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Abstract
Consensus-based optimisation (CBO) is a versatile multi-particle metaheuristic optimisation method suitable for
performing non-convex and non-smooth global optimisations in high dimensions. It has proven effective in various
applications while at the same time being amenable to a theoretical convergence analysis. In this paper, we explore
a variant of CBO, which incorporates truncated noise in order to enhance the well-behavedness of the statistics
of the law of the dynamics. By introducing this additional truncation in the noise term of the CBO dynamics, we
achieve that, in contrast to the original version, higher moments of the law of the particle system can be effectively
bounded. As a result, our proposed variant exhibits enhanced convergence performance, allowing in particular for
wider flexibility in choosing the noise parameter of the method as we confirm experimentally. By analysing the time
evolution of the Wasserstein-2 distance between the empirical measure of the interacting particle system and the
global minimiser of the objective function, we rigorously prove convergence in expectation of the proposed CBO
variant requiring only minimal assumptions on the objective function and on the initialisation. Numerical evidences
demonstrate the benefit of truncating the noise in CBO.

1. Introduction

The search for a global minimiser v∗ of a potentially non-convex and non-smooth cost function

f : Rd →R

holds significant importance in a variety of applications throughout applied mathematics, science and
technology, engineering, and machine learning. Historically, a class of methods known as metaheuris-
tics [1, 2] has been developed to address this inherently challenging and, in general, NP-hard problem.
Examples of such include evolutionary programming [3], genetic algorithms [4], particle swarm opti-
misation (PSO) [5], simulated annealing [6] and many others. These methods work by combining local
improvement procedures and global strategies by orchestrating deterministic and stochastic advances,
with the aim of creating a method capable of robustly and efficiently finding the globally minimising
argument v∗ of f . However, despite their empirical success and widespread adoption in practice, most
metaheuristics lack a solid mathematical foundation that could guarantee their robust convergence to
global minimisers under reasonable assumptions.
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Motivated by the urge to devise algorithms which converge provably, a novel class of metaheuristics,
so-called consensus-based optimisation (CBO), originally proposed by the authors of [7], has recently
emerged in the literature. Due to the inherent simplicity in the design of CBO, this class of optimi-
sation algorithms lends itself to a rigorous theoretical analysis, as demonstrated in particular in the
works [8–14]. However, this recent line of research does not just offer a promising avenue for estab-
lishing a thorough mathematical framework for understanding the numerically observed successes of
CBO methods [9, 11, 15–17], but beyond that allows to explain the effective use of conceptually sim-
ilar and widespread methods such as PSO as well as at first glance completely different optimisation
algorithms such as stochastic gradient descent (SGD). While the first connection is to be expected and
by now made fairly rigorous [18–20] due to CBO indisputably taking PSO as inspiration, the second
observation is somewhat surprising, as it builds a bridge between derivative-free metaheuristics and
gradient-based learning algorithms. Despite CBO solely relying on evaluations of the objective func-
tion, recent work [21] reveals an intrinsic SGD-like behaviour of CBO itself by interpreting it as a certain
stochastic relaxation of gradient descent, which provably overcomes energy barriers of non-convex
function. These perspectives, and, in particular, the already well-investigated convergence behaviour of
standard CBO, encourage the exploration of improvements to the method in order to allow overcoming
the limitations of traditional metaheuristics mentioned at the start. For recent surveys on CBO, we refer to
[22, 23].

While the original CBO model [7] has been adapted to solve constrained optimisations [24–26],
optimisations on manifolds [16, 27–30], multi-objective optimisation problems [31–33], saddle point
problems [34] or the task of sampling [35], as well as has been extended to make use of memory mech-
anisms [17, 36, 37], gradient information [17, 38], momentum [39], jump-diffusion processes [40] or
localisation kernels for polarisation [41], we focus in this work on a variation of the original model,
which incorporates a truncation in the noise term of the dynamics. More formally, given a time horizon
T > 0, a time discretisation t0 = 0 < �t < · · · < K�t = tK = T of [0, T], and user-specified parameters
α, λ, σ > 0 as well as vb, R > 0, we consider the interacting particle system

Vi
k+1,�t − Vi

k,�t = −�tλ
(
Vi

k,�t −Pvb ,R

(
vα

(
ρ̂ N

k,�t

)))+ σ
(∥∥Vi

k,�t − vα

(
ρ̂ N

k,�t

)∥∥
2
∧ M

)
Bi

k,�t, (1)

Vi
0 ∼ ρ0 for all i = 1, . . . , N, (2)

where ((Bi
k,�t)k=0,...,K−1)i=1,...,N are independent, identically distributed Gaussian random vectors in R

d

with zero mean and covariance matrix �tIdd. Equation (1) originates from a simple Euler–Maruyama
time discretisation [42, 43] of the system of stochastic differential equations (SDEs), expressed in Itô’s
form as

dVi
t = −λ

(
Vi

t −Pvb ,R

(
vα

(
ρ̂N

t

)))
dt + σ

(∥∥Vi
t − vα

(
ρ̂ N

t

)∥∥
2
∧ M

)
dBi

t (3)

Vi
0 ∼ ρ0 for all i = 1, . . . , N, (4)

where ((Bi
t)t≥0)i=1,...,N are now independent standard Brownian motions in R

d. The empirical measure
of the particles at time t is denoted by ρ̂ N

t := 1
N

∑N
i=1 δVi

t
. Moreover, Pvb ,R is the projection onto BR(vb)

defined as

Pvb ,R(v) :=

⎧⎪⎨⎪⎩
v, if ‖v − vb‖2 ≤ R,

vb + R
v − vb

‖v − vb‖2

, if ‖v − vb‖2 > R.
(5)

As a crucial assumption in this paper, the map Pvb ,R depends on R and vb in such way that v∗ ∈ BR(vb).
Setting the parameters can be feasible under specific circumstances, as exemplified by the regu-
larised optimisation problem f (v) := Loss (v) + �‖v‖2, wherein v∗ ∈ BLoss (0)/�(0). In the absence of prior
knowledge regarding vb and R, a practical approach is to choose vb = 0 and assign a sufficiently large
value to R. The first terms in (1) and (3), respectively, impose a deterministic drift of each particle
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towards the possibly projected momentaneous consensus point vα

(
ρ̂ N

t

)
, which is a weighted average of

the particles’ positions and computed according to

vα

(
ρ̂ N

t

)
:=

∫
v

ωα(v)

‖ωα‖L1(ρ̂ N
t )

dρ̂ N
t (v). (6)

The weights ωα(v) := exp(−αf (v)) are motivated by the well-known Laplace principle [44], which states
for any absolutely continuous probability distribution 
 on R

d that

lim
α→∞

(
− 1

α
log

(∫
ωα(v) d
(v)

))
= inf

v∈supp (
)
f (v) (7)

and thus justifies that vα

(
ρ̂ N

t

)
serves as a suitable proxy for the global minimiser v∗ given the currently

available information of the particles (Vi
t )i=1,...,N . The second terms in (1) and (3), respectively, encode the

diffusion or exploration mechanism of the algorithm, where, in contrast to standard CBO, we truncate
the noise by some fixed constant M > 0.

We conclude and re-iterate that both the introduction of the projection Pvb ,R

(
vα

(
ρ̂N

t

))
of the consensus

point and the employment of truncation of the noise variance
(∥∥Vi

t − vα

(
ρ̂ N

t

)∥∥
2
∧ M

)
are main innova-

tions to the original CBO method. We shall explain and justify these modifications in the following
paragraph.

Despite these technical improvements, the approach to analyse the convergence behaviour of the
implementable scheme (1) follows a similar route already explored in [8–11]. In particular, the conver-
gence behaviour of the method to the global minimiser v∗ of the objective f is investigated on the level
of the mean-field limit [10, 45] of the system (3). More precisely, we study the macroscopic behaviour
of the agent density ρ ∈ C([0, T], P(Rd)), where ρt = Law(Vt) with

dVt = −λ
(
Vt −Pvb ,R(vα(ρt))

)
dt + σ

(∥∥Vt − vα(ρt)
∥∥

2
∧ M

)
dBt (8)

and initial data V0 ∼ ρ0. Afterwards, by establishing a quantitative estimate on the mean-field approx-
imation, that is, the proximity of the mean-field system (8) to the interacting particle system (3) and
combining the two results, we obtain a convergence result for the CBO algorithm (1) with truncated
noise.

1.1. Motivation for using truncated noise

In what follows, we provide a heuristic explanation of the theoretical benefits of employing a truncation
in the noise of CBO as in (1), (3) and (8). Let us therefore first recall that the standard variant of CBO
[7] can be retrieved from the model considered in this paper by setting vb = 0, R = ∞ and M = ∞. For
instance, in place of the mean-field dynamics (8), we would have

dV
CBO
t = −λ

(
V

CBO
t − vα

(
ρCBO

t

))
dt + σ

∥∥∥V
CBO
t − vα

(
ρCBO

t

)∥∥∥
2

dBt.

