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Abstract. Using tools from computable analysis, we develop a notion of effectiveness
for general dynamical systems as those group actions on arbitrary spaces that contain a
computable representative in their topological conjugacy class. Most natural systems one
can think of are effective in this sense, including some group rotations, affine actions on
the torus and finitely presented algebraic actions. We show that for finitely generated and
recursively presented groups, every effective dynamical system is the topological factor of
a computable action on an effectively closed subset of the Cantor space. We then apply this
result to extend the simulation results available in the literature beyond zero-dimensional
spaces. In particular, we show that for a large class of groups, many of these natural actions
are topological factors of subshifts of finite type.
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1. Introduction
Starting with the work of Hadamard [18] and the highly influential article of Hedlund
and Morse [21], symbolic dynamical systems have quite often played a pivotal role in the
understanding of more general dynamics. A celebrated instance of this is the prominent

https://doi.org/10.1017/etds.2024.79 Published online by Cambridge University Press

http://dx.doi.org/10.1017/etds.2024.79
https://orcid.org/0000-0001-9567-2085
https://orcid.org/0009-0002-7381-4382
https://orcid.org/0000-0002-9037-6102
mailto:sebastian.barbieri@usach.cl
mailto:njcarrasco@mat.uc.cl
mailto:cristobal.rojas@mat.uc.cl
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2024.79&domain=pdf
https://doi.org/10.1017/etds.2024.79


2 S. Barbieri et al

role of subshifts of finite type (SFT) in the study of Anosov, and more generally of
Axiom A diffeomorphisms, through Markov partitions of their non-wandering sets [9].
Another well-known example of this tight relationship is the fact that the natural action of
a word-hyperbolic group on its boundary is a very well behaved topological factor of an
SFT on the same group [16].

These and similar results raise the question of understanding precisely which dynamical
systems are topological factors of SFTs. An observation made by Hochman [22] is
that subactions of multidimensional SFTs satisfy strong computability constraints. More
precisely, they must be computable maps on effectively closed sets in the sense that the
complement of the space of orbits must consist on a union of cylinders whose defining
words can be enumerated by a Turing machine. However, the truly remarkable discovery of
Hochman is that, up to a difference in the dimension of the acting group and a topological
factor, this is the only constraint: every computable homeomorphism on an effectively
closed zero-dimensional set is the topological factor of a subaction of a Z3-SFT.

Results linking computable maps on effectively closed zero-dimensional sets to SFTs
are called ‘simulation results’, as they express that very explicit and simple models such
as SFTs are capable of universally encoding this considerably larger class of dynamical
systems. These simulation results along with further developments [2, 17] led to a new
understanding of classical results in the theory of symbolic dynamics of group actions,
such as the undecidability of the domino problem [7, 35], the existence of aperiodic tilesets
[7, 30], and, more generally, the existence of two-dimensional tilings without computable
orbits [19, 28]. Moreover, they also provided the tools to obtain new and long sought-after
results, such as the classification of topological entropies of multidimensional SFTs [23].

Further work has extended the initial result of Hochman to the context of actions of
discrete groups on zero-dimensional spaces [3, 4, 6]. Notably, it was shown that for a
large class of non-amenable groups called self-simulable, the class of zero-dimensional
topological factors of SFTs contains every possible computable action on an effectively
closed zero-dimensional set [5]. These works have led to new results about the dynamics
of such groups. For instance, they have provided new examples of groups that can act
freely, expansively, and with shadowing on a zero-dimensional space.

A common theme among all of the previous simulation results is that they apply to
actions on zero-dimensional spaces. The reason behind this is rooted in the fact that
the Cantor space {0, 1}N admits a natural computable structure, where the cylinders are
described by finite words, and that allows the application of algorithmic techniques. The
main objective of this paper is to explore a generalization to groups acting on non-symbolic
spaces, such as compact subsets of Rn, GLn(C) or compact abelian groups such as (R/Z)n.
Thus, the goal of this article is to explore the following question.

Question 1.1. Can the simulation results be extended to group actions on spaces that are
not zero-dimensional?

The theory of computable analysis offers the means to endow separable metric spaces
with computable structures that allow the notion of a computable map to make sense and
the application of algorithmic techniques possible. In this paper, we explore this approach
and study its connections with the existing simulation results. In particular, we introduce
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Effective dynamical systems beyond dimension zero and factors of SFTs 3

a very general notion of an effective dynamical system (EDS) and show that all of the
known simulation results can be extended to this class. By an effective dynamical system,
we mean one that is topologically conjugate to a computable action over a recursively
compact subset of a computable metric space. We do not require the topological conjugacy
to be computable, so an EDS does not need to be computable itself. The class of EDS is
therefore quite large and encompasses virtually all natural examples (although artificial
non-examples can be constructed, see §8). Our main tool will be the following result.

THEOREM A. Let � be a finitely generated and recursively presented group. For any
effective dynamical system � � X, there exists an effectively closed zero-dimensional
space X̃ ⊂ {0, 1}N and a computable action � � X̃ such that � � X is a topological
factor of � � X̃.

We remark that is it a well-known fact that every group action by homeomorphisms on
a compact metrizable space admits a zero-dimensional extension. This extension, however,
carries a priori no computable structure. Our contribution is that, for recursively presented
groups, the computable structure stemming from the effective nature of the system is
preserved by a well-chosen zero-dimensional extension.

Given a finitely generated group � and an epimorphism ψ : �→ H , we say that �
simulates H if given any computable action of H on an effectively closed subset of the
Cantor space, the corresponding action of � induced through ψ is a factor of a �-SFT. If
ψ is an isomorphism, then � is called self-simulable. The class of self-simulable groups
includes several interesting examples, see Theorem 5.2.

The main application of Theorem A is that for recursively presented groups, the
simulation results in the literature also apply to EDS.

THEOREM B. Let �, H be finitely generated groups and ψ : �→ H be an epimorphism.
Suppose that H is recursively presented, then � simulates H if and only if for every effective
dynamical system H � X, the induced action of � is a topological factor of a �-SFT.

Combining this result with the simulations result in the literature, we obtain that
many dynamical systems on non-zero-dimensional spaces can be realized as factors of
subshifts of finite type. This includes the natural action of GLn(Z)� Rn/Zn by left matrix
multiplication for n ≥ 5, actions of F2 × F2 on the circle by computable rotations on each
generator, actions of the braid groups Bn for n ≥ 7 on compact computable groups, and
more.

To better illustrate the power of Theorem B, we develop in detail a particular application
which we believe could be of special interest. An action of a countable group on a compact
abelian topological group by automorphisms is called algebraic. This is a rich class of
group actions which has been the object of much study in the literature, for instance, in
[15, 25, 26, 32]. Using our results, we obtain that a large class of algebraic actions of
non-amenable groups can be presented as topological factors of SFTs.

THEOREM C. Let � be a finitely generated and recursively presented self-simulable group.
Every finitely presented algebraic action of � is the topological factor of a �-subshift of
finite type.
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In fact, this result applies to an even larger class of algebraic actions which admit
‘recursive presentations’, see Definition 6.5.

We complete our discussion with several observations. There exist at least two notions
of computability for shift spaces present in the literature (Corollary 7.7). We discuss their
connection to the notion of EDS and show that for recursively presented groups, they all
coincide. We also completely characterize the relations between these notions for groups
which are not recursively presented. We then focus on the class of topological factors
of EDS. While it is true that computable factors of EDS are EDS (Proposition 3.30),
the class of EDS is, in general, not closed under topological factor maps. We provide
two examples of this fact, one as a non-EDS factor of an EDS on a compact subset of
C, and the other as a non-EDS zero-dimensional factor of a zero-dimensional EDS. In
the case of zero-dimensional spaces, we propose a new notion (Definition 8.4) of weak
effective dynamical system (WEDS). We show that for recursively presented groups, every
zero-dimensional factor of an EDS is a WEDS (Proposition 8.9), and that the class of
WEDS is closed under topological factor maps. This class of systems can be thought of
as those that can be written as an inverse limit of effective subshifts, but with the caveat
that the effectiveness of the sequence of subshifts is not required to be uniform. Using this
notion, we naturally recover the fact that the class of subshifts which are EDS is closed
under topological factor maps.

1.1. Paper organization. After some preliminaries, we give an introduction to com-
putable analysis and the precise definition of an EDS in §3. The proof of Theorem A
along with a few interesting side remarks are provided in §4. In particular, we show that
for zero-dimensional EDS, we may always consider the canonical computable structure
induced by the cylinder sets and that, in this case, we do not need the hypothesis that
the acting group is recursively presented. We also show that in the case where the action
admits a generating cover, the extension can be taken to be an effective subshift. In §5, we
summarize the simulation results in the literature, prove Theorem B, and discuss several
examples. In §6, we present the relevant background for Theorem C along with its proof.
In §7, we turn our attention back to shift spaces and study the relationship between the
different notions of computability for subshifts. Finally, in §8, we construct the examples
showing that the class of EDS is not closed by topological factor maps, introduce the class
of WEDS, show that this class is closed by factor maps, and discuss their relationship
with EDS.

2. Preliminaries
2.1. Computability on countable sets. A formal introduction to the theory of compu-
tation can be found in [31] or [33]. Here, we will provide a brief functional description.
We will make use of the word algorithm to refer to a Turing machine [34]. The reader may
think about a Turing machine as a computer program written in any standard programming
language which receives some finite information called input, then proceeds to sequentially
execute a finite set of instructions. Depending on these instructions and the input, the
execution may at some halt and return some finite information, called output, or it may
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not halt, in which case, the execution will continue forever without ever providing an
output. The notion of algorithm characterizes mathematical objects according to the extent
to which they can be computed. Depending on what exactly the algorithm is required to
compute, we will use different names for them in our definitions (computable, effective,
decidable, etc).

Let us start by functions over words. For a set A, denote by A∗ =⋃
n∈N An the set of

all words on A. Let A, B be finite sets (called alphabets in this setting). A partial function
f : A∗ → B∗ is a function which is not necessarily defined in all of A∗. A computable
function is a partial function f : A∗ → B∗ for which there exists an algorithm which on
input w ∈ A∗, halts if and only if f is defined on w, in which case it outputs f (w). We say
that a partial function is total if it is defined on every element of A∗.

We may also define computable functions on other countable sets by representing them
through words in a canonical way. For instance, we will represent non-negative integers
using the alphabetA = {0, 1} through their binary representation. Note that this is a ‘good’
representation in the sense that comparing or adding integers boils down to computable
functions on their representations. Similarly, we can represent rational numbers, tuples in
Nd , or sequences in N∗ by words using some bijection with binary words. A named set is
then a pair (X, ν) where ν : {0, 1}∗ → X is a bijection that we will call representation.
Again, we will choose representations which are ‘good in the sense that they make the
relevant structure of the named set computable through their representations’. In what
follows, we will therefore speak freely of algorithms working on named sets without
explicitly referring to their representations.

Let X be a named set and A ⊂ X. We say that A is recursively enumerable (r.e.) or
semi-decidable if there is an algorithm which, on input w, halts if and only if w ∈ A.
Equivalently, A is r.e. if it is either empty or it equals {f (n) : n ∈ N} for some total
computable function f : N→ X. We say that A is decidable if both A and X \ A are
semi-decidable.

Example 2.1. Let (ϕe)e∈N be an effective enumeration of all partial computable functions
(for example, in lexicographic order according to their ‘code’). The famous halting
set Halt = {e ∈ N : ϕe(e) halts} is an example of a semi-decidable set that is not
decidable.

Every time we have a sequence (xn)n∈N of objects that are computable in some way, for
instance, a sequence (fn)n∈N of computable functions or a sequence (An)n∈N of decidable
sets, we will say that the computability of the sequence is uniform when all the objects in
the sequence can be computed by the same algorithm. For example, a sequence (fn)n∈N
of total functions is uniformly computable if there is an algorithm which on input (n, w),
halts and outputs fn(w). Similarly, a sequence (An)n∈N of sets is uniformly r.e. if there is
an algorithm which on input (n, w), halts if and only if w ∈ An.

Example 2.2. Let (ϕe)e∈N be the lexicographic enumeration of all partial computable
functions and let Ae = {n ∈ N : ϕe(n) halts}. Then, the sequence of all recursively enu-
merable sets (Ae)e∈N is uniform. However, the sequence (Aen)n∈N of all decidable sets is
not uniform.
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2.2. Finitely generated groups. Let � be a group. Given S ⊂ � and a word
w = w1 · · · wn ∈ S∗, we denote by w the element of � obtained by multiplying the
wi . Recall that � is finitely generated if � = {w : w ∈ S∗} for some finite S ⊂ �. We
call such a set S a generator for �. In this paper, we will always assume generators to be
symmetric, that is, closed by inverses. The word problem of � with respect to S is the set
of words

WPS(�) = {w ∈ S∗ : w = 1�}.
We say that a finitely generated group � is recursively presented if WPS(�) is recursively

enumerable, and that � has decidable word problem if WPS(�) is decidable. These two
properties do not depend upon the choice of S, as long as S is a finite generating set for �.
A surjective group homomorphism is called an epimorphism.

