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Abstract

We consider a holomorphic family f : & — S of compact complex manifolds and a line bundle & — 2. Given
that ! carries a singular hermitian metric that has Poincaré type singularities along a relative snc divisor 9, the
direct image fi(Kq/s ® 9 ® £) carries a smooth hermitian metric. If & is relatively positive, we give an explicit
formula for its curvature. The result applies to families of log-canonically polarized pairs. Moreover, we show that
it improves the general positivity result of Berndtsson-Paun in a special situation of a big line bundle.
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1. Introduction

‘We consider a proper holomorphic submersion f : & — § of complex manifolds and a snc divisor &
on " whose restriction Dy := D|x, to each fibre Xy = f~!(s) is also simple normal crossing. Given
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2 Philipp Naumann

a line bundle & — X that carries a hermitian metric that is smooth on & := 2 \ & and whose
inverse has Poincaré growth near the divisor &, we study the spaces of square integrable canonical
forms on the open fibres X := X, \ D, that have values in L, := Z|x;. By the work of Zucker [24] and
Fujiki [8], we can identify these L2-Dolbeault cohomology groups H?z) (X, Kx; ® Lg) with the spaces
H°(X;, Kx, ® Dy ® Ly). More globally, we will see that these spaces are the fibres of the coherent sheaf
fi(Kq/s ® D ® Z) on the base S. Under the condition that this sheaf is locally free, the natural L%
metrics on the L2-Dolbeault spaces induce a smooth hermitian metric on the direct image. We give an
explicit curvature formula for it in the case the hermitian metric on & is positive along the fibres X ;. If
% is globally positive on 27 := &\ 9, the direct image f.(Kq /s ® D ® £) is also positive. The result
applies to families of log-canonically polarized pairs, where the Poincaré type Kéhler-Einstein metrics
induce such a singular hermitian metric on the relative canonical bundle. We give another application
to illustrate how our result improves the general positivity theorem from [3] in a special situation.

2. Differential geometric setup and statement of results

Let f : £ — S be a proper holomorphic submersion of complex manifolds with connected fibres and
Z aline bundle on &'. We assume that & has a hermitian metric 4 that is smooth on the complement of
a relative simple normal crossing divisor & = 2?:1 2; on & with the following asymptotic behaviour
along 9

hE”

W g = exp(u) - <z , 2.1)
I1._, lloi1? log? || 1]?

where the notation is as follows:

o hgjl is a smooth metric on L.

o ||oy]l; is the norm of the canonical section cutting out D; with regard to a smooth metric s.t. ||o7||; < 1.
o uisafunctionon 2’ s.t.uly; € €% (k > 2)forall s, and the map s — ulx; is Fréchet differentiable.
o wg = —idd log(h) |x; is a Poincaré type Kéhler metric on each fibre X.

Here we have used the Holder space of functions €% = %’“"(X;O) on an open fibre X that were
introduced in [6, 14, 21] and do not depend on the fibre. We refer to this by saying that the inverse

metric A~ has Poincaré type singularities along 2. We write 9 N L S for the family of smooth
log pairs (X;, Dy).

The reason for choosing this asymptotic will become clear when we consider the family of Poincaré
type Kéhler-Einstein metrics for a family of log canonically polarized manifolds. We remark that it
includes the case where the function u is smooth on &', and it implies that u# and its derivatives in the
base and fibre direction we will consider are bounded on 2. In a local description, the norm squared
of a local trivialising section e of & near a point p € 9 is given by

r

lesli(z.5) = (]—[ Izil210g2(|zi|2)) v(z2,9), vEC(X),

i=1

where the divisor is given by @ = {z' ---z" = 0} with respect to local holomorphic coordinates (z, s)
aroundpwithz =z!,...,z"%ands = s', ..., s" suchthat f(z, s) = s. Here, n := dim Xy and m := dim S.
The curvature form of the hermitian line bundle (&, h) restricted to X/ := 2" \ 9 is given by

wgr = -N—-18dlog h.

This means we view / as a singular hermitian metric on £ whose curvature current restricted to 2’
is given by the smooth form wg~. Our assumption on h guarantees that each restriction wg-|x; is
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quasi-isometric to the model metric

k i —i n
\/_1 2%4. Z dzi/\dzi
o 121 log™ (1/12'1%) 5,

near the point p.
We consider the case where the hermitian line bundle (£, h)|g- is relatively positive, which means

ws = war|x;

are Kihler forms on the open fibres X; := X, \ D;. This implies that & ® 9 is relatively big and nef.
Then one has the notion of the horizontal lift v; of a tangent vector d; on the base S (see Section 6.1 for
the precise definition), and we get a representative of the Kodaira-Spencer class by

Ai = 5(Vi)|X§,
which is a €*>?-tensor by [18, Lemma 3] and thus square integrable. Furthermore, one sets

@i7 7= Vis Vi) g

which is called the geodesic curvature. We note that (¢;7);7 is positive (semi-)definite if and only if &
is globally (semi-)positive on 2. Again, our assumption on u(z, s) guarantees that each ¢;; is a gk
function and thus in particular bounded on each fibre.

Now we turn to the direct image sheaf we want to study. On a fibre X;, we denote by Qis (log Dy) =
Kx, ® D the locally free sheaf of germs of logarithmic n-forms with log-poles along D,. This sheaf is
the restriction of Q" (log D)g /s = Kg /s ® D, the sheaf of relative logarithmic n-forms with log-poles
along 9, to the fibres Xj.

We assume that the dimension of the cohomology groups

H(X,, Q% (log Dy)(Ls))

is constant on S, which in general only holds outside a proper subvariety. Under this assumption, we get
the local freeness of the coherent sheaf

J(Q"(log D)g5(Z))

whose fibres are canonically isomorphic to the cohomology groups H(Xj, Q’)’(Y (log Dy)(Lg)). By the
work of Zucker [24] and Fujiki [8], we can identify these groups with the L?-Dolbeault cohomology
groups H ?2) (X!, K x: ® Ly). Hence, the latter spaces also form a vector bundle on the base, which we
denote by

fi(Kqrys ® Llar)2.

It turns out that this is nothing but the bundle f.(Q"(log D)g/s(Z)). Now we can represent local
sections of this bundle by holomorphic sections of Q"(log D)gs(Z) whose restrictions to the open
fibres X are thus L?-integrable and holomorphic (1, 0)-forms with values in Ls. Let {¢/!,..., %"} be
a local frame of the direct image consisting of such sections around a fixed point s € S. We denote
by {(0/ds;) | i = 1,...,m} a basis of the complex tangent space T,S of S over C, where s; are local
holomorphic coordinates on S. The components of the metric tensor for the L>-metric on the direct
image are then defined by

HI(5) = @A) = 0t ) 0) = [ 0Pl av =1 [ @Fl o
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Here we use the notation ¢/ := y! for the sections ¢! and write dV = W', [n!. The pointwise inner

product ¥ -y is the one given by w, and h| x; . In the last equality, we used the Hodge-Riemann bilinear
relation because the holomorphic (n, 0)-forms are primitive. Note that by working on the open fibres
X/, the metrics involved are smooth so that we have a harmonic theory for square integrable forms lying
in the domain of the Laplacian.

