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morphology space and their implications on
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We report direct numerical simulations results of the rough-wall channel, focusing on
roughness with high krms/ka statistics but small to negative Sk statistics, and we study
the implications of this new dataset on rough-wall modelling. Here, krms is the root mean
square, ka is the first-order moment of roughness height, and Sk is the skewness. The
effects of packing density, skewness and arrangement of roughness elements on mean
streamwise velocity, equivalent roughness height (z0) and Reynolds and dispersive stresses
have been studied. We demonstrate that two-point correlation lengths of roughness height
statistics play an important role in characterizing rough surfaces with identical moments
of roughness height but different arrangements of roughness elements. Analysis of the
present as well as historical data suggests that the task of rough-wall modelling is to
identify geometric parameters that distinguish the rough surfaces within the calibration
dataset. We demonstrate a novel feature selection procedure to determine these parameters.
Further, since there is no finite set of roughness statistics that distinguish between
all rough surfaces, we argue that obtaining a universal rough-wall model for making
equivalent sand-grain roughness (ks) predictions would be challenging, and that each
rough-wall model would have its applicable range. This motivates the development of
group-based rough-wall models. The applicability of multi-variate polynomial regression
and feedforward neural networks for building such group-based rough-wall models using
the selected features has been shown.

Key words: turbulence simulation, turbulence modelling, turbulent boundary layers

1. Introduction

Turbulent flow over rough walls has piqued the interest of researchers and engineers for
decades. From the earliest seminal works by Nikuradse (1933) and Colebrook (1939), and
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the consolidated data interpretation by Moody (1944), the field of rough-wall bounded
turbulence has continued to evolve, as is evident in subsequent works (Raupach, Antonia
& Rajagopalan 1991; Jiménez 2004; Flack & Schultz 2010). In the recent review by
Chung et al. (2021), the authors emphasize the importance of Townsend’s outer-layer
similarity hypothesis (Townsend 1976). This hypothesis assumes that under fully rough
and sufficiently high boundary layer thickness to roughness height ratio (δ/k) conditions,
the outer layer of a rough-wall boundary layer behaves similarly to that of a smooth wall.
A logarithmic layer can therefore be expected between the roughness sublayer and the
outer layer. This logarithmic layer, aside from a downward shift �U+ compared to the
smooth-wall log law, remains unaffected by surface roughness. This downward shift �U+
constitutes the roughness function, enabling frictional drag comparisons across different
rough surfaces. Besides �U+, which characterizes the hydraulic properties, a rough wall
is also characterized by the statistical moments of roughness height and the distribution
of its topographical features. Establishing a functional mapping between the roughness
function and the rough-wall topography is of significant practical utility and remains a
challenging problem, given the variations in surface features and the costs of rough-wall
boundary layer experiments (Schultz & Flack 2007) and scale-resolving computational
studies (Choi & Moin 2012; Yang & Griffin 2021).

Several studies have aimed to develop roughness correlations for various surfaces.
Flack & Schultz (2010) proposed correlations utilizing skewness (Sk) and root mean
square roughness height (krms) to characterize equivalent sand-grain roughness (ks) for
irregular three-dimensional roughness. Yuan & Piomelli (2014a) examined slope-based
and moment-based correlations to study critical effective slope (ES) associated with
waviness regimes for realistic roughness from hydraulic turbine blades. Forooghi et al.
(2017) found that functional relations dependent on Sk and ES, which represent the
shape and slope of the rough surface, respectively, produced satisfactory ks predictions
for randomly distributed roughness elements of random size and prescribed shape. In
another study, Flack, Schultz & Barros (2020) performed experiments on random rough
surfaces by systematically varying krms and Sk. They found predictive correlations of the
form ks = Akrms(1 + Sk)B, with A and B being constants. The authors also adapted the
functional form according to groups of surfaces as being either positively, negatively or
zero skewed for more accurate correlations. On the other hand, correlations can also take
a data-driven form as developed by Jouybari et al. (2021), where deep neural networks
incorporate information from diverse rough-wall geometries and their corresponding
statistical moments. Irrespective of the models used, no single model has been able to
generalize well across all rough surfaces (Yang et al. 2023).

The difficulty is largely due to the complexity of rough surfaces and that each rough
surface seems to have its unique behaviours. This calls for the categorization of rough
surfaces. A possible categorization puts rough surfaces into regular roughness and
irregular roughness. Regular surfaces have the same elements repeated in a predefined
periodic arrangement, unlike irregular roughness where the features are random in shape
and/or distribution. Categories based on the shape of the roughness features break down
as being cubes (Castro, Cheng & Reynolds 2006), truncated cones (Womack et al. 2022),
packed spheres (Schultz & Flack 2005), grit-blasted (Flack et al. 2016; Thakkar, Busse &
Sandham 2018) and others. Rough surfaces may also be categorized by distribution, such
as Gaussian (Flack et al. 2020; Ma, Alamé & Mahesh 2021; Altland et al. 2022), random
(randomly distributed regular roughness elements with Gaussian height distributions;
Forooghi et al. 2017, 2018), pseudo-random (Yang et al. 2022), multiscale (Yang &
Meneveau 2017; Medjnoun et al. 2021) and so on. The distinction between roughness
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types could also stem from its flow physics. For instance, the k-type and d-type roughness
(Jiménez 2004) exhibit different behaviours and correspond to sparse and densely packed
roughness elements, respectively.

The more recent literature seems to favour more precise categorizations based on
roughness’ statistics. Chung et al. (2021) identified several surface properties to be
hydrodynamically important. These include measures of roughness height (such as root
mean square krms, average ka, maximum peak to trough (kt), effective slope (ES), frontal
solidity (λf ), planar packing density (λp), skewness (Sk), and solid volume fraction (φ),
among others. A number of existing studies focus on the effects of variations in these
individual parameters. Placidi & Ganapathisubramani (2015) studied the effects of varying
λp and λf with ‘LEGO’ brick type roughness in the fully rough regime. Unlike cubical
roughness, they found roughness length to monotonically decrease with increasing λp,
suggesting that the same geometrical parameter may behave differently based on roughness
type. Thakkar, Busse & Sandham (2017) found that the streamwise correlation length plays
a role in determining the roughness function in addition to krms, Sk and λf for irregular
rough surfaces including samples that are cast, composite, hand-filed, grit-blasted, ground,
spark-eroded and from ship propellers. The effect of surface anisotropy was investigated
systematically by Busse & Jelly (2020) for irregular surfaces where another roughness
parameter, the surface anisotropy ratio, defined as the ratio of the streamwise and spanwise
correlation lengths, was varied and found to strongly influence the mean flow. Even
spanwise parameters such as the spanwise spacing (Vanderwel & Ganapathisubramani
2015) and spanwise effective slope (ESy) (Jelly et al. 2022) are found to significantly
affect mean flow statistics. It appears that whenever one varies a roughness parameter, that
roughness parameter stands out and plays an important role in determining the equivalent
sand-grain roughness height.

In anticipation of the discussion in the following sections, here we review the previous
studies of cubical roughness. Due to its simplicity, cubical roughness is one of the most
extensively studied types of surface roughness. Early experimental investigations on cube
patterns (O’Loughlin & Macdonald 1964) studied the effect of λp on equivalent roughness
size (ks/k), establishing that the resistance to flow reaches a maximum at an intermediate
λp, approximately 0.2, then tends towards smooth-wall behaviour at increasing cube
densities. Thanks to the rich physics that cube arrays can represent, several studies
have enriched the cubical roughness literature with details about the roughness sublayer
(Castro et al. 2006), aerodynamic characteristics (Cheng et al. 2007) and associated flow
structures (Volino, Schultz & Flack 2011). Computational studies implementing direct
numerical simulations (DNS) have further prompted discussions on the mean velocity
profile, equivalent roughness height (z0), and zero-plane displacement height (d). These
include works by Leonardi & Castro (2010) and Lee, Sung & Krogstad (2011), which
focused on turbulence statistics and coherent structures, respectively. The utility involved
in studying cubical roughness arising from its ability to generate surface parametrizations,
and the relevance to urban canopy studies, have also led to analytical roughness models by
Yang & Meneveau (2016) and Yang et al. (2016).

Based on the existing literature, it can be argued that surface features Sk and krms are
two of the most important parameters, and that a parameter space involving these features
would be significant to look at. Figure 1 highlights the context of this study with respect
to the existing literature in the Sk–krms/ka space. It can be seen that most studies have
focused on surfaces with either low Sk and low krms/ka or high Sk and high krms/ka. In
this study, we will expand the investigated parameter space by designing unique cubical
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Figure 1. Parameter space describing the rough surfaces in the current study and certain existing works: Flack
et al. (2020), Yang et al. (2022), Forooghi et al. (2017), Xu et al. (2021), Jouybari et al. (2021), Medjnoun et al.
(2021), Zhang et al. (2022) and Womack et al. (2022). Each dataset is denoted by the initials of the authors’
last names.

surfaces that fall in a region of low Sk and high krms/ka. This dataset will allow us to
study the hydrodynamic properties of unconventional roughness and test the efficacy of
the existing rough-wall modelling approaches. We will see that the valleys, or the pits, do
not contribute significantly to any of the first- and second-order statistics reported here.
We will also see that the accuracy of a rough-wall model depends largely on whether its
input space distinguishes the rough walls under consideration.

The rest of the paper is organized as follows. We present the details of the computational
set-up in § 2 along with the geometry of the rough surfaces. The DNS results, including the
instantaneous flow field and the mean flow statistics, are presented in § 3. We will see that
although the rough surfaces presented here are new, the resulting flow behaviour aligns
with trends found in the existing literature. In § 4, we discuss the implications of the DNS
results on roughness modelling. Finally, conclusions are given in § 5.

