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Parametrization of sea surface skewness and
kurtosis with application to crest distributions
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An efficient numerical method for calculation of the sea surface skewness and kurtosis
for arbitrary wave spectra, taking up to third-order nonlinear effects into account, is
developed. The skewness and kurtosis are calculated for a large number of sea states,
covering a wide range of sea-state parameters in terms of wave steepness, water depth,
directional spreading and frequency bandwidth. The results are used to propose new
accurate expressions for skewness and kurtosis, valid over a wide range of sea states.
Existing expressions for skewness and kurtosis reported in the literature are reviewed,
and their accuracy is evaluated. Comparison to model-test results and phase-resolved
numerical simulation are presented. It is suggested that the new improved parametrizations
for skewness and kurtosis, which include dependence on wave steepness, water depth,
spectral bandwidth and directional spreading, represent a convenient way to include
these covariates into higher-order distributions for crest heights, wave heights and surface
elevation.

Key words: surface gravity waves

1. Introduction

The statistical properties of ocean surface waves and associated quantities such as wave
heights and crest heights is a much studied topic with widespread engineering applications.
It is well known that to leading order, a random sea surface can be described as a Gaussian
random field, while in higher-order approximations, non-Gaussian effects arise due to the
nonlinearity of the waves.

The description of nonlinear random waves was first considered by Tick (1959),
Hasselmann (1962) and Longuet-Higgins (1963), who, based on perturbation expansions
of the governing nonlinear equations, derived expressions for the second-order nonlinear
surface elevation. This is often referred to as second-order random wave theory (see also
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Sharma & Dean 1979), and provides the expressions for the bound harmonics arising from
non-resonant nonlinear interactions up to second order. The extension of second-order
theory to include higher-order bound waves up to fourth order was derived within the
framework of the Hamiltonian theory of water waves (Zakharov 1968) by Krasitskii
(1994) in terms of the canonical transformation that eliminates bound waves (non-resonant
interactions) from the Zakharov equation, and hence expresses all bound waves in terms
of the free waves.

The statistical properties of the second-order random sea surface were first studied
by Longuet-Higgins (1963), who showed that the probability density function of the
surface elevation can be expressed as a Gram–Charlier/Edgeworth-type expansion. The
corresponding Gram–Charlier/Edgeworth-based distributions of e.g. wave envelopes and
wave heights were considered first by Bitner (1980). Since then, numerous related
approaches and methods have been applied to approximate the statistical distributions of
weakly nonlinear random waves (see e.g. Ochi 1998; Machado 2003; Tayfun & Alkhalidi
2020, for a detailed overview). Common for most such methods is that the deviation
from Gaussianity is represented through non-zero higher-order cumulants of the surface
elevation distribution, often expressed in terms of non-zero skewness and excess kurtosis.
Thus the skewness and kurtosis of the ocean surface are important parameters that appear
in various theoretically based distributions for surface elevation, wave heights and crest
heights (see e.g. Tayfun 2006; Tayfun & Fedele 2007; Tayfun & Alkhalidi 2020, and
references therein). Hence knowledge of the skewness and kurtosis of a random wave
field provides also information about the associated statistical distributions.

An expression for the skewness of a second-order random wave field in deep water
was derived by Longuet-Higgins (1963). Later, general expressions for the sea surface
skewness and kurtosis in a random directional wave field in finite water depth, including
effects up to third order, were derived by Janssen (2009) starting from Krasitskii’s
canonical transformation (Krasitskii 1994). Although the general integral expressions
for skewness and kurtosis for any given wave field are given in Janssen (2009), the
direct evaluation of these integrals has not been considered widely, and most existing
applications discussing distributions of e.g. wave heights or crest heights rely on various
approximations and simplifications (e.g. Vinje 1989; Winterstein, Bitner-Gregersen &
Ronold 1991; Vinje & Haver 1994; Winterstein & Jha 1995; Jha & Winterstein 2000;
Tayfun 2006). To our knowledge, the only existing work addressing the exact evaluation of
the integral expressions for both skewness and kurtosis is by Annenkov & Shrira (2014),
who used a numerical approach similar to that suggested in the present paper to calculate
the skewness and kurtosis for various JONSWAP spectra in infinite water depth.

