p∗L → TL → p∗TN → 0 of vector
bundles over L. Choosing a linear connection on L, we obtain a splitting of this
sequence and thus an isomorphism TL ≅ p∗TN ⊕ p∗L of vector bundles over L.
Dualizing, we obtain an isomorphism T∗L ≅ p∗T∗N ⊕ p∗L∗ of vector bundles over
L. We regard this as a diffeomorphism

T∗L ≅ T∗N ⊕ L ⊕ L∗

that maps the zero section L ⊆ T∗L identically onto the summand L on the right-hand
side. Via this isomorphism, we have

θL = π∗1 θN + π∗2κ,

where π1 and π2 denote the projections from T∗N ⊕ L ⊕ L∗ onto T∗N and L ⊕ L∗,
respectively, θL ∈ Ω1(T∗L) and θN ∈ Ω1(T∗N) denote the tautological 1-forms, and
κ ∈ Ω1(L ⊕ L∗). Indeed, a straightforward computation yields κ(ξ) = �′(C(Tq ⋅ ξ))
where x ∈ N , � ∈ Lx , �′ ∈ L∗x , ξ ∈ T(�,�′)(L ⊕ L∗), q∶ L ⊕ L∗ → L denotes the projection,
and C denotes the linear connection on L, viewed as a fiberwise linear map C∶TL →
p∗L over L.
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By the tubular neighborhood theorem for isotropic embeddings [24, 25], we may
assume M = T∗L ⊕ p∗E and ω = π̃∗1 dθL + π̃∗2 ρ, where E is a vector bundle over N, π̃1
and π̃2 denote the projections from T∗L ⊕ p∗E onto T∗L and p∗E, respectively, and ρ
is a closed 2-form on the total space of p∗E. Combining this with the diffeomorphism
in the previous paragraph, we obtain a diffeomorphism

M = T∗N ⊕ L ⊕ L∗ ⊕ E ,(3.4)

mapping L ⊆ M identically onto the summand L on the right-hand side, and such that

ω = π∗1 dθN + π∗2 σ ,

where π1 and π2 denote the projections from T∗N ⊕ L ⊕ L∗ ⊕ E onto T∗N and L ⊕
L∗ ⊕ E, respectively, and σ is a closed 2-form on the total space of L ⊕ L∗ ⊕ E.

The diffeomorphism in (3.4) provides a (standard) chart for the smooth structure
on GrS(M) centered at N,

Γ(T∗N ⊕ L ⊕ L∗ ⊕ E) → GrS(M), ϕ ↦ ϕ(N).

In this chart, the inclusions GrS(L) ⊆ Griso
S (M) ⊆ GrS(M) become

Γ(L) ⊆ {(α, ξ) ∈ Ω1(N)×Γ(L ⊕ L∗ ⊕ E) ∶ dα + ξ∗σ = 0}⊆Ω1(N) × Γ(L⊕L∗⊕E).
(3.5)

As L is isotropic, σ vanishes when pulled back to L. Hence, by the Poincaré lemma,
σ = dβ for a 1-form β on the total space of L ⊕ L∗ ⊕ E which vanishes along L. Via
the diffeomorphism of Ω1(N) × Γ(L ⊕ L∗ ⊕ E) given by (α, ξ) ↦ (α − ξ∗β, ξ), the
inclusions in (3.5) become linear inclusions,

Γ(L) ⊆ Z1(N) × Γ(L ⊕ L∗ ⊕ E) ⊆ Ω1(N) × Γ(L ⊕ L∗ ⊕ E),

where Z1(N) denotes the space of closed 1-forms on N. Clearly, both inclusions admit
complementary subspaces. In particular, GrS(L) is a splitting smooth submanifold in
Griso

S (M). The second assertion follows from the fact that the isodrastic leaf through
N corresponds to the subspace B1(N) × Γ(L ⊕ L∗ ⊕ E) (see [15, Section 8]). ∎

3.2 Weighted isotropic nonlinear Grassmannians as coadjoint orbits

In this section, we recall the results in [7, 15, 26] about coadjoint orbits of the Hamil-
tonian group Hamc(M)modeled on weighted isotropic nonlinear Grassmannians of
type S in M, and extend them to a possibly nonconnected model manifold S. Here, we
present them in a manner that readily generalizes to manifolds of weighted nonlinear
flags.

