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NEW MODULI SPACES OF ONE-DIMENSIONAL SHEAVES ON P3

DAPENG MU

Abstract. We define a one-dimensional family of Bridgeland stability condi-

tions on Pn, named “Euler” stability condition. We conjecture that the “Euler”

stability condition converges to Gieseker stability for coherent sheaves. Here, we

focus on P3, first identifying Euler stability conditions with double-tilt stability

conditions, and then we consider moduli of one-dimensional sheaves, proving

some asymptotic results, boundedness for walls, and then explicitly computing

walls and wall-crossings for sheaves supported on rational curves of degrees 3

and 4.

§1. Introduction

We define a one-parameter family of Euler stability conditions σt = (At,Zt) on Pn based

on [1]. The heart, denoted by At, consists of complexes

At :=
{[

O
a−n

Pn (−k−n)→ ·· · → O
a−1

Pn (−k−1)→ Oa0

Pn(−k)
]
: a0, . . . ,a−n ∈ Z≥0, t ∈ R

}
in which k is the roundup of t to the closest integer, and O

a−l

Pn (−k− l) (l = 0,1, . . . ,n)

denotes the direct sum OPn(−k− l)
⊕

a−l . With the observation that the Hilbert polynomial

Pt(OPn) = χ(OPn(t)) of OPn has simple roots t = −1,−2, . . . ,−n. We define the central

charge using the Euler characteristic as follows. For any object E ∈ At, let χt(E) be the

Euler characteristic of the twisted object E⊗OPn(t), that is,

χt(E) :=

∫
P3

ch(E) · ch(OP3) · etH ·Td(P3).

This is the Hilbert polynomial of E, and denote χ′
t(E) as the derivative of χt(E) with

respect to t. Define the central charge as Zt := χ′
t+ i ·χt. We will prove in §3 that the pair

σt = (At,Zt) is a stability condition on Pn. We conjecture that the moduli space of Euler-

stable complexes for large t coincides with the moduli of Gieseker-stable sheaves. Here, we

focus on the conjecture for objects in Db(P3) of class v = (0,0, ch2 > 0, ch3), that is, the

class of a one-dimensional coherent sheaf.

On P3, there is a construction of Bridgeland stability conditions by the double-tilting

approach (see [6], [26]). Denote this stability condition by σα,β,s = (A α,β,Zα,β,s). The

heart A α,β is obtained from tilting Coh(P3) twice, and the central charge is the following

function of twisted Chern characters (Definition 2.9):

Zα,β,s :=−chβ
3 +

(
s+

1

6

)
α2H2chβ

1 + i ·
(
Hchβ

2 −
α2

2
H3chβ

0

)
.
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2020/03499-0).

© The Author(s), 2023. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal.

https://doi.org/10.1017/nmj.2023.26 Published online by Cambridge University Press

http://dx.doi.org/10.1017/nmj.2023.26
https://orcid.org/0000-0002-8487-4500
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/nmj.2023.26&domain=pdf
https://doi.org/10.1017/nmj.2023.26


266 D. MU

For α= 1√
3
, β =−t−2, s= 1

3 , it is straightforward to check that the central charge becomes

ZBt
t :=Z 1√

3
,−t−2, 13

=−χt+ i ·χ′
t. Denote the corresponding heart A

1√
3
,−t−2

by Bt, and this

one-dimensional stability condition by σBt
t := (Bt,Z

Bt
t ). We will show that the two stability

conditions σt (Euler) and σBt
t (double-tilt) are essentially the same in the sense that σt is

a tilt of σBt
t .

To study the asymptotic behavior of objects in At, we make use of the finiteness of At

and the better-behaved walls of Bt. We extend the stability condition σBt
t to the “(t,u)”

upper half plane by modifying the central charge to be Zt,u =−χt+
u2

2 χ′′
t +i ·χ′

t (χ
′′
t denotes

the second derivative of χt, and the “u” parameter is essentially the “s” parameter in the

double-tilt stability). The pair σt,u = (Bt,Zt,u) is a stability condition, analogous to the

construction of tilt stability on surfaces. We start with studying the asymptotic behavior

of a fixed object E for u� 0.

Theorem 1.1 (Theorem 4.7). For any fixed t, and any object E ∈Bt with class v(E) =

(0,0, ch2 > 0, ch3), there exists a uE > 0 such that for all u > uE, E is σt,u-semistable if and

only if E is a Gieseker semistable sheaf.

Next, we consider the boundedness of the walls for any given class v ∈ Knum(P3) of

a one-dimensional sheaf. There are bounded and unbounded parts of potential walls. We

find that the bounded walls satisfy |t−2− ch3/ch2| ≤ ch2+2
√
2ch2. The unbounded walls

remain somewhat of a mystery. We expect that unbounded potential walls are not actual

walls.

To support our conjecture, we explicitly compute the wall-crossings for the class

v= (0,0,3,−5), the class of the structure sheaf of a twisted cubic curve. There was previous

work on the class of ideal sheaves of space (rational and elliptic) curves in [13], [33], and

[35], and it was shown that the last moduli space was the Hilbert scheme of curves. Our

main result is the following.

Theorem 1.2. For the class v = (0,0,3,−5) ∈ Knum(P3), there are two walls in A1

(t ∈ (0,1]) defined by the short exact sequences:

W1 (t= 0.35) : 0→ OP3 → E →Q[1]→ 0,

W2 (t= 0.72) : 0→ OΛ → E → F1 → 0.

In the first sequence, Q is a coherent sheaf that can be either IC or F , where C is

a twisted cubic curve and F is a sheaf that satisfies the sequence 0 → OΛ(−3) → F →
IP (−1)→ 0 (Λ⊂ P3 is a plane).

In the second sequence, Λ⊂ P3 is a plane and F1 is a complex fitting in the short exact

sequence: 0 → F1 → CP → OΛ(−3)[2] → 0 in A1, where CP is the skyscraper sheaf of a

point in Λ.

The moduli spaces in the three corresponding chambers are as follows:

1. t ∈ (0,0.35). The moduli space is empty.

2. t ∈ (0.35,0.72). The moduli space consists of two components:

(a) K(2,3): a smooth 12-dimensional Kronecker moduli space.

(b) MF : a P3 bundle over a closed five-dimensional smooth flag variety H ⊂K(2,3).

3. t ∈ (0.72,1]. MF disappears. K(2,3) is blown up along H, denoted by B := BlH(K(2,3)).

A new component P comes in, glued to B along the exceptional divisor of B. P is the
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relative Simpson scheme over P3∨, fibered by the scheme M3t+1
P2 , which is the moduli

space of Gieseker semistable sheaves with Hilbert polynomial Pt = 3t+1 on P2. This is

the Gieseker moduli space of class v on P3.

In [28], Maican proved that the functor F : F → Extn−1(F ,ωPn) preserves Gieseker

stability for sheaves on Pn. It was generalized to Bridgeland stable complexes on P2 in [29].

We prove the analogous result on P3, and a similar duality result holds on Pn (n ∈ Z≥0) as

well. For a class v ∈Knum(P3) and an object E ∈ At with this class, define its twisted dual

as ED :=RH om(E,ωP3)[2].

Theorem 1.3. On P3, E ∈ At is (semi)stable with phase φ ∈ (0,1) if and only if ED[1]

is (semi)stable in A−t with phase 1−φ for all t ∈ R.

In the end, we show an example in which an actual wall is built up from two pieces

of distinct numerical walls. Unlike surfaces, where walls are nested (see [21]), walls on a

threefold may intersect (see [22], [33]). Let C ⊂ P3 be a rational quartic curve contained in a

quadric surface Q⊂ P3. We propose that its actual wall in the (t,u)-plane is the outermost

part of the numerical walls defined by these two sequences:

0→ OP3 → OC → IC [1]→ 0 and 0→ OQ → OC → IC/Q[1]→ 0.

The paper is organized as follows: In §2, we give a brief review of Bridgeland stability

conditions. In §3, we introduce the one-dimensional Euler stability condition and show its

relation with the double-tilt stability on P3. The §4 is evidence for our main conjecture

that for any one-dimensional class v ∈ Knum(P3), Euler stable complexes are Gieseker

stable sheaves for all large t. We will show the walls for one-dimensional classes and prove

some asymptotic results for sheaves and complexes. In §5, we show the duality results for

stable objects in At and Bt. In §§6 and 7, we will focus on the fixed class v = (0,0,3,−5),

finding the walls for the class and describing the moduli spaces in each chamber. Finally, in

§8, we show an example in which an actual wall is built up from distinct numerical walls.

Remark 1.4. There is related recent work on walls and the asymptotic stability for

threefolds of Picard rank 1 in [16], [22], and [31].

Notation: For simplicity, we will denote the direct sum OP3(m)
⊕

n (m,n ∈ Z) by On
P3(m)

throughout this paper.

§2. Background on Bridgeland stability conditions

2.1 Stability conditions

In this section, we recall some definitions of Bridgeland stability conditions and the

constructions on a smooth threefold X over C. We refer to the following articles for more

details. [14] for tilting theory, [9], [10], [15], and [27] for Bridgeland stability conditions, and

[5], [6], and [26] for stability on a threefold.

Definition 2.1. The heart of a bounded t-structure on Db(X) is a full additive

subcategory A ⊂Db(X) satisfying the following conditions:

(a) For integers i > j and A,B ∈ A , we have Hom(A[i],B[j]) = 0.
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(b) For all E ∈Db(X), there exists integers k1 > · · ·> km and objects Ei ∈Db(X), Ai ∈A
for i= 1,2, . . . ,m and a diagram consisting of distinguished triangles.

0 = E0 E1 E2 ... Em−1 Em = E

A1[k1] A2[k2] Am−1[km−1] Am[km]

The heart of a bounded t-structure is indeed an abelian category. The proof can be found

in [7] and [27].

Let A be an abelian category. K0(A ), Knum(A ) denote the K-group and numerical

K-group of A , respectively.

Definition 2.2. A linear function Z : K0(A ) → C is called a central charge (or a

stability function) if for every E ∈ A , Im(Z(E)) ≥ 0, and if Im(Z(E)) = 0 then

Re(Z(E))< 0.

With the heart A and the central charge Z, we can define the (semi-)stability of an

object in A as follows:

Definition 2.3. Let Z : K0(A ) → C be a central charge. Define the slope as

μ :=−ReZ/ImZ. Also, define μ := +∞ if ImZ = 0. A non-zero object E ∈ A is called

(semi-)stable if for all non-trivial sub-object F ⊂ E ∈ A , μ(F )(≤)< μ(E) holds.

Fix a finite rank lattice Λ with a fixed norm || · || on it. Let v be a surjective linear map,

v : K0(A ) � Λ. For a Bridgeland stability condition, the central charge Z is required to

factor through a finite rank lattice, that is, Z :K0(A )
v→ Λ→ C.

Next, we define the Harder–Narasimhan property and the support property. A pair

σ = (A ,Z) satisfying the Harder–Narasimhan property is sometimes called a pre-stability.

It is a stability condition if it also satisfies the support property.

Definition 2.4. A Bridgeland stability condition on X is a pair σ = (A ,Z) consisting

of a heart of a bounded t-structure A ⊂Db(X), a central charge Z : A → Λ→ C, and two

more properties as follows:

(a) Every object E ∈ A satisfies the Harder–Narasimhan property:

E has a finite filtration 0 = E0 ⊂ E1,⊂ . . . ,⊂ En = E, in A such that the

quotients Fi := Ei/Ei−1 are semi-stable and their slopes are strictly decreasing, that

is, μ(v(F1))> μ(v(F2))> · · ·> μ(v(Fn)).

(b) σ satisfies the support property:

For a fixed norm || · || on Λ, there exists a C > 0 such that for all semi-stable object

E ∈ A , ||v(E)|| ≤ C|Z(E)| holds.
The support property can also be defined by a bilinear form Q on the lattice (see [5], [30]).

Lemma 2.5. A pre-stability condition σ = (A ,Z) satisfies the support properly if and

only if there is a bilinear form Q on Λ⊗R such that:

(a) All σ-semistable objects E ∈ A satisfy the inequality Q(v(E),v(E))≥ 0.

(b) All non-zero vectors v ∈ Λ⊗R with Z(v) = 0 satisfy Q(v,v)< 0.

Remark 2.6. We say that a pair σ = (A ,Z) is a weak stability condition if Z is a weak

central charge in the sense that ImZ ≥ 0, and if ImZ = 0, then ReZ ≤ 0.
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The Bridgeland stability condition can be equivalently defined on a triangulated category

as well (see [9], [27]).

Definition 2.7. A slicing P of Db(X) is a collection of subcategories P(φ)⊂Db(X)

for every φ ∈ R, such that:

(a) P(φ)[1] = P(φ+1).

(b) For A ∈ P(φ1), and B ∈ P(φ2), if φ1 > φ2, then Hom(A,B) = 0.

(c) For any E ∈Db(X), there are real numbers φ1 > · · ·> φm and distinguished triangles

in Db(X) :

0 = E0 E1 E2 ... Em−1 Em = E

A1 A2 Am−1 Am

such that Ai ∈ P(φi).

The last property is the Harder–Narasimhan filtration of E in Db(X).

Definition 2.8. A Bridgeland stability condition on Db(X) is a pair σ= (P,Z), where

P is a slicing, Z : Λ→ C is a linear map (the central charge), satisfying the following two

properties:

1. For any non-zero E ∈ P(φ), we have

Z(v(E)) ∈ R>0 · e
√
−1πφ.

2. (Support property) There exists a constant C > 0, such that ||v(E)|| ≤C|Z(E)| for any
0 �= E ∈ P(φ),φ ∈ R.

Let A :=P((0,1]) be the extension closure of slices {P(φ) : φ ∈ (0,1]}. The category A
turns out to be the heart of a bounded t-structure. Moreover, the two stability conditions,

σ1 = (P,Z) and σ2 = (A ,Z) are equivalent (see [9, Prop. 5.3]).

2.2 Construction of stability conditions on a smooth threefold

In this subsection, we recall a construction of stability conditions, the tilting approach,

and some known results on a smooth variety up to dimension 3.

We start by defining the twisted Chern character.

Definition 2.9. For any B ∈NSR(P
3), define the twisted Chern characters as chB :=

ch · e−B.

By expanding ch · e−B, we have the first few twisted Chern characters as:

chB
0 =ch0,

chB
1 =ch1−B · ch0,

chB
2 =ch2−B · ch1+

B2

2
ch0,

chB
3 =ch3−B · ch2+

B2

2
ch1−

B3

6
ch0,

· · · .
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A (numerical) stability condition on a smooth curve C is essentially the pair

σ = (Coh(C),Z = −deg + i · rk) (see [9], [25]), which looks like the Mumford stability

for vector bundles on curves.

For a smooth surface X, Coh(X) can no longer be used as the heart to define stability

conditions. In fact, for dimX ≥ 2, the pair (Coh(X),Z) is not a stability condition for any

central charge Z. Proof can be found in [34, Lem. 2.7]. To obtain the correct heart, we tilt

the category Coh(X).

For the rest of this subsection, we will focus on the construction on P3. A similar approach

works for some other smooth varieties as well. ([2], [4], and [10] for surfaces, [32] for quadric

threefolds, [5], [23], and [24] for abelian threefolds, [8] and [20] for Fano threefolds, and [6]

for a conjectural construction on all smooth varieties.)

We start with the first tilt of Coh(P3). Let H be the ample class OP3(1) on P3. B ∈
NSR(P

3) is a multiple of H, B = βH. For simplicity, we write chβ instead of chβH .

Define the slope function on Coh(P3) as

μβ :=
chβ

1

ch0
=

ch1

ch0
−β.

If ch0 = 0, then define the slope μβ to be +∞. The slope function defines the following

torsion pair:

Tβ := {E ∈ Coh(P3) : ∀E �Q �= 0,μβ(Q)> 0},

Fβ := {E ∈ Coh(P3) : ∀0 �= F ↪→ E,μβ(F )≤ 0}.

A new heart of a bounded t-structure is defined as the extension closure Cohβ(P3) :=

〈Fβ[1],Tβ〉. Let Γ be the lattice Γ := (H3ch0,H
2ch1,Hch2). Define a linear function

Zα,β : Γ → C as Zα,β := −Hchβ
2 +

α2

2
H3ch0 + i ·H2chβ

1 , in which α ∈ R≥0. The pair

(Cohβ(P3),Zα,β) is called a tilt stability on P3 (see [6]). It is a weak stability condition

since Zα,β maps some non-zero objects (for instance, skyscraper sheaves) to 0.

Let να,β :=
Hchβ

2 − α2

2 H3ch0

H2chβ
1

be the slope function defined by Zα,β. Again, define να,β =

+∞ if H2chβ
1 = 0. We have the following Bogomolov inequality for tilt-stable objects.

Theorem 2.10 ([6, Cor. 7.3.2]). For any να,β semistable objects E ∈ Cohβ(X), the

following inequality holds:

Δ(E) := (H2chβ
1 )

2−2H3chβ
0 ·Hchβ

2 (E)≥ 0.

For smooth surfaces, a single tilt would be sufficient to define stability conditions (see

[2], [4], [10]). For a threefold, we need an additional tilt.

Define a torsion pair on Cohβ(P3) as:

Tα,β := {E ∈ Cohβ(P3) : ∀E �Q �= 0,να,β(Q)> 0},

Fα,β := {E ∈ Cohβ(P3) : ∀0 �= F ↪→ E,να,β(F )≤ 0}.