The main objective of the present work is to develop a numerically efficient method for
solving the integral expressions for surface elevation skewness and kurtosis, and to use this
method to propose new, accurate parametrizations for skewness and kurtosis as functions
of sea-state parameters. These new parametrizations can then be used in higher-order
distributions for surface elevation, crest heights and wave heights, where skewness and
kurtosis appear as distribution parameters. The paper is organized as follows. First, some
relevant background, including a review of existing parametrization of skewness and
kurtosis, is given in § 2. The numerical method for solving the exact integrals for skewness
and kurtosis, including validation of the numerical approach, is presented in § 3. Then
in § 4, the numerical method is applied to calculate the exact skewness and kurtosis
for a large number of different wave spectra, covering the range of realistic sea-state
conditions encountered in ocean regions of deep and intermediate water depths. This is
then used to evaluate the accuracy of existing parametrizations of skewness and kurtosis,
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and to propose new, more accurate parametrizations of skewness and kurtosis as functions
of sea-state steepness, water depth, spectral bandwidth and directional spreading. Some
comparisons with model-test results and phase-resolved simulations are presented in
§ 5. Finally, some discussion and examples of using the exact skewness and kurtosis in
higher-order crest height distributions are given in § 6.

2. Background

The skewness λ3 and excess kurtosis λ4 of a random variable X are defined by

λ3 = E

[(
X − μ

σ

)3
]

= μ3

σ 3 = κ3

κ
3/2
2

(2.1)

and

λ4 = E

[(
X − μ

σ

)4
]

− 3 = μ4

σ 4 − 3 = κ4

κ2
2
. (2.2)

Here, E[ · ] denotes the statistical expectation, μ = E[X] is the mean, σ 2 = μ2 = E[(X −
μ)2] is the variance, μj = E[(X − μ) j] is the jth central moment, and κ2 = μ2 = σ 2, κ3 =
μ3 and κ4 = μ4 − 3μ2

2 are the cumulants. For a Gaussian distribution, all cumulants above
second order vanish, so both skewness and excess kurtosis are zero.

Starting from Krasitskii’s canonical transformation, the general expressions for the sea
surface skewness and kurtosis in a random directional wave field in finite water depth,
including non-resonant nonlinear interactions up to third order, were derived by Janssen
(2009) in terms of integrals involving the leading-order (free-wave) wave-vector spectrum
E(k), in the forms

λ3 = 3

m3/2
0

∫
E1E2K(3)

1,2 dk1,2, λ4 = 12
m2

0

∫
E1E2E3K(4)

1,2,3 dk1,2,3, (2.3a,b)

where

K(3)
1,2 = A1,2 + B1,2, (2.4a)

K(3)
1,2,3 = (A1,3 + B1,3)(A2,3 + B2,3) + 1

2D1+2+3,1,2,3 + 1
2C1+2−3,1,2,3. (2.4b)

Here, m0 = ∫
E(k) dk is the zeroth spectral moment, and a compact subscript notation is

used for functional dependence of wavenumbers, i.e. E1 = E(k1), D1+2+3,1,2,3 = D(k1 +
k2 + k3, k1, k2, k3), dk1,2 = dk1 dk2, and so on. The functions A , B, C and D are
expressed in terms of the kernel functions in the canonical transformation of Krasitskii
(1994) and can be found in Janssen (2009).

It should be noted that when considering nonlinearities beyond second order, there
are, in addition to the bound waves represented by the canonical transformation (i.e.
non-resonant interactions), also non-Gaussian effects due to resonant and near-resonant
interactions (i.e. free-wave modulations). These effects are described in terms of evolution
equations for the free waves as described by e.g. the Zakharov equation (Zakharov 1968),
and in the statistical theory by the Hasselmann kinetic equation (Hasselmann 1962). To
third order, there is a contribution to the kurtosis from free-wave modulations, which
has been studied in e.g. Janssen (2003), Mori & Janssen (2006) and Janssen & Janssen
(2019). The dynamic contribution to the kurtosis is time-dependent and hence not easily
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Order λ3 λ4 Spectrum h Directionality

Janssen (2009) 3 Y Y Narrow bandwidth Arbitrary 1-D
Vinje & Haver (1994) 2 Y Y Pierson–Moskowitz ∞ 1-D
Winterstein & Jha (1995) 2 Y Y JONSWAP Arbitrary 1-D
Tayfun–Forristall 2 Y N JONSWAP Arbitrary 1-D and 2-D
Annenkov & Shrira (2014) 3 N Y JONSWAP ∞ 1-D and 2-D
Present work 3 Y Y JONSWAP Arbitrary 1-D and 2-D