Remark 2.3. Let � be a group which is finitely generated by S. Consider the canonical map
π : S∗ → � which assigns to a word w its corresponding element π(w) = w. If the word
problem of � is decidable, then one can compute a set of words that uniquely represent
the elements of �. By identifying this set with {0, 1}∗ through a computable bijection, one
obtains a representation that makes the group operation computable. Conversely, it is not
hard to see that if a finitely generated group admits a representation that makes the group
operation computable, then it necessarily has decidable word problem.

2.3. Group actions and their dynamics. Given a group � and actions by homeomor-
phisms on compact metrizable spaces � � X and � � Y , a continuous surjective map
f : X→ Y is a topological factor map if for every g ∈ � and x ∈ X, we have g(f (x)) =
f (gx). Furthermore, we say that a topological factor map is a topological conjugacy if it
is an homeomorphism. A major challenge in dynamical systems theory is to classify this
kind of group actions up to topological conjugacy or topological factor maps.

Given a group homeomorphism ψ : G→ � and a group action � � X, we define the
induced action G� X by gx = ψ(g)x for every g ∈ G.

2.4. Shift spaces. Let A be an alphabet set and � be a group. The full �-shift is the
set A� = {x : �→ A} equipped with the left shift action � � A� by left multiplication
given by

gx(h) := x(g−1h) for every g, h ∈ � and x ∈ A� .

The elements x ∈ A� are called configurations. Given a finite set F ⊂ �, a pattern with
support F is an element p ∈ AF . We denote the cylinder generated by p by [p] = {x ∈
A� : x|F = p} and note that the cylinders are a clopen base for the prodiscrete topology
on A� .

Definition 2.4. A subset X ⊂ A� is a �-subshift if and only if it is �-invariant and closed
in the prodiscrete topology.

If the context is clear, we drop the � from the notation and speak plainly of a subshift.
Equivalently, X is a subshift if and only if there exists a set of forbidden patterns F such
that
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X = XF = {x ∈ A� : gx /∈ [p] for every g ∈ �, p ∈ F}.
A subshift X is of finite type (SFT) if there exists a finite set of forbidden patterns F for

which X = XF .
We say that an action � � X on a compact metrizable space is expansive if for some

metric d, which is compatible with the topology, there exists C > 0 such that whenever
x, y ∈ X are distinct, then supg∈� d(gx, gy) ≥ C. It is a well known elementary fact
(for instance, see [20, Theorem 2.1]) that an action � � X on a zero-dimensional
compact metrizable space is expansive if and only if it is topologically conjugate to a
subshift.

2.5. Computability on Cantor spaces. Let A be a finite set with |A| ≥ 2. The space AN

endowed with the product of the discrete topology will be called a Cantor space. It is
compact, metrizable, and has topological dimension zero. The Cantor space is universal
in the sense that every compact, metrizable space with topological dimension zero is
homeomorphic to a closed subset of AN (further on in Theorem 3.18, we will prove an
effective version of this result). As we will only deal with compact metrizable spaces, in
what follows, we will just say that a space is zero-dimensional to say that it has these three
properties.

A natural metric in the Cantor space is given by

d(x, y) = 2− inf{n∈N : xn �=yn} for x, y ∈ AN.

Given a word w = w0 · · · wn ∈ A∗, the cylinder determined by w is the clopen set

[w] = {x ∈ AN : x0 · · · xn = w0 · · · wn}.
The collection of all cylinders forms a basis for the topology on AN.

Next, we will introduce computability notions forAN. We say that a setU ⊂ AN is effec-
tively open if there exists a recursively enumerable set L ⊂ A∗ such that U =⋃

w∈L[w].
Intuitively, this means that this set can be approximated by an algorithm from the inside.
Similarly, we say that a set C ⊂ AN is effectively closed if it is the complement of
an effectively open set. For a subspace X ⊂ AN, we say that a set is effectively open
(respectively closed) in X if it is the intersection of X with an effectively open (respectively
closed) set.

Remark 2.5. Let (Ui)i∈N be an uniform sequence of effectively open sets and write
Ui =⋃

w∈Li [w]. As the union of a uniform sequence (in particular, a finite sequence)
of recursively enumerable languages is recursively enumerable, it follows that the union⋃
i∈N Ui is also effectively open. An analogous argument shows that the intersection of any

uniform sequence (in particular, a finite sequence) of effectively closed sets is effectively
closed.

Remark 2.6. Given a finite list of wordsw1, . . . , wn ∈ A∗, it is easy to write an algorithm
which decides if

⋃n
i=1[wi] = AN. In particular, as AN is compact, it follows that if

U =⋃
w∈L[w] is an effectively open set, we may semi-decide from L whether U = AN
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by repeatedly checking whether finite unions of its associated cylinder sets cover AN.
Moreover, taking complements, we deduce that we can semi-decide if an effectively closed
set is empty.

Definition 2.7. Let A, B be alphabets. We say that a function f : X ⊂ AN→ BN is
computable if uniformly for every w ∈ B∗, there exists an effectively open set Uw ⊂ AN

such that f−1([w]) = Uw ∩X.

Notice that computable functions are always continuous in their domain and that the
composition of computable functions is computable. An equivalent and perhaps more
intuitive way to think about computable functions on X ⊂ AN is as those for which there
is an algorithm that, given a prefix of x ∈ X, yields a prefix of f (x), and the sequence of
these prefixes monotonously converges to f (x).

PROPOSITION 2.8. LetA, B be alphabets. A function f : X ⊂ AN→ BN is computable if
and only if there exists a partial computable function g : A∗ → B∗ such that for any x ∈ X,
g(x|{0,...,n}) is defined for every n, the cylinders [g(x|{0,...,n})] form a nested sequence,
and

{f (x)} =
⋂
n∈N

[g(x|{0,...,n})].

Proof. Suppose that f is computable. We shall construct a partial computable function
g : A∗ → B∗ with the required properties. As f is computable, there is an algorithm
which can list, in some order, all (v, w) ∈ A∗ × B∗ such that [v] ∩X ⊂ f−1([w]). Set
g(ε) = ε and start the listing algorithm. Iteratively, for every pair (v, w) which is listed,
compute the largest prefix v′ ∈ A∗ for which g(v′) is already defined. If g(v′) is strictly a
prefix of w, set g(v) = w and g(v′′) = g(v′) for every intermediate word v′′ which has
v′ as a prefix and is a prefix of v. Otherwise, do nothing. The function g : A∗ → B∗
resulting from this procedure is a partial computable map which satisfies the required
properties.

Conversely, given a partial computable function g : A∗ → B∗ with the properties of the
statement and w ∈ B∗, the collection

Lw = {v ∈ A∗ : g(v) is defined and w is a prefix of g(v)},

is recursively enumerable uniformly on w. Therefore, the collection Uw =⋃
v∈Lw [v] is

uniformly effectively open and because of the assumptions on g, it satisfies f−1([w]) =
X ∩ Uw.

We shall now provide a few examples.

Example 2.9. The shift map σ : AN→ AN given by σ(x)n = xn+1 is computable. Indeed,
the map g : A∗ → A∗ which deletes the first symbol, that is, g(x1 · · · xm) = x2 · · · xm, is
computable and satisfies the required monotonicity condition.
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Example 2.10. Consider the map f : {0, 1}N→ {0, 1, 2}N given by

f (x)0 =

⎧⎪⎪⎨⎪⎪⎩
0 if x0 = 0,

1 if x0x1 = 10,

2 if x0x1 = 11

and f (x)k =
{
f (σ(x))k−1 if x0 = 0,

f (σ 2(x))k−1 if x0 = 1,
for k ≥ 1,

where σ is the shift map from Example 2.9. It is clear by its recursive definition that f is
a computable map. Moreover, this map provides an example of a computable homeomor-
phism (computable bijection with computable inverse) between {0, 1}N and {0, 1, 2}N.
This construction can be easily generalized to provide a computable homeomorphism
between AN and BN for any finite A, B with at least two elements each, in fact, we shall
show that a much more general statement holds in Theorem 3.18.

Definition 2.11. Let � be a finitely generated group and X ⊂ AN. We say that an action
� � X is computable if for some finite set of generators S and each s ∈ S, we have that
the group action map fs : X→ X given by fs(x) = sx is computable.

Notice that as the composition of computable maps is computable, we have that for
any g ∈ �, the map fg : X→ X given by fg(x) = gx is computable. Therefore, if this
condition is satisfied by some generating set, then it is uniformly satisfied by all of them.

Although there are only countably many computable maps, almost every action that one
may come up with naturally (without introducing explicitly an uncomputable parameter)
is likely going to be computable. Let us provide a few examples of computable actions on
Cantor spaces.

Example 2.12. Let A = {0, 1} and consider the binary odometer action Z � {0, 1}N
induced by the homeomorphism T : {0, 1}N→ {0, 1}N defined by

T (x)n =

⎧⎪⎪⎨⎪⎪⎩
0 if n < c,

1 if n = c,
xn if n > c,

where c = inf{k ∈ N : xk = 0}.

Clearly, {0, 1}N is effectively closed. We claim that the map T is computable: let
x0 · · · xn−1 be the first n digits of x ∈ AN. We can read the sequence from left to right
swapping 1 for 0 until we either read a 0, in which case we swap it for a 1 and leave
the rest of the sequence untouched, or we reach the end of the sequence. The resulting
sequence corresponds to the first n-digits of the image of T (x). A similar argument shows
that T −1 is computable as well, and as {−1, 1} generates Z, we conclude that the binary
odometer action is computable.

Example 2.13. Let U = {u1, . . . , un} and V = {v1, . . . , vn} be two sets of binary words
which induce partitions of {0, 1}N, that is, such that {0, 1}N =⋃n

i=1[ui] =⋃n
i=1[vi] and

the unions are disjoint. Consider the homeomorphism f of {0, 1}N such that f (uix) = vix,
that is, if an infinite word begins by ui , it replaces that prefix by vi and leaves the rest of
the word unchanged. Notice that for any choice of U , V , the associated homeomorphism is
computable.

https://doi.org/10.1017/etds.2024.79 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.79


10 S. Barbieri et al

Three celebrated groups can be defined using these homeomorphisms, namely:
(1) Thompson’s group F of all such homeomorphisms where the elements of both U and

V are indexed in lexicographical order;
(2) Thompson’s group T of all such homeomorphisms where the elements of both U and

V are indexed in lexicographical order up to a cyclical permutation;
(3) Thompson’s group V of all such homeomorphisms.
The three groups above satisfy F � T � V and are finitely generated [11]. Their natural
actions on {0, 1}N are examples of computable actions on an effectively closed set.

Naturally, for any named set N , we can consider computability of maps from AN to
BN through the identification of N with N. For instance, if we let ϕ : N→ Z be the
bijection ϕ(n) = (−1)n
n/2�, a set X ⊂ AZ would be effectively closed if and only if
X′ = {x′ ∈ AN : x′ = x ◦ ϕ for some x ∈ X} is effectively closed in AN.

Example 2.14. Consider the homeomorphisms t and a on {0, 1}Z given by

t (x)n = xn+1 and a(x)n =
{
1− xn if n = 0,

xn if n �= 0,
for every x ∈ {0, 1}Z and n ∈ Z.

In words, the map t shifts a bi-infinite binary sequence to the left, while the involution a
swaps the symbol at the origin. The maps t , t−1 and a generate the lamplighter group. If
we identify {0, 1}Z with {0, 1}N through a computable bijection between N and Z, we get
that the maps corresponding to t , t−1 and a are computable. It follows that the induced
natural action (Z  Z/2Z)� {0, 1}Z is computable.

3. Computability and dynamical systems
In this section, we introduce and discuss the main notion of this work: effective dynamical
systems. This notion generalizes the idea of a computable action over an effectively closed
subset of AN to metric spaces with positive topological dimension. Our definition will
be expressed in the formalism of computable analysis, to which we will provide a short
introduction.

3.1. Computable analysis. Computable analysis is about making algorithms able to
process infinite objects, such as real numbers or infinite sequences. A convenient unifying
way to formalize this idea is to see these objects as points of a metric space with an extra
computable structure. Most of the results presented here are well known and can be found
in the literature (we refer to [10] for a modern exposition). We also present some new
results related to zero-dimensional spaces.

Definition 3.1. A computable metric space is a triple (X, d , S), where (X, d) is a
separable metric space and S = {si : i ≥ 0} a countable dense subset of X, such that there
exists an algorithm which, upon input (i, j , n) ∈ N3, outputs r ∈ Q such that

|d(si , sj )− r| ≤ 2−n.