Similarly, we obtain a heart of a bounded t-structure as A α,β(P3) := 〈Fα,β[1],Tα,β〉. For
any s > 0, the central charge and the bilinear form Q defining the support property are
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given as follows: (see [6], [26], [33])

Zα,β,s :=− chβ
3 +

(
s+

1

6

)
α2H2chβ

1 + i ·
(
Hchβ

2 −
α2

2
H3chβ

0

)
Qα,β,K(E) =((H2ch1(E))2−2(H3ch0(E))(Hch2(E)))(Kα2+β2)+

(6(H3ch0(E))(Hch3(E))−2(H2ch1(E))(Hch2(E)))β−
6(H2ch1(E))ch3(E)+4(Hch2(E))2

for some K ∈ [1,6s+1).

Theorem 2.11 [6], [26]. (A α,β((P3)),Zα,β,K) is a Bridgeland stability condition on P3

for all β ∈ R, α,s > 0, and K ∈ [1,6s+1). The support property is satisfied with respect to

Qα,β,K .

Lastly, for a smooth threefold X and a given class v ∈Knum(X), there is the following

continuity result.

Theorem 2.12 [5, Prop. 8.10]. The function R>0×R×R>0 → Stab(X,v) defined by

(α,β,s) �→ (A α,β(X),Zα,β,s) is continuous.

§3. The Euler stability

In this section, we start with defining the Euler stability on Pn based on [1]. And then

in §3.2, we focus on the three-dimensional case and show that the Euler stability on P3 can

also be defined by the tilting approach.

3.1 The Euler stability condition on Pn

We start with defining the category.

Definition 3.1. Define Am := 〈OPn(−m−n)[n],OPn(−m−n+1)[n−1], . . . ,OPn(−m)〉
(m ∈ Z) to be the extension closure of the exceptional collection {OPn(−m − n)[n],

OPn(−m−n+1)[n−1], . . . ,OPn(−m)} on Pn.

A general element E ∈ Am is a complex:

E =
[
O

a−n

Pn (−m−n)→ O
a−n+1

Pn (−m−n+1)→ . . .→ Oa0

Pn(−m)
]
,

where ai ∈Z≥0 for i=0,−1, . . . ,−n. The (n+1)-tuple [a−n, . . . ,a0] is called the dimension

vector of E in Am. We write the dimension vector as dim(E) := [a−n, . . . ,a0].

Next, we define the central charge to be Zt := χ′
t+ i ·χt, where χt is the twisted Euler

characteristic

χt(E) =

∫
Pn

ch(E) · ch(OPn) · etH ·Td(Pn)

and χ′
t(E) is the derivative of χt(E) with respect to t.

Proposition 3.2. The pair σt := (Am,Zt = χ′
t+ i ·χt) defines a pre-stability condition

for all m ∈ Z, t ∈ (m−1,m].

Proof. Firstly, the pair (Am,Zt) satisfies the Harder–Narasimhan property because Am

is Artinian, meaning that every descending chain in Am terminates. We prove next that Zt

maps every object in Am to the upper half-plane. This follows from the observation that

the polynomial χt(OPn) has simple roots t=−1, . . . ,−n. We show the details below.
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It is sufficient to check that Zt maps the generators {OPn(−m−n)[n], . . . ,OPn(−m)} of

Am to the upper plane. More precisely, we will show that χt(OPn(−m− i)[i]) ≥ 0, and if

χt(OPn(−m− i)[i]) = 0, then χ′
t(OPn(−m− i)[i])< 0.

The polynomial χt(OPn(−m)) = (t+n−m)(t+n−m− 1) · · ·(t+1−m)/n! has simple

roots t=m−1,m−2, . . . ,m−n. The sign of χt is given as follows:

1. χt(OPn(−m))> 0 for
t ∈ (m−n,m−n+1), . . . ,(m−3,m−2),(m−1,∞), if n= even,

t ∈ (m−n+1,m−n+2), . . . ,(m−3,m−2),(m−1,∞), if n= odd.
2. χt(OPn(−m))< 0 for

t ∈ (m−n+1,m−n+2), . . . ,(m−4,m−3),(m−2,m−1), if n= even,

t ∈ (m−n,m−n+1), . . . ,(m−4,m−3),(m−2,m−1), if n= odd.

• For OPn(−m), we have χt(OPn(−m))> 0 when t ∈ (m−1,m].

• For OPn(−m−1)[1],

χt(OPn(−m− 1)[1] = −χt(OPn(−m− 1)) = −χt−1(OPn(−m)) > 0 when t ∈ (m− 1,m).

χt(OPn(−m− 1)[1] = 0 when t = m, and in this case, we have χ′
m(OPn(−m− 1)[1]) =

−χ′
m(OPn(−m−1))< 0.

• For OPn(−m− i)[i], i= 2,3, . . . ,n, using the sign of χt above it is straightforward to check

that {
χt(OPn(−m− i)[i])> 0, when t ∈ (m−1,m),

χt(OPn(−m− i)[i]) = 0, when t=m.

The sign of χ′
m(OPn(−m − i)) is alternating for i = 1,2, . . . ,n. So the sign of

χ′
m(OPn(−m− i)) and χ′

m(OPn(−m)) are different by (−1)i. On the other hand, the shift

by [i] will change the sign of χ′
t(OPn(−m− i)) by (−1)i. So the sign of χ′

m(OPn(−m− i)[i])

and χ′
m(OPn(−m)) are different by (−1)i · (−1)i = 1. This implies that the signs of

χ′
m(OPn(−m− i))[i] are the same for all i= 0,1, . . . ,n, and they are all negative.

The proof above indicates that the stability conditions can be extended to the following

continuous family.

Definition 3.3. Define At :=A�t� (t∈R), where “�t�” is the roundup of t to the closest

integer.

Corollary 3.4. The pair σt = (At,Zt = χ′
t + i ·χt) defines a family of pre-stability

conditions on Pn for t ∈ R.

Next, we show that σt = (At,Zt = χ′
t + i ·χt) satisfies the support property, and then

σt will be a stability condition. We will show in the next proposition the case of P3 when

t ∈ (0,1]. The proof for all Pn (n≥ 4) and t ∈ R is analogous.

Proposition 3.5. The pre-stability condition σt = (At,Zt = χ′
t+ i ·χt) on P3 satisfies

the support property for t ∈ (0,1].

Proof. By definition, we need to find numbers Ct > 0, such that
|Zt(E)|
||v(E)|| > Ct for any

t ∈ (0,1]. The category is A1 which is generated by these objects:

u1 := OP3(−4)[3],u2 := OP3(−3)[2],u3 := OP3(−2)[1],u4 := OP3(−1).

https://doi.org/10.1017/nmj.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.26


NEW MODULI SPACES OF ONE-DIMENSIONAL SHEAVES ON P
3 273

−4 −2 2 4

−4

−2

2

4

u1

u2

u3

u4

Γt
u

pt(u)

Figure 1.

Support property.

Observe that for any t ∈ (0,1], the linear span U := {a1Zt(u1)+ a2Zt(u2)+ a3Zt(u3)+

a4Zt(u4)|ai ≥ 0} is not the entire upper half-plane. For instance, Figure 1 shows the

case when t = 0.9. We abuse the notation in Figure 1 that u1, . . . ,u4 denote the images

Zt(u1), . . . ,Zt(u4) in the upper half-plane when t = 0.9. The two black rays are passing

through Z(u1) (the smallest phase among Zt(u1), . . . ,Zt(u4)) and Z(u4) (the biggest phase).

So for t= 0.9 and any object u ∈ At, Zt(u) must be above the two black rays. It is evident

that the region above the black rays does not fill the entire upper half-plane. So we can

find a line Γt (the dotted line in Figure 1) such that all the objects in U have a non-zero

projection to Γt. For any object u=

4∑
i=1

aiui (ai ≥ 0), denote its projection to Γt by pt(u),

and let at :=min{|Zt(pt(ui))| : i= 1,2,3,4}, bt :=max{||(ui)|| : i= 1,2,3,4}.

|Zt(u)|
||v(u)|| =

|Zt(
∑4

i=1aiui)|
||
∑4

i=1aiui||
>

|
∑4

i=1aipt(ui)|∑4
i=1ai||ui||

≥ (
∑4

i=1a1)at

(
∑4

i=1a1)bt
=

at
bt

=: Ct > 0.

3.2 The Euler stability condition on P3 from tiltings

In this subsection, we will show that the Euler stability is indeed related to the stability

σα,β,s = (A α,β,Zα,β,s) in the way that At is an additional tilt of A α,β. We start with

reviewing the three tilts of Coh(P3), where the central charges for the tilted hearts are

defined by derivatives of χt. And then we show that the heart At in Euler stability coincides

with a one-dimensional slice of the heart obtained by a triple tilt of Coh(P3).

1. The first tilt.

The first tilt is made with respect to the first Todd class of P3 (td1(P
3) = 2H). Define

the central charge on Coh(P3) as Z1,t =−χ′′
t + i ·χ′′′

t , and the slope function is

μt :=
χ′′
t

χ′′′
t

=
ch−t−2

1

ch0
=

ch1+(t+2)ch0

ch0
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with μt := +∞ if χ′′′
t = ch0 = 0. This defines the following torsion pair of Coh(P3) :

T :=
{
E ∈ Coh(P3) : ∀E �Q,μt(Q)> 0

}
,

F :=
{
E ∈ Coh(P3) : ∀F ↪→ E,μt(F )≤ 0

}
,

and we obtain the tilted heart as Coh−t−2(P3) := 〈F [1],T 〉.
2. The second tilt.

We define the weak stability function Z2,t :=−χ′
t+ i ·χ′′

t on Coh−t−2(P3) and its slope

is given by:

νt :=
χ′
t

χ′′
t

=
ch−t−2

2 − 1
6ch0

ch−t−2
1

with νt :=+∞ if χ′′
t = ch−t−2

1 =0. We have the torsion pair of the category Coh−t−2(P3)

and the new heart of a bounded t-structure as follows:

Tβ :=
{
E ∈ Coh−t−2(P3) : ∀E �Q,νt(Q)> 0

}
,

Fβ :=
{
E ∈ Coh−t−2(P3) : ∀F ↪→ E,νt(F )≤ 0

}
,

Bt := 〈Fβ[1],Tβ〉 .

The central charge for Bt is defined as

Z3,t =−χt+ i ·χ′
t =−ch−t−2

3 +
1

6
ch−t−2

1 + i · (ch−t−2
2 − 1

6
ch−t−2

0 ).

Comparing Z3,t to Zα,β,s in the previous section, we have α = 1√
3
, β = −t− 2, and

s = 1
3 . So the pair (Bt,Zt) is a one-dimensional family of stability conditions. In this

case, the quadratic form Qα,β,K from Theorem 2.11 is given as follows for those specific

values α= 1√
3
, β =−t−2, K = 1:

Qt(E) = ((ch1(E))2−2ch0(E)ch12(E))(13 +(t+2)2)+

(6ch0(E)ch3(E)−2ch1(E)ch2(E))(−t−2)

−6ch1(E)ch3(E)+4(ch2(E))2.

3. The third tilt.

We now make a tilt of the category Bt. The slope on Bt is defined as λt =
χt

χ′
t
, with

λt =+∞ if χ′
t = 0. Similarly, we have the following torsion pair:

T ′ := {E ∈ Bt : ∀E �Q,λt(Q)> 0} ,

F ′ := {E ∈ Bt : ∀F ↪→ E,λt(F )≤ 0} .

Define A ′
t := 〈F ′[1],T ′〉 to be the new heart of bounded t-structure, and Zt :=

χ′
t+ i ·χt.

Remark 3.6. In the above tilting steps, we constructed the heart Coh−t−2(P3). It is

indeed the tilted heart Cohβ(P3) when β =−t−2.

The next proposition shows that A ′
t coincides with At, so the Euler stability (At,Zt) =

(A ′
t ,Zt) is a stability condition by tilting Coh(P3) three times.
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Proposition 3.7. The category A ′
t is the extension closure of the following objects:

{OP3(−n−3)[3],OP3(−n−2)[2],OP3(−n−1)[1],OP3(−n)} ,

where n := �t� ∈ Z.

Proof. A ′ is the heart of a bounded t-structure since it is obtained from tilting Coh(P3)

(see [14]). The category At generated by the objects

{OP3(−n−3)[3],OP3(−n−2)[2],OP3(−n−1)[1],OP3(−n)}

is also the heart of a bounded t-structure (see [25, Lem. 3.14]). By [27, Prop. 5.6], two hearts

must coincide if one is contained in another. So it is sufficient to prove that the objects

{OP3(−n−3)[3],OP3(−n−2)[2],OP3(−n−1)[1],OP3(−n)}

generating At are all contained in A ′
t .

We will prove that the objects {OP3(−3)[3],OP3(−2)[2],OP3(−1)[1],OP3} are in the

category A ′
t where t ∈ (−1,0], and the proof for a general t ∈ R is analogous. We will

keep track of the line bundles OP3 ,OP3(−1),OP3(−2),OP3(−3) in Coh(P3) while we make

the three time tiltings.

The line bundles OP3(m) are Mumford stable for any m ∈ Z, so they are also twisted

Mumford stable. It is straightforward to check that μt(OP3(k)) = k+ t+2 for k ∈ Z, and

μt(OP3)> 0 μt(OP3(−1))> 0 μt(OP3(−2))< 0 μt(OP3(−3))< 0 for t ∈ (−1,0]. This implies

that the category Coh−t−2(P3) (for t ∈ (−1,0]) contains these objects:

OP3 ,OP3(−1),OP3(−2)[1],OP3(−3)[1].

Then, we use the slope function νt =
ch−t−2

2 −1/6ch0

ch−t−2
1

for the second tilt. It was proved

in [26] and [33] that line bundles and their shifts (OP3(m), OP3(m)[1]) are tilt stable

when they are in the category. A straightforward computation shows that νt(OP3(k)) =
k2/2+(t+2)k+(t+2)2/2−1/6

k+ t+2
for k ∈ Z, so Bt (a tilt of Coh−t−2(P3)) contains the

following objects for t ∈ (−1,0]:

OP3 ,

{
OP3(−1) t ∈ (−1+1/

√
3,0]

OP3(−1)[1] t ∈ (−1,−1+1/
√
3]

,

{
OP3(−2)[1] t ∈ (−1/

√
3,0]

OP3(−2)[2] t ∈ (−1,−1/
√
3]

, OP3(−3)[2].

For the last tilt, we have that line bundles and their shifts are Bridgeland stable (see

[26]), that is, OP3(m), OP3(m)[1], OP3(m)[2] are stable in the double tilt Bt.

Using the slope function λt =
χt

χ′
t

=
ch−t−2

3 −1/6ch−t−2
1

ch−t−2
2 −1/6ch0

, the claim follows from a direct

computation of those λt(OP3(−i)[j])’s in the last step. So as expected, the objects OP3 ,

OP3(−1)[1], OP3(−2)[2], OP3(−3)[3] are in the category A ′
t .

§4. The Gieseker chamber for Euler stability

In this section, we work with a fixed one-dimensional class v = (0,0,m= ch2 > 0, ch3) ∈
Knum(P3), and show part of the result that there exists a Gieseker chamber for the Euler

stability condition σt = (At,Zt = χ′
t+ i ·χt) on P3. We expect that the Gieseker chamber

shows up for t � 0, and for t � 0 stable objects are shifted Gieseker stable sheaves F [1]

by duality results (in §5). We modify the stability condition on Bt as σt,u = (Bt,Zt,u =
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−χt+
u2

2 χ′′
t + i ·χ′

t) and work mostly in the (t,u) plane. σt,u is indeed a stability condition

from [6] and [26]. We start with describing the numerical walls and then prove that the

Gieseker chamber shows up for u� 0. Finally, we work on the global walls for the class v.

We also use the Euler characteristic χ= 2ch2+ ch3 (from Riemann–Roch) of the class v if

it is more convenient.

4.1 Descriptions of numerical walls

Let E ∈ Bt be an object whose class is v and Hilbert polynomial is PE(t) = mt+χ.

Suppose a potential wall is defined by the short exact sequence 0→A→E →B → 0 in Bt,

then a direct computation shows that the equation of the wall is

R

3
(t+2)3+

(
C

2
+

Rχ

2m
−R

)
(t+2)2+

(
R

2
u2+C

( χ

m
−2

))
(t+2)+

( χ

m
−2

)(
D− 1

6
R

)

+

(
u2

2
+

1

6

)
C−E = 0,

where R,C,D, and E denote ch0(A), ch1(A), ch2(A), and ch3(A). The term
R
2 (u

2(t+2+ C
R ))

implies that when R �=0, there is a vertical asymptote t=−2− C
R . When R=0, the equation

reduces to an equation of a circle whose center is C = (− χ
m ,0) (blue circle in Figure 2a).

Indeed, when R �= 0, one can prove a similar result that as ch(A) varies, the “elliptic” part

of the numerical wall (bounded part of the red wall in Figures 2a and 2b) is a nested family

with respect to the center C as well. Furthermore, a numerical wall falls into the following

three possibilities in the (t,u) plane:

Type 1 Shown as the red walls in Figure 2a. There is a bounded elliptic part of the wall

and a “vertical” part whose asymptote is defined by t = − ch1(A)
ch0(A) − 2. The green

point in Figure 2a has coordinates C := (− χ
m ,0). It is the center of the “elliptic

part,” which means that all the “elliptic parts” of the walls of Type 1 form a nested

family with the center C.

Type 2 Shown as the blue wall in Figure 2a. This is when ch0(A) = 0 and ch1(A) �= 0.