Let S be a closed k-dimensional manifold. The preimage of Griso
S (M) under the

canonical bundle projection Grwt
S (M) → GrS(M) is a splitting smooth submanifold

in Grwt
S (M) which will be denoted by Grwt iso

S (M). The diffeomorphism in (2.3)
restricts to a diffeomorphism of bundles over Griso

S (M),

Grwt iso
S (M) = Embiso

S (M) ×Diff(S) Den×(S).
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The preimage of Griso
S (M) under the canonical bundle projection Grwt

S ,μ(M) →
GrS(M) is a splitting smooth submanifold in Grwt

S ,μ(M) which will be denoted
by Grwt iso

S ,μ (M) and will be referred to as the nonlinear Grassmannian of weighted
isotropic submanifolds of type (S , μ) in M. The diffeomorphism in (2.5) restricts to
a diffeomorphism of bundles over Griso

S (M),

Grwt iso
S ,μ (M) = Embiso

S (M) ×Diff(S) Den(S)μ .

We recall the Diff(S) equivariant linear map hS ∶ Den(S) → Hk(S ,OS), hS(α) =
[α] in (2.6), with kernel dΩk−1(S ,OS), which we restrict to Den×(S). The product
of integrable distributions D × ker ThS on Embiso

S (M) ×Den×(S) descends to an
integrable distribution

D̄ ∶=D ×Diff(S) ker ThS

on Grwt iso
S (M), of codimension dim H1(S;R) + dim Hk(S;OS). The image of D̄

under the forgetful map Grwt iso
S (M) → Griso

S (M) is the isodrastic distribution D in
(3.1). In view of (2.7), each leaf G of D̄ is a connected component in the preimage of
an isodrast L in Griso

S (M) under the bundle projection Grwt iso
S ,μ (M) → Griso

S (M), for
some volume density μ on S. Hence, each leafG of D̄ is a splitting smooth submanifold
of codimension dim H1(S;R) in Grwt iso

S ,μ (M).
According to [15, 26], the group Ham(M) acts transitively on the leaves of D̄. We

need the following slightly stronger statement.

Proposition 3.5 The Hamc(M) action on each leaf G ⊆ Grwt iso
S (M) of the isodrastic

foliation D̄ admits local smooth sections.

Proof Suppose L is an isodrastic leaf in Griso
S (M), and let Grwt iso

S ,μ (M)∣L denote
its preimage under the bundle projection Grwt iso

S ,μ (M) → Griso
S (M). It suffices to

show that the Hamc(M) action on Grwt iso
S ,μ (M)∣L admits local smooth sections. The

diffeomorphism in (2.5) restricts to a diffeomorphism

Grwt iso
S ,μ (M)∣L = Embiso

S (M)∣L ×Diff(S) Den(S)μ .(3.6)

By Proposition 3.1, the Hamc(M) action on Embiso
S (M)∣L admits local smooth

sections. According to Proposition 2.10(b), the Diff(S) action on Den(S)μ admits
local smooth sections too. Using Lemma A.1 in the Appendix, we conclude that
the Hamc(M) action on the associated bundle in (3.6) admits local smooth
sections. ∎

Lemma 3.6 [15] The leafwise differential 2-form on (Embiso
S (M) ×Den×(S),

D × ker ThS), given by

Ω(φ ,α)((uφ , dλ), (vφ , dγ)) ∶= ∫
S
(ω(uφ , vφ)α − φ∗ iuφ ω ∧ γ + φ∗ ivφ ω ∧ λ),(3.7)

is closed and Diff(S) invariant. Moreover, its kernel is spanned by the infinitesimal
generators of the Diff(S) action.

In Section 3.4, we will need the following relative version of part of Lemma 3.6.
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Lemma 3.7 Let Σ be a closed submanifold in S of codimension at least one. Sup-
pose (φ, α) ∈ Embiso

S (M) ×Den×(S) and (uφ , dλ) ∈Dφ × ker Tα hS . If the leafwise
differential 2-form (3.7) vanishes for all (vφ , dγ) ∈Dφ × ker Tα hS with ι∗Σγ = 0 and
vφ ∣Σ = 0, then (uφ , dλ) is the infinitesimal generator of some Z ∈ X(S) at (φ, α), i.e.,
(uφ , dλ) = (Tφ ○ Z , LZ α).
Proof Choosing vφ = 0 in (3.7), we obtain ∫S(φ∗ iuφ ω) ∧ γ = 0 for all γ ∈
Ωk−1(S ,OS) with i∗Σγ = 0. Since the codimension of Σ in S is at least one, this yields
φ∗ iuφ ω = 0; hence, uφ takes values in the symplectic orthogonal to φ(S) in M. In
particular, (3.7) yields