Table 1. Summary of existing parametrizations of skewness and kurtosis, with respect to the main assumptions
made in the analyses. The first column (‘Order’) indicates the nonlinear order to which the analyses are valid.
The second and third columns indicate whether parametrizations for skewness (λ3) and kurtosis (λ4) were
considered. The fourth column (‘Spectrum’) indicates the type of spectrum considered. The fifth column
(h) shows the water-depth regimes considered. The final column shows whether unidirectional/one horizontal
dimension (1-D) or directional/two horizontal dimensions (2-D) waves were considered.

incorporated in a stationary description of random sea states, which is the focus here.
This contribution is therefore not considered in this paper. It is, however, known that for
realistic, directionally spread ocean wave spectra, the effect of the dynamical kurtosis is
small (Annenkov & Shrira 2014) and decays to zero asymptotically in the long-time limit,
i.e. on the time scale of the Hasselmann equation (Janssen & Janssen 2019).

2.1. Existing parametrizations of skewness and kurtosis
In the following, some parametrizations of skewness and kurtosis that have been presented
in existing works are reviewed. These existing parametrizations are derived under various
simplifying assumptions with respect to e.g. directionality, water depth and type of spectral
shape. A schematic overview of the different existing works is presented in table 1, while
more details are given in §§ 2.1.1–2.1.5.

2.1.1. Narrow-band limits
Narrow-band expressions for the skewness and kurtosis were first presented for deep-water
waves including second-order effects by Tayfun (1980), and more generally for finite water
depth including up to third-order effects by Janssen (2009). Formally, the narrow-band
limits can be obtained by assuming E(k) = m0δ(k − kc) in (2.3a,b), where kc = (kp, 0),
and δ is the Dirac delta function. As shown by Janssen (2009), the narrow-band limits of
(2.3a,b) are

λ3 = 6ε(α + Δ), λ4 = 24ε2(β + γ + 2(α + Δ)2), (2.5a,b)

where

α = 3 − τ 2

4τ 3 , β = 3
64τ 6

[
8 + (1 − τ 2)3], γ = −α

2
, τ = tanh(kph), ε = kp

√
m0.

(2.6a–e)

The coefficient Δ arises from the wave-induced mean level – see the discussion in Janssen
(2009). The correct form of Δ is, however, still associated with some uncertainty due
to the fact that it arises from a non-unique limit in the kernel function of the Zakharov
equation (Janssen & Onorato 2007; Janssen 2009; Stiassnie & Gramstad 2009; Gramstad
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2014; Pezzutto & Shrira 2023). In a purely unidirectional setting, the limit could be found
uniquely, in which case Δ takes the form

Δ1D = − 1
1 − ρ2

(
1 − τ 2

2τ
+ 1

4kph

)
, (2.7)

which is in agreement with the unidirectional analysis of Whitham (1974). Here,

ρ = cg

cs
= √

τkph
(

1 − τ 2

2τ
+ 1

2kph

)
(2.8)

is the group velocity cg normalized by the shallow-water wave velocity cs = √
gh.

For waves in two horizontal dimensions, the non-unique limit depends on the direction
from which the limit is approached. In Janssen (2009), it was suggested to use the
one-dimensional result also for directional waves, leading to Δ in the form (2.7). Later, in
Janssen (2017), a modified form of Δ was suggested in which finite bandwidth effects are
accounted for. However, this form involves parameters describing the spectral bandwidths
in frequency and direction, and the actual value of Δ will depend on how these spectral
bandwidths are defined, a discussion that is outside the scope of the present paper.

Recently, a proposed resolution of the non-uniqueness problem was suggested by
Pezzutto & Shrira (2023), leading to a modification of (2.7) in the form

ΔPS = − 1
1 − ρ2

(
(J0 + J2)(1 − τ 2)

4τ
+ J2

4kph

)
, (2.9)

where

J0 =
√

1 − ρ2, J2 =
√

1 − ρ2 − 1 + ρ2

ρ2 . (2.10a,b)