(An object A ∈ Bt with ch0(A) = ch1(A) = 0 does not define a wall.) The wall is a

semi-circle with center C (same C as in Type 1). All the semi-circles form a nested

family with the same center C.

Type 3 The mirror image of Type 1 (with respect to the vertical line t = − χ
m), as shown

in Figure 2b. The asymptote of the vertical part is also defined by t=− ch1(A)
ch0(A) −2

and the center of the elliptic part is C as well.

For Types 1 and 3, the “elliptic part” might not show up, but the vertical part always

exists.

4.2 Asymptotic results for sheaves and complexes

In this subsection, we show that for a fixed one-dimensional class v ∈ Knum(P3), the

Gieseker chamber appears in the (t,u)-plane when u � 0. We start with the asymptotic

behavior of sheaves for u� 0 and prove that a sheaf E with class v is Gieseker (semi)stable

if and only if it is σt,u (semi)stable when u� 0.
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(a)

Type 1 and 2 Type 3

(b)

Figure 2.

Numerical walls

Lemma 4.1. For a fixed t∈Q and a Gieseker stable sheaf E ∈Bt with class v, there exist

B1 ∈R and B2 ∈R+ such that for all A ↪→E ∈Bt, we have
χt(A)

χ′
t(A)

≤B1, and
χ′′
t (A)

χ′
t(A)

≥B2 > 0

or χ′′
t (A) = 0.

Proof. Assume t= a/b, where a ∈ Z, b ∈ Z+, and g.c.d.(a,b) = 1.

Let B ∈ Bt be the quotient of the inclusion A ↪→ E, that is, defined by the short exact

sequence 0→A→E →B → 0 in Bt. Take the cohomologies in Coh−t−2(P3), and we have

a long exact sequence:

0→ H −1
β (A)→ H −1

β (E)→ H −1
β (B)→ H 0

β (A)→ H 0
β (E)→ H 0

β (B)→ 0,

where H −1
β and H 0

β denote the cohomologies in Coh−t−2(P3). Since E ∈Coh(P3) is a sheaf,

we have H −1
β (E) = 0. This implies that E ∼= H 0

β (E) and H −1
β (A) = 0. So A ∼= H 0

β (A),

and A ∈ Coh−t−2(P3). The long exact sequence above is reduced to the following one:

0→ H −1
β (B)→A→ E → H 0

β (B)→ 0.

This implies that A∈Coh−t−2(P3)⊂Bt. So we have χ
′′
t (A)≥ 0, and χ′

t(A)≥ 0. Moreover,

we have χ′
t(B) ≥ 0 and χ′

t(A)+χ′
t(B) = χ′

t(E) = m. So χ′
t(A) ∈ [0,m], and if χ′

t(A) = 0,

then χ′′
t (A) = 0, otherwise, the tilt slope ν(A) =

χ′
t(A)

χ′′
t (A)

= 0 will make A shifted in Bt (i.e.,

A[1] ∈ Bt). In this case, A is a sheaf supported on points and this violates the fact that E

is Gieseker stable. So χ′
t(A)> 0.

1. Lower bound for
χ′′
t (A)

χ′
t(A)

.

χ′′
t (A)

χ′
t(A)

=
ch1+(t+2)ch0

χ′
t(A)

≥ ch1+(t+2)ch0

m
≥ 1/b

m
=

1

bm
or

χ′′
t (A)

χ′
t(A)

= 0. We choose

B2 =
1

bm
. The last inequality holds because ch0, ch1 ∈ Z, and ch1+(t+2)ch0 > 0.
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2. Upper bound for λt(A) =
χt(A)

χ′
t(A)

.

From the fact that ch0, ch1 ∈ Z, ch2 ∈ 1
2Z, and χ′

t(A)> 0, we have χ′
t(A) = ch2(A)+

(t+2)ch1(A)+
(t+2)2

2
ch0(A)−

1

6
ch0(A)≥

1

6b2
> 0.

So we just need an upper bound for χt(A). Consider the Harder–Narasimhan filtration

of A ∈ Bt with respect to the central charge Zt =−χt+ i ·χ′
t:

0 =A0 ⊂A1 ⊂ ·· · ⊂Ai ⊂Ai+1 ⊂ ·· · ⊂An−1 ⊂An :=A.

Let i ∈ Z be the number such that the semistable factor
Ai

Ai−1
is the last one whose

slope is positive, that is, λt(
Ai

Ai−1
) > 0, and λt(

Ai+1

Ai
) ≤ 0. If there is no such i, then

χ′
t(E)≤ 0 and we define B1 to be 0.

Similarly for the Harder–Narasimhan filtration for E ∈ Bt:

0 = E0 ⊂ E1 ⊂ ·· · ⊂ Ej ⊂ Ej+1 ⊂ ·· · ⊂ E.

Let j be the index such that the Harder–Narasimhan factor is the last one with a

positive slope, that is, λt(
Ej

Ej−1
)> 0 and λt(

Ej+1

Ej
)≤ 0.

In the short exact sequence 0→Ai →A→ A
Ai

→ 0, we have χt(Ai)> 0 and χt(
A

Ai
)≤ 0

from how we choose i. More precisely, we have χ′
t(

Ak

Ak−1
) ≥ 0 and χt(

Ak

Ak−1
) > 0 for

k = 1,2, . . . , i by the definition of i. Then χt(Ai) = χt(A0)+χt(
A1

A0
)+ · · ·+χt(

Ai

Ai−1
)> 0.

Similarly, we have that χt(
A

Ai
) = χt(

Ai+1

Ai
) + χt(

Ai+2

Ai+1
) + · · ·+ χt(

A

An−1
) ≤ 0 because

χt(
Ak

Ak−1
)≤ 0 for k = i+1, . . . ,n. Therefore, we have χt(A)≤ χt(Ai), and it is sufficient

to find an upper bound for χt(Ai).

Consider the inclusion 0→Ai
f−→ E in Bt, and the diagram

Ej

0 Ai E

E/Ej

φ

f1

f

φ is a zero map because the semistable factors of Ai have λt(Ai)> 0 and the semistable

factors of E/Ej have λt ≤ 0. So the morphism f lifts to a morphism f1 from Ai to Ej ,

where they are both extended by semistable objects in Bt with positive slope λt.

Now, we make another tilt from Bt to At and the morphism 0 → Ai → Ej stays

the same in At because they are both generated by objects with positive slopes λt.

For a fixed E and t, the sub-object Ej and its dimension vector are fixed in At.
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There are only finitely many choices of sub-objects of Ej in At, and this implies that

χt(Ai) is bounded from above for all A ↪→ E in Bt. So there exists B1 ∈ R such that
χt(A)

χ′
t(A)

≥B1.

Remark 4.2. The above proof (Lemma 4.1) works for all sheaves F ∈Coh(P3) as well.

Just replace χ′
t(E) =m by χ′

t(F ), which is a fixed number.

Proposition 4.3. If E ∈ Bt is a sheaf with class v, then E is Gieseker (semi)stable if

and only if E is σt,u- (semi)stable for all sufficiently large u (the bound of u can be chosen

as 2
B2

(B1− t− χ
m)).

Proof. Let λt,u :=
χt− u2

2 χ′′
t

χ′
t

be the Bridgeland slope. The “if” part follows from the

fact that λt,u(E) = mt+χ
m = t+χ/m if E has class v, and the Bridgeland slope is equal to

the twisted Mumford slope.

For the “only if” part, suppose the claim is not true, then for any fixed u0 � 0, we can

always find an Au0 , such that λt,u0(Au0)≥ (>)λt,u0(E). More explicitly, we have

λt,u0(Au0) =
χt(Au0)−

u2
0

2 χ′′
t (Au0)

χ′
t(Au0)

≥ (>)
χt(E)

χ′
t(E)

=
mt+χ

m
= t+

χ

m
.

If χ′′
t (Au0) �= 0, then χ′′

t (Au0) > 0 because Au0 ∈ Coh−t−2(P3). The expression of λt,u

shows that lim
u→∞

λt,u(A) = −∞ (for χ′′
t (A) �= 0). Using the boundedness results from

Lemma 4.1, we actually have a universal bound and the following claim:

There exists a u′ ∈R such that for all u> u′ and A ↪→E ∈Bt, we have λt,u(A)<λt,u(E).

This violates the assumption that A destabilizes E. So it implies that if E is not Euler stable

for all large u (u > u′), then we must have ch−t−2
1 (A) = χ′′

t (A) = 0 for any destabilizing

object A ↪→ E ∈ Bt.

We then go back to the short exact sequence 0→ A→ E → B → 0 in Bt with its long

exact sequence in Coh−t−2(P3):

Q

0 H −1
β (B) A E H 0

β (B) 0

where the morphism A→E factors through Q ∈Coh−t−2(P3). From the fact that χ′′
t (A) =

ch−t−2
1 (A) =χ′′

t (E) = ch−t−2
1 (E) = 0, and all the objects in the diagram has ch−t−2

1 =χ′′
t ≥ 0

(because they are in Coh−t−2(P3)), we have χ′′
t (H

−1
β (B)) = χ′′

t (Q) = χ′′
t (H

0
β (B)) = 0.

This implies that ν(H −1
β (B)) =

χ′
t(H

−1
β (B))

χ′′
t (H

−1
β (B)) = 0

=∞ which contradicts with the fact

that it is shifted from Coh−t−2(P3) to Bt. So H −1
β (B) = 0, and the short exact sequence

0→A→ E →B → 0 is indeed in Coh−t−2(P3)⊂ Bt.

Similarly, consider its long exact sequence of cohomologies in Coh(P3) as

0→ H −1(B)→A→ E → H 0(B)→ 0.
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From the fact that ch0(A) = ch0(E) = 0 and ch−t−2
1 (A) = ch−t−2

1 (E) = 0, we have

ch0(H −1(B)) = ch0(H 0(B)), and ch−t−2
1 (H −1(B)) = ch−t−2

1 (H 0(B)). In particular,
ch−t−2

1 (H −1(B))

ch0(H −1(B))
=

ch−t−2
1 (H 0(B))

ch0(H 0(B))
, which is a contradiction unless one of H −1(B) and

H 0(B) is zero and the nonzero object has its twisted Mumford slope ∞. So H −1(B) = 0

and H 0(B) �= 0 with
ch−t−2

1 (H 0(B))

ch0(H 0(B))
=∞.

This shows that B is actually a sheaf, and the short exact sequence 0→A→E→B→ 0 is

indeed in Coh(P3). Now, A is a sub-sheaf of E and they are both one-dimensional. We have

that the slope λt,u for the class v coincides with the Mumford slope, so the assumption

λt,u(A) ≥ (>)λt,u(E) is equivalent to E being Mumford (Gieseker) unstable which is a

contradiction.

Next, we show that if an object E ∈ Bt with class v is σt,u- stable for all u� 0, then E

must be a sheaf.

Lemma 4.4. If E ∈ Cohβ(P3)⊂ Bt with class v, then E is a sheaf.

Proof. In Cohβ(P3), we have the short exact sequence:

0→ H −1(E)[1]→ E → H 0(E)→ 0.

Denote (Tt,Ft) to be the torsion pair on Coh(P3) defined by μt.

Since ch0(E)= ch1(E)= 0, we have that ch0(H −1(E))= ch0(H 0(E)) and ch1(H −1(E))=

ch0(H 0(E)). This implies that μt(H 0(E)) = μt(H −1(E)), but it contradicts with

H −1(E) ∈ Ft and H 0(E) ∈ Tt. So one of H −1(E) and H 0(E) is zero, and then

the twisted Mumford slope μt of the non-zero object will be infinity. This shows that

H −1(E) = 0, and E ∼= H 0(E) which is a sheaf.

Proposition 4.5. For an object E ∈ Bt with class v, if E is σt,u stable for all u� 0,

then E must be a sheaf.

Proof. E fits into the short exact sequence in Bt:

0→ H −1
β (E)[1]→ E → H 0

β (E)→ 0.

It is sufficient to show that H −1
β (E) = 0, and then the claim would follow from

Lemma 4.4.

Suppose H −1
β (E) �= 0, then ν(H −1

β (E)) =
χ′
t(H

−1
β (E))

χ′′
t (H

−1
β (E))

≤ 0 and χ′′
t (H

−1
β (E))> 0.

Consider the σt,u slope of H −1
β (B)[1]:

λt,u(H
−1
β (E)[1]) =

χt(H
−1
β (E)[1])− u2

2 χ′′
t (H

−1
β (E)[1])

χ′
t(H

−1
β (E)[1])

,

lim
u→∞

λt,u(H
−1
β (E)[1]) = +∞ so E is not stable for u � 0 unless χ′′

t (H
−1
β (E)[1]) = 0.

But this implies νt(H
−1
β (E)) =

χ′
t(H

−1
β (E))

χ′′
t (H

−1
β (E)) = 0

= +∞ and H −1
β (E) ∈ Bt which is a

contradiction. So H −1
β (E) = 0 and this proves the claim.

Lemma 4.6. For a complex E ∈ Bt whose class is v, there exists an uE such that for

all u > uE, E is σt,u-unstable.
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Proof. Consider the short exact sequence in Bt as

0→ H −1
β (E)[1]→ E → H 0

β (E)→ 0,

we must have H −1
β (E) �= 0 and H 0

β (E) �= 0, otherwise, Lemma 4.4 will tell us E is a sheaf.

H −1
β (E) ∈ Coh−t−2(P3) implies χ′′

t (H
−1
β (E))> 0. The claim follows from the observa-

tion that:

λt,u(H
−1
β (E)[1]) =

χt(H
−1
β (E)[1])− u2

2 χ′′
t (H

−1
β (E)[1])

χ′
t(H

−1
β (E)[1])

> λt,u(E) =
mt+χ

m

for u� 0. We can also find the critical point for uE , and this is when the equal sign holds,

that is,

uE :=
(t+ χ

m)χ′
t(H

−1
β (E)[1])−χt(H

−1
β (E)[1])

−χ′′
t (H

−1
β (E)[1])

.

We are now ready to state the main theorem in this subsection.

Theorem 4.7. For any object E ∈ Bt whose class is v, there exists BE > 0 such that

for all u > BE, E is σt,u- stable if and only if E is a Gieseker stable sheaf.

Proof. It follows from Propositions 4.3 and 4.5, and Lemma 4.6. We take BE to be the

maximum of uE and the bound in Proposition 4.3.

Finally, we show a bound of t for a complex E ∈ Bt to exist in the category.

Lemma 4.8. If E ∈ Bt0 is a complex, then E can only exist in Bt for t ∈ [a,a+m],

where a ∈ Z, and t0 ∈ [a,a+m].

Proof. E fits into the short exact sequence in Bt as

0→ H −1
β (E)[1]→ E → H 0

β (E)→ 0,

where H −1
β (E) and H 0

β (E) are its cohomologies in Coh−t−2(P3).

Assume ch0(H 0
β (E)) = R, ch1(H 0

β (E)) = C and ch2(H 0
β (E)) =D then it follows that

ch0(H
−1
β (E)) =R, ch1(H

−1
β (E)) = C and ch2(H

−1
β (E)) =D−m.

From the definition of Coh−t−2(P3), we have the numerical results that{
χ′
t(H

0
β (E))≥ 0 χ′′

t (H
0
β (E))≥ 0

χ′
t(H

−1
β (E))≤ 0 χ′′

t (H
−1
β (E))≥ 0.

A direct computation shows that⎧⎪⎨
⎪⎩

χ′′
t (H

−1
β (E)) = χ′′

t (H
0
β (E)) = C+(t+2)R,

χ′
t(H

0
β (E)) = (t+2)2

2 R+(t+2)C+D− 1
6R,

χ′
t(H

−1
β (E)) = (t+2)2

2 R+(t+2)C+D− 1
6R−m.

Observe that, for R �= 0, the vertical line χ′′
t (H

k
β (E)) = 0 (k = 0 or −1) in a (t,s)-plane is

the axis of symmetry of the parabola fk(t) = χ′
t(H

k
β (E)).
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Function fi(t) = χ′
t(Hi

β(E)) for R > 0
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Function fi(t) = χ′
t(Hi

β(E)) for R= 0

The claim will follow from the following results:

1. If R > 0, then f1(t) := χ′
t(H

−1
β (E)), and f2(t) := χ′

t(H
0
β (E)) are two parabolas and

f2(t) is a shift upward by m from f1(t) as shown in Figure 3.

The inequality χ′′
t (H

−1
β (E)) = χ′′

t (H
0
β (E)) = C + (t+2)R ≥ 0 corresponds to the

region to the right of the dotted line. So the region for t satisfying f1 ≤ 0 and f2 ≥ 0 is

the interval [A,B]. A direct computation shows that |AB|<
√

2m

R
≤

√
2m.

2. If R< 0, then the proof is similar to case (1).

3. If R= 0, then C > 0. We have in this case⎧⎨
⎩

χ′′
t (H

−1
β (E)) = χ′′

t (H
0
β (E)) = C,

χ′
t(H

0
β (E)) = (t+2)C+D,

χ′
t(H

−1
β (E)) = (t+2)C+D−m.

The picture is shown as Figure 4. A simple computation shows |AB|= m
C ≤m.
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Finally, when m≥ 3,
√
2m<m. So for all the possible cases, we have |AB| ≤m, and

the claim follows.