2. Computational details

2.1. Case set-up
Figure 2 depicts a half-channel set-up containing a wall with cube-like roughness
elements. This is a representative domain over which flow is computed for the DNS
runs. The bottom surface is a rough wall comprising pits (or valleys) and protrusions (or
peaks) in the form of cube-like elements. The x, y and z represent streamwise, spanwise
and wall-normal directions. Periodic conditions are applied to the lateral boundaries.
A stress-free condition with no penetration (∂u/∂z = ∂v/∂z = w = 0) is imposed on the
upper boundary. A streamwise pressure gradient acts as the forcing that drives the flow.
A friction Reynolds number Reτ ≈ 400 is used for all cases in this study, where Reτ is
defined as

Reτ = uτ (Lz − h2)

ν
. (2.1)

Note that the wall-normal length Lz used in (2.1) includes the depth of the negatively
skewed features or valleys h2. This depth h2 is subtracted from Lz to make a good estimate
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Figure 2. A sketch illustrating a periodic half-channel flow set-up over cube-like peaks and valleys. Here, h1
denotes peak height, h2 denotes valley depth, and b denotes the width of the cube-like element. The boundary
layer thickness δ here is at least 6 times the maximum of h1 and h2.

of the half-channel height. The friction velocity uτ is obtained using

uτ =
√∣∣∣∣d〈p̄〉

dx

∣∣∣∣ Vf

ρAp
≈

√∣∣∣∣d〈p̄〉
dx

∣∣∣∣ (Lz − h2)

ρ
, (2.2)

where d〈p̄〉/dx refers to the mean streamwise pressure gradient, and ρ, Vf and Ap refer to
the fluid density, half-channel fluid volume and wall-parallel area, respectively. Here 〈·〉
denotes the streamwise and spanwise averaging (or double-averaging) operation, and (·)
denotes time averaging.

Note that Vf includes the fluid volume within valleys, and the approximation sign in
(2.2) is used because the peak height is not always equal to the valley depth, causing
minor differences in Vf in some cases.

The size of the computational domain is determined such that Lx > 6Lz and Ly > 3Lz.
Lozano-Durán & Jiménez (2014) have shown that such a domain would be sufficiently
large to ensure the accuracy of first- and second-order statistics for plane channel flow.
Note that Lx and Ly represent the streamwise and spanwise domain lengths, respectively.
For rough-wall flows, this domain size should be a conservative estimate since DNS
studies in Coceal et al. (2006) and Leonardi & Castro (2010) produce good mean
flow statistics with smaller domains Lx × Ly × Lz = 4h × 4h × 4h and 8h × 6h × 8h,
respectively (h being the height of the cube). Other studies, such as Chung et al. (2015),
have shown that even further reduction in computational domain is possible in the
spanwise direction, and such minimal-span channels have been shown to capture accurate
mean drag characteristics (at least for sinusoidal roughness) when Ly > k/0.4 and L+

y >

100. Furthermore, since the roughness is regular, Lx and Ly are also integral multiples of
the length of the repeating tile to ensure a periodic domain. Here, a repeating tile represents
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the smallest unit that when repeated in the streamwise and spanwise directions produces
the entire surface.

A uniform grid has been utilized with grid resolution such that Δ+
x = Δ+

y < 5 and
Δ+

z < 3, where these represent streamwise, spanwise and wall-normal grid spacings,
respectively, normalized by the viscous length scale (δv = ν/uτ ). It is important to note
that while Δ+

z may appear to be large for DNS, this resolution is based on friction velocity
uτ obtained from (2.2). The δv value computed based on this uτ includes the form drag
component. If δv is computed from the local viscous stress at the mean surface comprising
the bottom wall, then the grid resolution is at most 0.66 plus units. Note that the local
viscous stress μ ∂u/∂n here does not pertain to the cube surfaces, where the corresponding
value would spike at the leading edge due to the strong shear rate. A similar grid resolution
Δ+

x = Δ+
y < 4.5 and Δ+

z ≈ 2.5 was used by Zhang et al. (2022) for deep canopy flows.
The grid spacing is also comparable to that in previous studies of rough-wall DNS, where
Coceal et al. (2006) used Δ+

x,y,z in the range 7.8–15.6, and Leonardi & Castro (2010)
used Δ+

x,y = 19. For further reference, DNS studies by Forooghi et al. (2017) have found
Δ+

x,y,zmax
= 3.5 to be more than sufficient. Yuan & Piomelli (2014b) utilize Δ+

x = 12 and
Δ+

y = 6, whereas Jouybari et al. (2021) employ Δ+
x = 7.5 and Δ+

y = 6.3 for obtaining
accurate flow statistics in their rough-wall channels.

All simulations are performed using LESGO: a parallel pseudo-spectral large-eddy
simulation code (see https://lesgo-jhu.github.io/lesgo), a solver of the filtered
Navier–Stokes equations with pseudo-spectral discretization in the streamwise and
spanwise directions, and a second-order finite difference in the wall-normal direction.
Code LESGO and modified versions of the code have been used extensively for studies
involving channel flows, including Bou-Zeid, Meneveau & Parlange (2005), Anderson
& Meneveau (2011), Abkar & Porté-Agel (2012), Zhu et al. (2017), Yang et al.
(2019), and several others. Immersed boundary conditions (Anderson 2013) are used at
the solid boundaries comprising the rough wall. A Courant–Friedrichs–Lewy number
(CFL = u �t/�x) of 0.2 is employed to automatically adjust the time step, which is
advanced via the second-order Adams–Bashforth scheme.

2.2. Roughness generation
Roughness elements are distributed in various arrangements to generate different rough
surfaces. We will vary one statistic at a time, but repeat the process and vary many
roughness statistics. Figures 3(a), 3(c) and 3(d) depict these elements aligned in the
spanwise (AY), streamwise (AX) and 45◦ (AXY) directions, respectively. Their staggered
equivalents (S and SXY) are shown in figures 3(b) and 3(e). Figure 3( f ) shows another
surface (NV) where the negatively skewed features (valleys) are removed. The rough
surfaces also include variations in λp, as indicated by figures 3(g) and 3(h), peak height
to width ratio (h1/b), and valley depth to width ratio (h2/b). Table 1 provides the naming
convention used, and table 2 lists all 36 different surfaces considered for the DNS study.
For each case, the nomenclature is as follows: [Arrangement][Packing density][Roughness
height], where arrangement could be AX, AY, AXY, S, SXY, NV, packing density could be
L1, L2, L3, and roughness height could be H1, H2, H3. For example, the L1, L2 and L3 in
AYL1H1, AYL2H1 and AYL3H1 correspond to λp magnitudes 6.25 %, 11.1 % and 25 %,
respectively. Similarly, the H1, H2 and H3 in AYL1H1, AYL1H2 and AYL1H3 denote
variations in the heights of the peaks as h1 = b, 1.2b, 0.8b. Note that in this context, the
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Figure 3. Top view of various rough-surface types considered for the DNS study: (a) AYL1H1, (b) SL1H1,
(c) AXL1H1, (d) AXYL1H1, (e) SXYL1H1, ( f ) NVL1H1, (g) AYL2H1 and (h) AYL3H1. Here, k is the
elevation of the surface. The peaks have positive k (depicted as yellow), and the valleys have negative k
(depicted as blue).

conditions h1/h2 = 1, h1/h2 > 1 and h1/h2 < 1 correspond to zero skewed, positively
skewed and negatively skewed surfaces. The separation lengths between the roughness
elements are listed as 4b, 3b and 2b for L1, L2 and L3 configurations, with b/Lz assuming
values 0.1375, 0.1111 and 0.1429 for H1, H2 and H3 cases, respectively.

The definitions for a few roughness statistics krms, ka, kt, Sk, ES, Ku and λp (which are
discussed further in table 3) for the rough surfaces thus generated are listed as follows:

k̄ = 1
LxLy

∫
Lx

∫
Ly

k(x, y) dx dy, (2.3)

ka = 1
LxLy

∫
Lx

∫
Ly

|k(x, y) − k̄| dx dy, (2.4)
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Arrangement Packing density Roughness height

AX: streamwise-aligned L1: 6.25 % (AX, AY, AXY, S, SXY) H1: h1 = b
AY: spanwise-aligned L1: 3.13 % (NV) H2: h1 = 1.2b
AXY: 45 ◦-aligned L2: 11.1 % (AX, AY, AXY, S, SXY) H3: h1 = 0.8b
S: staggered L2: 5.55 % (NV)
SXY: 45 ◦-staggered L3: 25 % (AX, AY, AXY, S, SXY)
NV: no-valley L3: 12.5 % (NV)

Table 1. Nomenclature for the 36 configurations of the parameter space studied.