Note that setting J0 = J2 = 1 gives the unidirectional result (2.7).
An important point to note is that the choice of the limit leading to Δ (see the last

equation on p. 39 in Janssen 2009) is relevant not only for the narrow-band expressions,
but also for the numerical evaluation of the general integral expressions (2.3a,b). This
is because the non-unique limit is encountered in the kernel functions of these integrals,
and in the numerical evaluation of the integrand, these limits should be chosen according
to the discussion above. Following Janssen (2009) and Pezzutto & Shrira (2023), for
purely unidirectional waves we choose the limits so that Δ = Δ1D, and for directional
waves we have for completeness considered both Δ = ΔPS and Δ = Δ1D. Interestingly,
the difference between choosing Δ = ΔPS and Δ = Δ1D for directional wave fields turns
out to be minor for a finite bandwidth spectrum (it was found to be less than 1 % in the
more than 18 000 spectra considered in this study), despite the fact that the effect of the
choice of Δ on the narrow-band result can be quite significant in shallow-water depth.
This is illustrated in figure 1, which shows the skewness and kurtosis according to the
narrow-band limits when using either Δ1D or ΔPS. This is compared to results from exact
integration of (2.3a,b) for a spectrum with very narrow directional distribution, as well
as for a purely one-dimensional spectrum. As seen from the figure, for a one-dimensional
spectrum, the exact results are in good agreement with the narrow-band approximation
with Δ = Δ1D. However, when adding a small directional distribution to the spectrum,
the exact results deviate from both versions of the narrow-band approximation, but show
virtually no effect of whether Δ1D or ΔPS were used as the limit of the non-unique terms
in the integrand.
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Finite bandwidth 1-D (Δ = Δ1D)

(a) (b)

Figure 1. (a) Skewness λ3 and (b) kurtosis λ4 according to narrow-band expressions (solid lines), exact
integration of a two-dimensional spectrum with narrow directional spreading (dashed lines), and a purely
one-dimensional spectrum (dotted lines). Blue lines show results obtained using Δ = Δ1D, while orange lines
show results for Δ = ΔPS. The spectrum that was used here is a JONSWAP spectrum with γ = 10.0, ε = 0.1
and σθ = 2.5◦ (see § 4 for details).

λ3 λ4 Corresponding Stokes wave η/a

Tayfun (1980) 3ε 12ε2a cos θ + εs

2
cos 2θ

Vinje (1989) 6ε 84ε2 εs

2
+
(

1 + 9ε2
s

8

)
cos θ + εs

2
cos 2θ + 3ε2

s

8
cos 3θ

Winterstein et al. (1991) 6ε 57ε2b εs

2
+ cos θ + εs

2
cos 2θ + 3ε2

s

8
cos 3θ

Mori & Janssen (2006) 3ε 24ε2
(

1 + ε2
s

8

)
cos θ + εs

2
cos 2θ + 3ε2

s

8
cos 3θ

Janssen (2009) 3ε 18ε2
(

1 − ε2
s

8

)
cos θ + εs

2
cos 2θ + 3ε2

s

8
cos 3θ

Table 2. Narrow-band deep-water expressions for skewness and kurtosis reported in the literature, and their
corresponding Stokes wave expansions.

aThe second-order model is not sufficient to evaluate kurtosis to O(ε2) since there are contributions to O(ε2)

also from third order.
bThis expression is not given explicitly in Winterstein et al. (1991) but can be deduced easily by combining

their (27) and (29).

In deep water, Δ = 0, and the expressions for skewness and kurtosis take the simple
forms λ3 = 3ε and λ4 = 18ε2. For historical reasons, it should be mentioned that different
expressions for the deep-water limit of the narrow-band skewness and kurtosis are reported
in the literature. It turns out that these differences can be traced down to different
assumptions in the derivations regarding the representation of the underlying Stokes wave
expansion, as summarized in table 2. Here, it is noted that taking the narrow-band limit
corresponds to a Stokes wave with first-order amplitude a = √

2m0 and wavenumber kp,
and below we use εs = akp to denote the steepness parameter for the Stokes wave, to
distinguish it from the sea-state steepness ε = kp

√
m0.

It has been verified that all expressions for skewness and kurtosis reproduced in table 2
can be obtained by ‘randomizing’ the corresponding Stokes wave, i.e. by assuming that a
is Rayleigh distributed with parameter σ , and that θ is distributed uniformly on [0, 2π).
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Apart from the fact that Tayfun (1980) did not consider third-order terms, there are two
main sources of differences between the results in table 2: the constant second-order term
εs/2 appearing in Vinje (1989) and Winterstein et al. (1991), and the third-order correction
to the cos θ term appearing in Vinje (1989), Mori & Janssen (2006) and Janssen (2009).
The constant second-order term corresponds to a change in the mean water level and is
discussed in Tayfun (1986), where it is argued that this term should not be included. The
third-order correction to the cos θ term arises naturally when starting from the canonical
transformation of Krasitskii (1994), and is discussed further in Janssen (2009). The reasons
for the coefficients of this term reported in Vinje (1989) and Mori & Janssen (2006) are
not clear, and may be due to errors/misprints.