4.3 Boundedness of actual walls

We have shown that for any one-dimensional class v ∈Knum(P3), s� 0 and any t ∈ R

correspond to the Gieseker chamber in the (t,u)-plane for Bt. For a complex E ∈ Bt (E

is not a sheaf), it is unstable (resp. does not exist) for u� 0 (resp. t� 0 or t� 0). So if

actual walls were bounded in both s and t, then the outermost chamber (s � 0, |t| � 0)

would be the Gieseker chamber. We show some partial results and expectations below.

Firstly, we expect the following proposition to be true:

Conjecture 4.9. For any class v = (0,0,m = ch2 > 0, ch3) ∈ Knum(P3), the actual

walls are all from the bounded parts of the numerical walls (Types 1∼3).

If the proposition were true, then all actual walls would be bounded. This is because the

bounded parts of the same type do not intersect. So the outermost wall would at worse

consist of three pieces of types 1, 2, and 3 each. Using the fact 0 < χ′
t(A) < ch2 and the

same trick in Lemma 4.8, we have that an actual wall will be in a rectangular region

R := [tmin, tmax]× [0,umax] in the upper half-plane (including the horizontal axis), such

that tmax− tmin ≤ ch2+2
√
2ch2. On the other hand, the center C = χ

m is fixed for any fixed

v. So we have that any point (t,u) on an actual wall satisfies |t− χ
m | ≤ ch2+2

√
2ch2. Then,

t > χ
m + ch2+2

√
2ch2 corresponds to the Gieseker chamber for Euler stability.

Theorem 4.7 implies that any vertical numerical wall can not be an actual wall for u� 0

because there are no wall-crossings for u � 0. We expect the following claim which will

imply Conjecture 4.9 with the help of the Bogomolov inequality.

Conjecture 4.10. For E ∈ Bt whose class is v, any vertical wall defined by 0→A→
E →B → 0 can not be an actual wall at u= 0.

§5. The duality results

In this section, we show some duality properties of objects E ∈Db(Coh(P3)) in both At

and Bt. This section is motivated by work in [28] for Gieseker stable sheaves and the results

in [29] for Bridgeland stable complexes in Db(P2).

Definition 5.1. Define the twisted derived dual of E ∈ Db(Coh(P3)) to be ED :=

RH om(E,ωP3)[2].

Definition 5.2. For a dimension vector dim = [a,b,c,d] (a,b,c,d ∈ Z≥0), its opposite

vector is defined as dimop := [d,c,b,a].

Proposition 5.3. For the stability condition σt = (At,Zt = χ′
t+ i ·χt), assume t /∈ Z.

An object E ∈At has its dimension vector dim(E) if and only if ED[1]∈A−t has dimension

vector dim(ED[1]) = dimop(E). Moreover, E ∈At is σt- (semi)stable if and only if ED[1] ∈
A−t is σ−t- (semi)stable.

Proof. Let n := �t�. For E ∈ At, it is quasi-isomorphic to a complex of vector bundles

as

E
qiso∼=

[
Oa3

P3 (−n−3)→ Oa2

P3 (−n−2)→ Oa1

P3 (−n−1)→ Oa0

P3 (−n)
]
,
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where ai ∈ Z≥0. A direct computation from the definition shows that

ED[1]
qiso∼=

[
Oa0

P3 (n−4)→ Oa1

P3 (n−3)→ Oa2

P3 (n−2)→ Oa3

P3 (n−1)
]
,

which implies that ED[1] ∈ A−t with dimension vector dim(ED[1]) = [a0,a1,a2,a3] =

[a3,a2,a1,a0]
op.

For the stability, a direct computation shows that

χt(E) = χ−t(E
D[1]), χ′

t(E) =−χ′
−t(E

D[1]),

where the derivative in χ′
−t(E

D[1]) is with respect to the parameter “−t.”

A short exact sequence 0→A→E→B→ 0 in At is essentially a sequence of complexes of

vector spaces. Taking the dual of it, we have a dual sequence in A−t as 0→BD[1]→ED[1]→
AD[1]→ 0. Let λt :=−χ′

t

χt
be the slope function of Euler stability. Then the numerical results

above imply that for any object A ∈ At, λt(A) =−λ−t(A
D[1]).

Now, we have the following correspondence: A ↪→ E in At with λt(A) < (≤)λt(E) is

equivalent to ED[1] � AD[1] in A−t with λ−t(E
D[1]) < (≤)λ−t(A

D[1]). So this implies

that E ∈ At is (semi)stable if and only if ED[1] ∈ A−t is (semi)stable, and this proves the

claim.

Remark 5.4. For t ∈R\Z, it can be easily checked that the generators OP3(−�t�− i)[i]

(i = 0,1,2,3) are all mapped to the strict upper half plane by the central charge Zt :=

χ′
t+ i ·χt, that is, χt(OP3(−�t�− i)[i]) > 0. In particular, there is no stable object E ∈ At

with phase 1, equivalently, At ⊂Pt(0,1). So under the duality, (At,Zt) is sent to (A−t,Z−t)

as a stability condition with A−t ⊂ P−t(0,1). Indeed, Proposition 5.3 also works for t ∈ Z,

but we need to modify the heart a bit. We will show it in Remark 5.7.

Remark 5.5. The duality results in Proposition 5.3 and a similar proof work for all Pn

(n ∈ Z≥0).

Corollary 5.6. For any t ∈ R\Z, let Pt(φ) (φ ∈ R) be the slicing such that the heart

At is given by Pt(0,1]. We have E ∈ Pt(φ) if and only if ED[1] ∈ P−t(1−φ) for A−t.

Proof. It follows from the numerical fact in Proposition 5.3 that for E ∈ At, if Zt(E) =

Re(Zt(E))+Im(Zt(E)), then Z−t(E
D[1]) = −Re(Zt(E))+Im(Zt(E)). So the phase φ

(φ ∈ (0,1) from Remark 5.4) changes from φ to 1−φ in the corresponding hearts. φ can be

extended to all the real numbers by shifting At and A−t.

Remark 5.7. Proposition 5.3 and Corollary 5.6 work for t∈Z as well. If t∈Z, then the

stability condition (At,Zt) is supposed to be sent to (A1−t,Z−t) by the duality. The pair

(A1−t,Z−t) is not a stability condition because the stable (simple) objects OP3(−t− i)[i] ∈
At (i= 1,2,3) all have phase 1, and duality will send them to phase 0 in A−t which is not

in the heart.

This can be fixed by slightly tilting the upper half-plane. The heart At (t ∈ Z) is indeed

a strict subset of P(0,1], and more precisely, At = P(φ1,1] where φ1 = tan−1( 6
11). This is

because Zt sends the generators OP3(−t) to (116 ,1) and OP3(−t− i)[i] (i= 1,2,3) to (−1
3 ,0)

or (−1
6 ,0). So we just modify the heart to be P(φ,φ+1] as shown in Figure 5 (φ := 1

2φ1,

and take t= 0 as an example). The new heart under duality is P−t(−φ,1−φ] and this fixes

the issue.

From Corollary 5.6, we have a duality result for the category Bt.
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Image of At in the upper half-plane

Corollary 5.8. For the stability condition σBt
t = (Bt,Zt = −χt + i · χ′

t), an object

E ⊂ PBt
(0,1)⊂ Bt is (semi)stable if and only if ED ⊂ PB−t

(0,1)⊂ B−t is (semi)stable.

Proof. Let P(0,1] = At in terms of slicing of At, then Bt = P(−1
2 ,

1
2 ] by definition.

The claim then follows from Proposition 5.3 and Remark 5.6.

Finally, we show the duality results for the modified stability condition σt,u = (Bt,Zt,u =

−χt+
u2

2 χ′′
t + i ·χ′

t) on Bt. Before the corollary, we compute the quiver region with respect

to the stability condition σt,u. The quiver region for P2 was introduced in [3, Sec. 7]. The

situation for P3 is analogous. For the stability condition σt,u = (Bt,Zt,u) on Bt, we make

a tilt with respect to the slope

λt,u :=− Re(Zt,u)

Im(Zt,u)
=

χt− u2

2 χ′′
t

χ′
t

,

and we have the following stability condition σ′
t,u = (At,u,Z

′
t,u = χ′

t+ i · (χt− u2

2 χ′′
t )).

The quiver region, denoted by Q, is a region Q ⊂ (t,u)-plane containing all points (t,u)

such that the following exceptional collection is contained in At,u:

OP3(−3−n)[3],OP3(−2−n)[2],OP3(−1−n)[1],OP3(−n), (n := �t�).

Following the proof of Proposition 3.7, it is straightforward to see the quiver region for

(−1,0]×R≥0 in the (t,u)-plane is the region below these two hyperbolas (t+2)2−3u2−1= 0

and (t−1)2−3u2−1=0 (including the t-axis), defined by λt,u(OP3)= 0 and λt,u(OP3(−3))=

0. Since the quiver regions are periodic (the period is t= 1), the entire quiver region is as

shown in Figure 6.

Corollary 5.9. For the stability condition σt,u = (Bt,Zt,u =−χt+
u2

2 χ′′
t + i ·χ′

t) such

that (t,u) ∈ Q, E ∈ PBt
(0,1) ⊂ Bt is σt,u-(semi)stable if and only if ED ∈ PB−t

(0,1) ⊂
B−t is σ−t,u-(semi)stable.
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Figure 6.

The quiver region.

Proof. The reason that ED ∈ B−t is the same with Corollary 5.8 or Remark 5.6.

For stability, observe that χt(E) = χt(E
D), χ′′

t (E) = χ′′
t (E

D), and χ′
t(E) = −χ′

t(E
D).

Let λt,u be the slope λt,u :=
χt− u2

2 χ′′
t

χ′
t

, then λt,u(E) = −λt,u(E
D). It is obvious that

(t,u) ∈ Q if and only if (−t,u) ∈ Q. So the claim follows in the same way as the proof in

Proposition 5.3.

§6. Walls for the class 3t±1

In this section, we work with the class v = (0,0,3,−5). The class of its twisted dual

is v(ED) = (0,0,3,−7), where E ∈ Bt is any object with ch(E) = (0,0,3,−5). It is more

convenient to work with the class v∨ := v(ED ⊗OP3(1)) = (0,0,3,−4) since its actual wall

lands in A1. Their Hilbert polynomials are Pv(t) = 3t+1 and Pv∨(t) = 3t+2, respectively.

We give two potential walls for v in the (t,u) plane in §6.1. Then, in §6.2, we prove that

they are actual walls at u= 0. Finally, in §6.3, we use the duality results to study walls for

the dual-class v∨.

6.1 Potential walls in the “(t,u)” plane

Let E ∈Bt be a sheaf whose class is v. In [12], the Gieseker moduli space M 3t+1
P3 consists

of two components. The general sheaves from those components are OC and LCE
, where C

is the twisted cubic and LCE
is a degree 1 line bundle on the plane cubic curve CE .

For the stability condition σt = (Bt,Zt,u), there are two walls for those Gieseker stable

sheaves which are defined by sheaves OP3 and OΛ as follows (Λ⊂ P3 is a plane):

W1 : 0→ OP3 → OC →Q[1]→ 0,

W2 : 0→ OΛ → LCE
→ F1 → 0.

In the first sequence, the quotient object Q[1] has two possibilities. It can be either the

shifted ideal sheaf of a twisted cubic curve IC [1] or a shifted sheaf F [1] where the sheaf

F fits into the short exact sequence 0→ OΛ(−3)→ F → IP (−1)→ 0 (P ∈ Λ is a point in

the plane) (see [12], [35]).

The second sequence is indeed 0→ OΛ(−3)→ OΛ → LCE
→CP → 0 in Coh(P3) (we will

prove it in Proposition 7.9), where P is a point on CE . The first object OΛ(−3) needs to
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Figure 7.

Walls for the class v = (0,0,3,−5).

be shifted so that it is in Bt at the wall. The object F1 is then a complex extended by

CP and OΛ(−3)[1] in Bt, that is, 0→OΛ(−3)[1]→F1 →CP → 0. The numerical walls are

shown in Figure 7 (the bounded parts).

6.2 Actual walls in A1

We will show that those potential walls are actual walls when u= 0. Figure 7 shows that

the right endpoints of those walls both land in t ∈ (0,1] which corresponds to the category

A1. The sheaves OC and LCE
are both in A1 since they are 1-regular (see [18, Prop. 1.8.8]).

We will prove that the objects OP3 , OΛ, F1, Q[1] which define W1 and W2 are stable in

A1, and W1 and W2 are the only two actual walls in A1.

6.2.1. Stability of OP3 and OΛ

In the category A1, OP3 is resolved by the Koszul complex:[
OP3(−4)→ O4

P3(−3)→ O6
P3(−2)→ O4

P3(−1)
]
→ OP3

and its dimension vector is [1464]. The object OΛ is a quotient of OP3 with dimension

vector [1463] in A1. Its presentation is obtained by taking off one of the OP3(−1) from the

presentation of OP3 together with all the morphisms mapping to it.[
OP3(−4)→ O4

P3(−3)→ O6
P3(−2)→ O3

P3(−1)
]
→ OΛ.

The stability of OP3 (it was also proved in [26]) and OΛ in A1 for all t ∈ (0,1] follows

from checking all their sub-complexes. We provide, in Appendix A, a formula for checking

the stability of an object. It is in the form of a dot product, which is King’s notation [17,

Defn. 1.1]. This will reduce the amount of computation compared to checking the slopes of

all sub-objects.

6.2.2. Potential walls

We prove that W1 and W2 are the only possible walls in A1 for the class v = (0,0,3,−5).

Assume that E ∈ A1 with class v, and an actual wall for E in A1 is defined by the short

exact sequence 0 → A → E → B → 0. It is straightforward to check that the dimension
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Table 1. Quotient complexes of OP3 in A1

Quotients of OP3 in dimension vectors Region where it is stable

[1464] = OP3 Any t ∈ (0,1]
[1463] = OΛ Any t ∈ (0,1]
[1462] =(complex) Stable for t ∈ (0,1/2)
[1461] =(complex) Stable for t ∈ (0,0.541))
[1460] =(complex) Stable for t �= 1
[1452] = Ol (l is a line in P3) Any t ∈ (0,1]
[1451] =(complex) Stable for t ∈ (0,0.528)
[1450] =(complex) Stable for t �= 1
[1441] =(complex) Stable for t ∈ (0,0.586)
[1440] =(complex) Stable for t �= 1
[1431] =(complex) Stable for t ∈ (0,0.423)
[1430] =(complex) Stable for t= �= 1
[1331] = CP Any t ∈ (0,1]
[1330] =(complex) Stable for t �= 1
[1320] =(complex) Stable for t �= 1
[1310] =(complex) Stable for t �= 1
[1300] =(complex) Stable for t �= 1
[1210] = Ol(−2)[1] =(complex) Stable for t �= 1
[1200] =(complex) Stable for t �= 1
[1100] =(complex) Stable for t �= 1

vector of E in A1 is [1694]. More precisely,

[
OP3(−4)→ O6

P3(−3)→ O9
P3(−2)→ O4

P3(−1)
] qiso∼= E.

E contains the following sub-complex[
0→ O6

P3(−3)→ O9
P3(−2)→ O4

P3(−1)
]
,

and the corresponding quotient is

E � [OP3(−4)→ 0→ 0→ 0] = OP3(−4)[3].

Serre duality shows that Hom(E,OP3(−4)[3])∼=Hom(OP3 ,E)∨. So there is always a non-

zero morphism OP3 →E. Moreover, since dim(E) = [1694] and dim(A)+dim(B) = dim(E),

we see that either A or B has dimension vector [1,a−2,a−1,a0] (a0,a−1,a−2 ≥ 0). So without

loss of generality, assume A has dimension vector [1,a−2,a−1,a0].

Apply Serre duality to Hom(E,OP3(−4)[3]) → Hom(A,OP3(−4)[3]). We have

Hom(OP3 ,E)∨ →Hom(OP3 ,A)∨, which gives Hom(OP3 ,A)→Hom(OP3 ,E). This implies

that A contains a quotient complex of OP3 .

Table 1 contains all the quotients of OP3 in A1 and their stability. If A is one of the

quotient complexes in the table, then a direct computation of their walls shows that OP3

and OΛ are the only options for A to define an actual wall in A1.

Next, we show that if A strictly contains one of the quotient complexes T from Table 1,

that is, T �A, then A or B will not be semistable at the wall. This implies that an actual

wall for the class v = (0,0,3,−5) can only be defined by OP3 or OΛ.
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Table 2. All possibilities of A

T and dim(T ) dim(A) such that A satisfies

constraints (1)∼(3) above

T = OP3 , [1464] [1564]
[1664]
[1674]
[1684]

T = OΛ, [1463] [1563]

Table 2 consists of all possible dimension vectors of A that satisfy the following

constraints:

1. A has the desired dimension vector.

T ↪→A ↪→ E and dim(T )< dim(A)< dim(E) in the lexicographical order in A1.

2. The wall falls in A1.

λEuler
t := −χ′

t

χt
denotes the slope of the Euler stability. We require that tA ∈ (0,1],

where tA is a solution of λEuler
t (A) = λEuler

t (E).

3. A is not destabilized by T at the wall tA, that is, λ
Euler
tA (T )≤ λEuler

tA (A).

Next, we will show that all objects A from Table 2 are unstable at its wall. So none of

them can define an actual wall.

1. dim(A) = [1564] and OP3 ↪→A

In this case, we have

0→ OP3 →A→ OP3(−3)[2]→ 0.

Ext1(OP3(−3)[2],OP3) = 0 implies that A=OP3(−3)[2]
⊕

OP3 which is unstable at its

wall.