Case λp h1/b h2/b Nx × Ny × Nz Lx/b × Ly/b × Lz/b N

AYL1H1 6.25 1.0 1.0 672 × 336 × 160 48.0 × 24.0 × 7.3 36 + 36
AYL2H1 11.1 1.0 1.0 672 × 336 × 160 48.0 × 24.0 × 7.3 64 + 64
AYL3H1 25.0 1.0 1.0 616 × 336 × 160 44.0 × 24.0 × 7.3 132 + 132
AYL1H2 6.25 1.2 1.0 672 × 384 × 180 56.0 × 32.0 × 9.0 56 + 56
AYL2H2 11.1 1.2 1.0 648 × 360 × 180 54.0 × 30.0 × 9.0 90 + 90
AYL3H2 25.0 1.2 1.0 672 × 336 × 180 56.0 × 28.0 × 9.0 196 + 196
AYL1H3 6.25 0.8 1.0 672 × 336 × 175 48.0 × 24.0 × 7.0 36 + 36
AYL2H3 11.1 0.8 1.0 588 × 336 × 175 42.0 × 24.0 × 7.0 56 + 56
AYL3H3 25.0 0.8 1.0 616 × 336 × 175 44.0 × 24.0 × 7.0 132 + 132
SL1H1 6.25 1.0 1.0 672 × 336 × 160 48.0 × 24.0 × 7.3 36 + 36
SL2H1 11.1 1.0 1.0 672 × 336 × 160 48.0 × 24.0 × 7.3 64 + 64
SL3H1 25.0 1.0 1.0 616 × 336 × 160 44.0 × 24.0 × 7.3 132 + 132
SL1H2 6.25 1.2 1.0 672 × 384 × 180 56.0 × 32.0 × 9.0 56 + 56
SL2H2 11.1 1.2 1.0 648 × 360 × 180 54.0 × 30.0 × 9.0 90 + 90
SL3H2 25.0 1.2 1.0 672 × 336 × 180 56.0 × 28.0 × 9.0 196 + 196
SL1H3 6.25 0.8 1.0 672 × 336 × 175 48.0 × 24.0 × 7.0 36 + 36
SL2H3 11.1 0.8 1.0 588 × 336 × 175 42.0 × 24.0 × 7.0 56 + 56
SL3H3 25.0 0.8 1.0 616 × 336 × 175 44.0 × 24.0 × 7.0 132 + 132
AXL1H1 6.25 1.0 1.0 672 × 336 × 160 48.0 × 24.0 × 7.3 36 + 36
AXL2H1 11.1 1.0 1.0 672 × 336 × 160 48.0 × 24.0 × 7.3 64 + 64
AXL3H1 25.0 1.0 1.0 616 × 336 × 160 44.0 × 24.0 × 7.3 132 + 132
AXL1H2 6.25 1.2 1.0 672 × 384 × 180 56.0 × 32.0 × 9.0 56 + 56
AXL2H2 11.1 1.2 1.0 648 × 360 × 180 54.0 × 30.0 × 9.0 90 + 90
AXL3H2 25.0 1.2 1.0 672 × 336 × 180 56.0 × 28.0 × 9.0 196 + 196
AXL1H3 6.25 0.8 1.0 672 × 336 × 175 48.0 × 24.0 × 7.0 36 + 36
AXL2H3 11.1 0.8 1.0 588 × 336 × 175 42.0 × 24.0 × 7.0 56 + 56
AXL3H3 25.0 0.8 1.0 616 × 336 × 175 44.0 × 24.0 × 7.0 132 + 132
AXYL1H1 6.25 1.0 1.0 724 × 362 × 160 45.3 × 22.6 × 7.3 32 + 32
AXYL2H1 11.1 1.0 1.0 916 × 458 × 160 50.9 × 25.5 × 7.3 72 + 72
AXYL3H1 25.0 1.0 1.0 724 × 362 × 160 45.3 × 22.6 × 7.3 128 + 128
SXYL1H1 6.25 1.0 1.0 724 × 362 × 160 45.3 × 22.6 × 7.3 32 + 32
SXYL2H1 11.1 1.0 1.0 916 × 458 × 160 50.9 × 25.5 × 7.3 72 + 72
SXYL3H1 25.0 1.0 1.0 724 × 362 × 160 45.3 × 22.6 × 7.3 128 + 128
NVL1H1 3.13 1.0 0.0 576 × 288 × 160 48.0 × 24.0 × 7.3 36 + 0
NVL2H1 5.55 1.0 0.0 576 × 288 × 160 48.0 × 24.0 × 7.3 64 + 0
NVL3H1 12.5 1.0 0.0 528 × 288 × 160 44.0 × 24.0 × 7.3 132 + 0

Table 2. Details of the DNS case-set-up, where λp, h1/b, h2/b denote planar packing density, peak height to
width, and valley depth to width ratios, respectively; Nx,y,z denotes the number of grid cells in the streamwise
(x), spanwise (y) and wall-normal (z) directions; N denotes the number of peaks plus valleys in the case. Note
that the surface coverage densities of the NV cases are half the value of their AX (and AY) counterparts.
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krms =
√

1
LxLy

∫
Lx

∫
Ly

|k(x, y) − k̄|2 dx dy, (2.5)

kt = max(k(x, y)) − min(k(x, y)), (2.6)

Sk = 1
LxLy

∫
Lx

∫
Ly

(k(x, y) − k̄)3 dx dy/k3
rms, (2.7)

Ku = 1
LxLy

∫
Lx

∫
Ly

|k(x, y) − k̄|4 dx dy/k4
rms, (2.8)

ES = 1
Lx

∫
Lx

∣∣∣∣∂k
∂x

∣∣∣∣ dx, (2.9)

λp = Ap

LxLy
. (2.10)

The packing density λp in (2.10) is defined in the same way as plan solidity in Chung
et al. (2021). Here, Ap comprises the plan area of roughness elements, which in this case
includes the base area of peaks and valleys.

Additional constraints have been placed to ensure that the grid surface matches the
cube surface for accurate roughness representation in the simulations. This is done by
enforcing b/Δx, b/Δy, h1/Δz and h2/Δz to be integers, where Δx, Δy and Δz stand for
the grid spacing in the streamwise, spanwise and wall-normal directions. This has been
implemented for all cases except the 45◦ alignment rough surfaces.

As can be seen from figure 4, the grid is in perfect alignment with the roughness element
in AYL1H1 as opposed to AXYL1H1. As a result, there are minor variations in the average
roughness height ka/b, root mean square roughness height krms/ka, and kurtosis Ku for
AXYLiH1 and SXYLiH1 surfaces when compared with AYLiH1 and SLiH1, where
i = 1, 2, 3. This can be noticed in table 3. A finer resolution has been opted for in all
such cases to minimize these variations. The streamwise and spanwise grid resolutions, in
terms of number of cells per roughness element, are given by b/Δx = b/Δy = 12–14 for
AX, AY, S and NV surfaces. These grid resolutions are approximately 16–18 for AXY and
SXY surfaces. The wall-normal grid resolution is in the range b/Δz = 20–25 for all cases.

3. DNS results

The rough walls that we study cover an underexplored region in roughness parameter space
and therefore are a good addition to the rough-wall literature. In this section, we first
discuss qualitative findings pertaining to the instantaneous flow field. Subsequently, the
quality of our channel flow simulations is examined with the help of the mean momentum
budget, followed by results of mean velocity profiles and quantitative estimates of effective
roughness height (z0) and zero-plane displacement height (d). The section concludes with
Reynolds and dispersive stress results and comparisons for all 36 cases.

3.1. Instantaneous flow field
We begin by presenting the instantaneous flow field as an introduction to the dataset. From
the contours in figure 5, an overall decrease in instantaneous bulk velocity can be observed
with increasing λp. A region of reduced streamwise velocity can be noted in the immediate
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Case ka/b krms/ka Sk Ku kt/ka ES Rlx/ka Rly/ka d/b z0/b

AYL1H1 0.063 4.00 0.00 16.0 31.98 0.125 127.9 63.95 0.182 0.047
AYL2H1 0.111 2.99 0.00 9.00 17.97 0.222 53.92 26.96 0.361 0.068
AYL3H1 0.250 2.00 0.00 4.00 7.99 0.500 15.99 7.990 0.549 0.117
AYL1H2 0.075 3.70 1.01 16.4 29.45 0.138 107.0 53.49 0.296 0.064
AYL2H2 0.132 2.78 0.72 9.22 16.63 0.244 45.31 22.65 0.444 0.101
AYL3H2 0.293 1.88 0.41 4.06 7.50 0.550 13.62 6.81 0.703 0.150
AYL1H3 0.062 3.63 −1.23 16.7 28.90 0.113 128.3 64.16 0.149 0.031
AYL2H3 0.110 2.75 −0.88 9.32 16.38 0.200 54.59 27.26 0.218 0.048
AYL3H3 0.244 1.86 −0.49 4.09 7.39 0.450 16.38 8.19 0.424 0.086
SL1H1 0.063 4.00 0.00 16.0 31.98 0.125 127.9 127.9 0.234 0.042
SL2H1 0.111 2.99 0.00 9.00 17.97 0.222 53.92 53.92 0.293 0.069
SL3H1 0.250 2.00 0.00 4.00 7.99 0.500 15.99 15.99 0.474 0.120
SL1H2 0.075 3.70 1.01 16.4 29.45 0.138 107.0 107.0 0.300 0.062
SL2H2 0.132 2.78 0.72 9.22 16.63 0.244 45.31 45.31 0.391 0.104
SL3H2 0.293 1.88 0.41 4.06 7.50 0.550 13.62 13.62 0.620 0.154
SL1H3 0.062 3.63 −1.23 16.7 28.90 0.113 128.3 128.3 0.163 0.027
SL2H3 0.110 2.75 −0.88 9.32 16.38 0.200 54.59 54.59 0.183 0.047
SL3H3 0.244 1.86 −0.49 4.09 7.39 0.450 16.38 16.38 0.350 0.088
AXL1H1 0.063 4.00 0.00 16.0 31.98 0.125 63.95 127.9 0.243 0.026
AXL2H1 0.111 2.99 0.00 9.00 17.97 0.222 26.96 53.92 0.287 0.034
AXL3H1 0.250 2.00 0.00 4.00 7.99 0.500 7.99 15.99 0.555 0.027
AXL1H2 0.075 3.70 1.01 16.4 29.45 0.138 53.49 107.0 0.417 0.033
AXL2H2 0.132 2.78 0.72 9.22 16.63 0.244 22.65 45.31 0.473 0.045
AXL3H2 0.293 1.88 0.41 4.06 7.50 0.550 6.81 13.62 0.789 0.047
AXL1H3 0.062 3.63 −1.23 16.7 28.90 0.113 64.16 128.3 0.076 0.021
AXL2H3 0.110 2.75 −0.88 9.32 16.38 0.200 27.26 54.59 0.272 0.023
AXL3H3 0.244 1.86 −0.49 4.09 7.39 0.450 8.19 16.38 0.396 0.018
AXYL1H1 0.065 3.92 0.00 15.5 30.90 0.176 180.9 180.9 0.080 0.079
AXYL2H1 0.110 3.02 0.00 9.08 18.21 0.307 76.26 76.26 0.005 0.139
AXYL3H1 0.247 2.01 0.00 4.04 8.09 0.688 22.61 22.61 0.070 0.201
SXYL1H1 0.065 3.92 0.00 15.48 30.90 0.176 90.45 90.45 −0.424 0.107
SXYL2H1 0.110 3.02 0.00 9.08 18.21 0.307 38.13 38.13 0.128 0.109
SXYL3H1 0.247 2.01 0.00 4.04 8.09 0.688 11.31 11.31 0.535 0.120
NVL1H1 0.060 2.87 5.88 30.0 16.56 0.063 132.5 66.27 0.132 0.048
NVL2H1 0.105 2.18 3.88 16.1 9.55 0.111 57.18 28.59 0.350 0.068
NVL3H1 0.219 1.51 2.27 6.14 4.57 0.250 18.29 9.14 0.636 0.106