Attributed to the Laplace principle (7), it holds vα(ρCBO
t ) ≈ v∗ for α sufficiently large, that is, as α → ∞,

the former dynamics converges to

dY
CBO
t = −λ

(
Y

CBO
t − v∗

)
dt + σ

∥∥∥Y
CBO
t − v∗

∥∥∥
2

dBt. (9)

First, observe that here the first term imposes a direct drift to the global minimiser v∗ and thereby induces
a contracting behaviour, which is on the other hand counteracted by the diffusion term, which contributes
a stochastic exploration around this point. In particular, with Y

CBO
t approaching v∗, the exploration van-

ishes so that Y
CBO
t converges eventually deterministically to v∗. Conversely, as long as Y

CBO
t is far away

from v∗, the order of the random exploration is strong. By Itô’s formula, we have
d

dt
E

[∥∥∥Y
CBO
t − v∗

∥∥∥p

2

]
= p

(
−λ + σ 2

2
(p + d − 2)

)
E

[∥∥∥Y
CBO
t − v∗

∥∥∥p

2

]
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and thus

E

[∥∥∥Y
CBO
t − v∗

∥∥∥p

2

]
= exp

(
p

(
−λ + σ 2

2
(p + d − 2)

)
t

)
E

[∥∥∥Y
CBO
0 − v∗

∥∥∥p

2

]
(10)

for any p ≥ 1. Denoting with μCBO
t the law of Y

CBO
t , this means that, given any λ, σ > 0, there is some

threshold exponent p∗ = p∗(λ, σ , d), such that

lim
t→∞

Wp

(
μCBO

t , δv∗
)= lim

t→∞

(
E

[∥∥∥Y
CBO
t − v∗

∥∥∥p

2

])1/p

= lim
t→∞

exp

((
−λ + σ 2

2
(p + d − 2)

)
t

) (
E

[∥∥∥Y
CBO
0 − v∗

∥∥∥p

2

])1/p

= 0

for p < p∗, while for p > p∗ it holds

lim
t→∞

Wp

(
μCBO

t , δv∗
)= lim

t→∞

(
E

[∥∥∥Y
CBO
t − v∗

∥∥∥p

2

])1/p

= lim
t→∞

exp

((
−λ + σ 2

2
(p + d − 2)

)
t

) (
E

[∥∥∥Y
CBO
0 − v∗

∥∥∥p

2

])1/p

= ∞.

Recalling that the distribution of a random variable Y has heavy tails if and only if the moment generating
function MY(s) := E

[
exp(sY)

]=E
[∑∞

p=0 (sY)p/p!] is infinite for all s > 0, these computations suggest
that the distribution of μCBO

t exhibits characteristics of heavy tails as t → ∞, thereby increasing the
likelihood of encountering outliers in a sample drawn from μCBO

t for large t.
On the contrary, for CBO with truncated noise (8), we get, thanks once again to the Laplace principle

as α → ∞, that (8) converges to

dYt = −λ
(
Yt − v∗) dt + σ

(∥∥Yt − v∗∥∥
2
∧ M

)
dBt, (11)

for which we can compute

d

dt
E
[∥∥Yt − v∗∥∥p

2

]≤ −pλE
[∥∥Yt − v∗∥∥p

2

]+ p
σ 2

2
M2 (p + d − 2)E

[∥∥Yt − v∗∥∥p−2

2

]
≤ −λE

[∥∥Yt − v∗∥∥p

2

]+ λ
σ pMp(d + p − 2)

p
2

λ
p
2

,

for any p ≥ 2. Notice, that to obtain the second inequality we used Young’s inequality1 as well as Jensen’s
inequality. By means of Grönwall’s inequality, we then have

E
[∥∥Yt − v∗∥∥p

2

]≤ exp(−λt)E
[∥∥Y0 − v∗∥∥p

2

]+ σ pMp(d + p − 2)
p
2

λ
p
2

(12)

and therefore, denoting with μt the law of Yt,

lim
t→∞

Wp(μt, δv∗) ≤ σM
√

d + p − 2

λ
1
2

< ∞
for any p ≥ 2.

In conclusion, we observe from Equation (10) that the standard CBO dynamics as described
in Equation (9) diverges in the setting σ 2d > 2λ when considering the Wasserstein-2 distance W2.
Contrarily, according to Equation (12), the CBO dynamics with truncated noise as presented in
Equation (11) converges with exponential rate towards a neighbourhood of v∗, with radius σM

√
d/

√
λ.

1Choose a = λ
p−2

p E

[∥∥Yt − v∗∥∥p−2
2

]
and b = σ 2M2(d+p−2)

λ(p−2)/p , and recall that ab ≤ p−2
p a

p
p−2 + 2

p b
p
2 .
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(a) Phase diagram of success probabilities of isotropic CBO with
and without truncated noise at the example of the Ackley function
f (v) = –20 exp (–0.2 / 
d = 4

cos(2πv with2
d
k=1 k

√
d ‖v‖    ) – exp (1/d ))

(b) Phase diagram of success probabilities of isotropic CBO with
and without truncated noise at the example of the Rastrigin function
f (v) = v + 2.5(  1 – d

k=1
2
k withk )) d = 4cos(2πv

Figure 1. A comparison of the success probabilities of isotropic CBO with (left phase diagrams) and
without (right separate columns) truncated noise for different values of the truncation parameter M
and the noise level σ . (Note that standard CBO as investigated in [7, 8, 10] is retrieved when choosing
M = ∞, R = ∞ and vb = 0 in (1)). In both settings (a) and (b), the depicted success probabilities are
averaged over 100 runs and the implemented scheme is given by an Euler–Maruyama discretisation of
equation (3) with time horizon T = 50, discrete time step size �t = 0.01, R = ∞, vb = 0, α = 105 and
λ = 1. We use N = 100 particles, which are initialised according to ρ0 =N ((1, . . . , 1), 2000). In both
figures, we plot the success probability of standard CBO (right separate column) and the CBO variant
with truncated noise (left phase transition diagram) for different values of the truncation parameter
M and the noise level σ , when optimising the Ackley ((a)) and Rastrigin ((b)) function, respectively.
We observe that truncating the noise term (by decreasing M) consistently allows for a wider flexibility
when choosing the noise level σ and thus increasing the likelihood of successfully locating the global
minimiser.

This implies that for a relatively small value of M, the CBO dynamics with truncated noise exhibits
greater robustness in relation to the parameter σ 2d/λ. This effect is confirmed numerically in Figure 1.

Remark 1 (Sub-Gaussianity of truncated CBO). An application of Itô’s formula allows to show that,
for some κ > 0, E

[
exp

(∥∥Yt − v∗∥∥2

2
/κ2

)]
< ∞, provided E

[
exp

(∥∥Y0 − v∗∥∥2

2
/κ2

)]
< ∞. Thus, by incor-

porating a truncation in the noise term of the CBO dynamics, we ensure that the resulting distribution
μt exhibits sub-Gaussian behaviour and therefore we enhance the regularity and well-behavedness of
the statistics of μt. As a consequence, more reliable and stable results when analysing the properties
and characteristics of the dynamics are to be expected.

1.2. Contributions

In view of the aforementioned enhanced regularity and well-behavedness of the statistics of CBO with
truncated noise compared to standard CBO [7] together with the numerically observed improved per-
formance as depicted in Figure 1, a rigorous convergence analysis of the implementable CBO algorithm
with truncated noise as given in (1) is of theoretical interest. In this work, we provide theoretical guar-
antees of global convergence of (1) to the global minimiser v∗ for possibly non-convex and non-smooth
objective functions f . The approach to analyse the convergence behaviour of the implementable scheme
(1) follows a similar route as initiated and explored by the authors of [8–11]. In particular, we first inves-
tigate the mean-field behaviour (8) of the system (3). Then, by establishing a quantitative estimate on the
mean-field approximation, that is, the proximity of the mean-field system (8) to the interacting particle
system (3), we obtain a convergence result for the CBO algorithm (1) with truncated noise. Our proving
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technique nevertheless differs in crucial parts from the one in [10, 11] as, on the one side, we do take
advantage of the truncations, and, on the other side, we require additional technical effort to exploit
and deal with the enhanced flexibility of the truncated model. Specifically, the central novelty can be
identified in the proof of sub-Gaussianity of the process, see Lemma 8.

1.3. Organisation

In Section 2, we present and discuss our main theoretical contribution about the global convergence
of CBO with truncated noise in probability and expectation. Section 3 collects the necessary proof
details for this result. In Section 4, we numerically demonstrate the benefits of using truncated noise,
before we provide a conclusion of the paper in Section 5. For the sake of reproducible research, in the
GitHub repository https://github.com/KonstantinRiedl/CBOGlobalConvergenceAnalysis, we provide
the Matlab code implementing CBO with truncated noise.

1.4. Notation

We use ‖ · ‖2 to denote the Euclidean norm on R
d. Euclidean balls are denoted as Br(u) := {v ∈

R
d : ‖v − u‖2 ≤ r}. For the space of continuous functions f : X → Y , we write C(X, Y), with X ⊂R

n

and a suitable topological space Y . For an open set X ⊂R
n and for Y =R

m, the spaces Ck
c (X, Y) and

Ck
b(X, Y) contain functions f ∈ C(X, Y) that are k-times continuously differentiable and have compact

support or are bounded, respectively. We omit Y in the real-valued case. All stochastic processes
are considered on the probability space (�, F, P). The main objects of study are laws of such pro-
cesses, ρ ∈ C([0, T], P(Rd)), where the set P(Rd) contains all Borel probability measures over Rd. With
ρt ∈P(Rd), we refer to a snapshot of such law at time t. Measures 
 ∈P(Rd) with finite p-th moment∫ ‖v‖p

2 d
(v) are collected inPp(Rd). For any 1 ≤ p < ∞, Wp denotes the Wasserstein-p distance between
two Borel probability measures 
1, 
2 ∈Pp(Rd), see, for example, [46]. E[·] denotes the expectation.

2. Global convergence of CBO with truncated noise

We now present the main theoretical result of this work about the global convergence of CBO with
truncated noise for objective functions that satisfy the following conditions.