∫
S

ω(uφ , vφ)α + ∫
S

φ∗ ivφ ω ∧ λ = 0(3.8)

for all vφ with vφ ∣Σ = 0.
To show that uφ is tangential to φ(S), we assume by contradiction that there is

a point x ∈ S such that uφ(x) is not tangent to φ(S). Since the codimension of Σ is
at least one, we may assume x ∉ Σ. We now consider tangent vectors vφ ∈Dφ taking
values in the symplectic orthogonal to φ(S), i.e., φ∗ ivφ ω = 0, supported in S/Σ. The
isotropic embedding theorem of Weinstein [25] allows to choose vφ such that in
addition ω(uφ , vφ) ∈ C∞(S) is a nonzero nowhere negative function. Plugging vφ
in (3.8), we obtain ∫S ω(uφ , vφ)α > 0, leading to a contradiction. Thus, there exists
Z ∈ X(S) with uφ = Tφ○Z.

For each h ∈ C∞(S) with dh∣Σ = 0, there exists vφ ∈Dφ with vφ ∣Σ = 0 such that
φ∗ ivφ ω = dh. Plugging this into the identity in (3.8) and using Stokes’ theorem yields
∫S hd(λ − iZ α) = 0. In particular, this holds for all h with supp(h) ∩ Σ = ∅. As the
codimension of Σ is at least one, this implies d(λ − iZ α) = 0, and hence dλ = LZ α. ∎

By Lemma 3.6, the leafwise differential 2-form Ω in (3.7) descends to a leafwise
symplectic form Ω̄ on (Grwt iso

S (M), D̄). Thus, every leaf G of the isodrastic distri-
bution D̄ in Grwt iso

S (M) is endowed with a symplectic form, the restriction of Ω̄,
which we denote by the same letter. By Proposition 3.5, G is an orbit for the Hamc(M)
action on the weighted isotropic nonlinear Grassmannian Grwt iso

S (M). This action is
Hamiltonian with injective and Symp(M) equivariant moment map [15]

J ∶ G ⊆ Grwt iso
S (M) → hamc(M)∗ , ⟨J(N , ν), X f ⟩ = ∫

N
f ν.(3.9)

Here, we use the Symp(M) equivariant isomorphism hamc(M) = C∞0 (M) where
the latter denotes the Lie algebra of all compactly supported functions on M for
which the integral with respect to the Liouville form vanishes on all closed connected
components of M.

For connected S, the subsequent theorem is due to Weinstein [26] in the Lagrangian
case and due to Lee [15] for isotropic submanifolds.

Theorem 3.8 [15, 26] The moment map J∶ (G, Ω̄) → hamc(M)∗ in (3.9) is one-to-
one onto a coadjoint orbit of the Hamiltonian group Hamc(M). The Kostant–Kirillov–
Souriau symplectic form ωKKS on the coadjoint orbit satisfies J∗ωKKS = Ω̄.

In this generality, the theorem follows from the discussion above and the following
folklore result (see, for instance, the Appendix in [9]):
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Proposition 3.9 Suppose the action of G on (M, Ω) is transitive with injective equiv-
ariant moment map J ∶M→ g∗. Then J is one-to-one onto a coadjoint orbit of G.
Moreover, it pulls back the Kostant–Kirillov–Souriau symplectic form ωKKS on the
coadjoint orbit to the symplectic form Ω.

The same coadjoint orbits of the Hamiltonian group, under the additional restric-
tion H1(S;R) = 0 on the closed connected manifold S, can be obtained via symplectic
reduction in the Marsden–Weinstein ideal fluid dual pair [5, 17], as shown in [7].
With a choice of an ambient Riemannian metric, the reduced symplectic form can
be expressed as a sum of three terms (see [7, Theorem 4.1]). These are analogous to
the three summands appearing in our natural approach via the associated bundle
construction (see (3.7)), which avoids the auxiliary Riemannian metric.