Let Al%(z, s)at,dzE = 5(v,~)|x§ be the d-closed representative of the Kodaira-Spencer class of

d; described above. We know that A; lies in the space of smooth and L2-integrable (0, 1)-forms
A(()’Z; (X;,Tx;). Hence these, together with contraction, define a map

AL0adz?U  HO (X, @ (log Dy)(Ly)) = Al (X Q5 (L)),

When applying the Laplace operator to (p, g)-forms with values in L|x; on the fibres X, we have
Op—-05=(n-p—-q)-id

due to the definition wx; = wq-|x; and the Bochner-Kodaira-Nakano identity. Thus, we write O = O =
Oy in the case ¢ = n — p. The main result is

Theorem 2.1. Let @ <> & i) S be a family of smooth log pairs and (£, h) — X a hermitian line
bundle as described above. With the objects just described, the L*>-metric on f.(Q"(log D) /s(Z)) is
smooth, and its curvature is given by

Rg‘(s) = /X iy - (y* "ﬁi) av
+/ o+ 1) (A uy) - (A5 U yh)av.
X

In particular, f.(Kg s ® D ® Z) is Nakano (semi-)positive if £ is (semi-)positive on X' and positive
along the fibres X.

We remark that if Z is (semi-)positive, the direct image f.(Kg /s ® 2 ® Z) is locally free by the
Ohsawa-Takegoshi extension theorem. The result applies to families of log-canonically polarized pairs
where the relative canonical bundle Kq-/s plays the role of Z. Here the hermitian metric is induced
from the fibrewise Poincaré type Kéhler-Einstein metrics. In this case, we first prove

Theorem 2.2 (= Theorem 4.1). Let S g L S be a family of smooth log-canonically polarized
pairs. Then the curvature of the hermitian metric on Kq ;s that is induced by the Poincaré type Kdhler-
Einstein metrics on the fibres is semipositive. If the family is effectively parametrised, then Kq/s is
strictly positive.

This answers a question raised in [1], Remark 7.1]:

Corollary 1 (= Corollary 5). For a family of smooth log-canonically polarized pairs D N L S, the
relative log-canonical bundle Kgjs ® D equipped with the metric induced from the fibrewise Kdhler-
Einstein metrics is nef. If the family is effectively parametrised, Ko ;s ® D is big. Here, S is assumed to
be compact.

By combining both theorems, we get
Corollary 2. For a family of log-canonically polarized pairs 9 S g L S, the direct image sheaf

fi((Kg/s ® D) ® Kqs) is semipositive in the sense of Nakano. If the family of log pairs is effectively
parametrised, this direct image is Nakano positive.

To implement the method of computation given in [19, 17], we have to pass from the compact fibres
X; to the open part X/, where the metrics in consideration are smooth. This requires imposing the L2
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condition on the spaces of forms on X;. To show that all steps in the computation are still justified, we
have to check integrability. This is possible due to knowledge of the asymptotic behaviour of our sections.
Holder spaces are another important tool with respect to quasi-coordinates. We give the details below.

A proof of the more general curvature formula, including the higher direct images, was claimed
in [22]. However, the arguments in this work seem to be incomplete. One major issue is the smooth
dependency of the fibrewise harmonic projections without the usual assumption of having constant
dimension for the space of fibrewise harmonic forms; compare to [22, Lemma 2]. This is impossible
given that linear independency is an open property; compare to the argument in the proof of [15, Lemma
7.7]. Moreover, it is unclear how to derive the square integrability of some Lie-differentiated forms from
the arguments given in [22, pp. 2958f], which is another key ingredient in the computation. In the
present independent work, we give the detailed arguments for the case of the zeroth direct image. The
key is that one has a precise asymptotic for square integrable holomorphic sections due to the Laurent
series expansion that is lacking for the case of general harmonic forms.

3. Preparations
3.1. L’-integrable forms

We start with a fibrewise consideration. Let (X, D = Zi:l D;) be a smooth log pair, and set X’ = X\D.
We consider a holomorphic line bundle L on X together with a metric /4 that is smooth on X’ and whose
inverse has the asymptotic behaviour from equation (2.1)

o
h<",

' = exp(u) - :
ML, Nl log? [l |2

where the notation is as follows:

o hS7, is a smooth metric on £

o ||oy||; is the norm of the canonical section cutting out D; with regard to a smooth metric s.t. ||o;||; < 1.
o u is a function in €% (X").

o wy: = -0 log(h)|x- is a Poincaré type Kihler metric.

Then we can identify the holomorphic and locally L?-integrable (n, 0)-forms with values in L:

Proposition 1. We denote by O(2)(Q%, (L|x’), h|x’) the sheaf of holomorphic L-valued n-forms on X',
which are locally L* on X with respect to h|x:. Then

O(2) (Qy/ (Llx'), hlx+) = 0(Q (log D)(L)).

The proof follows immediately from a Laurent series argument together with the estimates of Poincaré
type metrics: sections that are locally square integrable with respect to a metric with a Poincaré type
metric extend holomorphically as forms with logarithmic poles to the given snc divisor D (and vice
versa). m]

Let szf{%q (L|x) denote the sheaf on X of L-valued (n, g)-forms that are locally L? integrable with

respect to wx- and h|x- and whose J-exterior derivatives, taken in the current sense, are also locally L2,
We refer to [25] or [5] for more details on the L2-complex of sheaves.

Proposition 2. The complex (o ("2)' (Llx)),d) of sheaves on X is a fine resolution of
O (Q%,(Llx"), h|x’). Thus the L?-Dolbeault cohomology group H?z) (X", Q%,(L|x)) can be identified
with HY(X, Q" (log D)(L)), which is of finite dimension.

Proof. We decompose the vector bundle locally as a sum of line bundles and apply [8, Prop. 2.1]; also
compare to [8, p.870]. This shows that we have a resolution. The fact that we get a fine resolution is
not automatic (compare to [25, p.175]) because we need cut-off functions with bounded differential.
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But this holds in the context of Poincaré geometry; see [24], where it was successfully employed in the
one-dimensional case. O

3.2. Quasi-coordinates and Holder spaces

We recall from [6] that a quasi-coordinate map is a holomorphic map from an open set V c C into X’
if it is of maximal rank everywhere in V. In this case, V together with the Euclidean coordinates of C"
is called a local quasi-coordinate of X’. According to [6, 14, 21], we have the following:

Proposition 3. There exists a family 7" = {(V; vl va)} of local quasi-coordinates of X’ with the
following properties:
(i) X’ is covered by the images of the quasi-coordinates in 7.