Definition 2 (Assumptions). Throughout we are interested in functions f ∈ C(Rd), for which

A1 there exist v∗ ∈R
d such that f (v∗) = infv∈Rd f (v) =: f and α, Lu > 0 such that

sup
v∈Rd

∥∥ve−α(f (v)−f )
∥∥

2
=: Lu < ∞ (13)

for any α ≥ α and any v ∈R
d,

A2 there exist f∞, R0, ν, Lν > 0 such that

‖v − v∗‖2 ≤ 1

Lν

(
f (v) − f

)ν for all v ∈ BR0 (v∗), (14)

f∞ < f (v) − f for all v ∈ (
BR0 (v∗)

)c
, (15)

A3 there exist Lγ > 0, γ ∈ [0, 1] such that
|f (v) − f (w)| ≤ Lγ

(‖v − v∗‖γ

2 + ‖w − v∗‖γ

2

) ‖v − w‖2 for all v, w ∈R
d, (16)

f (v) − f ≤ Lγ

(
1 + ‖v − v∗‖1+γ

2

)
for all v ∈R

d. (17)

A few comments are in order: Condition A1 establishes the existence of a minimiser v∗ and requires
a certain growth of the function f . Condition A2 ensures that the value of the function f at a point v
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can locally be an indicator of the distance between v and the minimiser v∗. This error-bound condition
was first introduced in [10] under the name inverse continuity condition. It in particular guarantees the
uniqueness of the global minimiser v∗. Condition A3 sets controllable bounds on the local Lipschitz
constant of f and on the growth of f , which is required to be at most quadratic. A similar requirement
appears also in [8, 10], but there also a quadratic lower bound was imposed.

2.1. Main result

We can now state the main result of the paper. Its proof is deferred to Section 3.

Theorem 3. Let f ∈ C(Rd) satisfy A1, A2 and A3. Moreover, let ρ0 ∈P4(Rd) with v∗ ∈ supp (ρ0). Let Vi
0,�t

be sampled i.i.d. from ρ0 and denote by ((Vi
k,�t)k=1,...,K)i=1,...,N the iterations generated by the numerical

scheme (1). Fix any ε ∈ (
0, W2

2 (ρ0, δv∗)
)
, define the time horizon

T∗ := 1

λ
log

(
2W2

2 (ρ0, δv∗)

ε

)
and let K ∈N and �t satisfy K�t = T∗. Moreover, let R ∈ (‖vb − v∗‖2 + √

ε/2, ∞)
, M ∈ (0, ∞) and

λ, σ > 0 be such that λ ≥ 2σ 2d or σ 2M2d =O(ε). Then, by choosing α sufficiently large and N ≥(
16αLγ σ

2M2
)
/λ, it holds

E

⎡⎣∥∥∥∥∥ 1

N

N∑
i=1

Vi
K,�t − v∗

∥∥∥∥∥
2

2

⎤⎦� CNA(�t)2m + CMFA

N
+ ε (18)

up to a generic constant. Here, CNA depends linearly on the dimension d and the number of particles N
and exponentially on the time horizon T∗, m is the order of accuracy of the numerical scheme (for the
Euler–Maruyama scheme m = 1/2), and CMFA = CMFA(λ, σ , d, α, Lν , ν, Lγ , Lu, T∗, R, vb, v∗, M).

Remark 4. In the statement of Theorem 3, the parameters R and vb play a crucial role. We already
mentioned how they can be chosen in an example after Equation (5). The role of these parameters is
bolstered in particular in the proof of Theorem 3, where it is demonstrated that, by selecting a sufficiently
large α depending on R and vb, the dynamics (8) can be set equal to

dVt = −λ
(
Vt −Pv∗ ,δ(vα(ρt))

)
dt + σ

(∥∥Vt − vα(ρt)
∥∥

2
∧ M

)
dBt,

where δ represents a small value. For the dynamics (3), we can analogously establish its equivalence to

dVi
t = −λ

(
Vi

t −Pv∗ ,δ

(
vα

(
ρ̂N

t

)))
dt + σ

(∥∥Vi
t − vα

(
ρ̂N

t

)∥∥
2
∧ M

)
dBi

t, i = 1, . . . , N,

with high probability, contingent upon the selection of sufficiently large values for both α and N.

Remark 5. The convergence result in the form of Theorem 3 obtained in this work differs from the one
presented in [10, Theorem 14] in the sense that we obtain convergence is in expectation, while in [10]
convergence with high probability is established. This distinction arises from the truncation of the noise
term employed in our algorithm.

3. Proof details for section 2
3.1. Well-posedness of equations (1) and (3)

With the projection map Pvb ,R being 1-Lipschitz, existence and uniqueness of strong solutions to the
SDEs (1) and (3) are assured by essentially analogous proofs as in [8, Theorems 2.1, 3.1 and 3.2]. The
details shall be omitted. Let us remark, however, that due to the presence of the truncation and the
projection map, we do not require the function f to be bounded from above or exhibit quadratic growth
outside a ball, as required in [8, Theorems 2.1, 3.1 and 3.2].
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3.2. Proof details for theorem 3

Remark 6. Since adding some constant offset to f does not affect the dynamics of Equations (3) and
(8), we will assume f = 0 in the proofs for simplicity but without loss of generality.

Let us first provide a sketch of the proof of Theorem 3. For the approximation error (18), we have the
error decomposition

E

⎡⎣∥∥∥∥∥ 1

N

N∑
i=1

Vi
K,�t − v∗

∥∥∥∥∥
2

2

⎤⎦�E

⎡⎣∥∥∥∥∥ 1

N

N∑
i=1

(
Vi

K,�t − Vi
T∗
)∥∥∥∥∥

2

2

⎤⎦
︸ ︷︷ ︸

I

+E

⎡⎣∥∥∥∥∥ 1

N

N∑
i=1

(
Vi

T∗ − V
i

T∗

)∥∥∥∥∥
2

2

⎤⎦
︸ ︷︷ ︸

II

+E

⎡⎣∥∥∥∥∥ 1

N

N∑
i=1

V
i

T∗ − v∗
∥∥∥∥∥

2

2

⎤⎦
︸ ︷︷ ︸

III

,

(19)

where
((

V
i

t

)
t≥0

)
i=1,...,N

denote N independent copies of the mean-field process
(
Vt

)
t≥0

satisfying
Equation (8).

In what follows, we investigate each of the three term separately. Term I can be bounded by CNA(�t)2m

using classical results on the convergence of numerical schemes for SDEs, as mentioned for instance in
[43]. The second and third terms, respectively, are analysed in separate subsections, providing detailed
explanations and bounds for each of the two terms II and III.

Before doing so, let us provide a concise guide for reading the proofs. As the proofs are quite technical,
we start for reader’s convenience by presenting the main building blocks of the result first and collect
the more technical steps in subsequent lemmas. This arrangement should hopefully allow to grasp the
structure of the proof more easily and to dig deeper into the details along with the reading.

3.2.1. Upper bound for the second term in (19)
For Term II of the error decomposition (19), we have the following upper bound.

Proposition 7. Let f ∈ C(Rd) satisfy A1, A2 and A3. Moreover, let R and M be finite such that R ≥
‖vb − v∗‖2 and let N ≥ (16αLγ σ

2M2)/λ. Then, we have

E

⎡⎣∥∥∥∥∥ 1

N

N∑
i=1

(
Vi

T∗ − V
i

T∗

)∥∥∥∥∥
2

2

⎤⎦≤ CMFA

N
, (20)

where CMFA = CMFA(λ, σ , d, α, Lν , ν, Lγ , Lu, T∗, R, vb, v∗, M).

Proof. By a synchronous coupling, we have

dV
i

t = −λ
(

V
i

t −Pvb ,R(vα(ρt))
)

dt + σ
(∥∥∥V

i

t − vα(ρt)
∥∥∥

2
∧ M

)
dBi

t,

dVi
t = −λ

(
Vi

t −Pvb ,R

(
vα

(
ρ̂N

t

)))
dt + σ

(∥∥∥V
i

t − vα

(
ρ̂ N

t

)∥∥∥
2
∧ M

)
dBi

t,

with coinciding Brownian motions. Moreover, recall that Law
(
V

i

t

)= ρt and ρ̂ N
t = 1/N

∑N
i=1 δVi

t
. By Itô’s

formula, we then have

d
∥∥∥V

i

t − Vi
t

∥∥∥2

2
=
(
−2λ

〈
V

i

t − Vi
t ,
(

V
i

t − Vi
t

)
− (Pvb ,R(vα(ρt)) −Pvb ,R

(
vα

(
ρ̂N

t

)))〉
+ σ 2d

(∥∥∥V
i

t − vα(ρt)
∥∥∥

2
∧ M − ∥∥Vi

t − vα

(
ρ̂ N

t

)∥∥
2
∧ M

)2 )
dt

+ 2σ
(∥∥∥V

i

t − vα(ρt)
∥∥∥

2
∧ M − ∥∥Vi

t − vα

(
ρ̂ N

t

)∥∥
2
∧ M

) (
V

i

t − Vi
t

)�
dBi

t,

(21)

https://doi.org/10.1017/S095679252400007X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400007X


European Journal of Applied Mathematics 9

and after taking the expectation on both sides

d

dt
E

[∥∥∥V
i

t − Vi
t

∥∥∥2

2

]
= −2λE

[〈
V

i

t − Vi
t ,
(

V
i

t − Vi
t

)
− (Pvb ,R(vα(ρt)) −Pvb ,R

(
vα

(
ρ̂N

t

)))〉]
+ σ 2dE

[(∥∥∥V
i

t − vα(ρt)
∥∥∥

2
∧ M − ∥∥Vi

t − vα

(
ρ̂ N

t

)∥∥
2
∧ M

)2
]

≤ −2λE

[∥∥∥V
i

t − Vi
t

∥∥∥2

2

]
+ σ 2dE

[∥∥∥(V
i

t − Vi
t

)
− (

vα(ρt) − vα

(
ρ̂ N

t

))∥∥∥2

2

]
+ 2λE

[∥∥∥V
i

t − Vi
t

∥∥∥
2

∥∥Pvb ,R(vα(ρt)) −Pvb ,R

(
vα

(
ρ̂N

t

))∥∥
2

]
≤ −2λE

[∥∥∥V
i

t − Vi
t

∥∥∥2

2

]
+ 2λE

[∥∥∥V
i

t − Vi
t

∥∥∥
2

∥∥vα(ρt) − vα

(
ρ̂ N

t

)∥∥
2

]
+ σ 2dE

[∥∥∥(V
i

t − Vi
t

)
− (

vα(ρt) − vα

(
ρ̂ N

t

))∥∥∥2

2

]
.