3.3 Manifolds of isotropic nonlinear flags

In this section, we extend the constructions of the previous section to nonlinear flags.
As in Section 2.3, we let ι = (ι1 , . . . , ιr−1) denote a collection of fixed embeddings

ι i ∶ S i → S i+1. We let Flagiso
S, ι(M) denote the preimage of Griso

Sr
(M) under the canonical

bundle projection FlagS, ι(M) → GrSr(M) (cf. [9, Remark 2.11]). This is a splitting
smooth submanifold in FlagS, ι(M) called the manifold of isotropic nonlinear flags of
type (S, ι) in M. Using Lemma 3.4, and proceeding by induction on the depth of the
flag, one readily shows that the canonical inclusion

Flagiso
S, ι(M) ⊆

r
∏
i=1

Griso
S i
(M)(3.10)

is a splitting smooth submanifold.
Let Flagwt iso

S, ι (M) denote the preimage of Flagiso
S, ι(M) under the canonical bun-

dle projection Flagwt
S, ι(M) → FlagS, ι(M). This is a splitting smooth submanifold in

Flagwt
S, ι(M) called the manifold of weighted isotropic nonlinear flags of type (S, ι)

in M. The diffeomorphism in (2.25) restricts to a diffeomorphism of bundles over
Flagiso

S, ι(M),

Flagwt iso
S, ι (M) = Embiso

Sr
(M) ×Diff(S;ι) Den×(S).

The canonical inclusion Flagwt iso
S, ι (M) ⊆ ∏

r
i=1 Grwt iso

S i
(M) is a splitting smooth sub-

manifold in view of (3.10).
As in Section 2.4, we fix μ = (μ1 , . . . , μr) ∈ Den×(S), and let Flagwt iso

S, ι ,μ (M) denote
the preimage of Flagiso

S, ι(M) under the canonical bundle projection Flagwt
S, ι ,μ(M) →

FlagS, ι(M). This is a splitting smooth submanifold in Flagwt
S, ι ,μ(M) called the mani-

fold of weighted isotropic nonlinear flags of type (S, ι, μ) in M. The diffeomorphism in
(2.26) restricts to a diffeomorphism

Flagwt iso
S, ι ,μ (M) = Embiso

Sr
(M) ×Diff(S;ι) Den(S)ι ,μ .(3.11)

Using (3.10) and proceeding as in the proof of Theorem 2.11(c), one readily shows
that the canonical inclusion Flagwt iso

S, ι ,μ (M) ⊆ ∏
r
i=1 Grwt iso

S i ,μ i
(M) is a splitting smooth

submanifold.
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Recall the Diff(S; ι) equivariant linear map hS, ι ∶ Den(S) → H(S, ι) in (2.28) with
kernel

ker ThS, ι = {(dγ1 , . . . , dγr) ∶ γ i ∈ Ωk i−1(S i ;OS i ), ι∗i−1γ i = 0},

whose restriction to Den×(S) we also denote by hS, ι . The product with the iso-
drastic distribution gives the integrable distribution D × ker ThS, ι on Embiso

Sr
(M) ×

Den×(S), of finite codimension dim H1(Sr ;R) + dim H(S, ι). This Diff(S; ι) invari-
ant distribution descends to an integrable distribution

D̄ =D ×Diff(S;ι) ker ThS, ι

of the same codimension on Flagwt iso
S, ι (M). The image of D̄ under the forgetful map

is an integrable distribution on Flagiso
S, ι(M) of codimension dim H1(Sr ;R), which

coincides with the distribution that descends from the Diff(S; ι) invariant isodrastic
distribution D on Embiso

Sr
(M) by the principal bundle projection. Using Proposition

2.10(c) and (3.11), we see that each leaf F of D̄ is a connected component in the
preimage of an isodrast L in Griso

Sr
(M) under the bundle projection Flagwt iso

S, ι ,μ (M) →
Griso

Sr
(M), for some volume density μ on S. Hence, each leaf F of D̄ is a splitting

smooth submanifold of codimension dim H1(Sr ;R) in Flagwt iso
S, ι ,μ (M).

Remark 3.10 If H1(Sr ;R) = 0, then the leaves of the isodrastic foliation D̄ are the
connected components of Flagwt iso

S, ι ,μ (M).

Proposition 3.11 The Hamc(M) action on each leafF ⊆ Flagwt iso
S, ι (M) of the isodrastic

foliation D̄ admits local smooth sections.

Proof Suppose L is an isodrastic leaf in Griso
Sr
(M), and let Flagwt iso

S , ι ,μ (M)∣L denote
its preimage under the canonical projection Flagwt

S , ι ,μ(M) → GrSr(M). It suffices to
show that the Hamc(M) action on Flagwt iso

S , ι ,μ (M)∣L admits local smooth sections. The
diffeomorphism in (3.11) restricts to a diffeomorphism

Flagwt iso
S , ι ,μ (M)∣L = Embiso

Sr
(M)∣L ×Diff(S;ι) Den(S)ι ,μ .(3.12)

By Proposition 3.1, the Hamc(M) action on Embiso
Sr
(M)∣L admits local smooth sec-

tions. According to Proposition 2.10(c), the Diff(S; ι) action on Den(S)ι ,μ admits local
smooth sections too. With the help of Lemma A.1, we conclude that the Hamc(M)
action on the associated bundle (3.12) admits local smooth sections. ∎

Corollary 3.12 The Hamc(M) action on each leaf of the isodrastic foliation on
Flagiso

S, ι(M) admits local smooth sections.