2.1.2. Vinje & Haver (1994)
Using a second-order stochastic model, Vinje & Haver (1994) suggested the following
approximations for skewness and kurtosis:

λ3 = 34.4Hs

gT2
p

+ 2.14 × 10−6

(
gT2

p

h

)3

, λ4 = 3λ2
3. (2.11a,b)

The first term in the expression for the skewness was derived theoretically for a
unidirectional Pierson–Moskowitz spectrum (corresponding to JONSWAP with γ = 1),
while the second term is a finite-depth correction based on field measurements.

2.1.3. Winterstein & Jha (1995), Jha & Winterstein (2000)
Using a second-order random model, Winterstein & Jha (1995) estimated skewness and
kurtosis for a wide range of different unidirectional JONSWAP sea states in different water
depths. They fitted the following expressions for skewness and kurtosis, as functions of
wave steepness, JONSWAP peakedness factor γ and water depth h:

λ3 =
(

5.45γ −0.084 + 0.135
(
h/Lp

)−1.22
)

Sp, λ4 = 1.41γ −0.02λ2
3, (2.12a,b)

where Lp = gT2
p/(2π) is the characteristic wavelength obtained from Tp through the

linear deep-water dispersion relation, and Sp = Hs/Lp = 2πHs/(gT2
p ) is a measure for

the sea-state steepness.
In a later paper (Jha & Winterstein 2000), a slightly different fit for the skewness was

reported in the form

λ3 =
(

5.45γ −0.084 +
[
exp

(
7.41

(
h/Lp

)1.22
)

− 1
]−1

)
Sp. (2.13)

2.1.4. Tayfun–Forristall
In Tayfun (2006), a representation for the skewness was obtained by relating the
theoretical Gram–Charlier-based second-order crest distribution to Forristall’s Weibull
fit to second-order crest heights (Forristall 2000). By matching the moments of the
theoretical distribution of crest heights to the Forristall distribution, Tayfun (2006) derived
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the following expression for the skewness:

λ3 = 48
α3

β
Γ

(
3
β

)
− 3

4

√
π

2
, (2.14)

where α and β are the parameters in the Forristall distribution, for which parametrizations
in terms of water depth and sea-state steepness are given in Forristall (2000).

2.1.5. Annenkov & Shrira (2014)
Annenkov & Shrira (2014) solved the exact integrals for the skewness and kurtosis (2.3a,b)
for different types of JONSWAP spectra in infinite water depth. Based on their results, they
suggested the following fit for the kurtosis:

λ4 = 25.2γ −0.328ε2. (2.15)

A fit for the skewness was also reported in Annenkov & Shrira (2014), but due to an error
in their computations, this is not correct (Victor Shrira, personal communication), and
therefore is not considered here. Note that, different from Winterstein & Jha (1995) and Jha
& Winterstein (2000), the results of Annenkov & Shrira (2014) include third-order effects
needed for a consistent calculation of kurtosis to O(ε2). However, (2.15) also includes an
estimate for the dynamical part of the kurtosis, and is therefore not directly comparable to
the other parametrizations considered above, or to the results presented in this paper. The
dynamical kurtosis is, however, relatively small for realistic directional spectra, typically
within ±15 % of the bound kurtosis for the spectra considered in Annenkov & Shrira
(2014).

3. Numerical method and convergence tests

A numerical method for solving the exact integral expressions for the skewness and
kurtosis, (2.3a,b), has been developed and tested, as described in the following.

It was found to be convenient to employ a change of variables from k = (kx, ky) =
(k cos θ, k sin θ) to (ω, θ). Using that E(k) = S(ω, θ)cg/k and dkx dky = (k/cg) dω dθ ,
where k = |k|, cg = dω/dk and ω2 = gk tanh (kh), one can write

λ3 = 3

m3/2
0

∫
S1S2K(3)

1,2 dω1,2 dθ1,2, λ4 = 12
m2

0

∫
S1S2S3K(4)

1,2,3 dω1,2,3 dθ1,2,3. (3.1a,b)

The integrals were then approximated numerically using a discretization of the integration
space. For ω, a logarithmically spaced grid from ωmin to ωmax was used, while for θ ,
a regular discretization on the interval from θmin = −π/2 to θmax = π/2 was employed.
The number of grid points and the integration limits were chosen based on the convergence
tests described in the following. For future applications to spectra having energy also in
directions |θ | > π/2, the integration space with respect to θ would need to be extended.