(22)

Here, let us remark that the last (stochastic) term in (21) disappears after taking the expectation. This

is due to E

[∥∥∥V
i

t − Vi
t

∥∥∥2

2

]
< ∞, which can be derived from Lemma 8 after noticing that Lemma 8 also

holds for processes Vi
t . Since by Young’s inequality, it holds

2λE
[∥∥∥V

i

t − Vi
t

∥∥∥
2

∥∥vα(ρt) − vα

(
ρ̂ N

t

)∥∥
2

]
≤ λ

⎛⎜⎜⎝E

[∥∥∥V
i

t − Vi
t

∥∥∥2

2

]
2

+ 2E
[∥∥vα(ρt) − vα

(
ρ̂ N

t

)∥∥2

2

]⎞⎟⎟⎠ ,

and

E

[∥∥∥(V
i

t − Vi
t

)
− (

vα(ρt) − vα

(
ρ̂ N

t

))∥∥∥2

2

]
≤ 2E

[∥∥∥V
i

t − Vi
t

∥∥∥2

2
+ ∥∥vα(ρt) − vα

(
ρ̂ N

t

)∥∥2

2

]
,

we obtain
d

dt
E

[∥∥∥V
i

t − Vi
t

∥∥∥2

2

]
≤
(

−3λ

2
+ 2σ 2d

)
E

[∥∥∥V
i

t − Vi
t

∥∥∥2

2

]
+ 2

(
λ + σ 2d

)
E

[∥∥vα(ρt) − vα

(
ρ̂ N

t

)∥∥2

2

]
(23)

after inserting the former two inequalities into Equation (22). For the term E

[∥∥vα(ρt) − vα

(
ρ̂ N

t

)∥∥2

2

]
, we

can decompose

E

[∥∥vα(ρt) − vα

(
ρ̂ N

t

)∥∥2

2

]
≤ 2E

[∥∥vα(ρt) − vα

(
ρ̄N

t

)∥∥2

2

]
+ 2E

[∥∥vα

(
ρ̄N

t

)− vα

(
ρ̂ N

t

)∥∥2

2

]
, (24)

where we denote

ρ̄N
t = 1

N

N∑
i=1

δVi
t
.

For the first term in Equation (24), by Lemma 11, we have

E

[∥∥vα(ρt) − vα

(
ρ̄N

t

)∥∥2

2

]
≤ C0

1

N

for some constant C0 depending on λ, σ , d, α, Lγ , Lu, T∗, R, vb, v∗ and M. For the second term in Equation
(24), by combining [8, Lemma 3.2] and Lemma 8, we obtain

E

[∥∥vα

(
ρ̄N

t

)− vα

(
ρ̂ N

t

)∥∥2

2

]
≤ C1

1

N

N∑
i=1

E

[∥∥∥V
i

t − Vi
t

∥∥∥2

2

]
,
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for some constant C1 depending on λ, σ , d, α, Lu, R and M. Combining these estimates, we conclude

d

dt

1

N

N∑
i=1

E

[∥∥∥V
i

t − Vi
t

∥∥∥2

2

]
≤
(

−3λ

2
+ 2σ 2d + 4C1

(
λ + σ 2d

)) 1

N

N∑
i=1

E

[∥∥∥V
i

t − Vi
t

∥∥∥2

2

]
+ 4

(
λ + σ 2d

)
C0

1

N
.

After an application of Grönwall’s inequality and noting that V
i

0 = Vi
0 for all i = 1, . . . , N, we have

1

N

N∑
i=1

E

[∥∥∥V
i

t − Vi
t

∥∥∥2

2

]
≤ 4

(
λ + σ 2d

) C0

N
te(− 3λ

2 +2σ 2d+4C1(λ+σ 2d))t. (25)

for any t ∈ [0, T∗]. Finally, by Jensen’s inequality and letting t = T∗, we have

E

⎡⎣∥∥∥∥∥ 1

N

N∑
i=1

(
Vi

T∗ − V
i

T∗

)∥∥∥∥∥
2

2

⎤⎦≤ CMFA

N
, (26)

where the constant CMFA depends on λ, σ , d, α, Lu, Lγ , T∗, R, vb, v∗ and M.

In the next lemma, we show that the distribution of Vt is sub-Gaussian.

Lemma 8. Let R and M be finite with R ≥ ‖vb − v∗‖2. For any κ > 0, let N satisfy N ≥ (
4σ 2M2

)
/
(
λκ2

)
.

Then, provided that E
[
exp

(∑N
i=1

∥∥V
i

0 − v∗∥∥2

2
/
(
Nκ2

))]
< ∞, it holds

Cκ := sup
t∈[0,T∗]

E

[
exp

(∑N
i=1

∥∥Vi
t − v∗∥∥2

2

Nκ2

)]
< ∞, (27)

where Cκ depends on κ , λ, σ , d, R, M and T∗, and where

dV
i

t = −λ
(

V
i

t −Pvb ,R (vα(ρt))
)

dt + σ
(∥∥∥V

i

t − vα(ρt)
∥∥∥

2
∧ M

)
dBi

t

for i = 1, . . . , N with Bi
t being independent to each other and Law

(
V

i

t

)= ρt.

Proof. To apply Itô’s formula, we need to truncate the function exp
(‖v‖2

2/κ
2
)

from above. For this,
define for W > 0 the function

GW(x) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x, x ∈ [0, W − 1],

1

16
(x + 1 − W)4 − 1

4
(x + 1 − W)3 + x, x ∈ [W − 1, W + 1],

W, x ∈ [W + 1, ∞),

It is easy to verify that GW is a C2 approximation of the function x ∧ W satisfying GW ∈ C2(R+), GW(x) ≤
x ∧ W, G′

W ∈ [0, 1] and G′′
W ≤ 0.

Since GW,N,κ(t) := exp
(

GW

(∑N
i=1

∥∥V
i

t − v∗∥∥2

2
/N

)
/κ2

)
is upper-bounded, we can apply Itô’s formula

to it. We abbreviate G′
W := G′

W

(∑N
i=1

∥∥V
i

t − v∗∥∥2

2
/N

)
and G′′

W := G′′
W

(∑N
i=1

∥∥V
i

t

∥∥2

2
/N

)
in what follows.

With the notation Yt :=
((

V
1

t

)�
, · · · ,

(
V

N

t

)�)�
, the Nd-dimensional process Yt satisfies dYt = −λ

(
Yt −

Pvb ,R(ρt)
)

dt +MdBt, where Pvb ,R(ρt) = (Pvb ,R(ρt)
�, . . . , Pvb ,R(ρt)

�)�, M= diag(M1, . . . , MN) with
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Mi = σ
∥∥V

i

t − vα(ρt)
∥∥

2
∧ MId and Bt the Nd-dimensional Brownian motion. We then have GW,N,κ(t) =

exp
(
GW

(‖Yt‖2
2 /N

)
/κ2

)
and

dGW,N,κ(t) =
N∑

i=1

∇Yt GW,N,κ(t)dYt + 1

2
tr
(M∇2

Yt ,Yt
GW,N,κ(t)M)

dt

= GW,N,κ(t)
G′

W

κ2

N∑
i=1

(
2

V
i

t − v∗

N

)�

dV
i

t

+ 1

2
GW,N,κ(t)

N∑
i=1

(
G′

W

2d

Nκ2
+ G′′

W

4
∥∥V

i

t − v∗∥∥2

2

N2κ2

+ (
G′

W

)2 4
∥∥V

i

t − v∗∥∥2

2

N2κ4

) (
σ

∥∥∥V
i

t − vα (ρt)

∥∥∥
2
∧ M

)2

dt.

(28)

The first term on the right-hand side of (28) can be expanded as

GW,N,κ(t)
G′

W

κ2

N∑
i=1

(
2

V
i

t − v∗

N

)�

dV
i

t = GW,N,κ(t)G′
W

N∑
i=1

(
2

V
i

t − v∗

Nκ2

)�

dV
i

t

= GW,N,κ(t)G′
W

N∑
i=1

(
2

V
i

t − v∗

Nκ2

)� (
−λ

(
V̄t

i − v∗ + v∗ −Pvb ,R(ρt))
)

dt + σ
(∥∥∥V

i

t − vα(ρt)
∥∥∥

2
∧ M

)
dBi

t

)
= GW,N,κ(t)G′

W

{
−2λ

Nκ2

N∑
i=1

∥∥V
i

t − v∗∥∥2

2
dt − 2λ

Nκ2

N∑
i=1

〈
V

i

t − v∗, v∗ −Pvb ,R(vα(ρt))
〉

dt

+2σ

N∑
i=1

(∥∥∥V
i

t − vα(ρt)
∥∥∥

2
∧ M

) ( (V
i

t − v∗)

Nκ2

)�

dBi
t

⎫⎬⎭ .

(29)
Notice additionally that〈

V
i

t − v∗, v∗ −Pvb ,R(vα(ρt))
〉
≤ ∥∥V

i

t − v∗∥∥
2

∥∥v∗ −Pvb ,R(vα(ρt))
∥∥

2
≤ 2R

∥∥V
i

t − v∗∥∥
2

(30)

as v∗ and Pvb ,R(vα(ρt)) belong to the same ball BR(vb) around vb of radius R. Similarly, we can expand
the coefficient of the second term. According to the properties G′

W ∈ [0, 1] and G′′
W ≤ 0, we can bound it

from above yielding

1

2
GW,N,κ(t)

N∑
i=1

(
G′

W

2d

Nκ2
+ G′′

W

4
∥∥V

i

t − v∗∥∥2

2

N2κ2
+ (

G′
W

)2 4
∥∥V

i

t − v∗∥∥2

2

N2κ4

) (
σ

∥∥∥V
i

t − vα (ρt)

∥∥∥
2
∧ M

)2

≤ GW,N,κ(t)G′
W

σ 2M2d

κ2
+ GW,N,κ(t)

(
G′

W

)2 2σ 2M2

N2κ4

N∑
i=1

∥∥V
i

t − v∗∥∥2

2

≤ GW,N,κ(t)G′
W

σ 2M2d

κ2
+ GW,N,κ(t)G′

W

2σ 2M2

N2κ4

N∑
i=1

∥∥V
i

t − v∗∥∥2

2
.