Table 3. Hydrodynamic properties of roughness. The geometric parameters listed include average and root
mean square roughness height ka and krms, skewness Sk, kurtosis Ku, maximum peak to trough height kt,
effective slope (along the x direction) ES, streamwise and spanwise correlation lengths Rlx and Rly (defined in
(4.6), (4.7)). Here, d denotes zero-plane displacement height, and z0 is the effective roughness height.

wake of the protrusions. The flow in the pits can be observed to be less energetic, and their
interactions with the outer layer are minimal.

Figure 6 shows the velocity contours on a wall-parallel plane near the peak height for
different roughness element arrangements at the same λp. By visual inspection, contours
in figures 6(a) and 6(b) are observed to have similar and intermediate average streamwise
velocities. Figure 6(c) contains the highest and figure 6(d) the lowest average streamwise
velocities amongst these four cases. In all cases, streamwise streaks of high and low
velocities can be observed near the roughness peak. These streaks are noticeably longer
in certain cases, such as in figure 6(c), as the wakes overlap each other. These wake
interactions become more pronounced at higher λp and result in a flow-sheltering effect as
observed in densely packed surfaces such as in Xu et al. (2021).
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Figure 4. Top and side views of DNS grids used for two cases: (a,c) AYL1H1 and (b,d) AXYL1H1. The side
views are streamwise wall-normal (x–z) planes cut at the middle of the cubes. The top views are wall-parallel
(x–y) planes cut near the roughness peak.
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Figure 5. Streamwise instantaneous velocity contours at y/Ly ≈ 0.43 for (a) AYL1H1, (b) AYL2H1 and
(c) AYL3H1.
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Figure 6. Streamwise instantaneous velocity contours at z/b ≈ 1.0 for (a) AYL1H1, (b) SL1H1, (c) AXL1H1
and (d) AXYL1H1.
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Although we will pursue a quantitative analysis in the following subsections, here we
may already conclude first that the valleys do not contribute significantly to the drag, and
second that two-point rough-wall statistics are important to the characterization of the
equivalent sand-grain roughness height ks.

3.2. Statistical convergence
Before presenting the flow statistics, we first check the statistical convergence of our data.
The statistical convergence can be evaluated with the help of the mean momentum budget
following Coceal et al. (2006), Leonardi & Castro (2010), Xu et al. (2021) and Zhang et al.
(2022). The equation is comprised of viscous diffusion, turbulent transport, dispersive
stress and pressure-gradient terms:

ν
d〈ū〉
dz

− 〈u′w′〉 − 〈u′′w′′〉 = 1
ρ

d〈p̄〉
dx

(z − δ). (3.1)

It is considered to be statistically converged when the sum of these stresses is a
linear function of the wall-normal distance (z), i.e. when the budget balances without
the unsteady term. Note that (3.1) is obtained by integrating the x component of the
double-averaged momentum equation

d
dz

(
ν

d〈ū〉
dz

− 〈u′w′〉 − 〈u′′w′′〉
)

− 1
ρ

d〈p̄〉
dx

− f = 0 (3.2)

found in (15) of Nikora et al. (2013), with static roughness in place of the mobile roughness
assumed by the authors. Here, f represents the drag force. As f is non-zero within
the roughness-occupied region, (3.1) applies to the region outside the roughness only.
The averaging procedure corresponds to the double-averaging method, common in the
roughness literature, introduced by Raupach & Shaw (1982) for flows within vegetation
canopies. The spatial averaging used in the context of (3.1) and (3.2) is superficial, as per
the definition for superficial averaging in Schmid et al. (2019).

Figure 7 shows these terms for a few cases. These cases have been selected so that they
include different λp, Sk and roughness arrangements while maintaining brevity. We see
that the total stresses in all cases follow a linear function of z/b, therefore our DNS are
statistically converged. In addition, we make the following observations. The Reynolds
stress R13 can be observed to be the largest in magnitude as compared to the viscous stress
τv and dispersive stress D13 outside the roughness-occupied layer. The roughness-occupied
layer is marked by the vertical line in figure 7. In the roughness-occupied layer, i.e. below
this marking, τv is observed to contain two maxima, one caused by the surface at z = 0,
and the other near the cube height z = h1. The latter is also observed in other DNS studies
by Xu et al. (2021) and Zhang et al. (2022). Meanwhile, R13 attains a maximum just above
the peak height, and declines to zero as z approaches the outer layer; D13 is small and
contained within the roughness region for most cases. For z/b < 0, i.e. below the surface
in the region of valleys, all stresses are observed to be negligible. Note that figure 7(e)
starts from z/b = 0 as the case NVL1H1 contains no valleys.

It might be worth noting certain differences in dispersive stress D13 in figure 7. For
instance, most noticeable would be the differences in cases AYL3H1 and NVL1H1: D13
is observed to be non-negligible within the roughness-occupied region for AYL3H1,
whereas D13 for NVL1H1 inside the sublayer is almost zero. Figure 8 aims to provide an
intuitive explanation for this. Here, the dispersive streamwise and wall-normal fluctuating
components, u′′ and w′′, are shown for averaged repeating tiles for cases NVL1H1 and
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Figure 7. The stress budget plot comprising Reynolds stress R13, dispersive stress D13, viscous stress τv and
total stress τt for cases: (a) AYL3H1, (b) SL1H2, (c) SL2H3, (d) AXL2H3, (e) NVL1H1 and ( f ) AXYL3H1.
The black solid line corresponds to 1 − z/δ.The vertical dashed line denotes the peak roughness height.

AYL3H1. Three planes, one within and the others at and above the roughness crest,
are chosen to display their scatter. When u′′ and w′′ predominantly lie in the second or
fourth quadrant, the dispersive stress −〈u′′w′′〉 becomes positive. The negative slope of
the linear fit is also indicative of this. This can be seen in figure 8(c), which corresponds to
NVL1H1 just above the roughness, and figure 8(d), which corresponds to AYL3H1 within
the roughness. These may indirectly imply mean flow inhomogeneity, which is due to the
presence of surface roughness and/or secondary flows. On the other hand, when the points
are more evenly spread across all quadrants, as is the case in figures 8(a), 8(b) and 8(e), or
too close to the origin as in figure 8( f ), this dispersive stress becomes negligible.

3.3. Mean velocity profiles
The mean flow statistics are presented in this subsection. Additionally, the relevant rough
surface parameters and the hydrodynamic properties determined from mean velocity
profiles are also listed in table 3.