We say that the distances d(si , sj ) are uniformly computable from i, j .

https://doi.org/10.1017/etds.2024.79 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.79


Effective dynamical systems beyond dimension zero and factors of SFTs 11

For a rational number r > 0 and x an element of X, we denote by B(x, r) = {z ∈ X :
d(z, x) < r} the open ball with center x and radius r. The balls centered on elements
of S with rational radii are called basic balls. A computable enumeration of the basic
balls Bn = B(s(n), r(n)) can be obtained by taking, for instance, a bi-computable bijection
ϕ : N→ N×Q and letting s(n) = sϕ1(n) and r(n) = ϕ2(n), where ϕ(n) = (ϕ1(n), ϕ2(n)).
We fix such a computable enumeration from now on. For any subset I (finite or infinite) of
N, we define

UI =
⋃
n∈I

Bn.

An open set V ⊂ X is effectively open if V = UI for some recursively enumerable
set I ⊂ N. We note that finite intersections and unions of countably many uniformly
effectively open sets are again effectively open. A set K ⊂ X is effectively closed if it
is the complement of an effectively open set.

A point x ∈ X is computable if the set {n ∈ N : x ∈ Bn} is recursively enumerable. Note
that a point x ∈ X is computable if and only if one can uniformly compute a sequence
(sϕ(n))n∈N of elements of S which satisfy |sϕ(n) − x| ≤ 2−n for every n ∈ N.

Example 3.2. The set R of real numbers, with the Euclidean metric d(x, y) = |x − y|
and S = Q is a computable metric space. The basic balls here are the open intervals with
rational endpoints. In this case, the notion of computable point can be split into two: a real
x is lower semi-computable if the set {q ∈ Q : q < x} is recursively enumerable and upper
semi-computable if −x is lower semi-computable. It is an easy exercise to verify that x is
computable if and only if it is both lower and upper semi-computable. An example of a
lower semi-computable real number which is not computable is given by

h =
∑

e∈Halt
2−e,

where Halt is the halting set (or any other r.e. set that is not decidable).

Example 3.3. For a computable point x ∈ X, a closed ball of the form B(x, r) = {y ∈ X :
d(x, y) ≤ r} is effectively closed if and only if r is upper semi-computable. In particular,
the closure of every basic ball is effectively closed. However, if we let r be a lower
semi-computable but not computable number, then the open ball B(x, r) is an example
of an effectively open set whose closure is not effectively closed.

Example 3.4. Let A be a countable set with at least two elements. The space AN with the
metric introduced in §2.4 has a natural computable metric space structure using a standard
enumeration of the dense countable set of eventually constant configurations

S = {wa∞ : w ∈ A∗, a ∈ A}.
In this case, the basic balls are the cylinders and thus for the case when A is finite,
we recover the computable structure introduced in §2.4. We will call this the canonical
computable structure of Cantor spaces. In the case where A = N, we obtain an analogous
canonical computable structure for the Baire Space NN.
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Example 3.5. Let (Xi , di , Si )i∈N be a sequence of uniformly computable metric spaces
such that the distances di are uniformly bounded. Write Si = {si,k}k∈N. The product space
(
∏
i∈N Xi , d , S) is a computable metric space where d((xi)i , (yi)i) =∑

i∈N 2−idi(xi , yi)
and

S =
{
(xi)i∈N ∈

∏
i∈N

Si : there is m, L ∈ N such that for 	 ≥ L, x	 = s	,m
}

.

Let (X, d) and (X′, d ′) be computable metric spaces. Let (B ′m)m∈N denote the canonical
enumeration of the basic balls of X′. A function f : X→ X′ is computable if there exists
an algorithm which, given as input some integer m, enumerates a set Im ⊂ N such that

f−1(B ′m) = UIm ,

that is, if the preimages f−1(B ′m) of basic balls are effectively open sets uniformly in
m. More generally, for any Y ⊂ X, we say f : Y → X′ is computable if there exists an
algorithm which, given as input some integer m, enumerates a set Im such that

f−1(B ′m) = UIm ∩ Y .

Remark 3.6. For Cantor spaces AN, BN endowed with the canonical computable structure
given in Example 3.4, the notion of computable function boils down to Definition 2.7.

It follows immediately from the definition that computable functions are continuous and
closed under composition. It is perhaps more intuitively familiar, and in fact equivalent, to
think of a computable function as one for which there is an algorithm which, provided
with arbitrarily good approximations, outputs arbitrarily good approximations of f (x).
The formal statement and the proof are analogous to Proposition 2.8.

3.1.1. Computability of compact sets.

Definition 3.7. A compact set K ⊂ X is said to be recursively compact if the inclusion

K ⊂ UI ,

where I is some finite subset of N, is semi-decidable. That is, if there is an algorithm
which, given I as input, halts if and only if the inclusion above is verified.

We remark that for a recursively compact set K, the inclusion K ⊂ UI can be
semi-decided for any effectively open set UI , as it suffices to run in parallel the above
algorithm on all finite subsets I ′ ⊂ I and halt if one of them halts.

Example 3.8. The Cantor space is recursively compact. Indeed, recursive compactness for
Cantor spaces boils down to check whether a finite list of cylinders covers the whole space,
which is clearly semi-decidable (actually, even decidable, see Remark 2.6). A similar
reasoning applies to the unit interval, which is also recursively compact.

We will next prove that the product of a collection of uniformly recursively compact
metric spaces is again recursively compact. We refer to [29] for a treatment of the
computability of Tychonoff’s theorem in the general case.

https://doi.org/10.1017/etds.2024.79 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.79


Effective dynamical systems beyond dimension zero and factors of SFTs 13

PROPOSITION 3.9. Let (Xi , di , Si )i∈N be a uniform sequence of computable metric
spaces with uniformly bounded distances. If Ki ⊂ Xi is uniformly recursively compact,
then their product

∏
i∈N Ki is recursively compact in

∏
i∈N Xi .

Proof. To see that
∏
i∈N Ki is recursively compact, notice that the projection of a rational

ball in the product space to coordinate i contains the whole Xi for all i > N for some
sufficiently large N, and we can compute N from the radius of the ball. Thus, checking
whether a finite list of balls covers

∏
i∈N Ki boils down to check, for finitely many i terms,

whether a finite list of balls in Xi coversKi , and this can be done by the uniform recursive
compactness of the Ki .

Remark 3.10. Note that the product topology on a uniform sequence of computable metric
spaces has the property that the projection onto a uniform (in particular, a finite) collection
of coordinates is a computable function.

We will make use of the following result, which is a computable version of the fact that
in a Hausdorff space, a subset of a compact set is compact if and only if it is closed.

PROPOSITION 3.11. Let (X, d , S) be a recursively compact computable metric space. A
subset K ⊂ X is recursively compact if and only if it is effectively closed.

Proof. Assume K is effectively closed. Then, X \K is effectively open. Let U be a finite
union of open basic balls. To see that we can semi-decide whether K ⊂ U , simply note
that U covers K exactly when U ∪ (X \K) covers X, which can be semi-decided since X
is recursively compact. Conversely, if K is recursively compact, then we can enumerate its
complement by enumerating the complement of the closure of all the finite unions of basic
balls that cover K.

Remark 3.12. An important consequence of the previous proposition is that in any
recursively compact space X, there is an algorithm which, given as input a description
of an effectively closed set K and an effectively open set UI , halts if and only if K ⊂ UI .
In particular, we can uniformly semi-decide if K = ∅.

We also note that if f : X→ X′ is a computable function between computable metric
spaces, then the image of a recursively compact set is recursively compact uniformly in the
description of the set. We end this section with the following two important propositions.

PROPOSITION 3.13. Let f : X→ Y be a function between computable metric spaces that
is computable on a recursively compact set K ⊂ X. Then, uniformly for any basic ball
B ⊂ X, there exists an effectively open set UB ⊂ Y such that f (B ∩K) = f (K) ∩ UB .
In particular, if f is injective, it has a computable inverse f−1 : f (K)→ K .

Proof. Let B be a basic ball. We show how to uniformly compute an effectively open
UB ⊂ Y such that f (B ∩K) = UB ∩ f (K). As K is recursively compact, we have that
K \ B is recursively compact and, thus, f (K \ B) is recursively compact in Y uniformly on
B. The set UB = Y \ f (K \ B) is effectively open and satisfies the required property.
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PROPOSITION 3.14. Let f : K → K be a computable function on an effectively closed
subset of a computable metric space X. Then, the set

{x ∈ K : f (x) = x}
is effectively closed.

Proof. Simply note that the function F(x) = d(x, f (x)) is computable on K, and
therefore

X \ {x ∈ K : f (x) = x} = (X \K) ∪ F−1({r ∈ R : r > 0})
is an effectively open set.

3.2. Computability for zero-dimensional spaces. Another interesting application of
Proposition 3.11 is the construction of a basis of clopen sets for any given recursively
compact zero-dimensional subset of a computable metric space.

PROPOSITION 3.15. Let K be a zero-dimensional recursively compact subset of a com-
putable metric space X. Then, one can uniformly compute a collection (Cn)n∈N of finite
unions of basic balls in X such that (Cn ∩K)n∈N forms a basis of clopen sets for K.

Proof. Since K is zero-dimensional, it has a basis of clopen sets. Let C be clopen in K.
Since C is open in K, there exists a set U open in X such that C = U ∩K . Since C is also
closed and K is compact, C is compact as well, and thus the set U can be taken to be a finite
union of basic balls. Now consider the collection V1, V2, . . . of all finite unions of basic
balls. By what we have just shown, we know that (Vi ∩K)i∈N contains a basis of clopen
sets for K. We claim that we can uniformly semi-decide, given a finite union V, whether
C = V ∩K is clopen in K. Indeed, note that if C is a clopen set in K, then one has

C = C = V ∩K ,

where V is the union of the closures of the finitely many balls defining V. This is equivalent
to having

(K \ C) ⊂ X \ V .

However, K \ C = K \ V is effectively closed, and therefore recursively compact by
Proposition 3.11. Since X \ V is an effectively open set, it follows that this last relation is
semi-decidable.

It is a well-known result of Brouwer that every zero-dimensional compact space without
isolated points is homeomorphic to the Cantor space {0, 1}N. Here, we will prove an
effective version of this result. To state it, we need the following notion of computability
for closed sets.

Definition 3.16. A closed set X is recursively enumerable (r.e.) if one can uniformly
compute a sequence (xi)i∈N ⊂ X of points that is dense in X. If X is both effectively
closed and r.e., then we say it is computably closed.
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Remark 3.17. We note that since computable functions send uniformly computable
sequences of points to uniform computable sequences of points, it follows that the image
of a closed r.e. set by a computable function is also closed r.e.

THEOREM 3.18. Let X be a non-empty recursively compact zero-dimensional subset of a
computable metric space. Then, X is computably homeomorphic to an effectively closed
subset E of {0, 1}N. Moreover:
• if X is computably closed, then E can be taken to be computably closed;
• if X is computably closed and has no isolated points, then E can be taken to be {0, 1}N.

Proof. If X is a singleton, then there is nothing to prove. We assume therefore that X
contains at least two points. We claim that one can uniformly compute a sequence (Pn)n∈N
of partitions of X made by effectively closed clopen sets, where each Pn is indexed as
{Pn0 , . . . , Pnkn}, such that each set in Pn has diameter at most 2−n and such that the
elements of Pn are unions of elements in Pn+1. Indeed, it suffices to observe that, given
any n ∈ N, by using Proposition 3.15, one can uniformly compute a basis of clopen sets
whose diameter is less than 2−n (recall that from the index of a basic ball, one can compute
its radius). Now, given any clopen and effectively closed set, call it C, we can use recursive
compactness of C (see Proposition 3.11) to find a finite collection of basic clopen sets of
small diameter that covers C. By iteratively applying this observation, we can compute
the sequence of partitions (Pn)n∈N as needed. Moreover, by our assumption on X, we can
assume that P0 has more than one element. Now, for each n ∈ N, we let Bn = {0, . . . , kn}.
It follows thatBn has at least two elements. As (kn)n∈N is a computable sequence of natural
numbers, it follows that

∏
n∈N Bn is an effectively closed and recursively compact subset

of NN by Theorem 3.9. We now consider the following subset of
∏
n∈N Bn:

Y =
{
y ∈

∏
n∈N

Bn : for all n ∈ N, Pny(n) ∩X �= ∅ and Pny(n) ⊃ Pn+1
y(n+1)

}
.

Observe that Y is effectively closed. Indeed, we can semi-decide whetherPny(n) ∩X = ∅

by the recursive compactness of X. The condition P ky(k) ⊃ P k+1
y(k+1) is decidable by

construction. As
∏
n∈N Bn is a recursively compact subset of NN, it follows that Y is

recursively compact as well by Proposition 3.11.
We now observe that Y and X are computably homeomorphic. We define the function

ψ : Y → X by the following equality:

{ψ(y)} =
⋂
n∈N

Pny(n).

This function is well defined, as the intersection of a nested sequence of compact sets with
diameters tending to zero must be a singleton. It is clear from the expression above that ψ
is continuous, computable, and bijective. It follows from Proposition 3.13 that the inverse
of ψ is computable, and thus it is a computable homeomorphism.