(31)

By taking expectations in (28) and combining it with (29), (30) and (31), we obtain

d

dt
E
[
GW,N,κ(t)

]≤E

[
GW,N,κ(t)G′

W

(
−2λ

Nκ2

N∑
i=1

∥∥V
i

t − v∗∥∥2

2
+ 4Rλ

Nκ2

N∑
i=1

∥∥V
i

t − v∗∥∥
2

+ GW,N,κ(t)G′
W

σ 2M2d

κ2
+ GW,N,κ(t)G′

W

2σ 2M2

N2κ4

N∑
i=1

∥∥V
i

t − v∗∥∥2

2

)]
.
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Rearranging the former yields

d

dt
E
[
GW,N,κ(t)

]≤E

[
GW,N,κ(t)G′

W

(((
4λR

Nκ2

N∑
i=1

∥∥V
i

t − v∗∥∥
2

)
+ σ 2M2d

κ2

)

−
(

2λ

Nκ2
− 2σ 2M2

N2κ4

) N∑
i=1

∥∥V
i

t − v∗∥∥2

2

)]
.

(32)

Since by Young’s inequality, it holds 4R
∥∥V

i

t − v∗∥∥
2
≤ 4R2 + ∥∥V

i

t − v∗∥∥2

2
, we can continue Estimate (32)

by

d

dt
E
[
GW,N,κ(t)

]≤E

[
GW,N,κ(t)G′

W

(
σ 2M2d + 4λR2

κ2
−
(

λ

Nκ2
− 2σ 2M2

N2κ4

) N∑
i=1

∥∥V
i

t − v∗∥∥2

2

)]

≤E

[
GW,N,κ(t)G′

W

(
−A

N∑
i=1

∥∥V
i

t − v∗∥∥2

2
+ B

)] (33)

with A := λ

Nκ2 − 2σ 2M2

N2κ4 and B := σ 2M2d+4λR2

κ2 . Now, if
∑N

i=1

∥∥V
i

t − v∗∥∥2

2
≥ (B − 1)/A, we have

GW,N,κ(t)G′
W

(
−A

N∑
i=1

∥∥V
i

t − v∗∥∥2

2
+ B

)
≤ 0,

while, if
∑N

i=1

∥∥V
i

t − v∗∥∥2

2
≤ (B − 1)/A, we have

GW,N,κ(t)G′
W

(
−A

N∑
i=1

∥∥V
i

t − v∗∥∥2

2
+ B

)
≤ Be

B−1
Nκ2A .

Thus, the latter inequality always holds true and consequently we have with (33)
d

dt
E
[
GW,N,κ(t)

]≤ Be
B−1

Nκ2A ,

which gives after integration

E
[
GW,N,κ(t)

]≤E
[
GW,N,κ(0)

]+ Be
B−1

Nκ2A t

≤E

[
exp

(∑N
i=1

∥∥V
i

0 − v∗∥∥2

2

Nκ2

)]
+ Be

B−1
Nκ2A t.

Letting W → ∞, we eventually obtain

E

[
exp

(∑N
i=1

∥∥V
i

t − v∗∥∥2

2

Nκ2

)]
≤E

[
exp

(∑N
i=1

∥∥V
i

0 − v∗∥∥2

2

Nκ2

)]
+ Be

B−1
Nκ2A t < ∞, (34)

provided that E
[
exp

(∑N
i=1

∥∥V
i

0 − v∗∥∥2

2
/Nκ2

)]
< ∞.

If N ≥ (4σ 2M2)/(λκ2), we have

B − 1

Nκ2A
≤ B

Nκ2A
= N

(
σ 2M2d + 4λR2

)
λNκ2 − 2σ 2M2

≤ C(κ , λ, σ , M, R, d).

Thus, Cκ is upper-bounded and independent of N.

Remark 9. The sub-Gaussianity of Vt follows from Lemma 8 by noticing that the statement can be
applied in the setting N = 1 when choosing κ sufficiently large.

Remark 10. In Lemma 8, as the number of particles N increases, the condition for κ to ensure Cκ < ∞
becomes more relaxed. Specifically, the value of κ can be as small as one needs as N increases. This
phenomenon can be easily understood by considering the limit as N approaches infinity. In this case,
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Cκ tends to supt∈[0,T∗] exp
(
E

[∥∥Vt − v∗∥∥2

2

]
/κ2

)
. Therefore, as one shows an upper bound on the second

moment of Vt, it becomes evident that Cκ remains finite as N tends to infinity.

With the help of Lemma 8, we can now prove the following lemma.

Lemma 11. Let f ∈ C(Rd) satisfy A1 and A3. Then, for any t ∈ [0, T∗], M and R with R ≥ ‖vb − v∗‖2

finite, and N satisfying N ≥ (16αLγ σ
2M2)/λ, we have

E

[∥∥vα(ρt) − vα

(
ρ̄N

t

)∥∥2

2

]
≤ C0

N
, (35)

where C0 := C0(λ, σ , d, α, Lγ , Lu, T∗, R, vb, v∗, M).

Proof. Without the loss of generality, we assume v∗ = 0 and recall that we assumed f = 0 in the proofs
as of Remark 6. We have

E

[∥∥vα(ρt) − vα

(
ρ̄N

t

)∥∥2

2

]
=E

⎡⎣∥∥∥∥∥ 1
N

∑N
i=1 V

i

te
−αf (Vi

t)

1
N

∑N
i=1 e−αf (Vi

t)
−

∫
Rd ve−αf (v)dρt(v)∫
Rd e−αf (v)dρt(v)

∥∥∥∥∥
2

2

⎤⎦
≤ 2E

⎡⎣∥∥∥∥∥ 1
1
N

∑N
i=1 e−αf (Vi

t)

(
1

N

N∑
i=1

V
i

te
−αf (Vi

t) −
∫
Rd

ve−αf (v)dρt(v)

)∥∥∥∥∥
2

2

⎤⎦
+ 2E

⎡⎣∥∥∥∥∥ vα(ρt)
1
N

∑N
i=1 e−αf (Vi

t)

(
1

N

N∑
i=1

e−αf (Vi
t) −

∫
Rd

e−αf (v)dρt(v)

)∥∥∥∥∥
2

2

⎤⎦
≤ 2E

⎡⎣∥∥∥∥∥eα 1
N
∑N

i=1 f (Vi
t)

(
1

N

N∑
i=1

V
i

te
−αf (Vi

t) −
∫
Rd

ve−αf (v)dρt(v)

)∥∥∥∥∥
2

2

⎤⎦
+ 2 ‖vα(ρt)‖2

2 E

⎡⎣∥∥∥∥∥eα 1
N
∑N

i=1 f (Vi
t)

(
1

N

N∑
i=1

e−αf (Vi
t) −

∫
Rd

e−αf (v)dρt(v)

)∥∥∥∥∥
2

2

⎤⎦
≤ 2T1T2 + 2 ‖vα(ρt)‖2

2 T1T3,

(36)

where we defined

T1 :=
(
E

[
e4α 1

N
∑N

i=1 f (Vi
t)
]) 1

2
,

T2 :=
⎛⎝E

⎡⎣∥∥∥∥∥ 1

N

N∑
i=1

V
i

te
−αf (Vi

t) −
∫
Rd

ve−αf (v)dρt(v)

∥∥∥∥∥
4

2

⎤⎦⎞⎠ 1
2

,

T3 :=
⎛⎝E

⎡⎣∥∥∥∥∥ 1

N

N∑
i=1

e−αf (Vi
t) −

∫
Rd

e−αf (v)dρt(v)

∥∥∥∥∥
4

2

⎤⎦⎞⎠ 1
2

.

In the following, we upper-bound the terms T1, T2 and T3 separately. First, recall that by Lemma 8 we
have for t ∈ [0, T∗] that

E

[
exp

(∑N
i=1

∥∥V
i

t

∥∥2

2

Nκ2

)]
≤ Cκ < ∞, (37)
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where Cκ only depends on κ , λ, σ , d, R, M and T∗. With this,

T2
1 =E

[
exp

(
4α

1

N

N∑
i=1

f
(
V

i

t

))]≤E

[
exp

(
4α

1

N

N∑
i=1

Lγ

(
1 + ∥∥V

i

t

∥∥1+γ

2

))]

≤ e4αLγ E

[
exp

(
4αLγ

1

N

N∑
i=1

∥∥V
i

t

∥∥1+γ

2

)]

≤ e8αLγ E

[
exp

(
4αLγ

1

N

N∑
i=1

∥∥V
i

t

∥∥2

2

)]

= e8αLγ E

[
exp

(
1

κ2

1

N

N∑
i=1

∥∥V
i

t

∥∥2

2

)]
≤ e8αLγ Cκ|κ= 1

2
√

αLγ

,

where we set κ2 = 1/(4αLγ ) in the next-to-last step and where N should satisfy N ≥ (16αLγ σ
2M2)/λ.