Figure 9(a) shows the inner scaled mean velocity profiles, comparing the
spanwise-aligned and staggered cases, i.e. the AY cases and the S cases. The following
observations can be duly noted. First, the higher λp cases of surface coverage density
25 %, comprising AYL3H1, AYL3H2, AYL3H3 and their staggered counterparts SL3H1,
SL3H2 and SL3H3, produce lower magnitudes of mean velocity. This is expected for
roughness in the k-type regime. Second, the staggered arrangement produces similar
velocity profiles to the spanwise-aligned arrangement. This is not unexpected, and similar
observations were made in Yang et al. (2016). Due to a large spanwise distance between
neighbouring roughness elements in the spanwise direction, staggering the roughness
element in the streamwise direction has little effect on the mean flow. Finally, at constant
λp, cases with higher skewness (Sk) produce lower mean velocity profiles. This role of Sk is
apparent as we notice increased drag with increased Sk (consistent with systematic studies

999 A78-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

95
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.956


S.S. Nair, V.A. Wadhai, R.F. Kunz and X.I.A. Yang

1.0

0.5

0

0

0.5

1.0

–0.5

–0.5

–1.0

0

0.5

1.0

–0.5

–1.0

0

0.5

1.0

–0.5

–1.0

0

0.5

1.0

–0.5

–1.0

0

0.5

1.0

–0.5

–1.0

w
′′ /

u τ
w

′′ /
u τ

u′′/uτ u′′/uτ u′′/uτ

–1.0
–2 0 2 4 –2 0 2 4 –2 0 2 4

–2 0 2 4 –2 0 2 4 –2 0 2 4

(e) ( f )

(b)(a)

(d )

(c)

Figure 8. Quadrant analysis for the dispersive stress components of D13 for cases NVL1H1 at (a) z/b = 0.5,
(b) z/b = 1, (c) z/b = 2 and AYL3H1 at (d) z/b = 0.5, (e) z/b = 1 and ( f ) z/b = 2. The solid black line
depicts a linear fit on the data points.

performed by Flack et al. 2020), and we observe this effect in all our cases, irrespective of
arrangement. For example, comparing AYL1H1, AYL1H2 and AYL1H3 from figure 9(a)
or AXL1H1, AXL1H2 and AXL1H3 from figure 9(b) at the same z+, one can notice
that the mean velocities in the log layer are slightly lower for the surface with higher Sk
(H3 cases being lower than H2 and H1 cases). In the present dataset, variations in Sk are
introduced by varying the height of the peaks, while maintaining the depth of the dips
constant, therefore any changes due to Sk could also be viewed as due to the roughness
height. Similarly, as variations in krms/ka are introduced by varying the surface coverage
density, any changes due to krms/ka could also be viewed as due to surface coverage
density.

Similarly, figure 9(b) compares mean velocity profiles for roughness with streamwise
and spanwise alignment, i.e. AX cases and AY cases. When the roughness features
are aligned in the streamwise direction, higher mean velocities can be observed as
compared to those aligned in the spanwise direction. An intuitive explanation for this is
the unobstructed passage of fluid between two rows of roughness elements giving the fluid
less drag when they are aligned in the streamwise direction. This is also evident from the
instantaneous velocity contours in figure 6(c).

Figure 10 includes the mean velocity profiles from the 45◦ arrangements (XY), with
figure 10(a) comparing AY, AX, AXY, and figure 10(b) comparing S and SXY. For the
same λp, the surfaces follow AX > AY > AXY in figure (a), and S > SXY in figure (b)
for the order of mean velocity magnitudes in the log-law region. The orientation of the
roughness element is found to be an important factor here. The AXY and SXY surfaces
possess a higher frontal area (i.e. higher solidity) as compared to their counterparts AX,
AY or S, which is the reason for the higher drag observed for these surfaces.
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Figure 9. Mean streamwise velocity profile comparing (a) spanwise-aligned and staggered cases, and
(b) spanwise-aligned and streamwise-aligned cases.

Figure 11(a) shows the mean velocity profiles comparing three pairs of surfaces with
and without valleys. It can be observed that the valleys do contribute to mean velocity
reduction, but by only a small amount. This reduced mean velocity can be inferred to be
caused by the additional pressure drag contributions from the valleys. In support of this
claim, figures 11(b) and 11(c) are shown, which contain mean pressure contours that are

999 A78-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

95
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.956


S.S. Nair, V.A. Wadhai, R.F. Kunz and X.I.A. Yang

20

15

5

0

100 101 102

z+

100 101 102

z+

10

20

15

5

0

10〈u–〉+

AYL1H1
AYL2H1
AYL3H1

AXL1H1
AXL2H1
AXL3H1
AXYL1H1
AXYL2H1
AXYL3H1
Log law

SL1H1
SL2H1
SL3H1
SXYL1H1
SXYL2H1

SXYL3H1
Log law

(b)(a)

Figure 10. Mean streamwise velocity profile comparing (a) spanwise, streamwise and 45◦ aligned cases, and
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20
AYL1H1
AYL2H1

AYL3H1

NVL1H1

NVL2H1

NVL3H1

Log-law

15

10

5

0
100 101 102

z+

2

2

1

1

0

x/b

z/b

z/b

4 6

3

2

1

0

p–+

2 4 6

〈u–〉+

(b)

(a)

(c)

Figure 11. Details of the effects of valleys. (a) Mean streamwise velocity profile comparing cases with and
without valleys. The solid and dotted lines depict spanwise-aligned and no-valleys cases, respectively. (b) Mean
pressure contours for a repeating tile in NVL1H1. (c) Mean pressure contours for a repeating tile in AYL1H1.

averaged over repeating tiles in both (x, y) directions in AYL1H1 and NVL1H1. In these
pressure contours, which are normalized by ρu2

τ , the volume-averaged mean pressure is
taken as the reference pressure. The additional pressure drop can be noticed clearly in
valleys. Note that the observation here cannot be generalized to all dips. In particular, dips
or valleys will play a significant role if they occupy a considerable part of the surface area,
in which scenario a new bottom surface forms and the protrusions between the dips can be
viewed as surface roughness.

Next, we measure the hydrodynamic properties of the roughness. The effective
roughness height z0 and zero-plane displacement height d for the rough surfaces are
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Figure 12. Plot showing the sensitivity to variations in von Kármán constant κ for spanwise-aligned (AY)
and staggered (S) cases for the calculated (a) effective roughness height z0/b, and (b) zero-plane displacement
height d/b.

determined from the mean streamwise velocity profiles as

〈ū〉
uτ

= 1
κ

log
z − d

z0
, (3.3)

where 〈ū〉 and z are taken from the log-law region, which has been taken to be in the range
(z − h1)

+ ≈ 30–100. Further evidence of the existence of a log law in this range will be
discussed later with the help of figure 13. Linear regression of (3.3) yields the resulting
z0 and d reported in table 3. Here, the von Kármán constant is set to κ = 0.4. There can
be alternate approaches to calculate d from the centroid of the total force distribution
following Jackson (1981) and Coceal et al. (2006). However, it is also observed that the
centre of the force could sometimes underestimate d when the flow primarily interacts
with the top portion of the roughness, as seen in figure 7 of Xu et al. (2021). Here, we
prefer regression fitting over this approach for the aforementioned reason.

Since we assume the value of the von Kármán constant κ = 0.4 for our regression
procedure, checking the changes in measured z0/b due to variations in κ is important.
Figure 12 shows the sensitivity of calculated z0/b and d/b with various values of κ . It
can be seen that z0/b decreases and d/b increases with κ . While we do see noticeable
variations in these values, it is worth noting that these changes would not be significant on
the log scale, which is the relevant scale for the drag produced by these surfaces. Also, for
a given value of κ , the differences in z0/b and d/b are almost the same, which means that
it is reasonable to compare these values for the different surfaces.

Further, we note that determining the roughness height z0 or equivalent sand-grain
roughness height ks requires the flow to be in the fully rough regime. Based on Jiménez
(2004), flow is considered fully rough when k+

s > 80. In Jouybari et al. (2021), the authors
have chosen k+

s > 50 to be their definition for the fully rough regime. We have verified that
all surfaces except AXL1H3 and AXL3H3 satisfy this latter condition, the k+

s values for
which stand at 42.6 and 36 respectively. However, it is important to note that the exact
value of k+

s for which this transition to fully rough flow happens is unknown and also
depends on the type of roughness being considered Flack & Schultz (2010). Even so, we
could still measure �U+ and z0, and discuss their variations with respect to the roughness
as we are making these comparisons at a fixed Reynolds number (Reτ = 400).
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Figure 13. Plot showing the log-law collapse for all cases: (a) AY, S cases; (b) AX, NV, AXY and SXY cases.
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Figure 14. Velocity defect profiles for all surfaces: (a) AY, S cases; (b) AX, NV, AXY and SXY cases.

Figure 13 illustrates the quality of this log-law fit. The mean velocity plots can be
observed to show a good collapse in the log layer region for all cases. The collapse
is also a sign of mean flow universality, wherein such two-parameter forms of mean
velocity profiles have been know to be adequate irrespective of the rough surface for
h/δ ≈ 0.03–0.5. Figure 14 shows mean velocity profiles in defect form. This is being
presented here as evidence for outer-layer similarity. Reasonably well collapsed regions
can be observed farther away from the wall for the smooth- and rough-wall cases,
underscoring a universality in mean flow behaviour in the outer layer irrespective of
surface conditions for fully rough flow.

The mean velocity profile for the smooth wall in figures 14(a) and 14(b) was obtained
from DNS of a half-channel with Reτ = 400. Similarly, figure 15 depicts outer-layer
similarity in the streamwise Reynolds stress profiles.