(ii) The complement of some open neighbourhood of the divisor D in X is covered by the images of
finitely many of the quasi-coordinates in 7', which are local coordinates in the usual sense.

(iii) For each (V; v, vy € 7',v c C" contains an open ball of radius %

(iv) There are constants ¢ > 0 and Ax > 0,k +0,1,..., such that for every (V, v, v € V', the
following inequalities hold:
o We have

1
2(517) < (gi7) < c(di7)

as matrices in the sense of positive definiteness.

o For any multi-indices I = (i1, ...,ip) and J = (j1,..., jq) of order |I| =iy + ... +ip,
respectively |J| = j1 + ...+ jg, we have
Pl
——| <Ay
avlav’ 7]

where vl = (av')t .- (3vP)'r and Gv’ = (8v"))1 - - (v1)a.

A complete Kéhler manifold (X', g), which admits a family 7" of local quasi-coordinates satisfying
the conditions of the proposition, is called being of bounded geometry (of order o).

Although the coordinate system from Proposition 3 is not a coordinate system in the ordinary sense
because of the covering map involved, it makes sense to talk about the components of a tensor field on
X’ (or a neighbourhood U(p) = (A*)¥ x A"%) with respect to these ‘coordinates’ v’ by first lifting it
to a tensor field A”. The behaviour of the tensor on U(p) can thus be examined by looking at the lifted
function in a neighbourhood of (1,...,1,%,...,%) in A.

We mention here the transition of tensors from a local coordinate function z, where a component
D; is given by {z' = 0} to a quasi-coordinate v, |v'| < R < 1, which is given by

dzt _ vi-117 v

. — = —— _ ~ 4y, 3.1
7t log |Zl|2 (Vl _ 1)2 1 - |vz|2 v ( )

because v is bounded away from 1. The respective equation for 9/dz' reads

0

dlog |57 ~ 25

3.2)
This transformation rule is used to derive estimates from Holder regular functions and tensors that we
will now define. The Holder spaces €@ (X”) are defined in terms of quasi-coordinates for sufficiently
large values of k and 0 < @ < 1. The Holder norms are computed in terms of the infinite number of
quasi-coordinate systems. Following [6, 14, 21], we define

Definition 1. Let k € Ny and a € (0, 1), and denote by C*(X’) the space of k-times differentiable
functions u : X’ — C. Foru € CK(X"), let
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—J —=J
—J AL, u(z) — ola,u(z
Wlka= s [sp Y 0T+ swp Y Bl =00
(Vovlvme?\2€V 1107 <k 2V 13T |=k |z -]
k,a 137 _ o]
be the € *-norm of u, where 0,,0, = P aV,.Then let

€L =65 (X) = {u e CHX') : lullk.a < oo}

be the function space of %> functions on X’ with respect to 7.

In a similar way, we can define €% ®-tensors by pulling back via the quasi-coordinate maps. Exterior
derivatives and covariant derivatives of €% ®-tensors are of the same type (with k being replaced by
k —1). The arguments from [14] using Holder spaces €~ (with respect to quasi-coordinates) are valid
for all large fixed numbers k& > ko, where ko denotes some minimal degree. During the computations,
we will have to take derivatives, products and contractions of such tensors, arriving at @%@ _tensors for
some lower value of k. In each of these steps, we will have to increase the lower bound k. Only finitely
many such steps will be necessary. We will increase k tacitly.

Let wx- be the complete Poincaré type Kdhler form from the previous section.

Lemma 3.1. Any €% %-tensor on X’ is globally square-integrable.

The proof follows immediately from the given uniform bounds of such tensors in terms of the above
quasi-coordinate systems and the metric wxs with respect to the transition equations of the type in
equation (3.1): take the pointwise norm of such a tensor with respect to the given metric. We consider
the resulting function a bounded € k.@_tensor (for some value of k), which means it is uniformly bounded
in terms of quasi-coordinate systems (or any other coordinate systems). Finally, we use the boundedness
of the volume of X’. O

3.3. Hodge theory on the open fibres

In this section, we summarise the Hodge theory on the complete, noncompact Kéhler manifold (X', wx-),
for which we refer to the book of Marinescu and Ma [16, Chapter 3]. We consider the holomorphic
vector bundle E = Kx ® L|x- equipped with the hermitian metric h|x-.

For the operator d defined on the smooth, compactly supported forms Ag’q(X "JE) C L(();)](X " E),
we consider its formal adjoint 0*. For s| € L(()é‘)l (X', E), we can calculate ds; in the sense of currents:

s is the current defined by
<5_S1, s2) = (s1, §*S2> for s, € A(()O’q+1) (X',E).

Then we have

Lemma 3.2 [16, Lemma 3.1.1]. The operator Omax defined by
Dom(dmay) = {s € L‘(J’;)I (X',E) : ds € L?’;)“‘(X’,E)}
Omaxs = 0s fors € Dom(ﬁ_max)

is a densely defined, closed extension called the maximal extension of 0.

In the sequel, we work with the maximal extension and simply write d = dpax. The Hilbert space
adjoint of Jmay is denoted by d7;. We note that 95, C (9*)y and dmax = (9;;);;- From now on, we work
with 8y, and just write *.

The Laplacian 0 = §9*+970 is a densely defined, positive operator, so one can consider its Friedrichs
extension. But in the context of L?> cohomology, it is useful to consider another extension:
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Proposition 4 [ 16, Proposition 3.1.2]. The operator defined by

Dom(0) = {s € Dom(d) N Dom(3*) : ds € Dom(d*), d*s € Dom(d)},
Os=0"ds+0d*s fors € Dom(D)

is a positive self-adjoint extension of the Laplacian, called the Gaffney extension.

We note that this result relies on Gaffney’s generalisation of Stokes’” theorem that we will use tacitly
during our computation:

Proposition 5 [9]. Let (M, g) be an orientable complete Riemannian manifold of real dimension 2n
whose Riemann tensor is of class C2. Let y be a (2n — 1)-form on M of class C" such that both y and

dy arein L'. Then
/ dy =0.
M

We define the space of harmonic forms #%9 (X', E) LY

q ’
(2 (X', E) by

#%4(X’ E) := Ker(O) = {s € Dom(O) : Os = 0}.
We see that
%9 (X', E) = Ker(d) N Ker(d*).

The gth L? Dolbeault cohomology is defined by

’ 1 0, ’ _
H?;)I(X JE) :=Ker(d) n Ll (X ,E)/Im(a) A L0

(2()1(X,’E)’

which is of course the same as the group HE’Z)(X ’, K)’;,(L|X/)) from Proposition 2, because the L’-

cohomology can be also computed by smooth forms. From this, we also get

Proposition 6. The L?-Dolbeault cohomology H

0’? (X', E) is finite-dimensional, and we have

(2

H! (X', E) = 7%(X', E).

(2

Moreover, the images of d and 8* are closed in Loy (X', E), and thus there exists a constant C > 0 such
that

1122 < (11112, + 1175112, (3.3)

for all s € Dom(d) N Dom §* N L?g(x',E), s L#%9 (X' E).