2. dim(A) = [1574] and OP3 ↪→A

In this case, we have

0→ OP3 →A→ F → 0,

where F ∈ A1 has dimension vector [0110].

(a) If F
qiso∼= [0→ OP3(−3)

0→ OP3(−2)→ 0], then consider the morphism

A� OP3(−3)[2]
⊕

OP3(−2)[1]� OP3(−2)[1].

Let K be the kernel of the composition A�OP3(−2)[1], then K fits the following

short exact sequence:

0→ OP3 →K → OP3(−3)[2]→ 0.

Ext1(OP3(−3)[2],OP3) = 0 implies that K = OP3

⊕
OP3(−3)[2]. So A fits into the

short exact sequence:

0→ OP3

⊕
OP3(−3)[2]→A→ OP3(−2)[1]→ 0.

A direct computation shows that OP3(−3)[2] destabilizes A at the wall defined

by A.
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(b) If F
qiso∼= [0 → OP3(−3)


=0→ OP3(−2) → 0], then F
qiso∼= OΛ(−2)[1], where Λ ⊂ P3 is a

plane.

Ext1(OΛ(−2)[1],OP3) = 0 implies that A=OΛ(−2)[1]
⊕

OP3 which is unstable at

the wall defined by A.

3. dim(A) = [1664] and OP3 ↪→AIn this case, we have

0→ OP3 →A→ O2
P3(−3)[2]→ 0.

Ext1(O2
P3(−3)[2],OP3) = 0 implies A= O2

P3(−3)[2]
⊕

OP3 which is unstable at its wall.

4. dim(A) = [1674] and OP3 ↪→AA fits the short exact sequence:

0→ OP3 →A→ F → 0,

where dim(F ) = [0210].

(a) If F has a sub-complex OP3(−3)[2] (dimension is [0100]), then let Q be the quotient

0→ OP3(−3)[2]→ F →Q→ 0 (dim(Q)=[0110]).

Let K be the kernel of the composition A�F �Q. Similarly, we have 0→OP3 →
K →OP3(−3)[2]→ 0, and K =OP3

⊕
OP3(−3)[2]. A direct computations shows that

OP3(−3)[2] destabilized A at its wall.

(b) If OP3(−3)[2] is not a sub-complex of F, then F is a complex satisfying the short

exact sequence:

0→ F → OL[1]→ OP3(−4)[3]→ 0,

where L⊂ P3 is a line. Ext1(F,OP3) = 0 implies that A= F ⊕OP3 which is unstable

at the wall.

5. dim(A) = [1684] and OP3 ↪→AA fits into the short exact sequence 0→OP3 →A→F → 0,

where dim(F ) = [0220].

(a) If F contains a sub-complex F1 whose dimension vector is [0210], that is, 0→ F1 →
F → OP3(−2)[1]→ 0.Let K be the kernel of the composition A� F � OP3(−2)[1],

then K fits into the sequence 0 → OP3 → K → F1 → 0. K = F1

⊕
OP3 since the

extension class vanishes, and A is destabilized by F1 at the wall.

(b) If F does not contain any sub-complexes whose dimension is [0210]. Equivalently,

F ∼= [0→O2
P3(−3)

φ→O2
P3(−2)→ 0] where φ maps to both copies of OP3(−2). In this

situation, F fits into the sequence

0→ F1[2]→ F → T [1]→ 0,

where F1,T ∈ Coh(P3) and T is a torsion sheaf. We have Ext1(F,OP3) = 0 which

implies A= F
⊕

OP3 . A is unstable at its wall.

6. dim(A) = [1563] and OΛ ↪→A

In this case, we have 0 → OP3 → A → OP3(−3)[2] → 0. Ext1(OP3(−3)[2],OP3) = 0

implies A= OP3(−3)[2]
⊕

OP3 , and A is unstable at its wall.

6.2.3. Stability of Q[1] and a description of its quiver moduli

Q[1] ∈ A1 is the quotient complex in the short exact sequence:

W1 : 0→ OP3 → OC →Q[1]→ 0.
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Its dimension vector is [0,2,3,0] in A1, so Q is presented by the complex

[0→ O2
P3(−3)

M→ O3
P3(−2)→ 0],

where M ∈Hom(C3,C2)⊗C[x0, . . . ,x3]1. For simplicity, we use King’s notation (θ function,

[17]) for quiver stability. Recall that in our case, a θ function is in the form θ(t) =

(θ−3(t), θ−2(t), θ−1(t), θ0(t)), where θi(t) (i= 0,−1,−2,−3)) are R-valued functions in t. For

any dimension vector a= (a−3,a−2,a−1,a0), θ(t)(a) := θ−3(t)a−3+θ−2(t)a−2+θ−1(t)a−1+

θ0(t)a0. One can follow the steps in Appendix A to figure out the θ function, but since

the dimension vector ([0,2,3,0]) is relatively easy we can find θ using the following trick.

Indeed, there are only two possibilities for θ, and they are independent of t, namely, (1)

θ = (0,3,−2,0) and (2) θ = (0,−3,2,0). Let λE
t := −χ′

t

χt
be the slope of Euler stability. A

direct computation shows that λE
t (OP3(−2)[1]) ≤ λE

t (Q[1]) for t ∈ (0,1]. This implies that

the θ function should satisfy θ([0,0,1,0, ])≥ 0, hence θ should be θ = (0,−3,2,0).

Let θ := (0,−3,2,0). For any sub-complex F ↪→ Q[1] in A1 whose dimension vector is

dim(F ) = [0,a,b,0], θ([0,a,b,0]) := (−3)a+(2)b by definition. Q[1] is stable if θ(F )> 0 for

any sub-complex F ↪→Q[1]. The moduli space K
[2,3]
θ (for simplicity, we denote it by Kθ) is

a GIT quotient of the representation of the generalized Kronecker quiver K with dimension

vector [2,3] and stability condition θ. It is smooth of dimension 12 from [17] and [35].

K : • •...

α1

α4

Next, we show the stratification of Kθ. Let x0, . . . ,x3 be the coordinates of P3, and

C• := [0 → O2
P3(−3)

M→ O3
P3(−2) → 0] be a stable complex. It was proved in [35, Th. 4.1]

that the moduli space Kθ contains a five-dimensional smooth sub-variety, denoted by H,

such that Kθ\H parameterizes twisted cubic curves and the limits of twisted cubics that do

not contain embedded points. The sub-variety H parameterizes sheaves E ∈ Coh(P3) that

fit the sequence 0→ OV (−3)→ E → IP (−1)→ 0. The matrix M defining such a sheaf is

the case (9). To see this, we may start with the Koszul complex

OP3(−4)
A→ O3

P3(−3)
B→ O3

P3(−2)→ IP (−1),

where A=

⎛
⎝x3

x1

x2

⎞
⎠, B =

⎛
⎝x2 0 x3

x1 x3 0

0 x2 x1

⎞
⎠, and P ∈ P3 is a point defined by x1 = x2 = x3 = 0.

Let E1 be the sub-complex O2
P3(−3)

C→ O3
P3(−2) defined by the matrix C =

⎛
⎝x1 0

0 x1

x2 x3

⎞
⎠. Let

G be the quotient complex. We have that G ∼= [OP3(−4)
D→ OP3(−3)] where D =

(
x1

)
.

This implies that G ∼= OV (−3)[2] where V ⊂ P3 is a hyperplane defined by x1 = 0.

Therefore, we have a sequence 0 → E → IP (−1) → OV (−3)[2] → 0 in A1. From the fact

Ext1(IP (−1),OV (−3)) = C (see [35, Lem. 4.2]), we know that it is the shifted sequence

0 → OV (−3) → E → IP (−1) → 0 in Coh(P3), where E is the sheaf E1. (Here, we skip

some details that OΛ(−3) is stable in Coh(P3) and Coh−t−2(P3), and OΛ(−3)[1] ∈ Bt

(t ∈ (0,1]), OΛ(−3)[2] ∈ A1 are also stable. We will show the proof in Lemma 7.7.) The

sequence indicates that the locus H ⊂Kθ is the flag variety {P ∈ V ⊂ P3} which is smooth
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of dimension 5. For any curve [C] ∈Kθ\H, its ideal sheaf IC is one of the cases (1)− (8)

in [11, Fig. 1]. So the corresponding matrices M are the cases (1)− (8).

(1) M =

⎛
⎝x0 x1

x1 x2

x2 x3

⎞
⎠ (2) M =

⎛
⎝x1 x0

x0 x2

0 x3

⎞
⎠ (3) M =

⎛
⎝x3 0

x0 x2

0 x1

⎞
⎠

(4) M =

⎛
⎝x2 0

x1 x1

0 x0

⎞
⎠ (5) M =

⎛
⎝x1 x3

x0 x2

0 x0

⎞
⎠ (6) M =

⎛
⎝x3 0

x0 x1

0 x0

⎞
⎠

(7) M =

⎛
⎝x1 x2

x0 x1

0 x0

⎞
⎠ (8) M =

⎛
⎝x1 0

x0 x1

0 x0

⎞
⎠ (9) M =

⎛
⎝x1 0

0 x1

x2 x3

⎞
⎠

Remark 6.1. One can also prove directly that a complex 2OP3(−3)
M→ 3OP3(−2) is

stable with respect to the Theta function θ = (0,−3,2,0) if and only if the matrix M falls

into cases (1)− (9) above up to a base change.

We make the conclusion that there are two strata on Kθ: A smooth closed sub-variety

of dimension 5 parameterizing sheaves F , and its complement in Kθ parameterizing

the space curves with Hilbert polynomial 3t+1. Correspondingly, there are two general

representatives for Q in A1 such that Q[1] is stable, the ideal sheaf of a space curve IC or

the sheaf F .

6.2.4. Stability of the complex F1

We start by defining the complex F1 and then show that it is the only stable complex

in A1 with dimension vector [0231].

Define the complex F1 in A1.

We showed that the presentation of the sheaf F is

O2
P3(−3)

M→ O3
P3(−2)∼= F ,

where M =

⎛
⎝x1 0

0 x1

x2 x3

⎞
⎠. In fact, the complex O2

P3(−3) → O3
P3(−2) can be extended to the

following complex:

O2
P3(−3)

M→ O3
P3(−2)

N→ OP3(−1),

where N =
(
x2 x3 −x1

)
. Define F1 to be this new complex

F1 :=
[
O2

P3(−3)
M→ O3

P3(−2)
N→ OP3(−1)

]
.

We provide the Koszul complex below that resolves the skyscraper sheaf CP (without

loss of generality, we assume that P is defined by x1 = x2 = x3 = 0 in P3). We change the

morphisms a bit in order to match the matrix M. Indeed, the complex F1 is a sub-complex

of CP in A1, and we highlight this sub-complex in blue in the Koszul complex.
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The quotient complex is [OP3(−4)
x1→ OP3(−3) → 0 → 0] ∼= OΛ(−3)[2]. So we have the

short exact sequence 0→ F1 → CP → OΛ(−3)[2] → 0 in A1, and F1 is a complex whose

cohomologies are: H −1(F1) = OΛ(−3), H 0(F1) = CP , and H i(F1) = 0 for i �=−1,0.

Prove thatF1 is the only stable object with the dimension vector [0231].

Assume that G is a complex whose dimension vector is [0231] in A1, and C• ↪→ G is

a sub-complex whose dimension vector is [0, c, b,a] (c = 0,1,2, b = 0,1,2,3, a = 0,1). The

following result is from a direct computation:

1. If a= 0, then λt(C
•)> λt(G) for any b= 0,1,2,3, c= 0,1,2 and t > 0.1716.

2. If a= 1, then λt(C
•)< λt(G) for any b= 0,1,2,3, c= 0,1,2 and t > 0.1716.

This result shows that for any t ∈ (0.1716,1] in A1, G is stable if and only if it does not

have any sub-complex C• whose dimension vector is [0, c, b,0].

More explicitly, if [0→ O2
P3(−3)

M→ O3
P3(−2)

N→ OP3(−1)] is the presentation of G in A1,

where N = (f1,f2,f3) consists of linear functions fi (i = 1,2,3), then f1,f2,f3 must be

linearly independent.

Next, we show that the matrix M has to be in the form:

⎛
⎝ f3 0

0 f3
−f1 −f2

⎞
⎠, and this will

prove the claim.

There are two OP3(−3)’s mapping to O3
P3(−2), and the morphisms are column vectors

of M. Assume the first column of M is

⎛
⎝φ1

φ2

φ3

⎞
⎠ (φi’s are linear functions), and we have the

following diagram.

OP3(−2)

OP3(−3) OP3(−2) OP3(−1)

OP3(−2)

f1φ1

φ2

φ3

f2

f3

Firstly, we show that φi’s are linearly dependent. Let 〈f1,f2〉 be the sub vector space

of C[x0,x1,x2,x3]1 spanned by f1,f2. Since G is a complex, we must have φ1f1+φ2f2+

φ3f3 = 0. Consider the equation mod 〈f1,f2〉, and we have φ̄3f̄3 = 0 in the quotient space

C[x0,x1,x2,x3]1/〈f1,f2〉. fi’s are linearly independent, so f̄3 �= 0. This implies φ̄3 = 0 and
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φ3 = k1f1 + k2f2 for some k1,k2 ∈ C. The equation now becomes φ1f1 + φ2f2 + (k1f1 +

k2f2)f3 = 0 which simplifies to (φ1 + k1f3)f1 +(φ2 + k2f3)f2 = 0. Then we have f2|(φ1 +

k1f3)f1 and f1|(φ2 + k2f3)f2. fi’s are linearly independent, so we have f2|φ1 + k1f3 and

f1|φ2+k2f3. φi’s and fi’s are all linear functions, so there is some k ∈C such that φ2+k2f3 =

kf1 and φ1+k1f3 =−kf2. Now, φ1 =−k1f3−kf2, φ2 =−k2f3+kf1, φ3 = k1f1+k2f2, and

they satisfy k2φ1−k1φ2+kφ3 = 0. So φi’s are linearly dependent.

Therefore, up to a base change, we may assume φ3 = 0, φ1 = f2, and φ2 = −f1. The

presentation of G becomes:

OP3(−3) OP3(−2)

OP3(−3) OP3(−2) OP3(−1)

OP3(−2)

f2

−f1

f1

φ1

φ2

φ3

f2

f3

φ3 �= 0 in the diagram. Otherwise, (φ1,φ2) = c(f2,−f1) for some c∈C. The map from the

second OP3(−3) to O3
P3(−2) will be 0 by a base change. This implies [0→OP3(−3)→ 0→ 0]

is a sub-complex of G, making G unstable.

If none of those φi’s is zero, then use φ2 and φ3 to eliminate φ1 by a base change. The

presentation becomes:

OP3(−3) OP3(−2)

OP3(−3) OP3(−2) OP3(−1)

OP3(−2)

f2

−f1 f1

−f3

f2

f2

f3

This diagram is exactly the presentation of F1, and we prove the claim.

6.3 Walls for the dual class

Lastly, in this section, we show the walls for the dual class of v= (0,0,3,−5). By definition

(§5), the dual class v∨ is (0,0,3,−4) (recall that v∨(E) := v(ED(1)), we twist the object

ED by 1 so that its walls are in A1), and its Hilbert polynomial is Pv∨(t) = 3t+2.

Recall that the two general Gieseker stable sheaves with Hilbert polynomial P (t) = 3t+2

are: (1) E = OC(P ), where C is a space cubic curve and P is a point on C. (2) E =MCE
,

which is a degree 2 line bundle on a plane cubic curve CE . Their walls in At are given by

the short exact sequences W ′
1 and W ′

2 below. They are in fact defined by the derived dual

of W1 and W2 for the class 3t+1.

W ′
1 : 0→

[
O3

P3(−1)→ O2
P3

]
→ E → OP3(−3)[2]→ 0,
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where the complex
[
O3

P3(−1)→ O2
P3

]
is the sub-object of E.

W ′
2 : 0→ IP/Λ(1)→ E → OΛ(−2)[1]→ 0,

where P is a point in the plane Λ.

As indicated by the duality result (Corollary 5.9), a sequence 0 → A → E → B → 0 in

Bt defines an actual wall at (t,u) (for some (t,u) in the quiver region) if and only if the

sequence 0 → BD → ED → AD → 0 (in B−t) defines an actual wall at (−t,u). So their

numerical walls are symmetric about the vertical line t= 0. Here, we twist the class of ED

by 1, that is, v∨ = v(ED(1)), therefore, the walls W ′
1 and W ′

2 are symmetric to walls W1

and W2 with respect to the vertical line t=−1
2 . We have shown that W1 and W2 are actual

walls at their right endpoints, so W ′
1 and W ′

2 must be actual walls at their left endpoints

(in A−1).

Suppose Conjecture 4.9 were proved true, then W1 (resp. W ′
1) and W2 (resp. W ′

2) would

be actual walls everywhere in the (t,u) plane once we prove that they are actual walls at

the other endpoint. This is because there is no possible intersecting of these walls.

For the rest of this section, we prove the stability for OΛ(−2)[1] and IP/Λ(1) in A1. This

will imply thatW ′
2 is an actual wall at the right endpoint. The dimension vector of OΛ(−2)[1]

is [0,1,1,0], and [0,0,1,0] is the only non-trivial sub-complex. It is straightforward to check

that OΛ(−2)[1] is stable in A1 for t ∈ (0,1). The dimension vector of IP/Λ(1) is [2,8,11,5].