Figure 16 summarizes the z0 magnitudes for all cases, and the data are consistent
with the various mean velocity profiles observed so far. Figure 16(a) compares the
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Figure 15. Normalized streamwise Reynolds stress profiles for all surfaces: (a) AY, S cases; (b) AX, NV,
AXY and SXY cases.

spanwise-aligned (AY) and staggered (S) cases. The z0/b magnitudes are observed to
be similar between the AY and S cases when comparing cases with similar λp and Sk
magnitudes. When cases with similar packing densities λp and orientation but different Sk
are compared – for instance, AYL1H1, AYL1H2 and AYL1H3 – z0/b increases with Sk.
This holds true for all cases listed in table 3. When cases with similar Sk and orientation
but different λp are compared – for instance, AYL1H1, AYL2H1 and AYL3H1 – z0/b
decreases with decreasing krms/ka. This is observed true for all cases except the AX
surfaces, which will be discussed subsequently. It should be of interest to note that low
krms/ka magnitudes actually correspond to high krms/b and λp. The normalization with
ka causes this as an increment in λp increases both ka and krms, but ka increases at a rate
faster than krms. Figure 16(b) compares the spanwise-aligned (AY) and streamwise-aligned
(AX) cases. The effects due to changes in roughness element alignment are evident as
the AX surfaces in figure 16(b) show notably lower z0/b magnitudes when compared
to AY surfaces. For instance, even the densely packed surfaces AXL3H1, AXL3H2 and
AXL3H3, which have higher solidities, are lower in z0/b than the coarsely packed surfaces
AYL1H1, AYL1H2 and AYL1H3. Moreover, it can be noticed that z0/b first increases then
decreases with decreasing krms/ka (or increasing λp) for H1 and H3 cases in AX surfaces.
For higher λp surfaces AXL2H2 and AXL3H2, the increase in z0/b is not as significant as
it is for AYL2H2 and AYL3H3. These observations showcase a flow-sheltering effect in
AX surfaces. Trends with changes in Sk for AX surfaces are similar to those observed
in AY ones, with z0/b increasing with increasing Sk. Figure 16(c) reports the effect
of valleys on z0/b. The presence of valleys in the AY cases leads to higher krms/ka
compared to the NV cases, but the z0/b magnitudes are very close between the AY and NV
cases, with some noticeable difference at low krms/ka magnitudes. Figure 16(d) presents
spanwise-aligned (AY), 45◦ alignment (AXY) and their respective staggered equivalents
(S and SXY). A significant increase in z0/b can be observed as alignment is changed
to 45◦ when comparing AY and AXY. Also, SXY falls in the intermediate, with z0/b
increasing due to a change in alignment when compared with S. However, this effect is
less pronounced as λp increases or krms/ka decreases.

999 A78-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

95
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.956


S.S. Nair, V.A. Wadhai, R.F. Kunz and X.I.A. Yang

0.20
(a) (b)

(c) (d )

0.15

0.05

0.10z 0
/
b

0

0.20
AYL1H1–AYL3H1
AYL1H2–AYL3H2
AYL1H3–AYL3H3
SL1H1–SL3H1
SL1H2–SL3H2
SL1H3–SL3H3

AYL1H1–AYL3H1

AYL1H1–AYL3H1
NVL1H1–NVL3H1

AYL1H1–AYL3H1
AXYL1H1–AXYL3H1
SL1H1–SL3H1
SXYL1H1–SXYL3H1

AYL1H2–AYL3H2
AYL1H3–AYL3H3
AXL1H1–AXL3H1
AXL1H2–AXL3H2
AXL1H3–AXL3H3

0.15

0.05

0.10

0

0.20

1.5 2.0 2.5 3.0 3.5 4.0 1.5 2.0 2.5 3.0 3.5 4.0

1.5 2.0 2.5

krms/ka krms/ka

3.0 3.5 4.0 1.5 2.0 2.5 3.0 3.5 4.0

0.15

0.05

0.10z 0
/
b

0

0.20

0.15

0.05

0.10

0

Figure 16. The effective roughness length to width ratio (z0/b) for the various cases: (a) spanwise-aligned
versus staggered; (b) spanwise-aligned versus streamwise-aligned; (c) spanwise-aligned with and without
valleys; (d) spanwise-aligned/staggered and their 45◦ rotated equivalents.

3.4. Reynolds and dispersive stresses
We present the Reynolds stress and dispersive stress results. These results are usually not
relevant to roughness modelling but are fundamental aspects of the flow, and we present
them here for completeness.

Figure 17 shows the normal components of the horizontally averaged Reynolds and
dispersive stresses for the five spanwise-aligned (AYL1H1, AYL2H1, AYL3H1, AYL1H2,
AYL1H3) and staggered (SL1H1, SL2H1, SL3H1, SL1H2, SL1H3) cases. At first glance,
all stresses are negligible in the valleys below the surface at z = 0, and the spanwise
and wall-normal components of the dispersive stresses are small throughout the channel.
Second, it can be observed that the corresponding streamwise components of both stresses
(uu) are higher than the respective spanwise (vv) and wall-normal (ww) components for all
cases. Third, the maximum value for dispersive stress lies within the roughness-occupied
layer, whereas for the Reynolds stress, the maxima lie in the neighbourhood of the
roughness peak. Moreover, the dispersive stress spike for staggered cases is slightly higher
than for the aligned ones. This spike also decreases with packing density for this set of
cases. This can be attributed to the reduced inhomogeneity in the mean velocity field as
the spacing between cubes reduces. Comparing the zero skewed surface (figure 17a) with
the corresponding positively skewed (figure 17d) and negatively skewed (figure 17e) ones,
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Figure 17. Reynolds 〈u′
iu

′
j〉+ and dispersive 〈u′′

i u′′
j 〉+ stress comparisons for spanwise-aligned and staggered

cases. The solid and dashed lines depict aligned and staggered arrangements, respectively. Cases: (a) AYL1H1
and SL1H1; (b) AYL2H1 and SL2H1; (c) AYL3H1 and SL3H1; (d) AYL1H2 and SL1H2; and (e) AYL1H3
and SL1H3. The vertical line indicates peak roughness height.

it can be seen that the dispersive stress spike gets narrower and increases with decreasing
Sk. The narrowing is an indirect consequence of the decrease in roughness height (h1/b) as
Sk decreases. The Reynolds stresses, on the other hand, are similar irrespective of packing
density or skewness.

Similarly, plots comparing the stresses for spanwise-aligned (AY) and
streamwise-aligned (AX) surfaces are shown in figure 18. The higher magnitudes of
dispersive stress for AX surfaces are due to the presence of high momentum pathways
between two rows of cubes and low momentum pathways over cube locations. Unlike
in figure 17, the dispersive stress spike here increases with packing density for the AX
surfaces. To further probe these observations, the streamwise mean velocity contours
for AYL1H1, AYL2H1, AXL1H1 and AXL2H1 near the roughness peaks are shown in
figures 19(a), 19(b), 19(c) and 19(d) respectively. Indeed, we see more inhomogeneity in
the mean flow in figures 19(c) and 19(d) due to the overlapping wake regions and the
high momentum pathways formed in between the cubes. With respect to skewness, the
increasing trend of dispersive stress with decreasing skewness for AX surfaces is similar
to that observed in AY surfaces.

The normal stress comparisons in figure 20 show slight variations when valleys are
removed from AYL1H1, AYL2H1 and AYL3H1. Note that the NV surfaces have very
different roughness statistics in krms/ka, Sk, Ku and ES, but very similar Reynolds and
dispersive stresses (figure 20), mean velocity profiles (figure 11) and z0/b (figure 16c)
with respect to the AY and S counterparts.

In figures 17, 18 and 20, it can be observed that the streamwise dispersive component
is still measurable near the half-channel height. These effects hint at the presence of
secondary flows within these domains. Figure 21 shows the mean streamwise averaged
contours of ū+ with secondary flow v̄+ and w̄+ for a few cases. One can observe small
but non-zero secondary flow near the half-height, and noticeable counter-rotating vortical
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Figure 18. Reynolds 〈u′
iu

′
j〉+ and dispersive 〈u′′

i u′′
j 〉+ stress comparisons for spanwise-aligned and

streamwise-aligned cases. The solid and dashed lines depict spanwise-aligned and streamwise-aligned
arrangements, respectively, for (a) AYL1H1 and AXL1H1, (b) AYL2H1 and AXL2H1, (c) AYL3H1 and
AXL3H1, (d) AYL1H2 and AXL1H2, and (e) AYL1H3 and AXL1H3. The vertical line indicates peak
roughness height.
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Figure 19. Streamwise mean velocity contours at z/b ≈ 1.0 for cases (a) AYL1H1, (b) AYL2H1,
(c) AXL1H1 and (d) AXL2H1.

structures near the roughness peaks. In most cases, the secondary structures can be seen
to penetrate beyond the roughness sublayer, which is in alignment with other studies such
as Vanderwel & Ganapathisubramani (2015).

4. Rough-wall modelling

It should be clear from the results presented in § 3 that the roughness regime studied here,
while previously unexplored, has no unexpected behaviours. In this section, we discuss
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Figure 20. Reynolds 〈u′
iu

′
j〉+ and dispersive 〈u′′

i u′′
j 〉+ stress comparisons for spanwise-aligned cases with

and without valleys: (a) AYL1H1/NVL1H1, (b) AYL2H1/NVL2H1 and (c) AYL3H1/NVL3H1. The solid
and dashed lines depict spanwise-aligned and no-valleys cases, respectively. The vertical line indicates peak
roughness height.
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Figure 21. Mean streamwise-averaged constant x plane showcasing ū+ contours with secondary flows v̄+ and
w̄+ (denoted by vectors) within the domain in (a) AYL1H1, (b) SL1H1, (c) AXYL1H1 and (d) SXYL1H1.