3.4 Weighted isotropic nonlinear flag manifolds as coadjoint orbits

In this section, we describe coadjoint orbits of the Hamiltonian group consisting of
weighted isotropic nonlinear flags.
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We aim at defining a leafwise symplectic form Ω̄ on (Flagwt iso
S, ι (M), D̄). We start

with leafwise differential 2-forms Ωi on (Embiso
S i
(M) ×Den×(S i),Di × ker ThS i ), for

i = 1, . . . , r, defined as in Lemma 3.6. Let j i ∶= ιr−1○ ⋅ ⋅ ⋅ ○ι i ∈ Emb(S i , Sr). We consider

q i ∶= j∗i × pri ∶ Embiso
Sr
(M) ×Den×(S) → Embiso

S i
(M) ×Den×(S i),

which maps the distribution D × ker ThS, ι to Di × ker ThS i . Then

Ω ∶=
r
∑
i=1

q∗i Ω i(3.13)

is a closed leafwise differential 2-form on (Embiso
Sr
(M) ×Den×(S),D × ker ThS, ι).

Remark 3.13 The image under Tq i of the distribution D × ker ThS, ι is, in general,
strictly included in the distribution Di × ker ThS i . The reason is that the projection
on the ith factor pri ∶ ker ThS, ι → ker ThS i is not surjective in general. This happens,
for instance, in the setting of Example 3.19, where ι ∶ {1, . . . , k} → S1 with k ≥ 2:
the projection on the second factor is d{γ ∈ C∞(S1) ∶ γ○ι = 0}, strictly included in
ker ThS 1 = dC∞(S1).

The Diff(S; ι) action on Embiso
Sr
(M) ×Den×(S),

g ⋅ (φ, (α i)) = (φ○gr , (g∗i α i)), for g = (g1 , . . . , gr) ∈ Diff(S; ι),(3.14)

has infinitesimal generators of the form

ζZ(φ, (α i)) = (Tφ○Zr , (LZ i α i)), for Z = (Z1 , . . . , Zr) ∈ X(S; ι).(3.15)

They belong to the integrable distribution D × ker ThS, ι . Notice that q i = j∗i × pri is
equivariant over the homomorphism g ∈ Diff(S; ι) ↦ g i ∈ Diff(S i), because j i○g i =
gr○ j i for all i. Now, from the Diff(S i) invariance of Ω i and (3.13), we deduce the
Diff(S; ι) invariance of Ω.

Proposition 3.14 The kernel of the leafwise differential 2-form Ω on (Embiso
Sr
(M) ×

Den×(S),D×ker ThS, ι) in (3.13) is spanned by the infinitesimal generators of the
Diff(S; ι) action (3.14) on Embiso

Sr
(M) ×Den×(S).

Proof The contraction of Ω with an infinitesimal generator ζZ , given in (3.15),
vanishes for all Z ∈ X(S; ι). This follows from the analogous statement for Ωi and the
infinitesimal generators ζZ i on Embiso

S i
(M) ×Den×(S i) in Lemma 3.6, together with

the fact that the infinitesimal generators ζZ and ζZ i are q i related (cf. (3.13)).
To prove the converse implication, we will proceed by induction on r, the length

of S, using Lemma 3.7. The formula for the leafwise 2-form in Lemma 3.6 provides a
similar formula for Ω:

Ω(φ ,(α i))((uφ , (dλ i)), (vφ , (dγ i))) =
r
∑
i=1
∫

S i

j∗i ω(uφ , vφ)α i

−
r
∑
i=1
∫

S i

j∗i (φ∗ iuφ ω) ∧ γ i +
r
∑
i=1
∫

S i

j∗i (φ∗ ivφ ω) ∧ λ i .(3.16)
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Suppose (uφ , (dλ i)) is in the kernel of Ω(φ ,(α i)). Considering γ1 = ⋅ ⋅ ⋅ = γr−1 = 0, we
obtain