Without loss of generality, assume that the coordinates of P3 are x,y,z,w, Λ is defined by

{x= 0} and P is defined by {x= y = z = 0}. The presentation of IP/Λ(1) is as follows:

O2
P3(−4)

M−→ O8
P3(−3)

N−→ O11
P3 (−2)

S−→ O5
P3(−1)

T−→ IP/Λ(1).

The stability of IP/Λ(1) follows from a direct computation that the slopes of all its sub-

complexes are smaller than the slope of IP/Λ(1) at the wall. See Appendix B for matrices

M,N,S and the dimension vector of all the sub-complexes.

§7. The wall-crossings for the class 3t+1

In this section, we study the wall-crossings for the class v= (0,0,3,−5). The moduli space

in the last chamber in A1 (i.e., t∈ (0.72,1]) turns out to be the Gieseker moduli space. This

gives some clue that the last wall in A1 is expected to be the last wall for all t ∈R, and the

unbounded chamber containing t� 0 is the Gieseker chamber. The main technique we use

is the elementary modification. A similar process can be found in [35] and [2].

In §6, we found two actual walls in A1 for v. These are W1 : 0→ OP3 →E →Q[1]→ 0 at

t= 0.35, and W2 : 0→ OΛ →E → F1 → 0 at t= 0.72. Denote the three chambers in A1 by

C1 := {t ∈ (0,0.35)}, C2 := {t ∈ (0.35,0.72)}, and C3 := {t ∈ (0.72,1]}.

7.1 Moduli space M1 in C1

The moduli space in t∈ (0,0.35) is empty since every object E is destabilized by OP3 →E.

The existence of such a map is given by Serre duality as shown in §6.

7.2 Moduli space MW1 at the first wall W1

W1 is defined by 0→OP3 →E→Q[1]→ 0. The moduli space of E at W1 is the same with

the moduli of Q[1] which is the Kronecker moduli space K(2,3) :=K
[2,3]
θ (θ = (−3,2) defines

the stability condition as we pointed out in §6.2.2). It is a smooth variety of dimension 12.
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7.3 Moduli space M2 in C2

For t ∈ (0.35,0.72). Recall that the quotient Q[1] has two general representatives which

are stable: (1) Q=IC or (2) Q=F , and the locus in K(2,3) parameterizing F is a smooth

five-dimensional flag variety. Denote this locus by H. A direct computation shows that

Ext1(IC [1],OP3) = C and Ext1(F [1],OP3) = C4. This implies that M2 is isomorphic to

MW1 outside H, and a P3 bundle over H. Denote this P3 bundle by MF .

7.4 Moduli space MW2 at the second wall

Recall thatW2 is defined by the sequence 0→OΛ →E→F1 → 0. There are two strata on

the moduli space M2, which are K(2,3)\H and MF . K(2,3)\H parameterizes the structure

sheaf of space cubic curves C, and MF parameterizes those objects E which fit into the

short exact sequence 0 → OP3 → E → F [1] → 0. Objects E in MF satisfy the following

sequence as well:

0→ F1 → E → OΛ′ → 0. (7.1)

In the sequence, F1 is the complex defined in the last section, and F1 corresponds to a

point (P,Λ) of the Flag variety H. Λ′ ⊂ P3 is a plane but not necessarily the same as the

plane Λ encoded in F1. A direct computation shows that{
Ext1(F1,OΛ) = C9, Ext1(OΛ,F1) = C,

Ext1(F1,OΛ′) = 0, Ext1(OΛ′ ,F1) = C if Λ′ �= Λ.

This implies that MW2 = M2. When varying from C2 to W2, objects in the stratum

K(2,3)\H stay stable while objects in MF become strictly semi-stable.

Indeed, an object E lies in MF\H if and only if Λ′ �=Λ in sequence 7.1, and E lies in H

if and only if Λ′ =Λ. This is implied by the next lemma saying that Ext1(E,E) =C8 for E

fitting sequence 7.1 in which Λ′ �= Λ. We will show that K(2,3) intersects MF transversely

in the next subsection.

Lemma 7.1. For an object E ∈ A1 that fits sequence 7.1, in which Λ′ �= Λ, we have

Ext1(E,E) = C8.

Proof. Step 1. (Compute Ext1(E,E).) We apply the functor Hom(E,−) to sequence

7.1, and we get the following long exact sequence:

0 Hom(E,F1) Hom(E,E) Hom(E,OΛ′)

Ext1(E,F1) Ext1(E,E) Ext1(E,OΛ′)

Ext2(E,F1) . . . .

Since E is stable for t ∈ C2, we have that Hom(E,E) = C. This forces Hom(E,F1) =

0. Otherwise, we must have Hom(E,F1) = C. Then, let f ∈ Hom(E,F1) and idE ∈
Hom(E,E) be the unique (up to a scalar) morphisms, and let 0→F1

i−→E be the inclusion.

We have that i◦f ◦ id−1
E

∼= idE (up to a scalar). This implies that sequence 7.1 splits which

makes E unstable. Next, we compute Exti(E,F1) and Exti(E,OΛ′).
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Step 2. (Compute Exti(E,OΛ)) Apply the functor Hom(−,OΛ′) to the sequence 0 →
F1 → E → OΛ′ → 0, and we get the following long exact sequence:

0 Hom(OΛ′ ,OΛ′) = C Hom(E,OΛ′) Hom(F1,OΛ′)

Ext1(OΛ′ ,OΛ′) = C3 Ext1(E,OΛ′) Ext1(F1,OΛ′)

Ext2(OΛ′ ,OΛ′) = 0 . . . .

We next compute the rightmost column “Exti(F1,OΛ′).”

Step 2-1 (Compute Exti(F1,OΛ′).) Apply the functor Hom(−,OΛ′) to the sequence

0 → F1 → CP → OΛ(−3)[2] → 0 which defines the complex F1. We get the long exact

sequence:

0 Hom(OΛ(−3)[2],OΛ′) = 0 Hom(CP ,OΛ′) = 0 Hom(F1,OΛ′)

Ext1(OΛ(−3)[2],OΛ′) = 0 Ext1(CP ,OΛ′) = 0 Ext1(F1,OΛ′)

Ext2(OΛ(−3)[2],OΛ′) = 0 . . . .

It is straightforward to check that the first and second columns are all zero in the

above diagram, and we skip the computations. The diagram implies that Hom(F1,OΛ′) =

Ext1(F1,OΛ′) = 0.

Back to Step 2, we have that Hom(E,OΛ′) = C, and Ext1(E,OΛ′) = C3.

Step 3 (Compute Exti(E,F1).) Similarly, we apply the functor Hom(−,F1) to the

sequence 0→ F1 → E → OΛ′ → 0 and we get the following sequence:

0 Hom(OΛ′ ,F1) Hom(E,F1) = 0 Hom(F1,F1) = C

Ext1(OΛ′ ,F1) Ext1(E,F1) Ext1(F1,F1) = C5

Ext2(OΛ′ ,F1) . . . .

In the above diagram, Hom(F1,F1) =C and Ext1(F1,F1) =C5 since F1 is stable and the

moduli of F1 is a smooth flag variety of dimension 5. Hom(E,F1) = 0 for the same reason

that otherwise, the composition F1 ↪→E→F1 is the identity element in Hom(F1,F1) =C

(up to a scalar). This implies that 0→ F1 →E → OΛ′ → 0 splits, which makes E unstable.

Therefore, we also have Hom(OΛ′ ,F1) = 0.

Lastly, we compute Exti(OΛ′ ,F1).
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Step 3-1 (Compute Exti(OΛ′ ,F1)) Apply the functor Hom(OΛ′ ,−) to the sequence

0→ F1 → CP → OΛ(−3)[2]→ 0 (Λ′ �= Λ), and consider the long exact sequence:

0 Hom(OΛ′ ,F1)

Hom(OΛ′ ,CP )

= C if P ∈ Λ′

= 0 if P �∈ Λ′
Hom(OΛ′ ,OΛ(−3)[2]) = C

Ext1(OΛ′ ,F1)

Ext1(OΛ′ ,CP )

= C if P ∈ Λ′

= 0 if P �∈ Λ′
Ext1(OΛ′ ,OΛ(−3)[2]) = 0

Ext2(OΛ′ ,F1) Ext1(OΛ′ ,CP ) = 0 . . . .

The diagram implies Ext2(OΛ′ ,F1) = 0 immediately. Then apply Hom(OΛ′ ,−) to the

sequence 0 → OP3(−1) → F1 → F [1] → 0. (This sequence follows from the fact that the

complex F1 is the extension of the complex of F [1] in A1.) We get a long exact sequence:

0→Hom(OΛ′ ,OP3(−1)) = 0→Hom(OΛ′ ,F1)→Hom(OΛ′ ,F [1])→ . . . .

Using the fact that F fits the sequence 0 → OΛ(−3) → F → IP (−1) → 0, we get

Hom(OΛ′ ,F [1]) = 0. This implies that Hom(OΛ′ ,F1) = 0 in the diagram above, hence

Ext1(OΛ′ ,F1) = C.

Back to Step 3, we get Ext1(E,F1) = C5. With all the above results plugged into the

diagram in Step 1, we have that

0 Hom(E,F1) = 0 Hom(E,E) = C Hom(E,OΛ′) = C

Ext1(E,F1) = C5 Ext1(E,E) Ext1(E,OΛ′) = C3

Ext2(E,F1) . . . .

0

On one-hand side, the diagram implies that 5≤ dim(Ext1(E,E))≤ 8, and on the other

hand, 8≤ dimE|M2
≤ 15 geometrically. Therefore, we must have Ext1(E,E) = C8.

7.5 Moduli space M3 in C3

From the extension classes

Ext1(F1,OΛ) = C9 and Ext1(F1,OΛ′) = 0 if Λ′ �= Λ,

we see that extensions E in the sequence 0→OΛ′ →E →F1 → 0 are not stable in C3. The

new stable objects are from the extension 0→ OΛ → E → F1 → 0, in which Λ is the same

as the one encoded in the complex F1.

So when crossing the second wall W2 from C1 to C2, the stratum K(2,3)\H stays, and the

P3 bundle MF disappears with only the base H remaining. H then becomes a P8 bundle

over H from the above computation. Denote this bundle by P. We will next study this P8
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bundle P, and then glue it to K(2,3)\H using the elementary modification. The resultant

moduli space M3 turns out to be the Gieseker moduli space, denoted by M 3t+1
P3 .

7.5.1. A description of P

We show in this subsection that P is the fibered space over P3∨ whose fibers are M 3t+1
P2 .

We have shown that a complex F1 corresponds to a point of the flag variety: {P ∈Λ⊂P3}.
Indeed, this flag variety is the same with H since F1 is the unique extension of F . Without

loss of generality, we fix a complex F1, in which Λ is defined by x1 = 0 and the point P is

defined by x1 = x2 = x3 = 0. We will show that the vector space Ext1(F1,OΛ) (up to scalar

multiplication) parameterizes plane cubic curves in Λ that go through P.

Let Λ′ be an arbitrary plane in P3, and we have the extension groups:

Ext1(F1,OΛ′) =

{
0, ifΛ′ �= Λ,

C9, ifΛ′ = Λ.

In the short exact sequence: 0→F1 →CP →OΛ(−3)[2]→ 0 (in A1), the plane Λ encoded

in F1 is the same with the plane in the quotient object OΛ(−3)[2].

Apply the functor Hom(−,OΛ) to the sequence: 0 → F1 → CP → OΛ(−3)[2] → 0, we

have a long exact sequence of cohomologies:

0→ Ext1(F1,OΛ) = C9 → Ext2(OΛ(−3)[2],OΛ) = C10 φ→ Ext2(CP ,OΛ) = C→ . . . (7.2)

in which Ext1(F1,OΛ) is the kernel of φ.

One computes that Hom(OΛ(−3),OΛ) = C10. Consider the twisted Koszul complex

CP by the complex [OP3(−4) → O3
P3(−3) → O3

P3(−2) → OP3(−1)] → CP and apply the

functor Hom(−,OΛ) to it. The cohomology at “OP3(−3)” gives Ext2(CP ,OΛ) = C. (This

is because the resolution to CP is acyclic for Hom(−,OΛ).) By definition, Ext2(CP ,OΛ) =

Ker(α)/Im(β) in the complex:

Hom(OP3(−4),OΛ)
α←−Hom(O3

P3(−3),OΛ)
β←−Hom(O3

P3(−2),OΛ).

Define a morphism ψ : Hom(OP3(−3)
⊕

3,OΛ) → Hom(OP3(−3),OΛ) which maps a 3-

tuple (f1,f2,f3) to ψ(f1,f2,f3) := f1+f2+f3. Let Ker(ψ) be the kernel of ψ, and consider

the following diagram.

Ker(ψ)

Hom(O3
P3(−2),OΛ) Hom(O3

P3(−3),OΛ) Hom(OP3(−4),OΛ)

Hom(OP3(−3),OΛ)

β α

ψ

Figure 8 is part of the (twisted) Koszul resolution to CP , and it implies that (f1,0,0) ∈
Ker(α) for any f1 ∈ Hom(OP3(−3),OΛ). Thus, the restriction ψ|Ker(α) : Ker(α) →
Hom(OP3(−3),OΛ) is surjective, and ψ(Ker(α)) = Hom(OP3(−3),OΛ) = C10. Moreover,

we have a surjective map Φ as follows:

C=
Ker(α) = C16

Im(β) = C15

Φ→ ψ(Ker(α)) = C10

ψ(Im(β))
→ 0.
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OP3(−3) OP3(−2)

OP3(−4) OP3(−3) OP3(−2)

OP3(−3) OP3(−2)

x3

x2

x1

−x2

−x3

x1

x3

x1

−x2

Figure 8.

Part of the Koszul resolution to CP

We next show that Φ is an isomorphism by showing that the restriction ofKer(ψ) to Im(β),

denoted by Ker(ψ)|β, is C6, which will imply ψ(Im(β)) =C9 and ψ(Ker(α))/ψ(Im(β)) =

C. For any (Q1,Q2,Q3)∈Hom(O3
P3(−2),OΛ), β(Q1,Q2,Q3)= (x3Q1+x2Q2,x3Q3,−x2Q3).

Suppose ψ(x3Q1 + x2Q2,x3Q3,−x2Q3) = 0, then x3(Q1 +Q3)+ x2(Q2 −Q3) = 0 on Λ =

Z(x1). Therefore, we have Q1 + Q3 = x2L1 and Q2 − Q3 = x3L2 for some L1,L2 ∈
H0(Λ,OΛ(1)), which implies Ker(ψ)|β ∼=H0(Λ,OΛ(1))

⊕
H0(Λ,OΛ(1)) = C6.

Back to the exact sequence 7.2:

0→ Ext1(F1,OΛ)
= C9 → Ext2(OΛ(−3)[2],OΛ)

= C10
φ→ Ext2(CP ,OΛ) =

Ker(α)

Im(β)
=

ψ(Ker(α))

ψ(Im(β))
= C→ 0.

Since Ext2(OΛ(−3)[2],OΛ) ∼= ψ(Ker(α)), we have that Ext1(F1,OΛ) = Ker(φ) =

ψ(Im(β)).

ψ(Im(β)) is indeed the set {x2(Q2 − Q3) + x3(Q1 + Q3)}, where Q1,Q2,Q3 ∈
Hom(OP3(−2),OΛ) = H0(Λ,OΛ(2)) are quadric curves in Λ. This is exactly the set of

all cubic curves in Λ that go through P (recall that P is defined by x2 = x3 = 0 on Λ).

So we have the following morphism:

P→H =
{
P ∈ Λ⊂ P3

}
in which the fiber at a point (P,Λ) ∈H parameterizes all the plane cubic curves in Λ that

go through P.

Moreover, consider the morphisms

P→H =
{
P ∈ Λ⊂ P3

}
→

{
Λ⊂ P3

}
= P3∨.

A point in P3∨ corresponds to a plane Λ⊂ P3, and the fiber over it in P parameterizes the

pair {C,P}, where C ⊂ Λ is a plane cubic curve passing through the point P ∈ Λ. So this

fiber is the universal cubic curve C ⊂ |H0(P2,OP2(3))| ×P2 which is the Gieseker moduli

space M 3t+1
P2 (see [19]).

This proves the claim that P is fibered over P3∨ with fibers M 3t+1
P2 . It also matches the

result in [12] that P is a component of the Gieseker moduli space M 3t+1
P3 parameterizing

degree one line bundles on plane curves.
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7.5.2. The elementary modification

We have shown that when crossing the second wall W2, the component MF disappears,

and its base H is replaced by P. It is known (see [12]) that K(2,3)\H and P are the

components of the Gieseker moduli space M 3t+1
P3 . So it is expected that P is glued to K(2,3)

along the exceptional divisor of its blow-up B :=BlH(K(2,3)) (see [12], [35]).

We collect some extension groups in the next lemma for later use.

Lemma 7.2. We have the following computational results.

1. For any plane Λ′ ⊂ P3, we have

Hom(OΛ′ ,F1) = Ext2(OΛ′ ,F1) = Ext3(OΛ′ ,F1) = 0, Ext1(OΛ′ ,F1) = C1.

2. Hom(F1,OΛ) = Ext3(F1,OΛ)) = 0, Ext1(F1,OΛ)) = C9, Ext2(F1,OΛ)) = C14.

Proof. We have shown that Hom(OΛ′ ,F1) =Ext2(OΛ′ ,F1) = 0 and Ext1(OΛ′ ,F1) =C

in Lemma 7.1 for Λ′ �= Λ. For the rest of the extension classes, we use these two sequences

in A1 :

0→ F1 → CP → OΛ(−3)[2]→ 0 0→ OP3(−1)→ F1 → F [1]→ 0.