We shall now prove that
∏
n∈N Bn is recursively homeomorphic to {0, 1}N. For this, we

take T ⊂ N∗ as the set of words {ε} ∪⋃
n∈N B0 × · · · × Bn. Then, T is an infinite tree (a
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set of words closed by prefix) with the property that each word can be extended by at least
two different words on the right. Furthermore, T is a decidable subset of N∗ and

∏
n∈N Bn

can be identified with the set of infinite rooted paths in this tree.
We define a function h : T → {0, 1}∗ in the following recursive manner. First,

h(ε) = ε. Now let us assume that h(w) has been defined for some w ∈ T . Then we
compute the set of words {w0, . . . , wm} which have w as prefix, and whose length is equal
to the length of w plus one, labeled in lexicographical order. As each word in T can be
extended in two ways on the right, this set is non-empty and m ≥ 1. Let

v0 = 0, v1 = 10, v2 = 110, . . . , vm−1 = 1m−10, vm = 1m,

and define h(wi) = h(w)vi for 0 ≤ i ≤ m. These conditions define h(w) for every w ∈ T .
From our construction, it is clear that h is a computable function, it is monotone for the
prefix order, and the length of h(w) tends to infinity with the length of w. Thus, h induces
a function

H :
∏
n∈N

Bn→ {0, 1}N

given by H(y)(n) = h(y0 · · · yk)(n), the nth element in the word h(y0 · · · yk), for some
k big enough and computable from n. A routine verification shows that H is a computable
homeomorphism between

∏
n∈N Bn and {0, 1}N.

The fact that X is computably homeomorphic to an effectively closed subset E
of {0, 1}N follows by composing the computable homeomorphism between X and
Y ⊂∏

n∈N Bn, and the computable homeomorphism between
∏
n∈N Bn and {0, 1}N.

Computable homeomorphisms preserve the property of being effectively closed, so E will
be effectively closed when X is effectively closed. The same holds for the property of being
r.e. closed by Remark 3.17.

We now prove that if X is computably closed, non-empty, and has no isolated points,
then it is computably homeomorphic to {0, 1}N. For this purpose, we make some
modifications to the proof given above. We must add some conditions to the sequence
(Pn)n∈N. The first extra condition is that for every n ∈ N, every element in Pn intersects X.
As X is computably closed, we can decide which elements from Pn have empty intersection
with X, and discard those elements. The second extra condition is that for every n ∈ N,
every element in Pn contains at least two elements in Pn+1. This can be obtained by
computably taking a sub-sequence of the original sequence of partitions. The existence
being assured by the fact that X has no isolated points.

After these considerations, the set Y is defined in the same manner. Observe that being
a computable homeomorphic image of a computably closed set X, Y is computably closed.
Now let T be the set of words (including the empty word) w ∈ N∗ such that the cylinder
[w] ⊂ NN has non-empty intersection with Y. As Y is computably closed, it follows that
T is a computable tree. Observe that from our choice of Pn, every element in the tree has
at least two children. Then, we just repeat the construction of h given above on the tree T.
The function H constructed before induces now a computable homeomorphism between Y
and {0, 1}N.
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3.3. Effective subshifts. Let us recall that a subshift X ⊂ A� is a closed subset which
is invariant by the shift action. A subshift X ⊂ AZ is said to be effective when it is an
effectively closed subset of AZ, that is, when the set of all words not appearing in the
subshift is recursively enumerable. This notion has been extensively used in the literature
[2, 14, 17, 22]. Our goal in this section is to generalize this notion from Z to an arbitrary
finitely generated group �. When � has decidable word problem, there is a canonical way
to endow the full �-shift A� with a computable metric structure such that one can speak
about effectively closed sets (and therefore effective subshifts). However, as we will see,
for more general groups, the task is less straightforward.

3.3.1. Computable structure on A� for a group with decidable word problem. Let �
be a finitely generated group with decidable word problem. Then, there is a bijection (see
Remark 2.3) ν : N→ � for which the pullback of the group operation to N2 → N becomes
a computable function. We now introduce a computable metric space structure on A� . For
this purpose, we consider the function

ψ : AN→ A�

(xi)i∈N �→ (xν−1(g))g∈� ,

which is in fact an homeomorphism, and let S = {ψ(wa∞) : w ∈ A∗, a ∈ A} be the
collection of basic points in A� . The distance d on A� obtained by declaring ψ to be
an isometry generates the prodiscrete topology. In this way, S becomes a dense subset of
A� on which the distance d is clearly computable.

Remark 3.19. We note that this computable metric structure for A� makes the shift
action � � A� computable. To see this, let g ∈ � and let fg : A� → A� be defined by
fg(x) = gx. To show that fg is computable, it is enough to note that ψ−1fg ◦ ψ : AN→
AN is computable. Indeed, this function can be written as (xi)i∈N→ (xh(i))i∈N, where
h is a computable bijection of N which comes from the computability of the group
operation.

Remark 3.20. The computable metric space structure produced in this way for A�

is inherent to � and does not depend on the choice of ν. Indeed, let ν′ be another
bijection N→ � as before, and let us denote by (A� , d , S), (A� , d ′, S ′) the computable
metric space structures associated to ν and ν′. Then, id : (A� , d , S)→ (A� , d ′, S ′) is a
computable homeomorphism. This can be proved by noting that ν−1 ◦ ν′ is a computable
bijection of N. For details, the reader is referred to [12, §§2.4 and 5]).

Once A� has been endowed with its canonical computable structure, one can naturally
extend the definition of an effective subshift for AZ to make sense in A� by simply
requiring the subshift to be effectively closed. Note that, by definition, a set X ⊂ A� is
effectively closed if and only if the set of patterns p such that [p] ∩X = ∅ is recursively
enumerable.

We now present a construction that allows us to have a useful notion of effective subshift
when � is an arbitrary finitely generated group.
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3.3.2. Computable structure on A� for arbitrary finitely generated groups. We shall
prove later that for some groups, the space A� cannot be endowed with a computable
metric space structure for which the action by translations � � A� is computable.
However, the set A� can always be identified with a closed subset of AF for a suitable free
group F. The idea is to use the fact that finitely generated free groups have decidable word
problem which, as we have just seen, allows us to endow AF with a canonical computable
structure. Now to the details.

Let � be a finitely generated group, which is not assumed to have decidable word
problem. Let S be a finite set of generators of the group �. Consider the free group
F(S) generated by S and consider the canonical epimorphism φ : F(S)→ �, where every
reduced word on S is mapped to its corresponding element in �. Let φ̂ : A� → AF(S) be
the map given by φ̂(x)(w) = x(φ(w)) for every w ∈ F(S).

Every subshift X ⊂ A� induces a pullback subshift X̂ ⊂ AF(S) given by

X̂ = {φ̂(x) ∈ AF(S) : x ∈ A�}.

Definition 3.21. We say that a subshift X ⊂ A� is effective if for some finite set S of
generators of �, the pullback subshift X̂ ⊂ AF(S) is an effectively closed subset of AF(S).

It can be seen that this definition does not depend on the set of generators S. Indeed, let
S′ be another set of generators and denote by X̂′ its pullback in AF(S

′). For each s ∈ S, let
ψ(s) be a word in S′ such that s is equal to ψ(s) in �. Then, ψ extends to a computable
injective homeomorphism from F(S) to F(S′). It follows that the map � : X̂→ X̂′
given by �(x)(w) = x(ψ(w)) is a computable homeomorphism. In particular, X̂′ is also
effectively closed. A similar argument shows that for a group with decidable word problem,
X̂ ⊂ AF(S) is effectively closed exactly when X ⊂ A� is effectively closed, as Â� is then
effectively closed in AF(S).

Remark 3.22. In the literature [1], there is a different computability notion for shift
spaces (Definition 7.2). While both notions coincide for recursively presented groups
(Corollary 7.7), it turns out that for general finitely generated groups, the two definitions
are not equivalent. In §7, we shall provide a characterization of this other notion and clarify
the relation with ours.

Example 3.23. If � is recursively presented, then the full shift A� is effective. Indeed,
as the word problem of � is recursively enumerable, the set of patterns of the form
p : {1F(S), w} → A satisfying w = 1� and p(1F(S)) �= p(w) is recursively enumerable.
The union of cylinders associated to these patterns in AF(S) is equal to the comple-
ment of Â� .

Remark 3.24. Observe that the map φ̂ is a homeomorphism between X and X̂. Moreover,
we can define an action � � X̂ by setting gx = wx, where w ∈ F(S) is any element
satisfying φ(w) = g. In this manner, the actions � � X̂ and � � X are topologically
conjugate. In particular, we have that if X is an effective subshift, then � � X is
topologically conjugate to a computable action � � X̂, where X̂ is an recursively compact
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subset of a computable metric space. This is the property that will allow us to generalize
the notion of effective subshift to general dynamical systems.

3.4. Effective dynamical systems. Let X be a recursively compact subset of a computable
metric space. Similarly to the zero-dimensional case, we say that � � X is a computable
action if for some finite set of generators S, we have that for each s ∈ S, the group action
map fs : X→ X given by fs(x) = sx is a computable function. Notice that in this case,
fg : X→ X is in fact uniformly computable for all g ∈ �. In particular, if an action is
computable, it will satisfy the definition with respect to every finite set of generators.

We are interested in the behavior of actions as topological dynamical systems, and thus
will consider them up to topological conjugacy. Our focus will be on those conjugacy
classes that contain some computable representative.

Definition 3.25. Let X be a compact metrizable space and � a finitely generated group.
We say that an action � � X is an effective dynamical system (EDS) if it is topologically
conjugate to a computable action � � X̂ for some recursively compact subset X̂ of a
computable metric space.

We insist in that our definition of effective dynamical system does not require the space
X to have any computable structure or the topological conjugacy to be computable. Given
an EDS � � X, we will refer to a topologically conjugate instance of a computable action
� � X̂ over a recursively compact subset X̂ of a computable metric space as a computable
representative.

Example 3.26. An effective subshift X ⊂ A� is an EDS. Indeed, if A� is an effective
subshift, then � � X is topologically conjugate to the action � � X̂, where X̂ is the
subshift from Definition 3.21 (see also Remark 3.24). We will see later that, conversely, the
only subshifts which are EDS are the effective ones, thus justifying the name (Proposition
7.1). We remark that the above holds for any finitely generated group �, even if it is not
recursively presented.

The following example shows that the conjugacy class of an effective dynamical system
can contain uncountably many systems. In particular, it contains representatives that are
not computably homeomorphic.

Example 3.27. Fix some computable angle α ∈ [0, 2π ] and consider Cr = {x ∈ R2 :
‖x‖ = r} to be the circle of radius r > 0. Note that the space Cr is a recursively compact
subset of R2 only for computable r. Despite this, the conjugacy class of the action Z � Cr

induced by the rotation by α has a computable representative, namely Z � C1, and is
therefore an EDS regardless of the value of r.

Example 3.28. The action GLn(Z)� Rn/Zn of the general linear group on the
n-dimensional torus by left matrix multiplication is an EDS.

Example 3.29. Recall the Thompson’s groups F and T from Example 2.13. These groups
are more often defined in the literature as the space of piecewise linear homeomorphisms
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of [0, 1] (in the case of T, of R/Z) that preserve orientation and whose non-differentiable
points are dyadic rationals and whose slopes are all powers of 2. These maps are clearly
computable and thus it follows that the natural actions F � [0, 1] and T � R/Z are EDS.

Next, we are going to show that the class of EDS is closed under computable topological
factor maps. We stress the fact that in this result, we need both actions to be represented as
computable actions in computable metric spaces and the factor to be computable as well.
In §8, we will later show that without strong assumptions that enforce computability, the
class of EDS is, in general, not closed under topological factor maps.

PROPOSITION 3.30. Let � be a finitely generated group and X, Y be computable metric
spaces. Let X′ ⊂ X be a recursively compact set and � � X′ be a computable action. Let
� � Y ′ ⊂ Y be a topological factor of � � X′ by a computable function f : X′ → Y ′.
Then, Y ′ is a recursively compact set and � � Y ′ is a computable group action.

Proof. As X′ is recursively compact and f is computable, it follows that Y ′ is recursively
compact. Let (BXi )i∈N and (BYi )i∈N be recursive enumerations of the basic balls in X and
Y, respectively. Let s ∈ � and let i ∈ N. As f is computable, it follows that, uniformly in
i, there is a recursively enumerable set Ii ⊂ N such that f−1(BYi ) = X′ ∩

⋃
j∈Ii B

X
j . As

the action is computable, uniformly for each j ∈ N, there is a recursively enumerable set
I ′j ⊂ N such that

s−1f−1(BYi ) = X′ ∩
⋃
j∈Ii

⋃
k∈I ′j

BXk .

Finally, as f is computable and X′ recursively compact, it follows by Proposition 3.13 that
uniformly for k ∈ N, there is a recursively enumerable set I ′′k ⊂ N such that

s−1(BYi ∩ Y ′) = f (s−1f−1(BYi )) =
⋃
j∈Ii

⋃
k∈I ′j

⋃
m∈I ′′k

BYm,

where the first equality holds because f is �-equivariant. It follows the map y �→ sy is
computable and as s is arbitrary, we obtain that � � Y ′ is computable.