∫
Sr

ω(uφ , vφ)αr − ∫
Sr

φ∗ iuφ ω ∧ γr + ∫
Sr

φ∗ ivφ ω ∧ λr = 0,(3.17)

for all γr with ι∗r−1γr = 0, and all vφ with vφ ∣ιr−1(Sr−1) = 0. By Lemma 3.7, there
exists Zr ∈ X(Sr) such that Tφ ○ Zr = uφ and LZr αr = dλr . Using Lemma 3.6, we
conclude that (3.17) holds for all γr and vφ . Combining this with (3.16), we see that
(uφ ○ ιr−1 , (dλ i)) is in the kernel of the leafwise differential 2-form Ω′(φ○ιr−1 ,(α i))

on (Embiso
Sr−1
(M) ×Den×(S′),D′ × ker ThS′ , ι′) where S′ = (S1 , . . . , Sr−1) and ι′ =

(ι1 , . . . , ιr−2). By induction, there exists Z′ = (Z1 , . . . , Zr−1) ∈ X(S′ , ι′) such that
T(φ○ιr−1)○Zr−1 = uφ○ιr−1 and LZ i α i = dλ i for i = 1, . . . , r − 1. Combining this with
Tφ ○ Zr = uφ and using the injectivity of Tφ, we obtain Tιr−1○Zr−1 = Zr○ιr−1. Hence,
Z = (Z1 , . . . , Zr) ∈ X(S, ι) and (uφ , (dλ i)) is the infinitesimal generator at (φ, (α i)).
This ensures that the kernel of Ω is spanned by the infinitesimal generators of the
Diff(S; ι) action. ∎

As a consequence, Ω descends to a leafwise symplectic form Ω̄ on the associated
bundle

(Flagwt iso
S, ι (M), D̄) = (Embiso

Sr
(M) ×Diff(S, ι) Den×(S),D ×Diff(S, ι) ker ThS, ι).

The restriction of Ω̄ to (Flagwt iso
S, ι ,μ (M), D̄) is a leafwise symplectic form as well. Thus,

every leaf of D̄ is symplectic.
LetF denote a leaf of the isodrastic distribution D̄ on Flagwt iso

S, ι (M), equipped with
the symplectic form Ω̄. Restricting (2.18), we obtain a Symp(M) equivariant smooth
map

J∶F → hamc(M)∗, ⟨J(N, ν), X f ⟩ =
r
∑
i=1
∫

N i

f ν i ,(3.18)

where we identify hamc(M) = C∞0 (M) as in (3.9). This is a moment map for
the (Hamiltonian) action of Hamc(M) on (F, Ω̄). Indeed, this follows readily by
combining (3.13) with the expression for the moment map in (3.9). Moreover, J is
injective according to Proposition 2.5. By Proposition 3.11, the Hamc(M) action on
F is transitive. Using Proposition 3.9, we thus obtain the following generalization of
Theorem 3.8.

Theorem 3.15 The moment map J∶ (F, Ω̄) → hamc(M)∗ in (3.18) is one-to-one onto
a coadjoint orbit of the Hamiltonian group Hamc(M). The Kostant–Kirillov–Souriau
symplectic form ωKKS on the coadjoint orbit satisfies J∗ωKKS = Ω̄.

Remark 3.16 In Section 3.3, we have seen that the inclusion

Flagwt iso
S, ι ,μ (M) ⊆

r
∏
i=1

Grwt iso
S i ,μ i
(M)

is a splitting smooth submanifold. The symplectic leaf F described in Theorem 3.15 is
a splitting symplectic submanifold of a product∏r

i=1 Gi of symplectic leaves described
in Theorem 3.8. To show that this is indeed a splitting smooth submanifold, one can

https://doi.org/10.4153/S0008414X23000585 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000585


1690 S. Haller and C. Vizman

proceed as in the proof of Theorem 2.11(c), using the fact that each isodrastic leaf
in Flagiso

S, ι(M) is a splitting smooth submanifold in a product of isodrastic leaves in
∏r

i=1 Griso
S i
(M). The latter can be show by induction on the depth of the flag using

Lemma 3.4.

Remark 3.17 The leafwise symplectic form Ω̄ on Flagwt iso
S, ι (M) can be seen as a

Poisson structure whose symplectic leaves are the isodrasts F from Theorem 3.15
(see Remark 3.4 in [26] about isodrasts in the nonlinear Grassmannian of weighted
Lagrangian submanifolds). Restricting (2.18), we obtain a Poisson moment map

J ∶ Flagwt iso
S, ι (M) → hamc(M)∗, ⟨J(N, ν), X f ⟩ =

r
∑
i=1
∫

N i

f ν i ,

for the Poisson action of Hamc(M) on weighted isotropic nonlinear flags, where we
identify hamc(M) = C∞0 (M) as before.