The proof is similar to the one in Lemma 7.1 (not hard but tedious), and we skip the

details.

Some notations :

• B :=BlH(K(2,3))
b−→K(2,3) where the morphism is denoted by b. Let D be the exceptional

divisor, and bH : D
bH−−→H be the restriction of b to the exceptional divisor.

• πH , πP, and πD denote the projections: H×P3 πH−−→H, P×P3 πP−−→P, D×P3 πD−−→D.

• p, q are the projections: H×P3 p−→ P3∨×P3, (where (P ∈ Λ) �→ Λ), P×P3 q−→H×P3.

• i, j are the inclusions: D×P3 i−→B×P3, D×P3 j−→P×P3.

• Two universal families:

1. UF1
on H×P3 as the universal family of complexes F1.

2. UOΛ
on P3∨×P3 as the universal family of planes in P3.

Proposition 7.3. There exists a universal family of extensions on H of the form

0→ UF1
⊗π∗

HL∗ → UE → p∗(UOΛ
)→ 0,

where L := E xt1πH
(p∗(UOΛ

),UF1
) is a line bundle on H.

Proof. Let L be the line bundle L := E xt1πH
(p∗(UOΛ

),UF1
) on H. From part 1 in Lemma

7.2 and our assumption, we have that

RH om(p∗(UOΛ
),(UF1

⊗π∗
HL)[1]) =RH om((p∗(UOΛ

)[−1],UF1
⊗π∗

HL) is a sheaf.

There is then a canonical identity element:

id ∈H0(H,πH∗(p
∗(UOΛ

)∗⊗UF1
[1])⊗πH∗(p

∗(UOΛ
)∗⊗UF1

[1])∗)

=H0(H,πH∗(p
∗(UOΛ

)∗⊗UF1
[1])⊗πH∗(p

∗(UOΛ
)⊗L∗)

=H0(H×P3,p∗(UOΛ
)∗⊗UF1

[1]⊗π∗
HL∗)

=H0(H×P3,RH om(p∗(UOΛ
),UF1

⊗π∗
HL∗)[1])

=H0(H×P3,RH om(p∗(UOΛ
)[−1],UF1

⊗π∗
HL∗))
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which gives the morphism fid :

→ p∗(UOΛ
)[−1]

fid−−→ UF1
⊗π∗

HL→ UE → .

The cone UE from the triangle is the universal extension we want.

Remark 7.4. Suppose the vector bundle L in Proposition 7.3 has higher rank, where

L := E xt1πH
(p∗(UOΛ

),UF1
) is a vector bundle on H. Then, we need an extra step to get a

universal extension.

Define π : P := Proj(L∗) → H to be the canonical morphism, and define three other

morphisms as follows: π1 : P×P3 →H×P3, πH :H×P3 →H, and πP : P×P3 → P.

Following the same steps, we have that there is a canonical identity element:

id ∈H0(H,πH∗(p
∗(UOΛ

)∗⊗UF1
[1])⊗πH∗(p

∗(UOΛ
)∗⊗UF1

[1])∗)

=H0(H,πH∗(p
∗(UOΛ

)∗⊗UF1
[1])⊗πH∗(p

∗(UOΛ
)⊗L∗)

=H0(H×P3,p∗(UOΛ
)∗⊗UF1

[1]⊗π∗
HL∗)

=H0(H×P3,π∗
1(p

∗(UOΛ
)∗⊗UF1

[1])⊗π∗
1π

∗
HL∗)

=H0(H×P3,RH om(π∗
1(p

∗(UOΛ
)∗[−1],π∗

1UF1
⊗π∗

1π
∗
HL∗)).

Then, the surjection on P×P3, which is φ : π∗
1π

∗
HL∗ → π∗

P
OP(1), induces a morphism fid:

π∗
1(p

∗(UOΛ
)∗[−1]

fid−−→ π∗
1UF1

⊗π∗
P
OP(1),

whose cone gives a universal extension U

→ π∗
1(p

∗(UOΛ
)∗[−1]

fid−−→ π∗
1UF1

⊗π∗
P
OP(1) → U → .

There is a universal extension onP×P3 as well which we will state in the next proposition.

The proof follows from a similar construction in Proposition 7.3 and Remark 7.4.

Proposition 7.5. There exists a universal family of extensions on P×P3 of the form

0→ q∗(p∗UOΛ
)⊗π∗

POP(1)→ UF → q∗UF1
→ 0.

Next, we show that D is embedded into P. This is implied by the commutative diagrams

below (7.3 for the local version and 7.4 for the global version). Recall that the locus H ⊂M2

parameterizes objects E which fit into the short exact sequence: 0→ F1 → E → OΛ → 0.

There is a commutative diagram as follows:

C3

0 TE|H = C5 TE|M2
= C15 NH|M2

= C10 0

0 Ker(φ) = C8 Ext1(E,E) = C15 Ext1(F1,OΛ) = C9

C3

∼=
φ

(7.3)

In the above diagram, TE|H denotes the tangent space at the point E in H, and NH|M2

denotes the fiber of the normal bundle of H in M2 at E. The morphism φ is the composition

https://doi.org/10.1017/nmj.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.26


NEW MODULI SPACES OF ONE-DIMENSIONAL SHEAVES ON P
3 303

Ext1(E,E)
φ1−→ Ext1(F1,E)

φ2−→ Ext1(F1,OΛ), in which φ1 is induced by the injection

F1 ↪→ E (in A1) and φ2 is induced by the surjection E � OΛ. To see that φ vanishes at

TE|H , consider the following diagram (the two rows are distinguished triangles in Db(P3)).

F1 E OΛ

F1[1] E[1] OΛ[1]

a b

e f

a[1] b[1]

For any E in H, an extension class e ∈ Ext1(E,E) has image φ(e) as the composition

φ(e) = b[1]◦e◦a= f ◦b◦a, which is 0 since b◦a=0. This induces a morphism TE|H → ker(φ)

in the above diagram.

Next, we show the computational results in diagram 7.3. TE|H = C5 since H is the flag

variety {P ∈ Λ ⊂ P3} which is smooth of dimension 5. Ext1(F1,OΛ) = C9 is shown in

Lemma 7.2. One can prove that Ext1(E,E) = C15 using the method in Lemma 7.1. Here,

we show a simpler result in the next lemma that Ker(φ) = C8. This will imply that K(2,3)

intersects MF transversely. Hence, Ext1(E,E) = 15 and NH|M2
= C10.

Lemma 7.6. In diagram 7.3, Ker(φ) = C8.

Proof. We need two long exact sequences as follows:

Step 1 Apply Hom(−,E) to the sequence 0→F1 →E →OΛ → 0. We have the following

long exact sequence:

0 Hom(OΛ,E) Hom(E,E) Hom(F1,E)

Ext1(OΛ,E) Ext1(E,E) Ext1(F1,E)

Ext2(OΛ,E) . . . .

We can see that Hom(E,E) = C since E is stable. This implies that Hom(OΛ,E) = 0,

otherwise, the short exact sequence 0→ F1 → E → OΛ → 0 splits.

Then, we will show that Hom(F1,E) = C, Ext1(OΛ,E) = C3 and Ext2(OΛ,E) = 0 in

Step 1-1 and Step 1-2 below.

Step 1-1 (Compute Exti(OΛ,E)). Apply Hom(OΛ,−) to the sequence 0→ F1 → E →
OΛ → 0, and consider the long exact sequence:

0 Hom(OΛ,F1) = 0 Hom(OΛ,E) Hom(OΛ,OΛ) = C

Ext1(OΛ,F1) = C Ext1(OΛ,E) Ext1(OΛ,OΛ) = C3

Ext2(OΛ,F1) = 0 . . . .

The results for the first column were shown in Lemma 7.2, and it is straightforward to

compute the extension groups in the third column. So we have Ext1(OΛ,E) = C3 and

Ext2(OΛ,E) = 0.
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Step 1-2 (Compute Hom(F1,E)). Apply Hom(F1,−) to 0→ F1 → E → OΛ → 0, and

we have

0 Hom(F1,F1) = C Hom(F1,E) Hom(F1,OΛ) = 0

Ext1(F1,F1) = C5 Ext1(F1,E) Ext1(F1,OΛ) = C9.

So Hom(F1,E) = C.
Step 2 Now, we have a diagram as follows:

Hom(F1,E) = C

Ext1(OΛ,E) = C3

Ext1(E,E)

Hom(F1,OΛ) = 0 Ext1(F1,F1) = C5 Ext1(F1,E) Ext1(F1,OΛ) = C9

Ext2(OΛ,E) = 0.

0

φ
φ1

φ2

The long column is from the long exact sequence in Step 1 and the long row is from Step

1-2. We see immediately that Ker(φ) =Ker(φ1)+Ker(φ2) = C8.

The global version of diagram 7.3 is the following.

0 TH|K(2,3)
TM2

NH|M2
0

0 K er E xt1πH
(UE ,UE) E xt1πH

(UF1
⊗π∗

HL,UOΛ
)

KS (7.4)

We have thatNH|K(2,3)
=C7 ↪→Ext1(F1,OΛ)=C9 for all points E ∈H. Correspondingly,

we have the embedding D = P(N ∗
H|K(2,3)

) ↪→P := P(E xt1πH
(UF1

⊗π∗
HL,UOΛ

)∗).

By this point, we have that a general point in B parameterizes OC (C ⊂ P3 is a twisted

cubic), and P parameterizes plane cubic curves with an extra point in the curve (equiv. a

degree one line bundle on a cubic curve). Recall that the component P is created by the

second wall:

W2 : 0→ OΛ → E → F1 → 0.

We will show in the next proposition that for a stable object E ∈ A1 that fits the sequence

W2, E ∼=LCE
, where CE is a cubic curve and LCE

is a degree one line bundle on that curve.

Then, [11, Th. 5.2] implies that

Ext1(E,E) =

{
C13, if supp(E) is smooth,

C14, if supp(E) is singular.
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This indicates the expected gluing, at least set theoretically, thatB intersectsP transversely

along a divisor in B. The intersection parameterizes exactly degree one line bundles

supported on some singular cubic curve. We start with the following lemma about tilt

stability for OΛ.

Lemma 7.7. For the tilt stability condition σα,β = (Cohβ(P3),Zα,β =−chβ
2 +

α2

2 chβ
0 + i ·

chβ
1 ) on P3, there is a unique tilt wall for OΛ defined by 0→ OP3 → OΛ → OP3(−1)[1]→ 0

with equation α2+(β−1/2)2 = (1/2)2 in the (α,β) plane. OΛ is tilt stable outside W in the

(α,β)-plane.

Proof. Firstly, thanks to [33, Th. 5.1], we know that the smallest tilt wall for OΛ is

defined by 0 → OP3 → OΛ → OP3(−1)[1] → 0 (denote it by W ). Its equation is α2+(β−
1/2)2 = (1/2)2. Then, we show that there are no bigger walls.

Suppose there is an actual wall W ′ defined by 0 → A → OΛ → B → 0 in Cohβ(P3).

Since numerical tilt walls are nested semicircles, it is known that if there is an actual

wall somewhere (say at P in the (α,β)-plane) then it is an actual wall everywhere along

the numerical wall that goes through P. Moreover, since W ′ is larger than W there is an

arc in W ′ where β ranges between −1 and 0. So the equation H2chβ
1 (A)+H2chβ

1 (B) =

H2chβ
1 (OΛ) = 1 holds for all β ∈ [0,1] with H2chβ

1 (A),H
2chβ

1 (B)> 0. When β = 0, we have

0 ≤ ch0(A) ≤ 1. We must have ch0(A) = 1 (hence ch0(B) = 1), since otherwise, ch0(A) =

ch0(B) = 0 and there is no such tilt wall. When β = 1, we have 0≤ ch0(A)+H2ch1(A)≤ 1

and 0≤ ch0(B)+H2ch1(B)≤ 1. Using the fact that H2ch1(A)+H2ch1(B) =H2ch1(OΛ) =

1, we have H2ch1(A) = 0.

Then, the Bogomolov inequality for tilt semistable object A implies H2ch2
1(A) −

H3ch0(A)Hch2(A) ≥ 0, which implies Hch2(A) ≤ 0. On the other hand, the equation for

the numerical wall defined by A (ch0(A) = 1, ch1(A) = 0) is α2 + (β+1/2)2 = (1/2)2 +

Hch2(A)≤ 1/4. So ifHch2(A)< 0, thenW ′ will be smaller thanW, which is a contradiction.

So we must have Hch2(A) = 0, and W ′ =W .

Finally, it is evident that OΛ is stable outside the wall W since the tilt slope of OΛ is

larger than the tilt slope of OP3 there.

Recall that in §3, we use a one-dimensional family of tilt stability that is σtilt
t :=

(Coh−t−2(P3),Z2,t := −χ′
t + i · χ′′

t ). This family is the line α = 1√
3

in the (α,β)-plane.

Evidently, this line is above the wall W in Lemma 7.7, and OΛ ∈ Cohβ(P3) for all β ∈ R.

So we have the following corollary.

Corollary 7.8. OΛ is σtilt
t -stable for all t ∈ R.

We are now ready to prove that the stable objects created by the second wall are degree-

one line bundles on a cubic curve.

Proposition 7.9. For a stable object E that fits the sequence 0→ OΛ → E → F1 → 0

in A1, E is a sheaf, and more precisely, E is a degree one line bundle on a cubic curve

in P3.

Proof. For simplicity, we call the sequence 0→OΛ →E →F1 → 0 “W2” since it defines

the second actual wall.

We have shown in §6 that OΛ and F1 are Euler stable in A1. Recall that the Euler

stability σEuler
t := (A1,Zt = χ′

t+ i ·χt) is a tilt of the stability condition σBt
t = (Bt,Z

′
t =

−χt + i ·χ′
t). A direct computation shows that χ′

t(OΛ) = t+3/2 and χ′
t(F1) = −t+3/2
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which are both positive for t ∈ (0,1]. So we have that the sequence W2 stays the same in

Bt, that is, H −1
Bt

(OΛ) = H −1
Bt

(F1) = 0 (H −1
Bt

denotes the −1 cohomology in Bt).

Next, we take the cohomology of W2 in Coh−t−2(P3). Recall that the stability condition

σtilt
t := (Coh−t−2(P3),Zt = −χ′

t + i · χ′′
t ) is a slice of the stability conditions σα,β :=

(Cohβ(P3),Zα,β = −chβ
2 + α2

2 chβ
0 + i · chβ

1 ), where α = 1√
3
, and β = −t− 2. OΛ is μ-

stable, and it is always in Coh−t−2(P3) for any t ∈ R. A direct computation shows that

νt(OΛ) := χ′
t(OΛ)/χ

′′
t (OΛ) = t+ 3/2 > 0 for t ∈ (0,1], and νt(OΛ(−3)) = t− 3/2 < 0 for

t ∈ (0,1]. So we have OΛ,OΛ(−3) are μ-stable in Coh(P3), OΛ,OΛ(−3) are νt-stable (by

Corollary 7.8) in Coh−t−2(P3), and OΛ,OΛ(−3)[1] ∈ Bt for t ∈ (0,1]. Then, cohomologies

of W2 in Coh−t−2(P3) are as follows:

0→ H −1
β (E)→ OΛ(−3)

θ−→ OΛ → H 0
β (E)→ CP → 0, (7.5)

where H −1
β and H 0

β denote the cohomology in Coh−t−2(P3), and recall that we have

0→ OΛ(−3)[1]→ F1 → CP → 0 in Bt.

In sequence 7.5, we must have H −1
β (E) = 0. Otherwise, H −1

β (E) would be a sheaf (since

Im(θ) is a sheaf), and Im(θ) would be a torsion sub-sheaf of OΛ which will force θ to be

0. Then, we have two relations for E, which are (1). H −1
β (E) ∼= OΛ(−3) (2). 0 → OΛ →

H 0
β (E)→CP → 0. Since Ext1(CP ,OΛ) = 0, we have that H 0

β (E) =OΛ

⊕
CP contradiction

with E being stable in both A1 and Bt (t ∈ (0.72,1]). (For a simple reason, one sees that

there is a morphism E�OΛ, and a direct computation shows that λt(E) := χt(E)/χ′
t(E)>

λt(OΛ) for t ∈ (0.9,1].)

Therefore, sequence 7.5 becomes

0→ OΛ(−3)
θ−→ OΛ → E → CP → 0. (7.6)

Assume that the cokernel of θ is T, that is, we have two short exact sequences in

Coh−t−2(P3) as follows:

(1’) 0→ OΛ(−3)→ OΛ → T → 0 (2’) 0→ T → E → CP → 0.

If T is not a sheaf, then we have 0 → H −1(T ) �= 0 → OΛ(−3) → OΛ → H 0(T ) →
0. For the same reason, we have H −1(T ) ∼= OΛ(−3) and OΛ

∼= H 0(T ). Then, 0 →
OΛ(−3)[1]→ T →OΛ → 0, which implies T ∼=OΛ(−3)[1]

⊕
OΛ. Then sequence (2’) becomes

0 → OΛ(−3)[1]
⊕

OΛ → E → CP → 0, and it violates the stability of E. So T must be a

sheaf, and T ∼= OCE
in which CE is a cubic curve in Λ.

Lastly, sequence 7.6 becomes 0→ OCE
→E → CP → 0 in Coh−t−2(P3). It is easy to see

that E is a sheaf, and the sequence stays the same if we take cohomologies in Coh(P3).