Proof. By Proposition 2, we know that we can identify the L?-Dolbeault cohomology with the sheaf
cohomology of the locally free sheaf Q”(log D) ® Kx on the compactification X; hence it must be
finite-dimensional. This immediately implies that the images of d (and hence also of §*) are closed ([5,
Proposition 3.5]) and the isomorphism with the space of harmonic forms ([5, Corollary 3.6]). The stated
estimate for the L?-norm for a section s that is orthogonal to the space of harmonic forms follows from

the closedness of Im(d) and Im(3*) ([16, Prop. 3.1.6]). O
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Corollary 3. We have the strong Hodge decomposition, which is orthogonal.:
L‘();)f(x’, E)=%"4(X',E) @ Im(0) = Z*4(X’,E) ® Im(83*) ® Im(3*9),

Ker(d) 0 L3/ (X', E) = "4 (X', E) @ (Im(a') nLYI(X, E)).

Moreover, there exists a bounded operator G on L(()’;)’ (X', E), called the Green operator, such that

0G=Go=1d-H, HG=GH =0,

where H is the orthogonal projection form L((]’ZL)I

Proof. See [16, Theorem 3.1.8]. m]

(X', E) onto %#*9(X', E).

Remark 3.3. By the usual elliptic regularity theory, we get that harmonic sections are in fact smooth.
G maps smooth forms to smooth forms so that we can cut down the Hodge decomposition to the space
of smooth L? sections:

AO’?(X', E)=2"(X' E)®Im(D).

@

3.4. Families of logarithmic pairs

Let (2, 9) be a smooth log pair: that is, & a complex manifold and & c & a reduced snc divisor.
The boundary divisor & is written as a sum of its irreducible components & = D + ... + Dy. If
I c {1,...,k} is any non-empty subset, we consider the intersection Dy := N;¢; D;.

Definition 2 [13, Def. 3.4]. For a smooth log pair (2',9) and a proper holomorphic submersion
f: & — S, we say that 9D is relatively snc or that f is a snc morphism if for any set / with D; # 0, all
the restricted morphisms f|g, — S are also smooth of relative dimension dim 2" — dim S — ||

If s € S is any point, set X; = f~'(s) and Dy := @ N X,. Then X; is smooth and (Xy, D;) is
a snc pair. Moreover, the number of irreducible components of Dy is also k, which is the number of
irreducible components of <. This excludes phenomena like the deformation of the smooth hyperbola
{wz = s # 0} into the snc divisor {zw = 0} that has two components. The reason for this will become
clear later. Moreover, the definition implies

Lemma 3.4. For a smooth log pair (X', D) and a smooth snc morphism f : & — S, we can find (after
shrinking S to a contractible neighbourhood) a differentiable trivialisation ® : & — X x S such that
the restriction ®|g : D — D X S is also a smooth trivialisation.

The lemma says that we can trivialise the pair (X, D) in a differentiable way. By restriction to
I’ =2\ D, we find a smooth trivialisation of 7 = X’ x §.

Given a smooth log pair (X, D) and a point x, there exists an open neighbourhood U = U(x) and
holomorphic coordinates zi, .. .,z, such that D N U = {z; - - - z,-} for some O < r < n. The following
is the relative analogue of this fact:

Lemma 3.5 [13, Lemma 3.7]. Let (X', D) be a smooth snc pair and f : X — S an snc morphism. For
any point x € X, there exist open neighbourhoods V.= V(f(x)) € Sand U = U(x) c f (V) ¢ X
and holomorphic coordinates z, ..., Zn, Zn+1s - - - » Zn+m around x and sy, . . ., Sy, around f(x) and a
number 0 < r < n such that the following hold:

(i) We have z,4; = s; o f for all indices 1 <i < m.
(i) 2N ={z1---zr =0}

In the following, we will make use of these adapted coordinates tacitly. In the applications, we also
consider the following families:
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Definition 3. A holomorphic family of log-canonically polarised pairs consists of a smooth snc pair
(X, D) and a snc morphism f : & — § such that Kx_ + D, is ample for each s € S.

In particular, our families are logarithmic deformations in the sense of [12] and generalise the
deformations considered in [18] to the case of singular snc divisors.

Remark 3.6. By the C* trivialisation 2’ = X’ X S and the fact that nearby fibres (Xj, g5) and bundles
E! = Kx; ® L|x; are quasi-isometric implies that the L?-spaces L(()’;)’ (X!, E;) and the domain of the
Laplacians Dom(0;) do not depend on the fibre X/. The same holds for the Holder spaces €% (X).

3.5. I’*-integrable Kodaira-Spencer forms

We consider a holomorphic family of smooth log pairs & < VA L S and a hermitian holomorphic line
bundle (&, h) on & whose inverse metric has Poincaré type singularities along 9, as already described
in the introduction. Moreover, we recall that we have defined on 2’ the global (1, 1)-form

]
wgr = -idd(log h) = idd log(hS",) - Z i0d log(||o7||* 1og? ||o||?) +i0du,

i=1

whose restrictions to the open fibres X, give a smooth family of Poincaré type Kihler forms wy = wg|x;.
By using the local description

wgr = V-1 (gaﬁdz” A dZP + giEdsi AdZP + ga7dz® N ds” + gi7ds' A dsj)

with respect to the local coordinates (z, s), we can say that the restrictions of wg- as well as restrictions
of contractions depend in a C* way upon the parameter.

Lemma 3.7. The restrictions
wgr(9]95)|X] = g5d7P |X]
war(8/057)|X] = go7dz”|X]
warL(8/0s' Ads?)| X = gi71X]

are €% -tensors that depend in a C* way upon the parameter s € S. In particular, they are smooth
and L? integrable tensors (A (2)-tensors for short). The analogous statement holds if wg- is replaced
by wg, where the first two tensors do not change.

Proof. The only critical term appearing in the expression of wg- is the one coming from u. The purely
vertical components are dealt with the fact that u|x; lies in € %@ But now, by assumption, the map
s u(z,s) € @*-@ i Fréchet differentiable, so that the (locally defined) partial derivatives in the base
direction of the function u are again of class €%+, O

Horizontal lifts of tangent vectors from S to the total space 2 are defined as perpendicular to the
fibres of &” — S with respect to wg-. Here we only need the property that the restrictions of wg- to
the fibres are positive definite.

We denote by (g#?) the inverses of the metric tensors g o5 Of ws on the fibres X{. Covariant
derivatives are always taken with respect to these metrics. We will use both the semicolon notation and
the V-notation. We continue using Greek indices for tensors in fibre direction and d, = 9/9z“.