4. EDS as factors of computable actions on zero-dimensional effectively closed sets
In this section, we prove Theorem A. Let us briefly recall the standard procedure to build
a zero-dimensional topological extension of a dynamical system � � X.
(1) First, we extract a sequence (Pn)n∈N of open covers of X with diameters tending to

zero, and associate to each one of them a subshift Yn.
(2) Define the sequence of subshifts (Zn)n∈N, where Zn =∏

k≤n Yk with the
coordinate-wise shift, and consider the projection factor maps πn+1 : Zn+1 → Zn.

(3) Define the inverse limit Z = lim←− Zn, this is a topological extension of � � X.
In our proof, we effectivize this construction. For this purpose, we first need to prove
effective versions of some of the steps. This includes infinite products, inverse limits, and
subshifts associated to covers.
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4.1. Effective versions of some classical constructions. In this section, we prove effec-
tive versions of a few classical constructions commonly used in dynamical systems, and
which may therefore be of independent interest.

4.1.1. Products of computable actions and inverse limit constructions. Now we show
that the operations of countable product and inverse limits are computable under mild
computability assumptions. For the next two results, (Yn)n∈N will be a sequence of
uniformly computable metric spaces, as in Example 3.5, and we will consider

∏
n∈N Yn

with its product computable metric space structure.

PROPOSITION 4.1. Let Xn ⊂ Yn be a sequence of subsets and � � Xn be a uni-
form sequence of computable actions of the finitely generated group �. Then, the
component-wise action

� �
∏
n∈N

Xn ⊂
∏
n∈N

Yn

is computable.

Proof. Let us fix g ∈ �. Let n ∈ N and let Ui be an effectively open subset of Xi for
i ∈ {0, . . . , n}. We verify that the preimage by g of

U = U0 × · · · × Un × Yn+1 × Yn+2 × · · ·
is effectively open in

∏
n∈N Xn, and that this process is uniform in n and the Ui . Indeed,

g−1(U) = g−1(U0)× · · · × g−1(Un)×Xn+1 ×Xn+2 × · · ·
This set is effectively open in

∏
n∈N Xn, and it can be uniformly computed from n ∈ N and

a description of U0, . . . , Un because each of the g−1(Ui) is effectively open inXi and can
be uniformly computed from a description of Ui ⊂ Yi .
PROPOSITION 4.2. Let � � Xn be as in the previous statement, where each Xn is now
assumed to be an effectively closed subset of Yn. Let (πn)n≥1 be a sequence of uniformly
computable functions, where each πn+1 : Xn+1 → Xn is a topological factor map from
� � Xn+1 to � � Xn. Then, the inverse limit

lim←− Xn =
{
(xn) ∈

∏
n∈N

Xn | πn+1(xn+1) = xn, n ≥ 1
}

is an effectively closed subset of
∏
n∈N Yn.

Proof. Let f :
∏
n∈N Xn→

∏
n∈N Xn be the function defined by (xn)n∈N �→

(πn+1(xn+1))n∈N. We claim that f is computable. We verify that the preimage by f of
a set of the form

U = U0 × · · · × Un ×Xn+1 ×Xn+2 × · · ·
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is effectively open in
∏
n∈N Yn, uniformly on n and the Ui . Indeed, the preimage f−1 can

be written as

f−1(U) = π−1
1 (U0)× · · · × π−1

n+1(Un)×Xn+1 ×Xn+2 × · · ·
This set is effectively open uniformly on theUi because (πn)n≥1 is a sequence of uniformly
computable functions. However, it is clear that lim←− Xn equals the set of fixed points of f in∏
n∈N Xn. Then, it follows from Proposition 3.14 that lim←− Xn is effectively closed.

4.1.2. Effective covers and partitions, and their associated subshifts. In this subsection,
we fix a recursively compact set X which lies in a computable metric space X . We
start by reviewing some standard terminology regarding covers and the construction of a
subshift from a cover. A cover P of X is a finite collection of sets whose union equals
X. A cover P is said to be open (respectively closed) if it consists on sets which are
open in X (respectively closed in X). We say that the cover P ′refines P if every element
in P ′ is contained in some element of P . The join of two covers P ∨ P ′ is the cover
{P ∩ P ′ | P ∈ P , P ′ ∈ P ′}. Given a group action � � X and a finite subset F ⊂ �, we
write

∨
g∈F g−1P for the join of all g−1P for g ∈ F . The diameter of the cover P is the

maximum of the diameters of its elements. A cover P of X is said to be generating for the
group action � � X if for each ε > 0, there is a finite subset F ⊂ � such that

∨
g∈F g−1P

has diameter at most ε.
Given a cover of X labeled as P = {P0, . . . , Pn}, we define the subshift cover

Y (� � X, P) by

Y (� � X, P)
= {y ∈ {0, . . . , n}� : there exists x ∈ X such that for every g ∈ �, g−1x ∈ Py(g)}.

The idea behind this definition is that every configuration in the subshift labels the orbit
of some element x ∈ X under the action � � X by indicating the elements of P it hits. A
compactness argument shows that a configuration y lies in Y (� � X, P) if and only if for
every finite F ⊂ � and pattern p : F → {0, . . . , n} which occurs in y, the set

D(p) :=
⋂
g∈F

g−1(Pp(g)).

is non-empty. In particular, Y (� � X, P) is indeed a subshift. Now we prove that this
well-known construction is computable when the cover is made by effectively closed sets.

Definition 4.3. A cover P of X is called effective if its elements are effectively closed sets.

PROPOSITION 4.4. Let � � X be a computable action of a finitely generated group, S be
a finite generating set of �, and let F(S)� X be the induced action. Then, the associated
subshift Y (F (S)� X, P) is effective uniformly for all effective covers P .

Proof. It suffices to show that we can semi-decide, given an effective cover P and a
pattern p : W → F(S) with W ⊂ F(S) finite, whether D(p) = ∅. Observe that D(p)
is an effectively closed subset of X, uniformly in p and P . Indeed, each Pi is an effectively
closed subset of X, the preimage of an effectively closed set by a computable function
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is effectively closed, and the finite intersection of effectively closed sets is effectively
closed. Thus, we can uniformly semi-decide whether D(p) is empty using the recursive
compactness of X (see Definition 3.7 and Remark 3.12).

Remark 4.5. In what follows, we focus on the construction of effective covers. These will
be obtained intersecting X with unions of closures of basic balls in X . Note that X is not
assumed to be a computable metric space, and this is the reason why we appeal to the
space X .

PROPOSITION 4.6. A cover of X whose elements are finite unions of elements of the form
B ∩X, where B are basic balls in X , is effective.

Proof. This follows from the fact that X is effectively closed, and that the topological
closure of a basic ball in X is effectively closed (see Example 3.3).

The following construction provides a uniform sequence of refined effective covers at
any desired resolution.

LEMMA 4.7. There is an algorithm which on input n ∈ N, computes an effective cover Pn
of X with diameter at most 2−n, and such that for every n ∈ N, Pn+1 refines Pn, and the
inclusion of elements in Pn+1 to elements in Pn is decidable uniformly on n. Moreover, if
X is a zero-dimensional set, we can add the extra condition that P is a partition of X.

Proof. Using the recursive compactness of X, one can compute a cover P0 of X made
by the intersection of X with (the closure of) basic balls of radius one. The algorithm
now proceeds inductively on n ∈ N. After it has computed P0, . . . , Pn with the desired
properties, it computes Pn+1 as follows. Let {Vi}i∈N be a computable enumeration of all
finite unions of basic balls. First observe that there is a finite subset I of N such that the set
{Vi : i ∈ I } satisfies the following conditions:
(1) Vi has diameter at most 2−(n+1);
(2) V i is contained in the interior of some of the elements of Pn;
(3) the union of Vi for i ∈ I contains X;
(4) if X is zero-dimensional, then the sets Vi ∩X are disjoint.
The existence of such a finite set of basic balls satisfying the first three conditions follows
from the fact that X is compact and that the set {Vi : i ∈ N} is a basis for the topology. If
X is zero-dimensional, then the last condition can be added because by Proposition 3.15,
we can take the basic sets to be clopen. We now observe that it is semi-decidable whether
a finite subset I of N satisfies the conditions above:
(1) finite unions of (the closure of) basic balls are computable sets, so the first condition

is routine;
(2) the semi-decidability of the second follows from the fact that V i ∩X is recursively

compact and the interior of the elements in the partition are effectively open;
(3) the semi-decidability of the third condition follows directly from the recursive

compactness of X;
(4) finally, for the fourth condition, it suffices to note that in a recursively compact space,

it is semi-decidable whether two effectively closed sets have empty intersection
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(recall that in a recursively compact space, we can semi-decide whether an effectively
closed subset is empty, the intersection of two effectively closed sets is effectively
closed, and this is a computable operation on the descriptions of the sets).

Thus, we can compute a set I as desired by an exhaustive search, and finally set Pn+1 =
{Vi ∩X : i ∈ I }.
PROPOSITION 4.8. If � � X admits a generating open cover, then it admits a generating
effective cover.

Proof. Let P be a generating open cover of � � X. We construct a new cover P ′ as
follows. Let J be the collection of all sets of the form Bi ∩X which are contained in
some element of P , where Bi is a basic ball in X . The fact that basic balls constitute a
basis for a topology of X , together with the compactness of X, imply that there is a finite
subset J ′ ⊂ J which is an open cover of X. As J ′ refines P , it follows that it is also a
generating cover of � � X. Finally, we define P ′ as the closed cover obtained by taking
the topological closure of all elements in J ′. By construction, P ′ is a closed cover of X
which is generating for the action � � X, and it follows from Proposition 4.6 that P ′ is an
effective cover.

We remark that in the previous proposition, we do not claim the cover P ′ to be
computable uniformly from a description of � � X, just its existence.

PROPOSITION 4.9. If � � X admits a generating open cover and X is zero dimensional,
then � � X admits an effective generating cover which is also a partition.

Proof. It follows from the hypotheses that X admits a generating open cover P which is a
partition of X. Indeed, let P0 be an open cover for X which is generating for � � X. As
X is zero-dimensional, there is an open cover P of X which refines P0 and constitutes a
partition of X. Observe that the cover P is also generating for � � X because it refines P0.

Repeating the construction in the proof of Proposition 4.8 with the cover
P = {P0, . . . , Pn}, we obtain a finite open cover J ′ of X which refines P , and such
that every element in J ′ has the form B ∩X, where B is a basic ball in X . We define a
new cover P ′ = {P ′0, . . . , P ′n} by the following condition. For every i ∈ {0, . . . , n}, P ′i is
the union of all elements in J ′ which are contained in Pi . The fact that P is a partition of
X implies that the same holds for P ′. It is also clear that P ′ is a generating cover. We now
verify that P ′ is an effective cover. Indeed, the fact that P ′ is a partition implies that the
elements of P ′ are closed in X. In particular, we can write

P ′i = P ′i =
⋃
m∈M

Bm ∩X,

where M is a finite subset of N and Bm are rational balls. Here, topological closures can
be taken in X and in X . Both topological closures coincide because X is a closed subset of
X and we consider X with the subspace topology. It follows from the previous set equality
and Proposition 4.6 that P ′ is also an effective cover.
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4.2. Proof of main results. We start with the following observation for computable
actions on zero-dimensional spaces.

PROPOSITION 4.10. Let � � X be a computable action, where X is zero-dimensional
subset of a computable metric space. Then, � � X is topologically conjugate to a
computable action � � Y , where Y is an effectively closed subset of {0, 1}N.

Proof. This follows by conjugating the action � � X with a computable homeomorphism
between X and an effectively closed subset of {0, 1}N, whose existence is guaranteed by
Theorem 3.18.

We are now ready to present the proof of our main result.

THEOREM 4.11. (Theorem A) Let � � X be an EDS, where � is a finitely generated and
recursively presented group. Then, � � X is the topological factor of a computable action
of an effectively closed subset of {0, 1}N.

Proof. We start by replacing � � X by a computable representative, as defined in §3.4.
As explained at the beginning of this section, we will construct a topological extension of
� � X as the inverse limit of a sequence of subshifts.

Let S be a finite set of generators of � and F(S) be the free group generated by S. Let
F(S)� X be the action induced from � � X and notice it is computable. We apply the
tools from §4.1.2 to the action F(S)� X. Let (Pn)n∈N be a uniform sequence of effective
covers as in Lemma 4.7. For each Pn = {Pn0 , . . . , Pnmn}, we set An to be the alphabet
{0, . . . , mn}, and we let Y (F (S)� X, Pn) be the subshift cover associated to the action
F(S)� X and the cover Pn. By Proposition 4.4, each Y (F (S)� X, Pn) is an effective
subshift, and the sequence (Y (F (S)� X, Pn))n∈N is uniformly effective.