Second, we have

E

⎡⎣∥∥∥∥∥ 1

N

N∑
i=1

V
i

te
−αf (Vi

t) −
∫
Rd

ve−αf (v)dρt(v)

∥∥∥∥∥
4

2

⎤⎦= 1

N4
E

[ ∑
i1,i2,i3,i4∈{1,...,N}

〈
Z

i1
t , Z

i2
t

〉 〈
Z

i3
t , Z

i4
t

〉]

≤ 4!L4
u

N2
,

where
(

Z
i

t := V
i

te
−αf (Vi

t) − ∫
Rd ve−αf (v)dρt(v)

)
i=1,...,N

are i.i.d. and have zero mean. Thus,

T2 =
⎛⎝E

⎡⎣∥∥∥∥∥ 1

N

N∑
i=1

V
i

te
−αf (Vi

t) −
∫
Rd

ve−αf (v)dρt(v)

∥∥∥∥∥
4

2

⎤⎦⎞⎠ 1
2

≤ 5L2
u

N
.

Similarly, we can derive

T3 =
⎛⎝E

⎡⎣∥∥∥∥∥ 1

N

N∑
i=1

e−αf (Vi
t) −

∫
Rd

e−αf (v)dρt(v)

∥∥∥∥∥
4

2

⎤⎦⎞⎠ 1
2

≤ 5

N
.

Collecting the bounds for the terms T1, T2 and T3 and inserting them in (36), we obtain

E
[‖vα(ρt) − vα(ρ̄t)‖2

2

]≤ 10e6αLγ C
1
2
κ
|κ= 1

2
√

αLγ

(
L2

u + sup
t∈[0,T∗]

‖vα(ρt)‖2
2

)
1

N
. (38)

Since by Lemmas 14, 16 and 17, we know that ‖vα(ρt)‖2 can be uniformly bounded by a constant depend-
ing on α, λ, σ , d, R, vb, v∗, M, Lν and ν (see in particular Equation (48) that combines the aforementioned
lemmas), we can conclude (38) with

E
[‖vα(ρt) − vα(ρ̄t)‖2

2

]≤ C0

N
(39)

for some constant C0 depends on λ, σ , d, α, Lν , ν, Lγ , Lu, T∗, R, vb, v∗ and M.
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3.2.2. Upper bound for the third term in (19)
In this section, we bound Term III of the error decomposition (19). Before stating the main result of this
section, Proposition 15, we first need to provide two auxiliary lemmas, Lemma 12 and Lemma 14.

Lemma 12. Let R, M ∈ (0, ∞). Then, it holds
d

dt
E

[∥∥Vt − v∗∥∥2

2

]
≤ −λE

[∥∥Vt − v∗∥∥2

2

]
+ λ

(∥∥Pvb ,R(vα(ρt)) − v∗∥∥2

2
+ ∥∥vα(ρt) −Pvb ,R(vα(ρt))

∥∥2

2

)
+ σ 2M2d.

(40)

If further λ ≥ 2σ 2d, we have
d

dt
E

[∥∥Vt − v∗∥∥2

2

]
≤ −λE

[∥∥Vt − v∗∥∥2

2

]
+ λ

(∥∥Pvb ,R(vα(ρt)) − v∗∥∥2

2
+ ∥∥vα(ρt) −Pvb ,R(vα(ρt))

∥∥2

2

)
.

(41)

Proof. By Itô’s formula, we have

d
∥∥Vt − v∗∥∥2

2
= 2

(
Vt − v∗)�

dVt + σ 2d
(∥∥Vt − vα(ρt)

∥∥2

2
∧ M2

)
dt

= −2λ
〈
Vt − v∗, Vt −Pvb ,R(vα(ρt))

〉
dt + 2σ

(∥∥Vt − vα(ρt)
∥∥

2
∧ M

) (
Vt − v∗)�

dBt

+ σ 2d
(∥∥Vt − vα(ρt)

∥∥2

2
∧ M2

)
dt

= −λ
[∥∥Vt − v∗∥∥2

2
+ ∥∥Vt −Pvb ,R(vα(ρt))

∥∥2

2
− ∥∥Pvb ,R(vα(ρt)) − v∗∥∥2

2

]
dt

+ 2σ
(∥∥Vt − vα(ρt)

∥∥
2
∧ M

) (
Vt − v∗)�

dBt + σ 2d
(∥∥Vt − vα(ρt)

∥∥2

2
∧ M2

)
dt,

which, after taking the expectation on both sides, yields
d

dt
E

[∥∥Vt − v∗∥∥2

2

]
= −λE

[∥∥Vt − v∗∥∥2

2

]
+ λ

∥∥Pvb ,R(vα(ρt)) − v∗∥∥2

2
− λE

[∥∥Vt −Pvb ,R(vα(ρt))
∥∥2

2

]
+ σ 2dE

[∥∥Vt − vα(ρt)
∥∥2

2
∧ M2

]
.

(42)

For the term E

[∥∥Vt −Pvb ,R(vα(ρt))
∥∥2

2

]
, we notice that

E

[∥∥Vt −Pvb ,R (vα(ρt))
∥∥2

2

]
=E

[∥∥Vt − vα(ρt)
∥∥2

2

]
+E

[∥∥vα(ρt) −Pvb ,R (vα(ρt))
∥∥2

2

]
+ 2E

[〈
Vt − vα(ρt), vα(ρt) −Pvb ,R (vα(ρt))

〉]
≥E

[∥∥Vt − vα(ρt)
∥∥2

2

]
+E

[∥∥vα(ρt) −Pvb ,R (vα(ρt))
∥∥2

2

]
−
(

1

2
E

[∥∥Vt − vα(ρt)
∥∥2

2

]
+ 2E

[∥∥vα(ρt) −Pvb ,R (vα(ρt))
∥∥2

2

])
= 1

2
E

[∥∥Vt − vα(ρt)
∥∥2

2

]
−E

[∥∥vα(ρt) −Pvb ,R (vα(ρt))
∥∥2

2

]
,

which, inserted into Equation (42), allows to derive
d

dt
E

[∥∥Vt − v∗∥∥2

2

]
≤ −λE

[∥∥Vt − v∗∥∥2

2

]
+ λ

(∥∥Pvb ,R (vα(ρt)) − v∗∥∥2

2
+ ∥∥vα(ρt) −Pvb ,R (vα(ρt))

∥∥2

2

)
− 1

2
λE

[∥∥Vt − vα(ρt)
∥∥2

2

]
+ σ 2d

(∥∥Vt − vα(ρt)
∥∥2

2
∧ M2

)
.
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From this, we get for any λ and σ that
d

dt
E

[∥∥Vt − v∗∥∥2

2

]
≤ −λE

[∥∥Vt − v∗∥∥2

2

]
+ λ

(∥∥Pvb ,R(vα(ρt)) − v∗∥∥2

2
+ ∥∥vα(ρt) −Pvb ,R(vα(ρt))

∥∥2

2

)
+ σ 2M2d

(43)

as well as
d

dt
E

[∥∥Vt − v∗∥∥2

2

]
≤ −λE

[∥∥Vt − v∗∥∥2

2

]
+ λ

(∥∥Pvb ,R(vα(ρt)) − v∗∥∥2

2
+ ∥∥vα(ρt) −Pvb ,R(vα(ρt))

∥∥2

2

)
+
(

−1

2
λ + σ 2d

)
E

[∥∥Vt − vα(ρt)
∥∥2

2

]
.

(44)

If λ ≥ 2σ 2d, by Equation (44), we get
d

dt
E

[∥∥Vt − v∗∥∥2

2

]
≤ −λE

[∥∥Vt − v∗∥∥2

2

]
+ λ

(∥∥Pvb ,R(vα(ρt)) − v∗∥∥2

2
+ ∥∥vα(ρt) −Pvb ,R(vα(ρt))

∥∥2

2

)
.

(45)

Remark 13. When R = M = ∞, we can show
d

dt
E

[∥∥Vt − v∗∥∥2

2

]
= −λE

[∥∥Vt − v∗∥∥2

2

]
+ λ ‖vα(ρt) − v∗‖2

2 − (
λ − σ 2d

)
E

[∥∥Vt − vα(ρt)
∥∥2

2

]
.

If further λ ≥ σ 2d, we have
d

dt
E

[∥∥Vt − v∗∥∥2

2

]
≤ −λE

[∥∥Vt − v∗∥∥2

2

]
+ λ ‖vα(ρt) − v∗‖2

2 .

This differs from [10, Lemma 18].

The next result is a quantitative version of the Laplace principle as established in [10,
Proposition 21].

Lemma 14. For any r > 0, define fr := supv∈Br(v∗) f (v). Then, under the inverse continuity condition A2,
for any r ∈ (0, R0] and q > 0 such that q + fr ≤ f∞, it holds

‖vα(ρ) − v∗‖2 ≤ (q + fr)
ν

Lν

+ exp(−αq)

ρ(Br (v∗))

∫
‖v − v∗‖2 dρ(v) (46)

With the above preparation, we can now upper bound Term III. We have by Jensen’s inequality

III =E

⎡⎣∥∥∥∥∥ 1

N

N∑
i=1

V
i

T∗ − v∗
∥∥∥∥∥

2

2

⎤⎦≤ 1

N

N∑
i=1

E

[∥∥∥V
i

T∗ − v∗
∥∥∥2

2

]
, (47)

that is, it is enough to upper-bound E

[∥∥VT∗ − v∗∥∥2

2

]
, which is the content of the next statement.

Proposition 15. Let f ∈ C(Rd) satisfy A1, A2 and A3. Moreover, let ρ0 ∈P4(Rd) with v∗ ∈ supp (ρ0). Fix
any ε ∈ (0, W2

2 (ρ0, δv∗ )) and define the time horizon

T∗ := 1

λ
log

(
2W2

2 (ρ0, δv∗ )

ε

)
.

https://doi.org/10.1017/S095679252400007X Published online by Cambridge University Press

https://doi.org/10.1017/S095679252400007X


European Journal of Applied Mathematics 17

Moreover, let R ∈ (‖vb − v∗‖2 + √
ε/2, ∞), M ∈ (0, ∞) and λ, σ > 0 be such that λ ≥ 2σ 2d or σ 2M2d =

O(ε). Then, we can choose α sufficiently large, depending on λ, σ , d, T∗, R, vb, M, ε and properties of f ,
such that E

[∥∥VT∗ − v∗∥∥2

2

]
=O(ε).