the implications that the data have on rough-wall modelling. In addition to the DNS data
here, we also make use of the data in the roughness database (https://roughnessdatabase.
org/). While it will be clear later in this section, the task of rough-wall modelling is the
task of identifying roughness statistics, such as krms and Sk, that distinguish all rough
surfaces in the calibration set. As it is highly unlikely that a finite set of roughness statistics
can distinguish all rough surfaces, it is improbable that a universal rough-wall model that
perfectly captures all rough surfaces can be formulated. Hence, instead of a universal rough
wall model, it is more effective to seek rough-wall models with clearly defined applicable
ranges.
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4.1. The task of roughness modelling
In this subsection, we try to answer the following question: what is the nature of roughness
modelling? We begin by comparing the z0 magnitudes in table 3 to the estimates provided
by the existing rough-wall correlations. Here, the correlations in Forooghi et al. (2017) and
Flack et al. (2020) are taken as examples. The two correlations are given in (4.1) and (4.2)
respectively:

ks/kt = 1.07 × (1 − e−3.5 ES)(0.67Sk2 + 0.93Sk + 1.3), (4.1)

ks =
⎧⎨
⎩

2.11krms, Sk = 0,

2.48krms(1 + Sk)2.24, Sk > 0,

2.73krms(2 + Sk)−0.45, Sk < 0,

(4.2)

where roughness statistics krms, Sk, kt and ES are invoked as inputs to model ks. We note
that the effective roughness height (z0) in table 3 is linked directly to ks by the expression

ks = z0 e(κA), (4.3)

where the von Kármán constant is κ = 0.4, and A = 8.5.
Figure 22 shows the predicted ks for the rough surfaces in this study using the

aforementioned correlations. We see that the surfaces in the present study do not fit into
these existing correlations. Further, we see from figure 22(a) that surfaces with different
arrangements (AX, AY, S), although having very different measured ks, produce the same
estimates according to (4.1) as they have the same kt, Sk and ES (as indicated by the
dashed lines). Similarly, in figure 22(b), the surfaces AXY and SXY, although having very
different measured ks, join the other arrangements with identical krms and Sk, resulting in
identical ks predictions according to (4.2). These observations indicate the inherent lack
of roughness statistics that distinguish roughness surfaces in these correlations. Although
the discussion here is limited to the correlations in Forooghi et al. (2017) and Flack et al.
(2020), the same inadequacies are prevalent in other empirical correlations as well, as
observed by Yang et al. (2023).

A remedy, as advocated and explained in Chung et al. (2021) and other references cited
therein, is to expand the list of inputs and include other roughness statistics. Here, statistics
that help to distinguish different arrangements of elements are needed. Among other
statistics, two-point correlations are the simplest ones for this purpose. The conventional
definition of correlation length measures the distance at which the autocorrelation, i.e.

Cx(�x) = 1
LxLyk2

rms

∫
Ly

∫
Lx

(k(x, y) − k̄)(k(x + �x, y) − k̄) dx dy, (4.4)

Cy(�y) = 1
LxLyk2

rms

∫
Ly

∫
Lx

(k(x, y) − k̄)(k(x, y + �y) − k̄) dx dy, (4.5)

drops to a certain value, typically 1/e. Here, k(x, y) contains the height information for
the rough surface at location (x, y). In other words, the correlation lengths Rlx and Rly are
such that

Cx(Rlx) = 1/e, (4.6)

Cy(Rly) = 1/e. (4.7)

The above definitions are suitable for irregular surfaces, but when applied to
regular (e.g. cuboidal) roughness, thus-defined correlations simply give the roughness
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Figure 22. Existing correlations by (a) Forooghi et al. (2017) and (b) Flack et al. (2020), applied to surface
parameters obtained from the current study. The plots show the predicted equivalent sand-grain roughness
height ks normalized by cube width b.
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Figure 23. An illustration of the definition of correlation length for (a) an irregular surface and (b) a regular
surface.

element width. Intuitively, we need a distance measure that is representative of the
inter-repeating-tile length. This can be made possible by choosing the peak to peak
distance in the correlation plot. Figure 23 demonstrates these definitions, with an irregular
surface A0020 from Forooghi et al. (2017), and a regular surface R25 from Xu et al.
(2021) as examples. Extending them to both streamwise and spanwise directions, one can
distinguish between staggered and aligned, as well as surfaces with different arrangements.

Having defined the correlation lengths, it is now possible to distinguish between the
rough surfaces involved in this study. We demonstrate this in figure 24, where we look at
27 surfaces from our DNS study, namely AYLiHj, SLiHj and AXLiHj, with i, j = 1, 2, 3.
The number of input roughness statistics is progressively increased so that figure 24(a)
contains krms/ka and Sk, and figure 24(b) contains krms/ka, Sk and Rlx/Rly. We observe
that the data points overlap in figure 24(a) as AY/AX/SLiHj occupy the same location
in the space, but in figure 24(b), the rough surfaces do not overlap. Now, if one were to
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Figure 24. Rough surfaces in two different parameter spaces: (a) krms/ka and Sk; (b) krms/ka, Sk and Rlx/Rly.

build a rough-wall model using only Sk and krms as its inputs, then one would be seeking
different outputs from the same input, which would inevitably result in errors, as observed
in figure 22. However, if Sk, krms and Rlx/Rly are invoked as inputs, then one would be
seeking a single-valued function that maps from the input roughness statistics space to
the output ks space. Following this line of thinking, we argue that the task of roughness
modelling can be reduced to identifying a set of roughness statistics that distinguishes the
rough surfaces in question.

This conclusion has many implications for rough-wall modelling. First, considering that
there is no finite set of statistics that allows unique identification of all rough surfaces,
i.e. two-dimensional functions k(x, y), constructing a universal roughness-statistics-based
rough-wall model could be a very difficult problem to solve. Consequently, all
roughness-statistics-based rough-wall models are bound to have predictive power for
surfaces that are closely registered around its calibration dataset only. Second, roughness
modelling must consider the calibration dataset, and a universal list of roughness statistics
for all rough-wall models is highly unlikely. One can argue that certain roughness types
are more important than others, therefore certain roughness statistics are more important
than others, but such judgements have to be subjective.

4.2. Selecting roughness statistics
Considering that all rough-wall models will have their applicable range, selecting inputs
to the rough-wall models is a highly relevant issue. In this subsection, we discuss how one
might go about selecting the roughness statistics that distinguish the rough surfaces in a
given group of rough surfaces.

Without loss of generality, we limit the discussion to the seven roughness statistics in
table 3. Figure 25 is a representation of the 36 rough surfaces in the seven-dimensional
roughness statistics space represented by krms/ka, Sk, ES, Rlx/ka, Rly/ka, Ku and kt/ka. In
the figure, every roughness statistic corresponds to a vertical axis, and every rough surface
corresponds to a line in the figure. We will make use of this plot to select the roughness
statistics that are most relevant to the modelling of the rough surfaces in this study. We
can, of course, use all roughness statistics. The objective, however, is to identify as few
roughness statistics as possible such that the identified roughness statistics distinguish the
rough surfaces in question. It is also worth noting that for random roughness, kt might not
be a suitable parameter to represent the surface as it tends to increase as the sampling size
gets larger, instead of converging.
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Figure 25. High-dimensional parallel plots of the surface parameter space for (a) 36 surfaces in the current
study, (b) ES parameter space, and (c) Ku parameter space. The values shown are scaled by the standard
deviation.

First, we make the following observation. For a roughness statistic s that represents a
vertical axis in figure 25, rough surfaces that do not overlap in the axis can readily be
distinguished by that statistic. For example, consider two surfaces AYL1H1 and SL1H1.
All features excluding Rly/ka would remain the same for both these surfaces, hence
this parameter would serve as the distinguishing feature. However, depending on how
accurately one could measure the features, the features need not necessarily be identical
for them to be overlapping. We may mathematically define ‘overlap’ as |si − sj| < c STDs.
That is, if si and sj are close, then they are considered indistinguishable or overlap. Here, si
is the roughness statistic of the ith rough surface, STDs is the standard deviation of statistic
s in the rough surfaces, and c is a constant. Again, the choice of c will depend on how
well one can measure the roughness statistic in question: if one can measure the statistic
with precision 0.01STDs, then c can take value 0.02, i.e. +0.01 − (−0.01). Here, we set
c = 0.1, which should be a very conservative choice. Following this line of thinking, a
roughness statistic that distinguishes more rough surfaces is more relevant to the modelling
of the rough surfaces in question. Take the statistics and the rough surfaces in figure 25(a)
as our illustrative example. Kurtosis is not an extremely relevant roughness statistic for the
modelling of these rough surfaces as it distinguishes only five groups of rough surfaces
(see figure 25c). On the other hand, from figure 25(b) it can be observed that ES is a more
relevant roughness statistic as it distinguishes around 12 groups of rough surfaces. In other
words, the more the spread in the feature space, the higher its differentiating ability. Note
that surfaces indistinguishable by a parameter may be indistinguishable in terms of drag.
In such cases, the model would remain accurate even if it does not distinguish the two
surfaces.
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Figure 26. Feature selection procedure illustration using rough surface indices. Each number here is
representative of a rough surface: I denotes the initial stage involving all surfaces in the group; II denotes
the next stage after one feature Rlx/ka was selected; and III denotes the third stage when ES is selected.

Following the discussion above, the process of selecting roughness statistics that
distinguish rough surfaces in a given group of rough surfaces can follow a recursive greedy
algorithm. To illustrate the algorithm, we take our current study as an example. For this
group of rough surfaces, we have 36 surfaces. We will represent each rough surface by
a number, and the 36 rough surfaces are numbered from 1 to 36. First, we will split each
feature into bins of size 0.1 STD, and the number of surfaces present in each bin is counted.
The feature with the greatest number of non-zero bins is the most distinguishing feature.
For the 36 rough surfaces, Rlx is found to be that feature. If a surface is the only surface
in one of the Rlx bins, then that surface is readily distinguishable by Rlx. However, if
there are a couple of rough surfaces in one Rlx bin, then these surfaces, which we call
a cluster, cannot be distinguished by Rlx, and we must invoke another roughness statistic
to distinguish them. From figure 26, it can be seen that there are 10 such clusters, with
one cluster containing 6 surfaces, three clusters containing 4 surfaces each, one cluster
containing 3 surfaces, and five clusters containing 2 surfaces each. The purpose of the next
stage is to find the next feature that best distinguishes these surfaces. A similar procedure is
repeated for this stage for each cluster, and ES is identified as the next most distinguishing
feature. The process continues until either no clusters emerge or all features have been
selected. In this case, this stopping criterion is attained after the third roughness statistics,
Rly, is selected. Figure 26 illustrates the procedure.