It is possible that some elements in F(S) which are mapped to the identity element in �
(and thus act trivially on X), act non-trivially on Y (F (S)� X, Pn). Indeed, if w ∈ F(S)
is mapped to the identity element in �, and there are distinct i, j such that Pni ∩ Pnj �= ∅,
we could associate distinct elements to 1F(S) and w, and thus w acts non-trivially on
Y (F (S)� X, Pn). This is solved as follows. For each n, we define Yn by

Yn = Y (F (S)� X, Pn) ∩ Â�n ⊂ AF(S)n ,

where Â�n is the pullback of A�n to F(S). As � is recursively presented, the set Â�n is
effectively closed (Example 3.23). As Yn is the intersection of two effectively closed sets,
then Yn is effectively closed. Furthermore, as Y (F (S)� X, Pn) is uniform and the second
set in the intersection (Â�n ) is the same for each n, it follows that (Yn)n∈N is uniformly
effectively closed.

We now build a zero-dimensional topological extension of � � X, and then we
verify the computability of the construction. We define an F(S)-subshift Zn on alphabet
Bn = A0 × · · · × An by the following two conditions:
(1) Zn ⊂ Y0 × · · · × Yn;
(2) for each z ∈ Zn and for each w ∈ F(S) with z(w) = (e0, . . . , en), we have

Pnen ⊂ · · · ⊂ P 0
e0

.
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For each n, let πn+1 : Zn+1 → Zn be the map which removes the last component of the
tuple. Then, let Z be the inverse limit of dynamical systems

Z = lim←− Zn =
{
(zn) ∈

∏
n∈N

Zn | πn+1(xn+1) = xn, n ≥ 1
}
⊂

∏
n∈N

BF(S)n .

We now go into some computability considerations. First, observe that for each n ∈ N,
Zn is an effectively closed subset of BF(S)n . As (Yn) is a uniform sequence of effectively
closed sets, we can semi-decide whether the first condition fails. Moreover, the second
defining condition of Zn is decidable, uniformly on n, by construction of the sequence
(Pn)n∈N (Lemma 4.7). Thus, (Zn)n∈N is a uniform sequence of effective F(S)-subshifts.
It is also clear that (πn)n≥1 is a uniform sequence of computable functions, which are also
factor maps. Now we claim that Z is a recursively compact subset of

∏
n∈N B

F(S)
n . This

follows from three facts:
(1) Z is an effectively closed subset of

∏
n∈N B

F(S)
n by Proposition 4.2;

(2) the product
∏
n∈N B

F(S)
n is recursively compact by Theorem 3.9;

(3) an effectively closed subset of a recursively compact computable metric space is
recursively compact (Proposition 3.11).

The action F(S)�
∏
n∈N B

F(S)
n is computable by Proposition 4.1, and then the same

holds for F(S)� Z. By construction, every element w ∈ F(S) which corresponds to the
identity element in � acts trivially on Z, and thus we can define an action � � Z by the
expression gz = wz, where w ∈ F(S) is any element with w = g. It remains to verify
that � � Z is a topological extension of � � X. This is well known, but we sketch the
argument for completeness.

We define a topological factor φ : Z→ X as follows. First, for each n ∈ N, we define
νn : Z→ Yn as the function which sends z = (zn)n∈N to the configuration νn(z) given by
νn(z)(w) = (zn)(w)(n), the nth component of (zn)(w) ∈ Bn. We now define φ(z) by the
expression

{φ(z)} =
⋂
n∈N

Pnνn(z)(1F(S)).

The function φ is well defined, as a nested intersection of non-empty compact sets
with diameter tending to zero must be a singleton. It is straightforward to verify that φ is
continuous, surjective, and it commutes with the actions � � X and � � Z.

We have proved that � � Z is a computable action on a recursively compact and
zero-dimensional subset of a computable metric space, and that it is a topological
extension of � � X. Now by Corollary 4.10, the action � � Z is topologically conjugate
to a computable action on an effectively closed subset of {0, 1}N. This finishes the
proof.

We end this section by proving that when the action admits a generating partition, the
extension can be taken as an effective subshift. In the zero-dimensional regime, this is
the computable version of the fact that subshifts are precisely the expansive actions on
zero-dimensional sets.
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THEOREM 4.12. Let � � X be an EDS, where � is a finitely generated and recursively
presented group and the action admits a generating open cover. Then, � � X is a
topological factor of an effective �-subshift.

Moreover, if X is zero-dimensional, then � � X is topologically conjugate to an
effective �-subshift and the recursively presented hypothesis on � can be removed.

Proof. We first prove the result assuming that � is recursively presented. By
Proposition 4.8, � � X admits an effective generating cover P . Now let S be a finite
set of generators of � and let F(S) be the free group generated by S. Let F(S)� X be the
action induced by � � X, and consider the subshift Y (F (S)� X, P) defined in §4.1.2.
By Proposition 4.4, we have that Y (F (S)� X, P) is effective.

Observe that some elements in F(S) which are mapped to the identity element in � and
thus act trivially on X, have a non-trivial action on Y (F (S)� X, P). To solve this, we
define Y by

Y = Y (F (S)� X, P) ∩ Â� ,

where Â� is the pullback of A� in F(S). As � is recursively presented, the set Â� is
effectively closed (Example 3.23), and thus Y is an effective subshift.

It is a standard fact that X is a topological factor of Y thanks to the fact that P is a
generating cover. We sketch the argument for completeness. Let (Fn)n∈N be an increasing
sequence of finite subsets of F(S) whose union is F(S). For each y ∈ Y (F (S)� X, P),
we define D(y) as the following subset of X:

D(y) =
⋂
n∈N

D(y|Fn).

Recall that D(p), for a pattern p, was defined in §4.1.2. For each y ∈ Y , the set D(y) is a
singleton, being a nested intersection of non-empty compact sets with diameter tending to
zero. Indeed, for each n, the set D(y|Fn) is contained in the cover

∨
g∈Fn g

−1P , and the
diameters of these elements tend to zero by definition of generating cover.

We can now define a topological factor map φ : Y → X by the expression

{φ(y)} = D(y).

It is straightforward to verify that φ is continuous, surjective, and it commutes with the
actions � � X and � � Y .

We have proved the claim for recursively presented groups. We now prove that if X
is zero-dimensional, the hypothesis that � is recursively presented can be removed. Note
that if X is zero-dimensional, then by Proposition 4.9, we can assume that P is also a
partition, which makes φ injective and, therefore, a topological conjugacy. In particular,
it preserves the set of group elements which act trivially. More precisely, recall that
F(S)� X is the action induced by � � X. As F(S) has decidable word problem, the
previous construction shows that the action F(S)� X is topologically conjugate to an
effectively closed F(S)-subshift Y. Being a topological conjugacy, every element in F(S)
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which maps to the trivial element of � must act trivially on Y. Thus, we can define a
�-subshift Z given by

Z = {z ∈ A� : there exists y ∈ Y where y(w) = z(w) for every w ∈ F(S)}.
It is straightforward that the pullback Ẑ to F(S) is precisely Y, and thus Z is an effective
�-subshift as required.

5. Simulation by subshifts of finite type
The main motivation behind Theorem A is that it can be used to enhance several
results in the literature that characterize zero-dimensional effective dynamical systems as
topological factors of subshifts of finite type. We shall provide a general definition that
will help us to summarize most of these results.

Consider two groups �, H and suppose there exists an epimorphism ψ : �→ H , that
is, that H is a quotient of �. Given an action H � X, recall that the induced action of
H � X to � is the action � � X which satisfies that g · x = ψ(g) · x for every g ∈ �.

Definition 5.1. Let � and H be finitely generated groups and ψ : �→ H be an epimor-
phism. We say � simulates H (through ψ) if for every effectively closed set X ⊂ {0, 1}N
and every computable action H � X, there exists a �-SFT Y such that the induced action
� � X is a topological factor of � � Y .

If the map ψ in the definition above is clear, then we do not mention it (for instance,
if � is a direct product of H with another group, we assume that ψ is the projection to
H). Furthermore, if ψ is an isomorphism, we say that � is a self-simulable group. Let us
briefly summarize a few of the simulation results available in the literature

THEOREM 5.2. The following simulation results hold.
(1) [22] � = Z3 simulates Z.
(2) [4] Let H be a finitely generated group, d ≥ 2 and ϕ : H → GLd(Z). Then,

the semidirect product � = Zd �ϕ H simulates H (through the projection
epimorphism).

(3) [3] Let H , G1, G2 be finitely generated groups. Then, � = H ×G1 ×G2 simu-
lates H.

(4) [6] Let H , K be finitely generated groups, suppose H is non-amenable and that K
has decidable word problem, then � = H ×K simulates H.

(5) [5] The following groups are self-simulable:
• the direct product of any two finitely generated nonamenable groups;
• the general linear group GLn(Z) and the special linear group SLn(Z) for n ≥ 5;
• Thompson’s group V and the Brin–Thompson’s groups nV for n ≥ 1;
• finitely generated non-amenable Branch groups;
• the automorphism group Aut(Fn) and the outer automorphism group Out(Fn) of

the free group Fn on n generators for n ≥ 5;
• the braid groups Bn for n ≥ 7 strands.

(In references [3, 4, 22], the simulation results are stated differently, using subactions
rather than an induced action. However, they also hold in our terminology (the result in [3]
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is stated only for expansive actions, but it can be generalized with a slight modification in
the proof which will be covered in an upcoming article).)

We can enhance all of the above results using Theorem A.

THEOREM 5.3. (Theorem B) Let �, H be finitely generated groups and ψ : �→ H be an
epimorphism. Suppose that H is recursively presented, then � simulates H if and only if for
every effective dynamical system H � X, the induced action of � is a topological factor
of a �-SFT.

Proof. Suppose first that for every EDS H � X, the induced action of � is a topological
factor of a �-SFT. As a computable action on an effectively closed zero-dimensional set
is, in particular, an EDS, it follows that � simulates H.

Conversely, let H � X be an EDS. As H is recursively presented, Theorem A implies
that there exists an effectively closed set X̃ ⊂ {0, 1}N and a computable action H � X̃

such that H � X is a topological factor of H � X̃. Taking the induced action of � of
these two actions, it follows that � � X is a topological factor of � � X̃. As � simulates
H, there exists a �-SFT Y which factors onto � � X̃ and thus onto � � X.

Let us illustrate how Theorem B can be applied with a few examples.

Example 5.4. As mentioned in Example 3.28, the action GLn(Z)� Rn/Zn by left matrix
multiplication is an EDS. For n ≥ 5, the group GLn(Z) is both recursively presented
and self-simulable, thus it follows by Theorem B that there exists a GLn(Z)-SFT which
topologically factors onto GLn(Z)� Rn/Zn.

Example 5.5. Let {βi}4i=1 be four computable points in R/Z. Consider F2 × F2 =
〈a1, a2〉 × 〈a3, a4〉 and the action F2 × F2 � R/Z given by ai · x = x + βi mod Z for
i ∈ {1, . . . , 4}, and remark that this action is in fact the pullback of an action Z4 � R/Z.
As F2 × F2 is recursively presented and self-simulable, it follows by Theorem B that there
exists an (F2 × F2)-SFT which topologically factors onto F2 × F2 � R/Z.

Example 5.6. Let G be a group, n ≥ 2, and consider�n(G) ⊂ Gn the space of all n-tuples
of elements of G whose product is trivial, that is,

�n(G) = {(x1, . . . , xn) ∈ Gn : x1 · · · xn = 1G}.
The braid group Bn on n strands acts on �n(G) by

σi(x1, . . . , xi−1, xi , xi+1, . . . , xn) = (x1, . . . , xi−1, xi+1, x−1
i+1xixi+1, xi+2, . . . , xn),

where 1 ≤ i ≤ n− 1 and σi is the element of Bn which crosses strands i and i + 1 (for
the definition of braid group, refer to [8]). If we let G be any compact topological group
which admits a computable structure such that group multiplication is a computable map,
for instance, the group of unitary complex matricesG = U(k) � GLk(C) for some k ≥ 1,
then �n(G) is an effectively closed set of Gn and the action Bn � �n(G) is computable.
It follows that if n ≥ 7, then there exists a Bn-SFT which topologically factors onto
Bn � �n(G).
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In [5], it was proven that Thompson’s group F (see Example 2.13) is self-simulable if
and only if F is non-amenable, which is a longstanding open question. We can therefore
strengthen the characterization of the potential amenability of F in the following way.

COROLLARY 5.7. Thompson’s group F is amenable if and only if there exists an EDS
F � X which is not the topological factor of an F-SFT.

In the literature, there are a few simulation results which apply exclusively to expansive
maps. More precisely, let � and H be finitely generated groups and ψ : �→ H be an
epimorphism. We say � simulates expansive actions of H (through ψ) if for every effective
subshift X ⊂ AH , there exists a �-SFT Y such that the pullback subshift � � X is a
topological factor of � � Y . The most famous results are due to Aubrun and Sablik [2]
and Durand, Romaschenko, and Shen [17] which state that Z2 simulates expansive actions
of Z (through the projection epimorphism).

In light of Proposition 4.12, we can improve the expansive simulation theorems in the
following way.