This means that we have a sequence in Coh(P3): 0→OCE
→E →CP → 0. Moreover, since

Ext1(CP ,OCE
) = C for P ∈ CE and Ext1(CP ,OCE

) = 0 for P �∈ CE , we have that E is a

degree one line bundle on CE .

Finally in this section, we show the gluing of B and P using the Elementary modification.

1. Construct a universal family K on the blow up.

There are three distinguished triangles (a), (b), and (c) involved (the third one is from

the composition of the first two). The octahedral axiom would give the fourth triangle.

M2 is a indeed a quiver moduli of the dimension vector [1694]. [17, Prop. 5.3] implies

that it is a fine moduli space when t ∈Q. So M2 and M3 are both fine moduli spaces.

Denote the universal family of representation on M2 by U2. When restricting U2 to
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H, there is a line bundle L1 on H such that UE
∼= (U2|H)⊗ π∗

H(L1). To reduce the

complexity of notations, we abuse the notation a bit by assuming that L1 is trivial.

(a) This is from pulling back the extension in Proposition 7.3 from H to D and then

pushforward to the blow-up B.

→ i∗b
∗
H(UF1

⊗π∗
HL)→ i∗b

∗
H(UE)

u−→ i∗b
∗
H(p∗(UOΛ

))→ .

(b)

→ b∗(U2(−D×P3))→ b∗(U2)
r−→ i∗(b

∗U2)D×P3 → .

(c) Define K from the following distinguished triangle: (K will be the desired family

on B for the gluing.)

→ K → b∗U2
u◦r−−→ i∗b

∗
H(p∗(UOΛ

))→ .

(d) Apply the octahedral axiom, we have the following triangle:

→ b∗(U2(−D×P3))→ K → i∗b
∗
H(UF1

⊗π∗
HL)→ .

K is flat because it is a complex of vector bundles.

2. Glue B to the component P using the family K . We will apply the octahedral axiom

again to triangles (a’)∼ (c’) below.

(a’)

→ K (−D×P3)→ K
r−→ i∗Li

∗(K )→ .

(b’) Define a family K ′ from the following triangle:

→ K ′ → Li∗(K )→ b∗H(UF1
⊗π∗

HL)→ .

Then push it forward to B by i∗:

→ i∗K
′ → i∗Li

∗(K )
v−→ i∗b

∗
H(UF1

⊗π∗
HL)→ .

(c’)

b∗U2(−D×P3)→ K
v◦r−−→ i∗b

∗
H(UF1

⊗π∗
HL).

(d’) Apply the octahedral axiom, and we have the triangle:

→ K (−D×P3)→ b∗U2(−D×P3)→ i∗K
′ → .

As desired, we have the following isomorphism, and this completes the proof that B

is glued to P along the exceptional divisor algebraically:

K ′ ∼= b∗Hp∗(UOΛ
)⊗OD×P3(−D×P3)

∼= b∗Hp∗(UOΛ
)⊗π∗

DOP(N ∗
H|K(2,3)

)(1)

∼= b∗Hp∗(UOΛ
)⊗π∗

POP(1).

§8. An example of an actual wall built up from pieces

We have shown the two walls for the class v = (0,0,3,−5) in the (t,u)-plane in §6. These
two walls, which are expected to be actual walls, do not intersect. However, it is not always

the case on a threefold (see [22], [33]) as how they behave on a surface. We give a counter-

example in this section.
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Figure 9.

Numerical walls for OC

Let C ⊂ P3 be a rational quartic curve. The wall for OC in the (t,u)-plane is expected to

be the outermost parts of the following two numerical walls:

W1 : 0→ OP3 → OC → IC [1]→ 0,

W2 : 0→ OQ → OC → IC/Q[1]→ 0,

where Q⊂ P3 is a quadric surface Q⊂ P3 containing C.

In Figure 9, S is the intersection of W1 and W2, and the green region Q1 is the quiver

region for t∈ [0,1]. T = 0.5 is the right endpoint of W2, and P is the intersection of W2 with

the boundary of Q1. There are two more walls, W3 (purple) and W4 (brown), which are

defined by the short exact sequences 0→OP3 →OQ →OP3(−2)[1]→ 0 and 0→OP3(−2)[1]→
IC [1]→IC|Q[1]→ 0, respectively. A direct computation shows that W3 and W4 go through

S as well.

In fact, it is easy to see that W2 is not an actual wall to the left of S because OQ is

unstable, destabilized by OP3 . Similarly, W1 is not an actual wall to the right of S because

IC [1] is unstable, destabilized by OP3(−2)[1].

We prove the following property which implies that the actual wall of OC is built up

from more than one numerical wall.

Proposition 8.1. The numerical wall W2, defined by 0→ OQ → OC → IC/Q[1]→ 0,

is an actual wall in the quiver region Q1 and a pseudo wall to the left of S.

Proof. Recall that the stability condition in the (t,u)-plane is the pair σt,u = (Bt, zt,u =

−χt+
u2

2 χ′′
t + i ·χ′

t). Let λt,u be the slope function of Zt,u. It is straightforward to check

that λt,u(OP3)> λt,u(OQ) for all (t,u) ∈W2 to the left of S where W2 can not be an actual

wall.

Next, we prove that OQ and IC/Q[1] are stable in Q1.
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(a) OQ and IC/Q[1] are stable at T.

We use the Euler stability σt = (At,Zt = χ′
t+ i ·χt) with slope λEuler

t = −χ′
t

χt
at T.

(It is the same with the stability condition σt,0 for Bt.)

• For OQ, it has dimension vector [1,4,7,4] in A1. Without loss of generality, assume

Q is defined by the equation x0x3−x1x2 = 0. Then the presentation of OQ is given as

follows: [
OP3(−4)

M→ OP3(−3)4
N→ OP3(−2)7

S→ O4
P3(−1)

]
∼= OQ,

whereN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x2 x3 0 0

−x1 0 x3 0

x0 0 0 x3

0 −x1 −x2 0

0 x0 0 −x2

0 0 x0 x1

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, S=

⎛
⎜⎜⎝
−x1 −x2 0 −x3 0 0 x3

x0 0 −x2 0 −x3 0 −x2

0 x0 x1 0 0 −x3 0

0 0 0 x0 x1 x2 0

⎞
⎟⎟⎠

and M =
(
−x3 x2 −x1 x0

)T
.

The stability of OQ follows from checking the slopes of all its sub-complexes. We

reduce the complexity in the following way. The inclusion OP3 ↪→OQ exists in both Bt

(t∈ (−0.5774,0.5774)) and A1, in which the presentation of OP3 is its Koszul resolution

(dim(OP3)= [1,4,6,4]).

From the stability of OP3 in A1, we only need to check the sub-complexes of OQ that

are not sub-complexes of OP3 . They are given as follows (in dimension vector): [0143],

[0154], [0164], [0174], [0264], [0274], [0374].

A direct computation shows that none of those can destabilize OQ at (0.5,0).

• For IC/Q[1], its dimension vector in A1 is [0,3,4,1]. It is easy to check that a

destabilizing sub-object must have dimension vector [0,a,b,0], where a = 0, . . . ,3 and

b= 0, . . . ,4. In other words, if we prove that the dimension of a sub-complex must have

a “1” in the first position from the right, that is, [0,a,b,1], then IC/Q[1] would be

stable.

It is sufficient to show that there is no sub-complex with dimension vector [0,0,1,0].

Suppose [0,0,1,0] = OP3(−2)[1] is a sub-complex, then there is a non-zero morphism

OP3(−2)[1]→ IC/Q[1]. But we have a contradiction that

Hom(OP3(−2)[1],IC/Q[1]) =Hom(OP3(−2),IC/Q) =H0(P3,IC/Q(2)) = 0.

This proves that IC/Q[1] is stable in A1.

(b) OQ and IC/Q[1] are stable along the blue numerical wall between P and T (arc
	

PT )

in the quiver region.

In the quiver region Q1, the stability condition σt,u = (Bt,Zt,u = −χt +
u2

2 χ′′
t +

i · χ′
t) has essentially the same (up to a shift by [1]) slicing with the stability

condition σEuler
t,u := (At,Z

Euler
t,u = χ′

t+ i · (χt− u2

2 χ′′
t )). Let λ

Euler
t,u :=− χ′

t

χt−u2

2 χ′′
t

be the

corresponding slope function. It is straightforward to check that the proof in step (a)

holds if we replace λEuler
t by λEuler

t,u in Q1, and this proves the claim.
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Remark 8.2. We expect that 0→ OP3 → OQ → OP3(−2)[1]→ 0 and 0→ OP3(−2)[1]→
IC [1] → IC|Q[1] → 0 are the unique wall for OQ and IC|Q in the (t,u) plane, and the

outermost parts of W1 and W2 build up the actual wall of OC .
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Appendices

Appendix A. A formula for checking stability

In this appendix, we show a formula to check the stability of an object in the category At.

Here, we may set t= 1 to reduce the complexity. The case for a general t ∈R is analogous.

Recall that the category A1 consists of complexes of the form

{Oa−3

P3 (−4)→ O
a−2

P3 (−3)→ O
a−1

P3 (−2)→ Oa0

P3 (−1)|a0,a−1,a−2,a−3 ∈ Z≥0}.

For a complex E ∼= [O
a−3

P3 (−4) → O
a−2

P3 (−3) → O
a−1

P3 (−2) → Oa0

P3 (−1)], we call

(a−3,a−2,a−1,a0) the dimension vector of E, denoted by dim(E).

By definition, E ∈ A1 is Euler semistable if and only if for any sub-object F ↪→E in A1,

we have −χ′
t(F )/χt(F )≤−χ′

t(E)/χt(E). This is equivalent to χ′
t(F )χt(E)−χ′

t(E)χt(F )≥
0. Since χt(E) = ch−t−2

3 (E)− 1/6ch−t−2
1 (E) and χ′

t(E) = ch−t−2
2 (E)− 1/6ch−t−2

0 (E), the

inequality is reduced to the following inequality of matrices:

(
−1

6χt(E) 1
6χ

′
t(E) χt(E) χ′

t(E)
)
⎛
⎜⎜⎝
ch−t−2

0 (F )

ch−t−2
1 (F )

ch−t−2
2 (F )

ch−t−2
3 (F )

⎞
⎟⎟⎠≥ 0.

Moreover, by definition, ch−t−2(E) = ch(E) · e(t+2)H , so we have that

⎛
⎜⎜⎝
ch−t−2

0 (F )
ch−t−2

1 (F )
ch−t−2

2 (F )
ch−t−2

3 (F )

⎞
⎟⎟⎠=

⎛
⎜⎝

1 0 0 0
1 1 0 0

1/2 1 1 0
1/6 1/2 1 1

⎞
⎟⎠

t+3⎛
⎜⎝
ch1

0(F )
ch1

1(F )
ch1

2(F )
ch1

3(F )

⎞
⎟⎠=

⎛
⎜⎜⎝

1 0 0 0
t+3 1 0 0
(t+3)2

2 t+3 1 0
(t+3)3

6
(t+3)2

2 t+3 1

⎞
⎟⎟⎠
⎛
⎜⎝
ch1

0(F )
ch1

1(F )
ch1

2(F )
ch1

3(F )

⎞
⎟⎠.

Then, for an object F ∈ A1 with dimension vector dim(F ) = (a−3,a−2,a−1,a0) (in A1), its

(twisted) Chern characters are given by the following equality:

⎛
⎜⎜⎝
1 −1 1 −1

0 1 −2 3

0 −1/2 2 −9/2

0 1/6 −4/3 9/2

⎞
⎟⎟⎠
⎛
⎜⎜⎝

a0
a−1

a−2

a−3

⎞
⎟⎟⎠=

⎛
⎜⎜⎝
ch1

0(F )

ch1
1(F )

ch1
2(F )

ch1
3(F )

⎞
⎟⎟⎠ .
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At this stage, the first inequality becomes

(
− 1

6
χt(E) 1

6
χ′
t(E) χt(E) χ′

t(E)
)
⎛
⎜⎜⎜⎝

1 0 0 0

t+3 1 0 0
(t+3)2

2
t+3 1 0

(t+3)3

6

(t+3)2

2
t+3 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 −1 1 −1

0 1 −2 3

0 −1/2 2 −9/2

0 1/6 −4/3 9/2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a0

a−1

a−2

a−3

⎞
⎟⎟⎟⎠≥ 0,

which is

(
−1

6χt(E) 1
6χ

′
t(E) χt(E) χ′

t(E)
)
⎛
⎜⎜⎝

1 −1 1 −1
t+3 −t−2 t+1 −t
(t+3)2

2
−t2−4t−4

2
t2+2t+1

2 − t2

2
(t+3)3

6
−t3−6t2−12t−8

6
t3+3t2+3t+1

6 − t3

6

⎞
⎟⎟⎠
⎛
⎜⎝

a0
a−1

a−2

a−3

⎞
⎟⎠≥ 0.

Define a 1×4 matrix θt(E) := (θt,0(E), θt,1(E), θt,2(E), θt,3(E)) as follows:

θt(E) :=
(
−1

6χt(E) 1
6χ

′
t(E) χt(E) χ′

t(E)
)
⎛
⎜⎜⎜⎝

1 −1 1 −1

t+3 −t−2 t+1 −t
(t+3)2

2
−t2−4t−4

2
t2+2t+1

2 − t2

2
(t+3)3

6
−t3−6t2−12t−8

6
t3+3t2+3t+1

6 − t3

6

⎞
⎟⎟⎟⎠ ,

then an object E ∈ A1 is Euler semistable if and only if for any sub-object F ↪→ E ∈ A1

with dim(F ) = (a−3,a−2,a−1,a0), we have

(
θt,0(E) θt,1(E) θt,2(E) θt,3(E)

)
·
(
a0 a−1 a−2 a−3

)
≥ 0.

As an example, when E ∼= OP3 , a direct computation shows that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

θt,0(OP3) = t5

6 + 25t4

12 + 185t3

18 + 299t2

12 + 59t
2 + 27

2

θt,1(OP3) =− t5

6 − 5t4

3 − 119t3

18 −13t2− 38t
3 − 44

9

θt,2(OP3) = t5

6 + 5t4

4 + 65t3

18 + 61t2

12 + 7t
2 + 17

18

θt,3(OP3) =− t5

8 − 7t4

12 − 59t3

72 − 5t2

12 + 1
6 .

Table 1 provides all the quotient objects of OP3 , hence, it provides the dimension vectors

dim(F ) = (a−3,a−2,a−1,a0) of every sub-object F ↪→ OP3 ∈ A1 as well. Stability of OP3

follows from checking that θt(OP3) · (a−3,a−2,a−1,a0) ≥ 0 for all dim(F ), where F ↪→ OP3

and all t ∈ (0,1].

Appendix B. Presentation and sub-complexes of IP/Λ(1)

The sequence below is the presentation of IP/Λ(1) in A1.

[
O2

P3(−4)
M−→ O8

P3(−3)
N−→ O11

P3 (−2)
S−→ O5

P3(−1)
]

T−→ IP/Λ(1).

The matrices M,N,S from the sequence and all the sub-complexes of IP/Λ(1) are given as

follows.
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Matrices

N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z 0 w 0 0 0 0 0

−y z 0 w 0 0 0 0

x 0 0 0 0 w 0 0

0 −y 0 0 0 0 w 0

0 x 0 0 0 0 0 w

0 0 −y −z z 0 0 0

0 0 x 0 0 −z 0 0

0 0 0 0 −y 0 −z 0

0 0 0 x 0 y 0 −z

0 0 0 0 x 0 0 −z

0 0 0 0 0 0 x y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−w 0

0 −w

z 0

−y z

0 z

x 0

0 −y

0 x

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T =
(
y2 yz z2 yw zw

)

S =

⎛
⎜⎜⎜⎜⎝

x 0 −z 0 0 0 −w 0 0 0 0

0 x y 0 −z 0 0 0 −w 0 0

0 0 0 x y 0 0 0 0 0 −w

0 0 0 0 0 x y 0 z −z 0

0 0 0 0 0 0 0 x 0 y z

⎞
⎟⎟⎟⎟⎠

Sub-complexes of IP/Λ(1)

The dimension vectors of sub-complexes are given in the following table.

Dimension vector Values of m,n Dimension vector Values of m,n

[0,6,10,5] [0,7,11,5]
[0,8,11,5] [1,5,8,4]
[1,5,8,5] [1,6,10,5]
[1,6,11,5] [1,7,11,5]
[1,8,11,5] [0,4,8,4]
[0,4,8,5] [0,5,8,4]
[0,0,0,n] n= 1, . . . ,5 [0,1,n,5] n= 9,10,11
[0,0,2,n] n= 2,3,4,5 [0,2,n,m] n= 6,7,8,m= 4,5
[0,0,3,n] n= 2,3,4,5 [0,2,n,5] n= 9,10,11
[0,0,4,n] n= 3,4,5 [0,3,n,m] n= 7,8, m= 4,5
[0,0,5,n] n= 3,4,5 [0,3,n,5] n= 9,10,11
[0,0,n,m] n= 6,7,8, m= 4,5 [0,4,n,5] n= 9,10,11
[0,0,n,5] n= 9,10,11 [0,5,n,5] n= 8,9,10,11
[0,1,3,n] n= 2, . . . ,5 [1,4,n,m] n= 6,7,8, m= 4,5
[0,1,4,n] n= 3,4,5 [1,5,n,5] n= 9,10,11
[0,1,5,n] n= 3,4,5 [0,2,5,n] n= 3,4,5
[0,1,n,m] n= 6,7,8, m= 4,5
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