Example 3.18 Let M be a symplectic manifold that possesses isotropic submanifolds
diffeomorphic to the sphere Sr with r > 1. We use the setting of Example 2.19 to
describe some coadjoint orbits of Hamc(M) consisting of nested weighted spheres.
Since H1(Sr ;R) = 0, by Remark 3.10, each connected component of Flagwt iso

S, ι ,μ (M) is a
coadjoint orbit of Hamc(M). Similarly to (2.44), we get

Flagwt iso
S, ι ,μ (M) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(N, ν) ∈ Flagwt iso

S, ι (M)
..............

{∫N+i ν i , ∫N−i ν i} = {a+i , a−i },
where N±i denote the connected

components of N i/N i−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Example 3.19 The coadjoint orbits of Hamc(R2) consisting of pointed vortex loops,
studied in [4], are the lowest-dimensional examples of coadjoint orbits of weighted
nonlinear flags as described in Theorem 3.15.

Their type is (S, ι), with ι ∶ {1, . . . , k} → S1, ι(i) = t i consecutive points on the
circle. We get the cohomology space

H(S, ι) ≅ Rk ×Rk ,

where the class [μ] ∈ H(S, ι) is identified with its integrals over connected com-
ponents of {1, . . . , k} resp. S1/{t1 , . . . , tk}. These are Γi = ∫{i} μ0 and w i = ∫

t i+1
t i

μ1,
for i = 1, . . . , k. The Diff(S, ι) action on H(S, ι) factorizes through an action of the
dihedral group D2k on R

k ×Rk . More precisely, one let the dihedral group act on a
regular k-gon, with Γi assigned to the vertex i and w i assigned to the edge [i , i + 1]. For
generic density μ ∈ Den×(S), the orbit H(S, ι)[μ] consists of 2k elements. The orbit is
a one-point set if and only if Γ1 = ⋅ ⋅ ⋅ = Γk and w1 = ⋅ ⋅ ⋅ = wk .

Let us denote the weighted flags of type (S, ι) inR
2 by (({x1 , . . . , xk}, ν0), (C , ν1)).

The area a enclosed by the curve C singles out one isodrast La ⊂ Griso
S 1 (R2),

as in Example 3.3. Theorem 3.15 implies that each connected component of
Flagwt iso

S, ι ,μ (R2)∣La is a coadjoint orbit of Hamc(R2). Using the above description of
Diff(S, ι) action on H(S, ι), we get
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Flagwt iso
S, ι ,μ (R

2)∣La

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩
(({x1 , . . . , xk}, ν0), (C , ν1))

..............

x i consecutive points in C ∈ La ,
∃σ ∈ D2k such that

∫{x i}
ν0 = σ(Γi), ∫

x i+1
x i

ν1 = σ(w i)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.(3.19)

In particular, the invariants are the area a enclosed by the loop C, the point vorticities
Γi , and the net vorticities w i = ∫

x i+1
x i

ν1 between two consecutive points on the loop.
Example 3.20 Let L[a1 ,a2] be a union of isodrastic leaves of Lagrangian 2-tori in
R

4, as in Example 3.3, with [a1 , a2] the GL(2,Z) orbit of the pair of action integrals
(a1 , a2) ∈ R2. Let S1 be a disjoint union of k circles, S2 = T2 the 2-torus, and ι ∶ S1 → S2
the embedding that maps the ith circle to the circle {t i} × S1 ⊆ T2, with consecutive
points t1 , . . . , tk ∈ S1. For fixed density μ ∈ Den×(S), we aim at describing the coad-
joint orbits of Hamc(R4) that are connected components of Flagwt iso

S, ι ,μ (R4)∣L[a1 ,a2]
. To

this end, we need the isomorphism

H(S, ι) ≅ Rk ×Rk

given by integration of μ1 over the components of S1 and of μ2 over the torus surface
between two successive embedded circles. As in the previous example, the Diff(S, ι)
action on H(S, ι) factorizes through the dihedral group. One can now express these
coadjoint orbits of Hamc(R4) as in (3.19), with the help of the dihedral group. Thus,
the invariants are: the GL(2,Z) orbit of the two action integrals for the embedded
2-torus, the total weights of the k isotopic loops on the torus, and the partial weights
between two such consecutive loops on the torus.

A Transitive actions on associated bundles

The manifolds and Lie groups in this appendix may be infinite-dimensional and are
assumed to be modeled on convenient vector spaces as in [14].