THEOREM 5.8. Let �, H be finitely generated groups andψ : �→ H be an epimorphism.
Suppose that H is recursively presented, then � simulates expansive actions of H if and
only if for every effective dynamical system H � X which admits a generating cover (in
particular, every expansive EDS), the induced action of � is a topological factor of a
�-SFT.

6. Algebraic actions as effective dynamical systems
In this section, we will show that, under mild conditions, algebraic actions are effective
dynamical systems and thus we can apply the results of the previous sections on them.

Definition 6.1. Let � be a countable group and X be a compact metrizable abelian group.
We say that � � X is an algebraic action if � acts by continuous automorphisms of X.

Next we provide a few examples to give an idea of what algebraic actions look like. The
reader can find a plethora of interesting examples in [32].

Example 6.2. Let X = (R/Z)2 be the torus (with pointwise addition). For every
A ∈ GL2(Z), the action Z � X given by n · x = Anx is algebraic.

Example 6.3. Let � be a countable group and consider X = (R/Z)� with pointwise
addition as the group operation. Then, X is a compact metrizable abelian group and
the shift action � � X given by (g · x)(h) = x(g−1h) for every x ∈ X and g, h ∈ � is
algebraic.

Example 6.4. Let e1 = (1, 0), e2 = (0, 1) in Z2 and consider

X = {x ∈ (R/Z)Z2
: for every u ∈ Z2, x(u)+ x(u+ e1)+ x(u+ e2) = 0 mod Z}.

Then, X is a compact metrizable abelian group (with pointwise addition) and the shift
action Z2 � X is algebraic.
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An interesting property of algebraic dynamical systems is that they can all be repre-
sented in a canonical way through the use of Pontryagin duality. This identification is well
established in the literature (it can be found for Zd in [32] and for a general countable
group in [24, Ch. 13]), so we shall provide a relatively short account of the main facts. A
reader who is already familiar with the basics of algebraic actions of countable groups can
skip directly to the paragraph above the definition of recursively presented algebraic action
(Definition 6.5).

Let � be a countable group. The integral group ring Z[�] (usually denoted in the
literature as Z� to simplify the notation) is the set of all finitely supported maps
p : �→ Z endowed with pointwise addition and with polynomial multiplication.
That is, for p, q ∈ Z[�] and g ∈ �, then (p + q)(g) = p(g)+ q(g) and p · q(g) =∑
h∈� p(gh−1)q(h). For this reason, we usually denote elements p ∈ Z[�] as finite formal

sums p =∑
i∈I cigi with ci ∈ Z, gi ∈ �. We also endow Z[�] with the ∗-operation given

by p∗ =∑
i∈I cig

−1
i . We remark that for x ∈ (R/Z)� and p =∑

i∈I cigi ∈ Z[�], the
product xp∗ ∈ (R/Z)� is well defined and given for every h ∈ � by

(xp∗)(h) =
∑
i∈I

cix(hgi) mod Z.

Let us recall that for a locally compact abelian group X, its Pontryagin dual is the space
X̂ of all continuous homeomorphisms from X to R/Z. Notice that if we endow X̂ with
the topology of uniform converge on compact sets and with pointwise addition, then X̂ is
also a locally compact abelian group whose elements are called characters. We recall two
well-known properties, their proofs can be found, for instance, in [27]. First, that X is a
compact metrizable abelian group if and only if X̂ is countable and discrete. Second, that
there exists an isomorphism (as topological groups and through the canonical evaluation
map) between X and its double dual ̂̂X.

Now, there is a natural correspondence between algebraic actions � � X and actions
� � X̂ by automorphisms by letting (g · χ)(x) = χ(g−1x) for every g ∈ �, x ∈ X, and
χ ∈ X̂. Moreover, X̂, endowed with its corresponding action, has a natural structure of
countable left Z[�]-module, where for p =∑

i∈I cigi ∈ Z[�] and χ ∈ X̂, the operation
is given by

p · χ =
∑
i∈I

ci(gi · χ).

Conversely, given a countable left Z[�]-module M endowed with the discrete topology,
there is a natural action by (continuous) automorphisms � � M given by left multiplica-
tion by the monomials pg = 1 · g using the module product operation, and as before, this
induces an action by continuous automorphisms in M̂ . In particular, this means that there
is a one-to-one correspondence (up to isomorphism) between algebraic actions of � and
countable left Z[�]-modules.

An algebraic action � � X is called finitely generated if its associated Z[�]-module
is finitely generated. In this case, we can identify the module up to isomorphism with
Z[�]n/J for some integer n ≥ 1 and J a left-submodule of the free module Z[�]n. Passing
through the Pontryagin dual, this means that, in this case, without loss of generality, we
can identify
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X =
{
(x1, . . . , xn) ∈ ((R/Z)�)n :

n∑
i=1

xip
∗
i = 0 for every (p1, . . . , pn) ∈ J

}
,

with the action � � ̂̂X being the left shift as in Example 6.3. An algebraic action � � X

is called finitely presented if the associated Z[�]-module is finitely presented. In this
case, the module is isomorphic to Z[�]n/Z[�]kP for some n ∈ N and a k × n matrix
P ∈Mk×n(Z[�]). Therefore, in this case, we can identify

X =
{
(x1, . . . , xn) ∈ ((R/Z)�)n :

n∑
i=1

xiP
∗
i,j = 0 for every j ∈ {1, . . . , k}

}
.

We remark that the three examples given at the start of this section are finitely presented
algebraic actions.

To state our results in their full generality, we will introduce an intermediate notion
for algebraic actions which we call being ‘recursively presented’. Let S be a finite set of
generators for a group � and for w ∈ S∗, denote by w its corresponding element of �.
Let Z[S∗] be the space of finitely supported maps p : S∗ → Z. To each map p, we can
associate p ∈ Z[�] by letting p =∑

w∈supp(p) p(w)w.

Definition 6.5. Let � be a finitely generated group and S a finite set of generators. A finitely
generated algebraic action � � X is called recursively presented if there exists n ∈ N and
a computable total map g : N→ Z[S∗]n such that up to isomorphism, the action is the
shift map on

X =
{
(x1, . . . , xn) ∈ ((R/Z)�)n :

n∑
i=1

xig(k)i
∗ = 0 for every k ∈ N

}
.

Notice that finitely presented algebraic actions are recursively presented, as they can be
represented by the maps g : N→ Z[S∗]n which are eventually the zero of Z[S∗]n and thus
computable.

THEOREM 6.6. Let � be a finitely generated and recursively presented group. Every
recursively presented algebraic action � � X is an EDS.

Proof. Fix S a finite set of generators of �. Consider n ∈ N and a computable total map
g : N→ Z[S∗]n which define the recursively presented algebraic action � � X. As the
space (R/Z) is recursively compact (with the structure given by the rationals and the
euclidean metric), it follows by Theorem 3.9 that the product space ((R/Z)S

∗
)n is also

recursively compact. For x ∈ (R/Z)S∗ and p ∈ Z[S∗], we formally define xp∗ ∈ (R/Z)S∗
by (xp∗)(w) =∑

u∈supp(p) x(wu)p(u). Notice that for w ∈ S∗, we have (xp∗)(w) =
(xp∗)(w).

Consider the space Y of all (x1, . . . , xn) ∈ ((R/Z)S∗)n which satisfy the following two
conditions:
(1) for every u, v ∈ S∗ such that u = v and for every i ∈ {1, . . . , n}, we have xi(u) =

xi(v);
(2) for every k ∈ N, we have that

∑n
i=1 xig(k)

∗
i = 0.
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We claim that Y is an effectively closed subset of ((R/Z)S
∗
)n. Indeed, as � is recursively

presented, the set EQ(�) = {(u, v) ∈ S∗ × S∗ : u = v} is recursively enumerable. For
words u, v, consider the map fu,v : ((R/Z)S

∗
)n→ (R/Z)n given by

fu,v(x1, . . . , xn) = (x1(u)− x1(v), . . . , xn(u)− xn(v)).
It is clear that each fu,v is computable (as projections are computable in the product space)
and that the collection {fu,v}(u,v)∈EQ(�) is uniformly computable. As {0} is an effectively
closed subset of (R/Z)n, it follows that Y(1) =⋂

(u,v)∈EQ(�) f−1
u,v ({0}) is an effectively

closed set. Remark that this is precisely the set of elements of ((R/Z)S
∗
)n which satisfy

condition (1).
Given k ∈ N and v ∈ S∗, consider the map hk,v : ((R/Z)S

∗
)n→ R/Z given by

hk,v(x1, . . . , xn) =
( n∑
i=1

xig(k)
∗
i

)
(v) =

n∑
i=1

∑
u∈supp(g(k)i )

xi(vu)g(k)i(u).

It is clear from the fact that g is a total computable function that the collection
(hk,v)k∈N,v∈S∗ is uniformly computable. It follows that Y(2) =⋂

k∈N
⋂
v∈S∗ h

−1
k,v({0}) is

an effectively closed set as well. Remark that this is precisely the set of elements of
((R/Z)S

∗
)n which satisfy condition (2).

As Y = Y(1) ∩ Y(2), it follows that Y is an effectively closed subset of ((R/Z)S
∗
)n.

Let us define for each s ∈ S the computable map ts : Y → Y given by (ts(x1, . . . , xn))
(u) = (x1, . . . , xn)(s−1u). It is clear by condition (1) that these maps induce an action
of �, and thus � � Y is a computable action on an effectively closed set. Finally, it
follows from condition (2) that the map φ : X→ Y given by (φ(x1, . . . , xn))(w) =
(x1, . . . , xn)(w) is a topological conjugacy, and thus � � X is an EDS.

Putting together Theorems 6.6 and B, we obtain the following corollary which, in turn,
implies Theorem C (as finitely presented algebraic actions are recursively presented).

COROLLARY 6.7. (Theorem C) Let � be a recursively presented self-simulable group.
Then, every recursively presented algebraic action of � is the topological factor of some
�-subshift of finite type.

7. Other computability notions for shift spaces
The goal of this section is to compare the computability notions for subshifts we have
introduced in this article with other notions of computability for shift spaces that can be
found in the literature. We start by showing that a subshift is an EDS if and only if it is
effective as per Definition 3.21.

PROPOSITION 7.1. Let � be a finitely generated group. A subshift X ⊂ A� is an EDS if
and only if it is effective.

Proof. Let us recall that for a finitely generated group �, a subshift X ⊂ A� is effective
if its pullback into the full shift AF(S) is an effectively closed set. We already argued in
Example 3.26 that every effective subshift is an EDS. Let us fix a finite set of generators
S of � and denote by X̂ ⊂ AF(S) the pullback subshift of X on the free group F(S).

https://doi.org/10.1017/etds.2024.79 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.79


34 S. Barbieri et al

Suppose that � � X is topologically conjugate to a computable action on an effectively
closed subset Y of a recursively compact metric space. By Corollary 4.10, we may assume
without loss of generality that Y is an effectively closed subset of {0, 1}N with the
canonical computable structure. As � � X is topologically conjugate to � � X̂, there
is a topological conjugacy φ : Y → X̂. For a ∈ A, let [a] = {̂x ∈ X̂ : x̂(1F(S)) = a}; for a
finite W ⊂ F(S) and p ∈ AW , we let

[p] =
⋂
w∈W

w[p(w)] = {̂x ∈ X̂ : x̂(w) = p(w) for every w ∈ W }.

As φ is a homeomorphism, we have that Ca = φ−1([a]) is a finite union of cylinder sets
in Y and thus an effectively closed subset of Y.

We claim that there exists an algorithm that given a finite W ⊂ F(S) and a pattern
p : W → A, accepts if and only if [p] ∩ X̂ = ∅. Indeed, given such a p, we may compute
a description of Cp =⋂

w∈W w · Cp(w). As the action � � Y is computable, it follows
that eachw · Cp(w) is an effectively closed set and thus, as the intersection of finitely many
effectively closed sets is effectively closed, one may semi-decide whether Cp = ∅, which
occurs precisely when [p] ∩ X̂ = ∅. It follows that the collection Fmax = {p is a pattern :
[p] ∩ X̂ = ∅} is recursively enumerable. As Fmax is the maximal set of patterns which
defines X̂, it follows that X̂ is an effectively closed set.

In the literature, there is also an intrinsic notion of computability for subshifts based on
codings of forbidden patterns. This notion was originally defined in [1].

Let S be a finite set of generators of a group � and A be an alphabet. A partial function
c : S∗ → Awith finite support is called a pattern coding and its domain is denoted supp(c).
Recall that for w ∈ S∗, we denote by w the corresponding element of �. The cylinder set
induced by a pattern coding c is given by

[c] = {x ∈ A� : x(w) = c(w) for every w ∈ supp(c)}.
A pattern coding is inconsistent if there are u, v ∈ supp(c) such that u = v, but

c(u) �= c(v). Notice that for inconsistent pattern codings, we have [c] = ∅. The set of
all pattern codings is a named set, and thus we can speak about computability of sets of
pattern codings. Given a set C of pattern codings, we can define a subshift XC ⊂ A� by

XC = A� \
⋃

g∈�,c∈C
g[c].