The horizontal lift v; of a tangent vector ; = 9/ds’ is a differentiable lift of 9; to &', which is
orthogonal to the fibres with respect to the sesquilinear form wg:

(Vi,0a),, =0 foralla=1...n.
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This is well defined since the form wg- is positive when restricted to the fibres. In terms of the coefficients
of wy, it is given by

v =0; + a?a(,,
where B

Clia/ = —g’BaglE
Lemma 3.8. Let A; = 8v;|X_: that is,

A; = Al%(')adzﬁ )

Then A; is of class €% and satisfies 0A; = 0. In particular, it lies in A(()é; (X;,Tx:).
The proof is the same as in [18, Lemma 3]. m|

The Kodaira-Spencer map for a family & SN i> S
Ps : TvS - H(lz) (X;, TXé)

was already defined in [18]. Analogous results like those of Section 3.1 hold for the sheaf of holomorphic
vector fields: _
The sequence (M?Z’;(’Y}(;),a) is a fine resolution of the sheaf of L holomorphic vector fields

02 (Tx;), which is isomorphic to Tx, (= 1og D) = (2 (log Dy))".
In particular, ‘

H{, (X, Tx;) = H' (X, Tx, (= log Dy)),

and the above explicit construction yields a L?-Dolbeault representative A%aadzﬁ of ps(0/0s"), where
L
the Kodaira-Spencer map is taken as map

ps : TsS — Hpp (X], Txy).
We will also need the following fact that follows from the definition.
Lemma 3.9. Let A7 = gEUA%. Then
13
A9 = AT@
L L N
Finally, the pointwise inner product with respect to wg~ of two horizontal lifts
@i7 = Vi Vi) g
called the geodesic curvature, has an expression
$i7 = 8i7 — gafjgiﬁgaﬁ

so that we conclude from Lemma 3.7 that this function lies in €%,

3.6. Bundles of I*-integrable forms

Now we consider the L? condition on the total space . Because the form wq- is fibrewise positive,
for any sg € § after replacing S by a neighbourhood (contractible and Stein), there exists a positive
hermitian form ws such that 0} = wg» + f*ws is a positive form on 2.
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The previous arguments imply that the statements of Proposition | and Proposition 2 hold for the total
spaces (X', @q-). The sheaves of locally L? sections O2)(Q%,(Z|g7), wa, hlg) on the whole total
space 2 are equal to QF.(log 2)(Z), and an analogous fine resolution in terms of square-integrable
forms exists. However, the sheaves Q7. (log D) of log n-forms on the total space 2" are not suitable for
our methods.

Instead, we will need the coherent sheaf Q" (log D)g-/s(Z) and the sheaves

0(2) (/5 (ZLg7), W, hla)

of relative Z-valued holomorphic n-forms that are square-integrable with respect to the Kéhler form
wg = wg + [*ws and the hermitian metric h|g-, where integrability does not depend upon the choice
of a hermitian form wg.

Let

A () (L), D, Bl
denote the sheaf of (0, q)-currents on the total space X’with values in the coherent sheaf Q.. / (&)
that are square-integrable along with their exterior 0-derivatives.
Proposition 7.
)
02) Q. 5 (ZLg7), g, hlgr) = Q" (log D)a/s(ZL).
(ii) The complex

(105 (. (L), B, hlir), D)

is a fine resolution of O(y) (Q”&ﬁ,/s(ff), wgr, hlg).
Proof. To simplify notation, we assume that dim S = 1. We note that

O = N-1wly, g @ ds NS+ Wy g A frws
and the function ¢ is (locally with regard to S uniformly) bounded. For an open set U ¢ &, we thus
have for the L?-norm of a section u € Q% /s (&) that

2, | ~"+‘~/ (/ (um)h)ws
/ wzjs:hz ) \JIx,nu

The first statement follows from Fubini’s theorem, the fact that nearby fibres and bundles are quasi-
isometric, and Proposition 1. For the second statement, we decompose the vector bundle Q 5(3 l27)
locally as a sum of line bundles and apply [8, Prop. 2.1]; also compare to [8, p.870]. Th1s shows that
we have a resolution. By Proposition 2, fibrewise we find cut-off functions with bounded differentials.
Because, in the differentiable sense, we have a product situation, this also holds on the total space.
Hence, the sheaves of locally L? integrable smooth sections are again fine. O

Corollary 4. The (local) holomorphic sections of f.(2" (log D)y s(Z)) are given by holomorphic sec-
tions of Q" (log D)g /s (£) onthe total space that are precisely the holomorphic sections of Q2%,, /s (ZLla)

that are L*-integrable along the fibres. In particular, their restrictions to the open fibres yield holomor-
phic and L*-integrable (n, 0)-forms with values in L.
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3.7. Fibre integrals and Lie derivatives

Given our family f : £’ — S of open complex manifolds X/ of dimension » and a relative (n, n)-form
n on 2’ that is smooth there and integrable along the fibres, the fibre integral

[
/S

gives a function on the base S (see [19, Sect. 2.1] and [10, Ch. VII] for the general definition of fibre

integrals). In our case, the components H'* of the metric tensor on the direct image are defined by such
fibre integrals, where 7 is given by the inner product/wedge product of the sections /*:

_ - _
n(s) =" x - ¢llx av =i WFlx Ayl Ixon.

We want to show that these fibre integrals give smooth functions on the base so that we indeed get a
smooth hermitian metric on the direct image we consider. Thus, if st , s are local holomorphic
coordinates on the base, we need to compute the derivatives

0 0
A n forl<i<r and — n, forl <Il<r.
as® Jx, ast Jx,
This can be done by using Lie derivatives:

Lemma 3.10. For 1 < k < m, let vy be the horizontal lift of 3/ds*. We write 6/Bsif0r 6/6? and v;

forvy. Then
0 0
—_— = L d — = L 5
P /X;n /X w () an % /Xén /X v (1)

where Ly, and L., denotes the Lie derivative in the direction of vi and vy, respectively.

Proof. The statement is well-known when the fibres are compact [17, Lemma 1]. We only have to show
that L,, (7) and L,, (n7) are square integrable. Then the statement follows from the dominated convergence
theorem. We only present it for the first. We are using local holomorphic coordinates z', ..., z" near a
point p € Dy such that Dy = {z! -+ - z* = 0}. Because y*,y! € H(X, Q" (log D)g/s(Z)) and due to
the assumption on the metric 4, we have that

M.onl.a= o

k
[ log2(|zf|2>),
i=1

where

=M. .nl.7 dz' A AdVANdZ A A dD

Now vy = /0, +ay 9/9z so that

n n
_ _ a _ a _ 1 n 1 n
Ly,n= nl...n,l,...n;k+Zakn1...nl...n;a+Zak;anl...n1...n) dz A...ANdZ" Ndz AL ANdD".

a=1 a=1

Here, ; denotes the covariant derivative. Now, because of
ay =0(|z%log|z”|) for 1<a <k,

we see that L,, (1) is indeed integrable. O
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We see that we can iterate this process so that the fibre integral gives a smooth function on S. But
this means the L?-metric is indeed a smooth metric on f,(Q" (log D)y /s(Z)). We note here that the
square integrability of L, () will also follow from Lemma 6.2.