Recall that a smooth G action on M is said to admit local smooth sections if every
point x0 in M admits an open neighborhood U and a smooth map σ ∶ U → G such
that σ(x)x0 = x, for all x ∈ U . Clearly, such an action is locally and infinitesimally
transitive. Due to the lack of a general implicit function theorem, one cannot expect
the converse implication to hold for general Fréchet manifolds.
Lemma A.1 Let P → B be a principal G-bundle endowed with the action of a Lie group
H on P that commutes with the principal G action. Suppose the structure group G acts
on another manifold Q, and consider the canonically induced H action on the associated
bundle P ×G Q. If the H action on P and the G action on Q both admit local smooth
sections, then the H action on P ×G Q admits local smooth sections too.
Proof Suppose ξ0 ∈ P ×G Q. As the canonical projection P × Q → P ×G Q is a
locally trivial smooth bundle [14, Theorem 37.12], there exist an open neighborhood
U of ξ0 and smooth maps π ∶ U → P and ρ ∶ U → Q such that for all ξ ∈ U we have

[π(ξ), ρ(ξ)] = ξ.

Put p0 ∶= π(ξ0) ∈ P and q0 ∶= ρ(ξ0) ∈ Q. As the H action on P admits local sections,
there exist an open neighborhood V of p0 in P and a smooth map σ ′ ∶ V → H such
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that

σ ′(p0) = eH and σ ′(p)p0 = p,

for all p ∈ V . As the G action on Q admits local sections, there exist an open
neighborhood W of q0 in Q and a smooth map σ ′′ ∶W → G such that

σ ′′(q0) = eG and σ ′′(q)q0 = q,

for all q ∈W . Possibly replacing U with a smaller neighborhood of ξ0, we may assume
that for all ξ ∈ U we have ρ(ξ) ∈W and π(ξ)σ ′′(ρ(ξ)) ∈ V . Hence, σ ∶ U → H,

σ(ξ) ∶= σ ′ (π(ξ)σ ′′(ρ(ξ)))
is a well-defined smooth map. For ξ ∈ U we obtain

σ(ξ)ξ0 = σ(ξ)[p0 , q0] = [σ(ξ)p0 , q0] = [σ ′(π(ξ)σ ′′(ρ(ξ)))p0 , q0]
= [π(ξ)σ ′′(ρ(ξ)), q0] = [π(ξ), σ ′′(ρ(ξ))q0] = [π(ξ), ρ(ξ)] = ξ.

Hence, σ is the desired local smooth section of the H action on P ×G Q. ∎
We will denote the fundamental vector fields of a smooth G action on M by

ζX(x) ∶= ∂
∂t ∣t=0 exp(tX)x ,

where X ∈ g and x ∈ M.

Lemma A.2 Let G be a regular Lie group acting on a smooth manifold M. Suppose
every point x0 in M admits an open neighborhood U and a smooth map σ ∶ TM∣U → g

such that

ζσ(X)(x) = X ,(A.1)

for all x ∈ U and X ∈ Tx M. Then the G action on M admits local smooth sections.

Proof We will construct a local section using an argument due to Moser [22, Section
4]. Suppose c ∶ [0, 1] → U is a smooth curve. We seek a smooth curve g ∶ [0, 1] → G
such that

c(t) = g(t)c(0).(A.2)

Differentiating, we obtain

c′(t) = ζ ġ(t)(c(t)),(A.3)

where ġ(t) ∶= ∂
∂h ∣h=t g(h)g(t)−1 denotes the right logarithmic derivative of g.

Since G is regular [14, Definition 38.4], there exists a unique smooth curve
g = Evolr (σ ○ c′) in G such that ġ(t) = σ(c′(t)) and g(0) = e. Using (A.1), we see
that (A.3) and, thus, (A.2) hold true. Evaluating at t = 1, we obtain a smooth map

s ∶ C∞([0, 1], U) → G , s(c) ∶= g(1) = evolr (σ ○ c′) .

By construction, c(1) = s(c)c(0), for all smooth curves c ∶ [0, 1] → U .
To obtain a local smooth section for the G action on M, it suffices to compose s

with a smooth map U → C∞([0, 1], U), x ↦ cx satisfying cx(0) = x0 and cx(1) = x.
The latter can readily be constructed using a chart for M centered at x0 = 0. Indeed,
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shrinking U so that it becomes star-shaped with center x0 = 0 in such a chart, we may
use cx(t) ∶= tx. ∎
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