Definition 7.2. We say that a subshift X ⊂ A� is effectively closed by patterns (ECP) if
there exists a recursively enumerable set of pattern codings C such that X = XC .

Example 7.3. For any finitely generated group �, every subshift of finite type X ⊂ A� is
ECP, as it is given by a finite set of forbidden pattern codings.

In what follows, we will show that for general finitely generated groups, being an ECP
subshift is strictly weaker than being an EDS (or equivalently, an effective subshift), but
that all notions coincide for recursively presented groups. For a subshift X ⊂ A� , denote
by Cmax(X) the set of all pattern codings c such that [c] ∩X = ∅.
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PROPOSITION 7.4. Let � be a finitely generated group. A subshift X ⊂ A� is effective if
and only if the set Cmax(X) is recursively enumerable.

Proof. Let C′max be the set of all pattern codings c such that [c] ∩X = ∅ and c is consistent
on the free group F(S). As the word problem in F(S) is decidable, it follows that Cmax(X)

is recursively enumerable if and only if C′max is recursively enumerable.
Let us recall that X is an effective subshift when X̂ ⊂ AF(S) is effectively closed.

We claim that C′max is recursively enumerable if and only if X̂ ⊂ AF(S) is effectively
closed. This is just by definition of an effectively closed set, as C′max is exactly the set
of pattern codings of patterns in the free group whose associated cylinders in AF(S) do not
intersect X̂.

In particular, as the set Cmax(X) defines the subshift X, we obtain that every effective
subshift is ECP.

COROLLARY 7.5. Let � be a finitely generated group andX ⊂ A� be an effective subshift.
Then, X is effectively closed by patterns.

We shall see that the converse only holds in recursively presented groups. For this, we
shall need the following lemma.

LEMMA 7.6. [1, Lemma 2.3] Let � be a finitely generated and recursively presented group.
For every ECP subshift X ⊂ A� , the set Cmax(X) is recursively enumerable.

COROLLARY 7.7. On recursively presented groups, every ECP subshift is effective. Thus,
on recursively presented groups, the three computability notions are equivalent.

We remark that for an effective cover P of a recursively compact metric space X, the
subshift Y (� � X, P) from Proposition 4.4 is ECP but not necessarily effective. This is
fundamentally the reason why we need to ask that � is recursively presented in Theorem A.

A useful consequence of Corollary 7.7 is that on recursively presented groups, SFTs are
effective subshifts. This follows from the fact that SFTs are ECP.

COROLLARY 7.8. Let � be a recursively presented group. Then, every �-SFT is effective.

Let us show that for non-recursively presented groups, there are always ECP subshifts
which are not effective. Let A be a finite alphabet with |A| ≥ 2 and � a finitely generated
group. Notice that the full �-shift A� is ECP as it is defined through the empty set of
pattern codings.

PROPOSITION 7.9. The full �-shift is effective if and only if � is recursively presented.

Proof. If � is recursively presented, then the full �-shift is effective by Corollary 7.8.
Conversely, if the full �-shift is effective, then Â� is an effectively closed set and thus by
Proposition 7.4, the maximal set of forbidden pattern codings is recursively enumerable.

Let S be a finite generating set of � and consider the pullback Â� ⊂ AF(S). Fix
two distinct symbols a, b ∈ A. Given w ∈ S∗, there is an algorithm that constructs its
corresponding elementw ∈ F(S) and the pattern pw ∈ A{1F(S),w} with pw(1F(S)) = a and
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pw(w) = b. Clearly, [pw] ∩ Â� = ∅ if and only if w represents the identity in � and
furthermore, Â� = AF(S) \⋃

g∈�,w∈WP(�) g[pw].
It follows that given w ∈ S∗, we can recursively enumerate the w for which

[pw] ∩ Â� = ∅, which are precisely the elements of WP(�). Therefore, � is recursively
presented.

8. Topological factors of effective dynamical systems
We begin by showing that the class of EDS is not closed by topological factors. In
particular, it shows that subshifts of finite type on certain groups may have factors that are
not EDS. However, we shall show that under certain conditions such as having topological
zero dimension, we can still provide computational restrictions that said factors must
satisfy.

Given an action � � X, we define its set of periods as

Per(� � X) = {g ∈ � : there is x ∈ X such that gx = x}.
The following lemma holds in general for any finitely generated group with decidable

word problem. However, we shall only need it for the special case of Z-actions.

LEMMA 8.1. Let Z � X be an EDS. Then, Per(Z � X) is a co-recursively enumerable
set.

Proof. We will prove that the complement of Per(Z � X) is a recursively enumerable
subset of Z. Without loss of generality, replace Z � X by a computable representative.
Then, the product space X2 is recursively compact and thus the diagonal �2 = {(x, x) ∈
X2 : x ∈ X} is an effectively closed subset and thus also recursively compact. As Z �

X is computable, it follows that the collection of diagonal maps fn : X2 → X2 given
by (x, y) �→ (T n(x), y) for n ∈ Z is uniformly computable, and thus the collection of
sets Yn = f−1

n (�2) is uniformly recursively compact. It follows that we can recursively
enumerate the integers n such that Yn ∩�2 = ∅. In other words, the set

Z \ Per(Z � X) = {n ∈ Z : Yn ∩�2 = ∅}
is recursively enumerable.

The set of periods is an invariant of topological conjugacy; therefore, any action Z �

X for which the set of periods is not co-recursively enumerable cannot be topologically
conjugate to an EDS (see Figure 1).

PROPOSITION 8.2. The class of EDS is not closed under topological factor maps.

Proof. Let us consider

X = {0} ∪
{
z ∈ C : |z| = 1

n
for some integer n ≥ 1

}
.

Additionally, let T : X→ X be given by T (z) = z exp(2πi|z|). It is clear that X is a
recursively compact subset of C with the standard topology and that T is a computable
homeomorphism which thus induces a computable action Z � X. The map T consists of
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FIGURE 1. A representation of the actions Z � X and Z � Y .

rational rotations on each circle, where the period is given by the inverse of the radius, and
thus it is easy to see that Per(Z � X) = Z.

Now let A ⊂ N \ {0} be some infinite set and let Y ⊂ C be given by

Y = {0} ∪
{
z ∈ C : |z| = 1

n
for some n ∈ A

}
.

Similarly, the map S : Y → Y given by S(z) = z exp(2πi|z|) is a homeomorphism which
induces an action Z � Y .

Let f : X→ Y be the map given by

f (z) =
⎧⎨⎩z if |z| = 1

n
for some n ∈ A,

0 otherwise.

It is clear from the definition that f is a continuous, surjective map such that f ◦ T =
S ◦ T and thus a topological factor map from Z � X to Z � Y . However, notice that
Per(Z � Y ) = ZA, that is, the set of integers which are integer multiples of some
element of A.

Notice that as the set of prime numbers is decidable, then a subset A of prime numbers
is co-recursively enumerable if and only if ZA is co-recursively enumerable. In particular,
if we take A which is not co-recursively enumerable, we would have that Per(Z � Y ) is
not co-recursively enumerable either and thus Z � Y cannot be an EDS.

PROPOSITION 8.3. The class of EDS is not closed under topological factor maps, even if
we restrict to zero-dimensional spaces.

Proof. For each n ∈ N, let Xn = {0, . . . , n}, and let tn = (1 2 · · · n) be the per-
mutation on Xn which fixes 0 and cyclically permutes 1 �→ 2 �→ 3 �→ · · · �→ n �→ 1.
Now define Yn as the product X0 × · · · ×Xn, and sn as the map on Yn which applies
t0, . . . , tn component-wise. We define πn+1 as the map Yn+1 → Yn which removes the last
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component of the tuple, this is a factor map from Yn+1 to Yn with their respective actions.
We now define Y as the inverse limit of sequence

· · · πn+2−−→ Yn+1
πn+1−−→ Yn

πn−−→ · · · π1−−→ Y0.

It is straightforward to verify that the set Y endowed with the component-wise action is
a zero-dimensional EDS. Let A ⊂ N. We now define a topological factor of Y called YA.

For each n, define gn : Xn→ Xn, as follows. For n �∈ A, gn sends everything to 0. For
n ∈ A, gn is the identity function on Xn. Now define fn : Yn→ Yn as the function which
on component n applies gn. Then, fn is an endomorphism of Yn with the action induced
by sn. Finally, define F as the endomorphism of Y which, in component n, applies fn and
let YA be the image of F, which is a compact subset of

∏
n∈N Yn by the continuity of F.

We endow YA with the component-wise action inherited as a subsystem of Y.
As in the previous construction, it suffices to take A as a set of primes which is not

co-recursively enumerable. In this case, YA is a zero-dimensional topological factor of the
zero-dimensional EDS Y, but it cannot be an EDS because its set of periods is exactly ZA

which is not co-recursively enumerable.

Even if the class of EDS is not closed under topological factor maps, it is reasonable to
assume that a factor of an EDS should still satisfy some sort of computability constraint.
With the aim of understanding this class in the case of zero-dimensional spaces, we
introduce a notion of weak EDS which will turn out to be stable under topological factor
maps.

Definition 8.4. An action � � X with X ⊂ AN is a weak effective dynamical system
(WEDS) if for every clopen partition P = (Pi)ni=1 of X, the subshift

Y (� � X, P)
= {y ∈ {1, . . . , n}� : there is x ∈ X such that for every g ∈ �, g−1x ∈ Py(g)}

is effective.

Notice that for an action � � X with X ⊂ AN to be a WEDS, it suffices to check the
condition on the clopen partitions Pn = {[w] : w ∈ An and [w] ∩X �= ∅} as this family
of clopen partitions refines any other clopen partition. As � � X can be obtained as the
inverse limit of the shift action on the Y (� � X, Pn), we may also define a WEDS as an
action that can be obtained as the inverse limit of a sequence of effective subshifts. Notice
that we do not require the sequence to be uniform in this definition.

Remark 8.5. Notice that any expansive WEDS � � X is automatically an EDS, as in
this case, � � X is topologically conjugate to Y (� � X, P) for any partition with small
enough diameter, and thus we have that � � X is an EDS.

PROPOSITION 8.6. If � � X is a zero-dimensional EDS, then it is a WEDS.

Proof. Let P be a cover of X which consists of disjoint clopen sets and let S be a finite
set of generators for �. Let us consider the action of the free group F(S)� X induced
by the action � � X. We proved in Proposition 4.4 that the subshift Y (F (S)� X, P) is
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effective and thus an EDS. We now prove that Y (� � X, P) is an EDS. For this, it suffices
to prove that everyw ∈ F(S)withw = 1� acts trivially on Y (� � X, P), as then we have
a topological conjugacy between � � Y (� � X, P) and � � Y (F (S)� X, P).

Assume that wy �= y for some y in Y (F (S)� X, P) to obtain a contradiction. We can
assume that wy and y differ in 1F(S) by shifting y. By definition, this means that there is
some element x ∈ X such that x ∈ Py(1F(S)) and x ∈ Pwy(1F(S)). This is a contradiction, as
the computable map associated to w is the identity and thus the sets Py(1F(S)), Pwy(1F(S))
are disjoint.

Next, we show that the class of WEDS is closed under topological factors.

PROPOSITION 8.7. Let � � X be a WEDS and � � Y be a zero-dimensional topological
factor. Then, � � Y is a WEDS.

Proof. Denote by f : X→ Y the topological factor map and let P = (Pi)ni=1 be a clopen
partition of Y. Then, Q = (f−1(Pi))

n
i=1 is a clopen partition of X. As X is WEDS, we

obtain that Y (� � X, Q) is an effective subshift. As Y (� � X, Q) = Y (� � Y , P), we
obtain that Y is a WEDS.

As an immediate corollary of Propositions 8.6 and 8.7, we obtain the following
corollary.

COROLLARY 8.8. Every zero-dimensional topological factor of a zero-dimensional EDS
is a WEDS.

Finally, putting this result together with Theorem A, we obtain the following general
result.

PROPOSITION 8.9. Let � be a finitely generated and recursively presented group, � � X

be an EDS, and� � Y be a zero-dimensional topological factor. Then,� � Y is a WEDS.

Proof. As � is recursively presented, by Theorem A, there is a zero-dimensional EDS
extension of � � X. Then, � � Y is a topological factor of this zero-dimensional
extension and thus, by Proposition 8.6, we obtain that it is a WEDS.

We have proved that for zero-dimensional systems, the class of EDS is different to the
class of WEDS. Indeed, the example constructed in Proposition 8.3 is not an EDS, but it
follows from Proposition 8.9 that is a WEDS.

COROLLARY 8.10. Let � � X be an EDS and � � Y be an expansive and
zero-dimensional topological factor. If X is zero-dimensional or � is recursively presented,
then � � Y is an EDS.

COROLLARY 8.11. The class of effective subshifts is closed under topological factor maps.

We remark that Corollary 8.11 can also be obtained through the Curtis–Hedlund–Lyndon
theorem [13, Theorem 1.8.1]. We finish this section with the following question which we
were unable to answer.
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Question 8.12. Is it true that any WEDS is the topological factor of some EDS?
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