We can apply this recursive greedy algorithm to other groups of surfaces. Table 4 shows
some of these examples, where this feature selection procedure is applied to the rough
surfaces from Jouybari et al. (2021), Womack et al. (2022), Xu et al. (2021) and the current
study. Although we do not consider all surface geometries and other roughness parameters
such as spanwise effective slope ESz and surface porosity P0 mentioned in Jouybari
et al. (2021), it is interesting to note that we obtain one variable as the distinguishing
feature within each of the three pairs (Ex, Ez), (P0, Sk) and (krms, Ku) that contain strong
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Group nsurfaces Selected features

Jouybari et al. (2021) 25 Sk, ES, krms/ka
Womack et al. (2022) 16 Sk, krms/ka, Rlx/ka, ES
Xu et al. (2021) 6 krms/ka
Current study 36 Rlx/ka, Rly/ka, ES

Table 4. Features selected for different groups.
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Figure 27. Examples of surfaces with very similar statistics when considering the seven roughness statistics
in table 3. The surfaces (a) A1588, (b) A3588 and (c) A7088 from Forooghi et al. (2017) belong to one group.
The surfaces (d) N14 and (e) N18 from Yang et al. (2022) belong to another group.

correlations in their work, and the algorithm does not pick up two strongly correlated
features. In the six rough surfaces in Xu et al. (2021), where the primary varying parameter
is the planar packing density of the cubes, just one parameter, krms/ka in this case, seems
to be sufficient. An interesting observation is that krms/ka is not always a distinguishing
roughness statistic. For the surfaces with multiple roughness arrangements, such as in our
study, the dimensionless two-point correlation lengths Rlx/ka and Rly/ka emerge as having
better distinguishing capability.

A scenario might occur where this feature selection methodology, when extended to
a larger set of surfaces, would exhaust all features. In this case, certain surfaces are
indistinguishable from the available roughness statistics, yet they have different ks. For
example, figure 27 depicts two clusters of such surfaces from Forooghi et al. (2017)
and Yang et al. (2022), taken from a larger set of about 143 rough surfaces in the
aforementioned roughness database. The three rough surfaces in figures 27(a)–27(c)
from Forooghi et al. (2017) are referred to as A3588, A7088 and A1588. These are
indistinguishable from the seven roughness statistics in table 3. The ks/ka magnitudes in
surfaces A1588, A3588 and A7088 from Forooghi et al. (2017) stand at approximately
11.1, 9.98 and 8.86, respectively, which are different, whereas the deviations in the
aforementioned seven statistics are less than 0.1 standard deviation (STD) for these
surfaces. The same applies to surfaces N14 and N18 from Yang et al. (2022) whose ks/ka
magnitudes are close to 5.15 and 4.57, respectively.
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4.3. Building a rough-wall model
Having identified the important roughness statistics required to build a rough-wall model,
this subsection discusses the next step involved, which is developing rough-wall models
themselves. This is quite straightforward, and there are a number of approaches. Here, we
present two such approaches: a multi-variate polynomial regression (MPR), which gives
interpretable explicit expressions but has less descriptive power, and a feedforward neural
network (FNN) based approach, which has great descriptive power but is a black box.

For the MPR model, the following steps were used to generate the polynomial terms:
(i) minmax scaling and polynomial feature generation; (ii) determination of the degree
and the polynomial features involved; and (iii) linear regression of the polynomial features.
The regression follows an iterative bagging-based approach. At every iteration, the training
dataset is randomly selected maintaining a test–train split of 0.7, and m random polynomial
terms are selected to develop a regression fit. Ridge regression is employed here, and the
mean-squared test and training errors are computed. This step is repeated iteratively for
different polynomials with the selected degree d and number m of polynomial features
until we find a fit where the minimum in both training and test datasets occurs. These
fits for the groups Jouybari et al. (2021), Womack et al. (2022), Xu et al. (2021) and
the current study are given by expressions (4.8), (4.9), (4.10) and (4.11), respectively (the
reader is directed to Kleinbaum et al. (2013) for further details of MPR):

ks/ka = −0.53(krms/ka)
3 − 0.26 Sk3 + 0.69 ES3 + 0.78(krms/ka)

2 Sk + 2.22 Sk2 ES

+ 2.45(krms/ka)
2 ES + 1.44(krms/ka) Sk2 − 0.85 Sk ES2

+ 2.86(krms/ka) Sk ES − 0.90(krms/ka)
2 − 1.51 ES2 + 0.5 Sk ES

− 0.44(krms/ka) Sk + 0.65 ES − 0.12krms/ka, (4.8)

ks/ka = 0.95 Sk2 + 0.77 ES Rlx/ka − 2.63 ES + 1.79 Sk − 2.58krms/ka, (4.9)

ks/ka = 0.88(krms/ka)
2 + 0.13krms/ka, (4.10)

ks/ka = 0.03 ES2 − 1.19(Rlx/ka)
2 + 1.00(Rly/ka)

2 − 0.08(Rlx/ka)(Rly/ka)

+ 0.06 ES + 1.71 Rlx/ka − 1.41 Rly/ka. (4.11)

Figure 28 shows the true versus predicted plots for the various groups, with R2 standing
for the coefficient of determination, which is a measure of accuracy. The R2 values shown
in figure 28 have been calculated from the training data, holding values 0.98, 0.98, 0.99
and 0.85 for the respective groups. The corresponding R2 values based on the test data
stand as 0.77, 0.99, 0.99 and 0.64. It is possible to choose polynomial forms of higher
R2 on the training data, but we may risk overfitting. Hence these models are adopted,
maintaining a balance between generalization and accuracy. It is further noted that the
errors shown in ks predictions here would generate much smaller errors in drag prediction,
as the skin-friction coefficient Cf is proportional to [log(k+

s )]2.
For the FNN model, a standard three-layer network has been trained with 10 neurons

in each layer. The size of the neural network is small, but as we will see, it is sufficient.
Figure 29 shows the parity plots for these networks. Here, each FNN utilizes 100 % of
its group for its training data. This is done to show the perfect fitting of the data in each
case, which demonstrates the effectiveness of our feature selection strategy and the strong
descriptive power of FNNs.
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Figure 28. The MPR-based regression for groups: (a) Jouybari et al. (2021), (b) Womack et al. (2022), (c) Xu
et al. (2021), and (d) current study. Here, R2 stands for the coefficient of determination and is calculated on the
training dataset. The red colour stands for test data, and the blue stands for training data. The ks/ka values are
normalised using a minmax scaler.

5. Concluding remarks

In conclusion, this study presents new data for rough surfaces in the relatively low
skewness and high krms/ka space that have not been explored before. The variations in
equivalent roughness height, mean velocity profiles and Reynolds and dispersive stresses
with changes in skewness (Sk), planar packing density (λp) and roughness arrangement
have been reported. While the first two have been investigated in various studies, the latter
effect of roughness arrangement is rarely considered. In this work, this effect of roughness
arrangement is not only considered but has been found to significantly affect the drag
produced by rough surfaces. This can be confirmed by the trends in the mean velocity
profile. In general, higher mean velocity profiles are observed for lower magnitudes of
Sk and λp (except in AX surfaces where flow-sheltering is observed at higher λp). For
variations in roughness arrangement, the AXY and SXY orientations seem to produce
more drag than the S and AY arrangements, followed by the AX arrangement. The valleys
have been found to produce minimal, but non-zero contributions to drag, most of which we
posit to stem from the form drag. In the context of second-order flow statistics, the spatial
flow inhomogeneity, as indicated by dispersive stresses, is observed to be more in AX
surfaces as compared to AY surfaces. Secondary flows in the spanwise and wall-normal
directions were also observed in the flow over these rough channels.
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Figure 29. The FNN-based regression for groups: (a) Jouybari et al. (2021), (b) Womack et al. (2022), (c) Xu
et al. (2021), and (d) current study.

It is important to note that the effect of roughness element shape on the observed
turbulence and drag characteristics has not been pursued in this study. The choice of the
cube-roughness geometry here is based on its simplicity to construct such surfaces in the
krms/ka–Sk parameter space and the ability to align the immersed solid boundaries with
the Cartesian mesh for most cases in this study. While it is difficult to discuss the potential
impact of roughness shape on the flow, the underlying assumption of the statistics-based
rough-wall modelling approach is that the overall drag will be similar, given that the
statistics are similar irrespective of the roughness element shape.

Since a majority of rough surfaces in the current study vary by rough-element
arrangement, these are bound to have identical moments of roughness height. Two-point
spatial correlation lengths have been proposed as input parameters to differentiate between
these arrangements. Additionally, we put forward the argument that based on the properties
of the rough surfaces in the present dataset, finding a universal roughness correlation is
an exacting task and that a ‘case-by-case’ basis would do better. We assert that roughness
modelling can be viewed as determining input parameters that best distinguish the rough
surfaces. We demonstrate a methodology to identify these specific features for a given
group of rough surfaces. It is important to note that these distinguishing features vary based
on the group being considered. While it might be useful to link a particular roughness
feature as being important for a specific type of roughness, we would like to point out
that such links may not necessarily find a physical basis, but rather find a statistical
one.

Having identified the important roughness features, we demonstrate both MPR- and
FNN-based approaches to build rough-wall models from the selected features. The
selected features can be found to be robust, given the goodness of fit observed in the
models built from them.
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