Before we go to the computation of the curvature, which is the most technical part of the article, let
us consider the two applications.

4. Families of log-canonically polarised manifolds: (semi-)positivity of the relative canonical
bundle

Let D <> & i) S be a holomorphic family of log-canonically polarised pairs: that is, a holomorphic
family of smooth log pairs (X, D) with ample adjoint bundle Kx_ + D. The family is called effectively
parametrised if the Kodaira-Spencer map

ps  TsS — ng)(Xs/w TX§)

is injective at all points s € S.

Now let Q be a smooth (relative) volume form on 2. The relative volume form ¢ :=
Q/(T1; lloi11* 1og? ||o %) has the property that &g = — Ric(¥|X!) gives a family of complete Kéhler
metrics of finite volume on the open fibres X! such that C~! < /(= Ric(¢))" < C for some constant
C > 1. Let {ws}ses be the family of complete Kéhler-Einstein metrics on X = X, \ D, with constant
negative curvature —1 given by [14, 21]. When we write wg; = @y + V=1 0,051 on X/, they fulfill the
following Monge-Ampere equation (compare to [18, Eq.(1)]):

wy = exp(us) - (Y| Xy). “.1)

Here, {u;}scs is a family of functions in €% (X \ D) with k > 6. By the implicit function theorem
applied to the Holder spaces €% ¥ (X \ D) of functions, these functions u; depend smoothly on the
parameter s € S in the sense that the map s — €% is indeed Fréchet differentiable (compare to [18,
Sect. 2.6]). Hence we can consider the relative volume form w"g, /s On I’ =2 \ D associated to the
family {ws}ses as a singular hermitian metric on Kq ;5 whose inverse has Poincaré type singularities
along 9. Its smooth curvature form on 2’ is given by

wgr = — Ric(a)"y,/s).
Analogous to the canonically polarised case proved in [19], we have the following result:

Theorem 4.1. The form wg- > 0 is semi-positive and strictly positive if the family D N i) S is
effectively parametrised.

Proof. The computation from [18] can be adopted. We summarise the main points that we need.
Given a coordinate vector field /s’ on S and the horizontal lift v;, define

9017 = <vl" vl’>a)(c[1 .
Then
(1+05)¢i = |Ail1*(z, 5), 4.2)

where O denotes the (semi-positive) Laplacian and ||A;||(z, s) the pointwise norm of the harmonic
representative of ps(9/9s).

The results of the previous section imply that the quantities occurring in equation (4.2) are €%-?-
tensors on the total space and also define such tensors when restricted to the fibres of f and class C* on
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Z’. Yau’s maximum principle [23, Theorem 1] applies to restrictions of equation (4.2) to the fibres of f
and immediately yields that ¢;; > 0.
The integral of equation (4.2) along a fibre yields the Weil-Petersson norm of 0/ds"|,:

10/05 112, » = /X ARz, )gdv.

(Again, we are using Gaffney’s result.)

Let ps(8/0s") # 0: that is, A; # 0. One can show that ¢;;(z, s) has no zeroes. This follows from
the lower heat kernel estimate in the complete case, as given in [20, Cor. 4.3]. This shows that the heat
kernel is strictly positive on the fibre X;. Then the argument is the same as in [19, Prop. 1], except that
we do not have a fixed positive lower bound in terms of the diameter of the fibres. O

Corollary 5. For a family of log-canonically polarised manifolds & N L S over a compact base
S, the relative adjoint bundle Ko ;s ® D is nef. If the family is effectively parametrised, Ko s ® D is big.

. o . —1 _ —1
Proof. We now compute the curvature current of the singular hermitian metric (%, / §)7 = (W) cgon

Kq /s on the whole 2. From the Monge-Ampere equation (4.1), we see that the only additional term that
vanishes by restricting to 2’ is —2, which comes from the term — 3 94 log ||o;||?; it is compensated
by adding 9. This shows that K¢ /s ® 9 is pseudoeflective. Here we take the canonical singular metric
on 9. The nefness follows from the fact that the curvature current of the metric on Kq/s ® < has
zero Lelong numbers. The bigness in the effectively parametrised situation then follows from the strict
positivity of Kq+/s and Boucksom’s bigness criterion [2, Cor. 3.3]. O

5. The case of a big line bundle

Let E < VA L S be a holomorphic family of smooth log pairs (Xs, E) and F a big line bundle on .
We assume that we have a decomposition

F=A+FE,

where A is ample on 2. We choose a smooth positive metric s4 on A and a smooth hermitian metric &;
on each irreducible component E; of E. Using the canonical section o cutting out the divisor E;, we
define another metric on A by setting

&£
ha,e = ha- (l_[ o, 10g2(|0'i|%“)) .
i

We now make the assumption that there exists an & > 0 such that
101, (4) =104, (A) —& V=1 ) 85 10g(|o-,~|ii 10g2(|a'i|,2li)) >0 on .
i
In general, such an € need not exist and it depends on the curvatures of 44 and h; on . Then we can
equip F with the metric hr_. defined by
hF,s = hA,s . hE,sing7

where h ging is the canonical singular hermitian metric on E given by the section o~ = []; 0. We note
that (E, h E‘Smg) | is the trivial line bundle equipped with the trivial metric.

Now the hermitian bundle (A, h4 ) fulfils the requirements of our main theorem (note here that it
works with a power € > 0 instead of 1 as well), and we get the Nakano positivity of

fi(Kg)s +E+A) = fu(Kgs + F).
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If we instead apply the general result from [3] directly to the hermitian bundle (F, hp) with hp =
ha - hE sing, we get first that

fo((Kgys +F) ® J(hF))
is positive in the singular sense of Griffiths. But here we have 7 (hr) = O(—E), so we can conclude that

fi((Kgis + F) ® J(hp)) = fu(Kg/s + A)

is positive in the sense of Nakano using the result from [1]. Of course, we should mention here that we
have

f*(Ky/S +A) C f*(Kg/S +F +A)

as sheaves but not as hermitian bundles because we changed the metric on A for the larger one. If the
decomposition F = A + E is a relative Zariski decomposition, both sheaves coincide. If one applies [3]
to (L, hr ¢) with a trivial multiplier ideal sheaf 7 (hF ), we get Griffiths positivity of f.(Kg /s + F)
only in the weaker singular sense.

6. Computation of the curvature

Computing the curvature of the L>-metric on f,(Q"(log D))y /s (Z) requires taking derivatives in the
base direction of fibre integrals, which can be realised by taking Lie derivatives of the integrands. These
Lie derivatives can be split up by introducing Lie derivatives of (n, 0)-forms with values in L. They are
computed in terms of covariant derivatives with respect to the Chern connection on (X}, ws) and the
hermitian holomorphic bundle (Lg, &,). We use the symbol ; for covariant derivatives and , for ordinary
derivatives. Greek letters indicate the fibre direction, whereas Latin indices stand for directions on
the base. Because we are dealing with alternating (p, g)-forms, the coefficients are meant to be skew-
symmetric. Thus every such (p, g)-form carries a factor 1/p!q!, which we suppress in the notation.
These factors play a role in the process of skew-symmetrising the coefficients of a (p, ¢)-form by taking
alternating sums of the (not yet skew-symmetric) coefficients. We adopt the Einstein convention of
summation.