Proof. We only prove the case λ ≥ 2σ 2d in detail. The case σ 2M2d =O(ε) follows similarly.
According to Lemmas 14 and 17, we have

‖vα(ρt) − v∗‖2 ≤ (q + fr)
ν

Lν

+ exp(−αq)

ρt (Br (v∗))
E
[∥∥Vt − v∗∥∥

2

]
≤ (q + fr)

ν

Lν

+ exp(−αq)C2C3,
(48)

where C2 := (exp q′T∗)/C4 < ∞, q′ and C4 are from Lemma 17, and where, as of Lemma 16, C3 :=
sup[0,T∗] E

[∥∥Vt − v∗∥∥
2

]
< ∞. In what follows, let us deal with the two terms on the right-hand side

of (48). For the term (q + fr)
ν
/Lν , let q = fr. Then by A2 and A3, we can choose proper r, such that

2(Lνr)1/ν ≤ 2fr ≤ f∞. Further by A3, we have

(q + fr)
ν

Lν

= (2fr)ν

Lν

≤ (2Lγ )νr(1+γ )ν

Lν

,

so if

r < r0 := min

{(ε

8

) 1
2(1+γ )ν

(
Lν

(2Lγ )ν

) 1
(1+γ )ν

,

√
ε

2

}
,

we can bound

(q + fr)
ν

Lν

= (2fr)ν

Lν

≤
√

ε

2
√

2
.

For term exp(−αq)C2C3, we can choose α large enough such that

exp(−αq)C2C3 ≤
√

ε

2
√

2
.

With these choices of r and α and by integrating them into Equation (48), we obtain

‖vα(ρt) − v∗‖2
2 <

ε

2
,

for all t ∈ [0, T∗], and thus

‖vα(ρt) − vb‖2 ≤ ‖vα(ρt) − v∗‖2 + ‖v∗ − vb‖2 ≤
√

ε

2
+ ‖v∗ − vb‖2 ≤ R.

Consequently, by Lemma 12, we have

d

dt
E

[∥∥Vt − v∗∥∥2

2

]
≤ −λ

(
E

[∥∥Vt − v∗∥∥2

2

]
− ‖vα(ρt) − v∗‖2

2

)
≤ −λ

(
E

[∥∥Vt − v∗∥∥2

2

]
− ε

2

)
,

since now Pvb ,R(vα(ρt)) = vα(ρt). Finally by Grönwall’s inequality, E
[∥∥VT∗ − v∗∥∥2

2

]
≤ ε.

Lemma 16. Let ‖vb − v∗‖2 < R < ∞ and 0 < M < ∞. Then, it holds

sup
t∈[0,T∗]

E
[∥∥Vt − v∗∥∥

2

]≤
√

max
{
E

[∥∥V0 − v∗
∥∥2

2

]
, λR2 + σ 2M2d

}
. (49)
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Proof. By Equation (42), we have
d

dt
E

[∥∥Vt − v∗∥∥2

2

]
≤ −λE

[∥∥Vt − v∗∥∥2

2

]
+ λ

∥∥Pvb ,R (vα(ρt)) − v∗∥∥2

2
− λE

[∥∥Vt −Pvb ,R (vα(ρt))
∥∥2

2

]
+ σ 2dE

[∥∥Vt − vα(ρt)
∥∥2

2
∧ M2

]
≤ −λE

[∥∥Vt − v∗∥∥2

2

]
+ λR2 + σ 2M2d,

yielding

E

[∥∥Vt − v∗∥∥2

2

]
≤ max

{
E

[∥∥V0 − v∗∥∥2

2

]
, λR2 + σ 2M2d

}
,

after an application of Grönwall’s inequality for any t ≥ 0.

Lemma 17. For any M ∈ (0, ∞), τ ≥ 1, r > 0 and R ∈ (‖vb − v∗‖2 + r, ∞), it holds

ρt (Br (v∗)) ≥ C4 exp(−q′t) > 0,

where

C4 :=
∫

Br (v∗)

1 + (τ − 1)

∥∥∥∥v − v∗

r

∥∥∥∥τ

2

− τ

∥∥∥∥v − v∗

r

∥∥∥∥τ−1

2

dρ0(v)

and where q′ depends on τ , λ, σ , d, r, R, vb and M.

Proof. Recall that the law ρt of Vt satisfies the Fokker–Planck equation

∂tρt = λ div
((

v −Pvb ,R (vα(ρt))
)
ρt

)+ σ 2

2
�
((‖v − vα (ρt)‖2 ∧ M2

)
ρt

)
.

Let us first define for τ ≥ 1 the test function

φτ

r (v) :=
{

1 + (τ − 1)
∥∥ v

r

∥∥τ

2
− τ

∥∥ v
r

∥∥τ−1

2
, ‖v‖2 ≤ r,

0, else,
(50)

for which it is easy to verify that φτ
r ∈ C1

c (Rd, [0, 1]). Since Im φτ
r ⊂ [0, 1], we have ρt(Br(v∗)) ≥∫

Br (v∗)
φτ

r (v − v∗) dρt(v). To lower bound ρt(Br(v∗)), it is thus sufficient to establish a lower bound on∫
Br (v∗)

φτ
r (v − v∗) dρt(v). By Green’s formula,

d

dt

∫
Br (v∗)

φτ

r (v − v∗) dρt(v) = −λ

∫
Br (v∗)

〈
v −Pvb ,R (vα(ρt)) , ∇φτ

r (v − v∗)
〉
dρt(v)

+ σ 2

2

∫
Br (v∗)

(‖v − vα(ρt)‖2
2 ∧ M2

)
�φτ

r (v − v∗)dρt(v)

= τ (τ − 1)
∫

Br (v∗)

‖v − v∗‖τ−3
2

rτ−3

((
1 − ‖v − v∗‖2

r

)(
λ

〈
v −Pvb ,R (vα(ρt))

r
,

v − v∗

r

〉

− σ 2

2
(d + τ − 2)

‖v − vα(ρt)‖2
2 ∧ M2

r2

)
+ σ 2

2

‖v − vα(ρt)‖2
2 ∧ M2

r2

)
dρt(v).

For simplicity, let us abbreviate

�:=
(

1 − ‖v − v∗‖2

r

)(
λ

〈
v −Pvb ,R (vα(ρt))

r
,

v − v∗

r

〉
− σ 2

2
(d + τ − 2)

‖v − vα(ρt)‖2
2 ∧ M2

r2

)
+ σ 2

2

‖v − vα(ρt)‖2
2 ∧ M2

r2
.
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We can choose ε1 small enough, depending on τ and d, such that when ‖v − v∗‖2/r > 1 − ε1, we have

� =
(

1 − ‖v − v∗‖2

r

)
λ

〈
v −Pvb ,R (vα(ρt))

r
,

v − v∗

r

〉
+
(

σ 2

2
−
(

1 − ‖v − v∗‖2

r

)
σ 2

2
(d + τ − 2)

)‖v − vα(ρt)‖2
2 ∧ M2

r2

≥
(

1 − ‖v − v∗‖2

r

)
λ

〈
v −Pvb ,R (vα(ρt))

r
,

v − v∗

r

〉
+ σ 2

3

‖v − vα(ρt)‖2
2 ∧ M2

r2
,

where the last inequality works if ‖v − v∗‖2/r ≥ 1 − 1/(6(d + τ − 2)).
If vα(ρt) �∈ BR(vb), we have

∣∣〈v −Pvb ,R(vα(ρt)) , v − v∗〉∣∣ /r2 ≤ C(r, R, vb) and, since R > ‖vb − v∗‖2 +
r, (‖v − vα(ρt)‖2

2 ∧ M2)/r2 ≥ C(r, M, R, vb), which allows to choose ε2 small enough, depending on
λ, r, σ , R, vb and M, such that � > 0 when ‖v − v∗‖2/r > 1 − min{ε1, ε2}.

If vα(ρt) ∈ BR(vb) and ‖v − vα(ρt)‖2 ≤ M, we have by Lemma 18

� ≥
(

1 − ‖v − v∗‖2

r

)
λ

〈
v − vα(ρt)

r
,

v − v∗

r

〉
+ σ 2

3

‖v − vα(ρt)‖2
2

r2

=
(

σ 2

3
+
(

1 − ‖v − v∗‖2

r

)
λ

) ‖v − v∗‖2
2

r2
+ σ 2

3

‖vα(ρt) − v∗‖2
2

r2

−
(

2σ 2

3
+
(

1 − ‖v − v∗‖2

r

)
λ

) 〈
vα(ρt) − v∗

r
,

v − v∗

r

〉
≥ 0,

when ‖v − v∗‖2 /r ∈ [
1 − 2σ 2/(3λ), 1

]
.

If vα(ρt) ∈ BR(vb) and ‖v − vα(ρt)‖2 > M, we have

� ≥
(

1 − ‖v − v∗‖2

r

)
C(λ, r, R, vb) + σ 2

3
M2,

that is, we can choose ε3 small enough, depending on λ, r, σ , R, vb and M, such that � ≥ 0 when
‖v − v∗‖2/r > 1 − min{ε1, ε2, ε3, 2σ 2/3λ}.