6.1. Setup

By polarisation, it is sufficient to treat the case where dim S = 1 for the computation of the curvature,
Wh_ich simplifies the notation. Therefore, we set s = st v = v1, and so on. We write s, s for the indices
1, 1 so that

@
Vg = as +ag a(l

and
_ A B
Ag = Asﬁaadz .

We assume local freeness of the sheaf f.(Q"(log D))y s(Z). According to Corollary 4, we can
represent local sections of this sheaf by holomorphic sections of (Q" (log D))g/s(Z|g), which restrict
to holomorphic and square integrable (n, 0)-forms on the open fibres X;. We denote such a section by
. In local coordinates, we have

Uix: =Va..a,dz® A...dz™

=a,dz,
where A, = (@1, ..., a,). The -closedness of iy means
Ya,.s =0 and lﬁA"'E =0 forall A,,1<B<n. 6.1)
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6.2. Cup product
Definition 4. Let s € S and A = A"E(z, 5)dadzP be the Kodaira-Spencer form on the fibre X/. The
S,

wedge product, together with the contraction, defines a map

ALDadPU  HO(X,, Q (log Dy)(Llx,)) — AQ) (X0 Q5 (L),

which can be described locally by

(Al%(?ydzg) U (ay.a, dz A ... Adz™)

= A%lﬁ’}’(ll---anfl dP Adz® A .. A dz

The fact that A; U ¢ is indeed square integrable will be proved in Lemma 6.2.

6.3. Lie derivatives

Now we choose a local frame {¢!',...,¢¥"} according to Corollary 4. The components of the metric
tensor H'* for f,(Q"(log D))as(Z) on the base space S are given by

HIE(s) = ) = W0l = [ 0 0 P av.
X n
We also write
v ut =yl ug g il

for the pointwise inner product of L|x;-valued (n, 0)-forms. Here and in the following, we write g for
the hermitian metric associated to the complete Kihler from w;. When we compute derivatives with
respect to the base of these fibre integrals, we apply Lie derivatives with respect to the horizontal lifts of
the tangent vectors according to Lemma 3.10. This considerably simplifies the computation. To break up
the Lie derivative of the pointwise inner product (which is a relative (n, n)-form), we need to introduce
Lie derivatives of relative differential forms with values in a line bundle. This can be done by using
the hermitian connection V on A"*OT;}, /s ® Z|a- induced by the Chern connections on (Tx;, wx,) and
(Ls, hs). We define the Lie derivative of i with respect to the horizontal lift v by using Cartan’s formula

Ly = LV(W&"’/S) = (6,0 V+Vood,)y (6.2)

and similar for the Lie derivative with respect to v.
Taking Lie derivatives is not type-preserving. We have the type decomposition for ¢ = y* or y = y/!
and v = v,

Loy = val + va”a
where L,y is of type (n,0) and L, " is of type (n — 1, 1). In local coordinates, we have

n
§ A

Lvlﬁ’ = lpAn;S + a;IWAn;(Z + a;lzajwal .a@...an dZ " (63)
=1 J

Lot = Y A% gz AN de A e 6.4)

. ‘ I
J=1 : )
J Jj
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One justification for using Lie derivatives is given by the following lemma, which allows us to express
some components of the Lie derivatives as cup products with the Kodaira-Spencer form:

Lemma 6.1. We have
Lo =AUy, (6.5)

and it is primitive on the fibres.

Proof. First, we note

vau = ZAQL lﬁalu.n...an dZ"' /\ .. /\ dZE" /\ LR /\ dZ(Vn

i=1 . \,
J

n p—
= Z A?E /9 m___anfldz'g" ANdz A ... ANdz¥ .

To prove that Ag Uy is primitive, we have to show that Ag(A; Uy) = 0, where Ay is the dual Lefschetz
operator with respect to the Kéhler form

wy =V-1g = dz“ /\dz

aB
We have

(AS (A.S U lr//))(lz...(tn,71 = ngHQIA;YB l,l’a' al...ap—] = Aga]wa ay...Ap—_1*

aa) __

FI]FI

But now, because Ag by Lemma 3.9 and ¢4 q, ...a,_, is skew-symmetric, we get that

(A (A Ulﬁ))afz -Qp— ld @ A /\dza”_l :0 O
Similarly, we have a type decomposition for the Lie derivative along v = vg
Lyy = Lyy’ + Lyy”,

where Ly’ is of type (n,0) and Lyy” is of type (n + 1,n — 1) and hence vanishes by degree reasons.
In local coordinates, this is

’ A 2 E}’l* 2
LV!// - l//APEH*PS l//A Bn p:B Z l//Al’ﬁIHI ------ Bn dz"r A dz P (66)

Jj=p+1

“— %

From this, we infer that Ly = Ly’ = 0 because ¢ is holomorphic. The type decomposition can be
verified using the definition given by equation (6.2). We refer the reader to [17] for verification.

Lemma 6.2. The smooth forms Ly’ and L' are L*-integrable.

Proof. We use local coordinates Z,...,7 ina neighbourhood U of a point p € Dy C X, where
DsNU = {z'---z¥ = 0}. We now have

1

and

=0(|z%log|z?]) for 1<a<k else aZ=0(1).
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From the local expression (6.3), we thus see that

1
L)y, =0l ——.
( l!/)An (|Z1"'Zk|)

so it is again square integrable.
To prove that L," is square integrable is more complicated. We first look at the order of A"E:
S,

Ag=0(1) for 1<a=B8<k or k+l<a,pB<n

1

AL =0————| for a>kandpB <k.
B (Izﬁll%’lzﬁl) p
A%:O(lz”lloglz“l) for @ <kandp > k.
o (W
B |28 log |2A|

) for 1<a#pB<k.
To prove that L, /" = Ag U ¢ is L’-integrable means to verify that
[ @aonn@on
X;

is finite because the form is primitive by Lemma 6. 1. For this we first note that the sum in the expression
of (Ag U :,lr)ﬁ ..., Feduces to

an
“Vanar...an-

s BV[
The only really critical term in (Ag U "l')ﬁnm..-an_l occurs if @, € {k+1,...,n}, B € {1,...,k}
and 3, is among the a1, . .., @,-1, because in this case the order in 7P is

1
|28 |2 log |2Pn |

But then, in the above integral, this term can only be paired with another term that contains neither dz5»
nor dzAn. So we see that the product (A; U ¢) A (Ag U ¢) remains integrable. O

We need the following lemma:

Lemma 6.3. The Lie derivative of the volume element dV = ' [n! along the horizontal lift v vanishes:
that is,

L,(av) =0.

Proof. Tt suffices to show that the (1,1) component of L,(g HB) vanishes, which implies
L, (det(gaﬁ)) = 0. We have

Ly(845)aB = 8ap.s + W 8aFy T Adaly = ~Ag5.q + 4d:a8yp = 0- o

6.4. Main part of the computation

We start computing the curvature by computing the first-order variation. Using Lie derivatives, the
pointwise inner products can be broken up:
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Proposition 8.
9 k1 ko1
B_W W) = (LYY,
s

where 3/ds denotes a tangent vector on the base S and v its horizontal lift and analogous for 9 /0.

Proof. We first apply Lemma 3.10 and get that
8 — —
Fo WU (s) = / L,(y* -y av) = / L,(y*-y")av
N X! X
by Lemma 6.3. Now it follows by a direct computation (see [17, Prop.1]) that

L,k -yl) = Loy -yl +y* Loy!

so that
0
&w,w = (L y* uhy + Wk, Lyy!y = (Loy*, ul)

because Ly = 0. O

The above proposition is the primary reason for the use of Lie derivatives. For later computations,
we need to compare Laplacians:

Lemma 6.4. We have the following relation on the space Afz’)q (X!, Ly):

Op—Og=(n—-p-gq)-id. 6.7)

In particular, the harmonic forms € A?ﬁ?(Xg, Ly) are also harmonic with respect to d, which is the

(1,0)- part of the hermitian connection on A?z’()) X, Ly).

Proof. The Bochner-Kodaira-Nakano identity says (on the fibre X})
O5 —0Op = V—l@(LS),A .

But by definition, we have wyx, = V—10(L). Furthermore, it holds (see [7, Cor.V1.5.9])
(Lo Aplu=(p+qg-n)u forue AP9(X;,L). O
Next, we start to compute the second-order derivative of H'™ and begin with

LA = (L g,
N

‘We obtain

305wk, uhy = (LyLyy* 'ty + (Lou*, Loy')
= ((Lzv) + O(Llg s W5 'y + (Lo Ly uy + (Loy*, Loy!)
= ((L{z.v) + O(Llg oo W5, 'y + 0(Lyyr® 0!y = (Loy®, Loyy + (Loy®, Loy').

Because of Lvl//k = 0, as we just saw, we get

3505 (Wr 'ty = ((Lig.v) + O(Llz Yo W5, uhy + (Lowk, Loy, (6.8)
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We will see below that the smooth (7,0)-form (L5 ] + ©(L| 2/ )vy )W is indeed square integrable,
which justifies that LyL,* is square integrable, too.

Now we treat each term on the right-hand side of equation (6.8) separately. For the first summand,
we have

Lemma 6.5.
Livw) +O(La Yy, = [-¢" 00 + 405, 1 - ¢ -id, (6.9)

where the bracket [w, __] stands for a Lie derivative along the vector field w.

Proof. We first compute the vector field [v, v]:
[5,v] = [05 + a2 05, 0, +a%84]
- (&(a”) +d lﬁ)a (a (@) + a“a@la)&.
Now we have
5(al) = -05(3P "8 5) = 8P g os178 ™ 8,5 — 8P 8.5
Bo Ba

=8 aEa’;?g?aasﬁ —8 &5

Because of ¢ = g4z — ga58, ﬁg @ the coefficient of d,, is gﬁ“go = = ¢'?. In the same way, we get the
coefficient of éF Next, we need to compute the contribution of the connection on L|g. Because of

V-1[08,8] = V-10(L)|y = wg-, we have
O(Lly )y = -O(L|a)vv
= —(gS; + a'ggsg +algas + a[;aggaﬁ)

Lemma 6.6.
(Lgwy + OLlz sy y') = ~(o - v* 0l = - /X o uhav. (6.10)

Proof. The d-closedness of ¥ means

Thus

It is clear that (8, Uy*) is square integrable, because ¢| x; lies in &*-@(X!). Moreover, it guarantees
that this form lies in the domain of 0. This leads to
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(9" 0a ¥y 10" = ([ Dar 1 00"
= (0(¢"0a Uk )01 = (¢80 Uy 07" = 0.

Note that by Gaffney’s theorem, Proposition 5, the formal adjoint of 9 is equal to the adjoint operator.
In the same way, we get

([P dg.uh, 10" =0.

The following proposition contains important identities that allow us to obtain an intrinsic expression
for the curvature:

Proposition 9.

5(Lvl/’k)’ = J(As Ul/’k)a (6.11)
d*(Lyy*) =0, (6.12)
" (A; Uy = 0. (6.13)

We note that here the operators 0, 0, 0* and 0* mean the fibrewise operators, because we are always
dealing with relative forms. For a proof, we refer to [17, Appendix A]. We see from the proof of Lemma
6.2 that d(L,y*)’ is again square integrable.

Now we look at the second term in equation (6.8) and decompose it into its two types

(Lo, Logh) = ((Log™) (Loy)) = (L), (Loy))”)
= (L") (Loy")) = (A b A Uy
because of equation (6.5).
Now let G and G ;5 be the Green operators on the spaces Afz’)q (X;, L|x;) with respect to Og and O,

respectively. According to Lemma 6.4, they coincide for p + g = n. We use normal coordinates (of the

second kind) at a given point sy € S. The condition (9/ as)Hik |s, = O for all k, [ means for s = s¢ the
harmonic projection

H((Lyy*)) =0
vanishes for all k. Thus, using the identity id = H + G 504, we can write
(Lyy*) = Gzo5(Lyy*) = G507 0(Loyr) = 37 G50(As U ")

by equations (6.12) and (6.11). Because the form d(L,y*)" = d(As U ¢¥) is of type (n, 1), we have
Gz = (05 + 1)~! on such forms by Lemma 6.4. We proceed by

(Loy*), (Loy!)') = (0"G 50(As U YY), (Loy')")
=(G50(As UY), (A, UY))
= (g + 1)7'9(A; UyH), (A, UY))
=(0"(@a+1)7'A(A; UyYH), Ay Uyt
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Again, we used Gaffney’s theorem. Now using equation (6.13) gives

(L™ (Loyh)'y = ((@a + 1) 'ma(As U gk, Ay Uyt
= ((@a+ 1) Nma+ 1 - 1)(A; Uyh), A, Uy
= (A, Uy, Ay Uyhy — ((@a + D)7 (A, Uyh), Ay Uy,

Altogether, we have

Lemma 6.7.
Lok, Loyl = / @+ 1) (4, Ugh) - (A5 U D) g av. 6.14)
X

(We write O = Oy = Oz when applied to (n — 1, 1)-forms.)

~Now our main result Theorem 2.1 follows from equations (6.8), (6.10), (6.14) and the fact that
Rg‘ (s0) = —éﬁBiH”‘(so) in normal coordinates at a point s € S.
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