Combining the cases from above, we conclude that � ≥ 0 when ‖v − v∗‖2/r ≥ 1 −
min{ε1, ε2, ε3, 2σ 2/3λ}. On the other hand, when ‖v − v∗‖2/r ≤ 1 − min{ε1, ε2, ε3, 2σ 2/3λ}, we
have

τ (τ − 1)
‖v − v∗‖τ−3

2

rτ−3
� = τ (τ − 1)

‖v − v∗‖τ−3
2

rτ−3

�

φτ
r (v)

φτ

r (v − v∗) ≥ −C5φ
τ

r (v − v∗)

for some constant C5 depending on r, R, M, vb, λ, σ , d and τ , since |�| is upper-bounded
and φτ

r (v − v∗) ≥ φτ
r ((1 − min{ε1, ε2, ε3, 2σ 2/3λ})r) > 0 for any v satisfies ‖v − v∗‖2/r ≤

1 − min{ε1, ε2, ε3, 2σ 2/3λ}.
All in all we have

d

dt

∫
Br (v∗)

φτ

r (v − v∗) dρt(v) ≥ −q′
∫

Br (v∗)

φτ

r (v − v∗) dρt(v),

where q′ := max{C5, 0}. By Grönwall’s inequality, we thus have

ρt(Br(v
∗)) ≥

∫
Br (v∗)

φτ

r (v − v∗) dρt(v) ≥ e−q′ t
∫

Br (v∗)

φτ

r (v − v∗) dρ0(v),

which concludes the proof.

Lemma 18. Let a, b > 0. Then, we have

(a + b(1 − x))x2 + ay2 − (2a + b(1 − x))xy ≥ 0,

for any x ∈ [1 − 2a/b, 1] ∩ (0, ∞) and y ≥ 0.
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Proof. For y = 0, this is true. For y > 0, divide both side by ay2 and denote c = b/a. Then the lemma
is equivalent to showing (1 + c(1 − x)) (x/y)2 − (2 + c(1 − x))x/y + 1 ≥ 0, that is, it is enough to show
minr≥0(1 + c(1 − x))r2 − (2 + c(1 − x))r + 1 ≥ 0, when x ∈ [1 − 2/c, 1]. We have

arg min
r

(1 + c(1 − x))r2 − (2 + c(1 − x))r + 1 = 2 + c(1 − x)

2 + 2c(1 − x)
,

and thus
min
r≥0

(1 + c(1 − x))r2 − (2 + c(1 − x))r + 1

= (1 + c(1 − x))

(
2 + c(1 − x)

2 + 2c(1 − x)

)2

− (2 + c(1 − x))
2 + c(1 − x)

2 + 2c(1 − x)
+ 1

= −1

2

(2 + c(1 − x))2

2 + 2c(1 − x)
+ 1 ≥ 0,

when x ∈ [1 − 2/c, 1]. This finishes the proof.

4. Numerical experiments

In this section, we numerically demonstrate the benefit of using CBO with truncated noise. For isotropic
[7, 8, 10] and anisotropic noise [9, 11], we compare the CBO method with truncation M = 1 to standard
CBO for several benchmark problems in optimisation, which are summarised in Table 1.

Table 1. Benchmark test functions

Name Objective function f v∗ f

Ackley −20 exp

(
−0.2

√
1
d

∑d
i=1 v2

i

)
− exp

(
1
d

∑d
i=1 cos(2πvi)

)
+ 20 + e (0, . . . , 0) 0

Griewank 1 +∑d
i=1

v2
i

4000
−∏d

i=1 cos
(

vi
i

)
(0, . . . , 0) 0

Rastrigin 10d +∑d
i=1

[
v2

i − 10 cos(2πvi)
]

(0, . . . , 0) 0

Alpine 10
∑d

i=1

∥∥(vi − v∗
i

)
sin

(
10

(
vi − v∗

i

))− 0.1
(
vi − v∗

i

) ∥∥
2

(0, . . . , 0) 0

Salomon 1 − cos

(
200π

√∑d
i=1 v2

i

)
+ 10

√∑d
i=1 v2

i (0, . . . , 0) 0

In the subsequent tables, we report comparison results for the two methods for the different bench-
mark functions as well as different numbers of particles N and, potentially, different numbers of steps
K. Throughout, we set vb = 0 and R = ∞, which is out of convenience. Any sufficiently large but finite
choice for R yields identical results.

The success criterion is defined by achieving the condition
∥∥ 1

N

∑N
i=1 Vi

K,�t − v∗∥∥
2
≤ 0.1, which ensures

that the algorithm has reached the basin of attraction of the global minimiser. The success rate is averaged
over 1000 runs.

4.1. Isotropic case

Let d = 15. In the case of isotropic noise, we always set λ = 1, σ = 0.3, α = 105 and step size �t =
0.02. The initial positions (Vi

0)i=1,...,N are sampled i.i.d. from ρ0 =N (0, Id). In Table 2, we report results
comparing the isotropic CBO method with truncation M = 1 and the original isotropic CBO method [7,
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Table 2. For the 15-dimensional Ackley and Salomon function, the CBO method with truncation (M = 1)
is able to locate the global minimum using only N = 300 particles. In comparison, even with an larger
number of particles (up to N = 1200), the original CBO method (M = +∞) cannot achieve a flawless
success rate. In the case of the Griewank function, the original CBO method (M = +∞) exhibits a
quite low success rate, even when utilising N = 1200 particles. Contrarily, in the same setting, the CBO
method with truncation (M = 1) achieves a success rate of 0.791.

Number of steps K = 200

Test function M N = 150 N = 300 N = 600 N = 900 N = 1200
Ackley 1 0.978 0.999 1 1 1

+∞ 0.001 0.056 0.478 0.824 0.935

Griewank 1 0.060 0.188 0.5013 0.671 0.791
+∞ 0 0 0.010 0.013 0.032

Salomon 1 0.970 1 1 1 1
+∞ 0.005 0.068 0.603 0.909 0.979

Table 3. For the 15-dimensional Rastrigin and Alpine function, both algorithms have difficulties in
finding the global minimiser. However, the success rates for the CBO method with truncation (M = 1)
are significantly higher compared to those of the original CBO method (M = +∞.)

Number of steps K = 200

Test function M N = 300 N = 600 N = 900 N = 1200 N = 1500
Rastrigin 1 0.180 0.256 0.298 0.322 0.337

+∞ 0 0 0.004 0.004 0.007

Alpine 1 0.029 0.049 0.051 0.070 0.080
+∞ 0 0.001 0.004 0.004 0.004

Number of steps K = 500

Test function M N = 300 N = 600 N = 900 N = 1200 N = 1500

Rastrigin 1 0.213 0.265 0.316 0.326 0.343
+∞ 0.001 0.004 0.005 0.009 0.010

Alpine 1 0.103 0.115 0.147 0.165 0.173
+∞ 0.010 0.015 0.033 0.037 0.040

8, 10] (M = +∞) for the Ackley, Griewank and Salomon function. Each algorithm is run for K = 200
steps.

Since the benchmark functions Rastrigin and Alpine are more challenging, we use more particles N
and a larger number of steps K, namely K = 200 and K = 500. We report the results in Table 3.

4.2. Anisotropic case

Let d = 20. In the case of anisotropic noise, we set λ = 1, σ = 5, α = 105 and step size �t = 0.02. The
initial positions of the particles are initialised with ρ0 =N (0, 100Id). In Table 4, we report results com-
paring the anisotropic CBO method with truncation M = 1 and the original anisotropic CBO method
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Table 4. For the 20-dimensional Rastrigin, Ackley and Salomon function, the original anisotropic CBO
method (M = +∞) works better than the anisotropic CBO method with truncation (M = 1), in particular
when the particle number N is small. In the case of the Salomon function, when increasing the number
of particle to N = 900, the success rates of the original anisotropic CBO method (M = +∞) decreases.
In the case of the Griewank function, however, we find that the anisotropic CBO method with truncation
(M = +∞) works considerably better than the original anisotropic CBO method (M = 1.)

Number of steps K = 1000

Test function M N = 75 N = 150 N = 300 N = 600 N = 900
Rastrigin 1 0.285 0.928 0.990 1 1

+∞ 0.728 0.952 0.993 1 1

Ackley 1 0.510 0.997 1 1 1
+∞ 0.997 1 1 1 1

Griewank 1 0.097 0.458 0.576 0.625 0.665
+∞ 0.093 0.101 0.157 0.159 0.167

Salomon 1 0.010 0.434 0.925 0.998 1
+∞ 0.622 0.954 0.970 0.934 0.891

Table 5. For the 15-dimensional Alpine function, the anisotropic CBO method with truncated noise
(M = 1) works better than the original anisotropic CBO method (M = +∞.)

Number of steps K = 200

Test function M N = 300 N = 600 N = 900 N = 1200 N = 1500
Alpine 1 0 0.006 0.006 0.008 0.025

+∞ 0.001 0.004 0.008 0.007 0.021

Number of steps K = 500

Test function M N = 300 N = 600 N = 900 N = 1200 N = 1500

Alpine 1 0.130 0.224 0.291 0.336 0.365
+∞ 0.083 0.175 0.250 0.292 0.330

Number of steps K = 1000

Test function M N = 300 N = 600 N = 900 N = 1200 N = 1500

Alpine 1 0.102 0.198 0.293 0.340 0.368
+∞ 0.097 0.179 0.250 0.295 0.331

[9, 11] (M = +∞) for the Rastrigin, Ackley, Griewank and Salomon function. Each algorithm is run for
K = 200 steps.

Since the benchmark function Alpine is more challenging and none of the algorithms work in the
previous setting, we reduce the dimensionality to d = 15, choose σ = 1, use ρ0 =N (0, Id) to initialise,
employ more particles and use a larger number of steps K, namely K = 200, K = 500 and K = 1000.
We report the results in Table 5.
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5. Conclusions

In this paper, we establish the convergence to a global minimiser of a potentially non-convex and non-
smooth objective function for a variant of CBO which incorporates truncated noise. We observe that
truncating the noise in CBO enhances the well-behavedness of the statistics of the law of the dynamics,
which enables enhanced convergence performance and allows in particular for a wider flexibility in
choosing the noise parameter of the method, as we observe numerically. For rigorously proving the
convergence of the implementable algorithm to the global minimiser of the objective, we follow the
route devised in [10].
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