The convergence tests presented below were all carried out using a JONSWAP spectrum
with sea-state steepness ε = kp

√
m0 = 0.1 and peakedness factor γ = 3.3 for a water

depth corresponding to non-dimensional depth kph = 1.0. A directional distribution of
the type cosn (θ) with n = 7 was used, corresponding to a directional spreading σθ ≈ 20◦
(see (4.1a,b) and (4.2) for definitions of the spectral shape and the directional spreading
parameter σθ ). Some additional convergence tests were carried out also for different
spectral shapes (i.e. different values for γ and n), with similar results.
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Figure 2. (a) Convergence of calculated skewness and kurtosis with respect to size of integration domain ωmax.
(b) Computational time (using parallel implementation on 64 cores) for calculation of skewness and kurtosis as
functions of number of points used to discretize integral in each dimension. (c) Error in calculated skewness as
function of nω for different values of nθ . (d) Error in calculated kurtosis as function of nω for different values
of nθ .

The convergence of the results with respect to the maximum frequency ωmax of the
integration domain is shown in figure 2(a). The error is calculated relative to the results
obtained when using ωmax = 30ωp. Based on these results, it was decided to use ωmax =
5ωp, yielding an error less than 1 %. Here, ωp is the peak frequency of the JONSWAP
spectrum.

The accuracy of the calculated values of skewness and kurtosis with respect to the
number of points used to discretize the integration domain ω ∈ [0.5ωp, 5ωp] and θ ∈
[−π/2, π/2] are shown for skewness and kurtosis in figures 2(c) and 2(d), respectively.
Here, the errors are calculated relative to the values obtained using nω = 550 and
nθ = 250 for the skewness, and nω = 60 and nθ = 51 for the kurtosis. It is seen that
the integrals converge surprisingly quickly, with reasonable accuracy already for quite
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coarse discretization. Based on these results, it was decided to use nω = 100 and nθ = 51
for calculation of the skewness (corresponding to an error smaller than 0.1 %). For the
kurtosis, which is significantly more computationally demanding to calculate but also
converges more quickly with respect to the number of grid points, nω = 20 and nθ = 21
were used (corresponding to an error of about 0.2 %).

The computational time for evaluating the skewness and kurtosis for one spectrum, as
functions of nωnθ , is shown in figure 2(b). Note that the number of grid points nωnθ is for
a single dimension, so the total number of evaluations of the integrands is (nωnθ )

2 for the
skewness and (nωnθ )

3 for the kurtosis. The most computationally demanding part is the
evaluation of the kernel functions K(3)

1,2 and K(4)
1,2,3 for the large number of points. This is,

however, easily parallelizable, making the computations sufficiently efficient to evaluate a
large number of different spectra. For the chosen discretization, the computational time to
evaluate one spectrum is less than one second for the skewness and less than ten seconds
for the kurtosis, for parallel computation on 64 cores.

4. Exact calculation of skewness and kurtosis

Using the efficient numerical method for calculation of the skewness and kurtosis
described and validated in § 3, skewness and kurtosis were calculated for a large
number of JONSWAP wave spectra with the objective of obtaining new and improved
parametrizations of skewness and kurtosis, valid over a wide range of different sea-state
parameters.

A JONSWAP spectrum with a cosn directional distribution was used, in the form
S(ω, θ) = S(ω) D(θ), where

S(ω) = αg2

ω5 exp
[
−5

4

(ωp

ω

)4
]
γ exp[(ω−ωp)

2/(2σ 2
a ω2

p)], D(θ) = Γ (1 + n/2)√
π Γ (1/2 + n/2)

cosn θ.

(4.1a,b)

Here, σa has the usual values 0.07 for ω ≤ ωp and 0.09 for ω > ωp, Γ is the gamma
function, and the spectral parameters α, γ , ωp and n are varied in order to describe different
sea states and spectral shapes.

From the directional distribution D(θ), we can define the directional spreading
parameter/standard deviation σθ :

σ 2
θ =

∫ π

−π

[
2 sin (θ/2)

]2 D(θ) dθ. (4.2)

For various reasons, it is common to define σθ in the form (4.2) instead of simply∫ π

−π
θ2 D(θ) dθ (Kuik, van Vledder & Holthuijsen 1988).

Using the assumed spectral form (4.1a,b), one can show (see Appendix A) that the
dependence on the sea-state steepness ε can be factored out so that the skewness and
kurtosis can be expressed in the forms

λ3 = ε f3(kph, γ, σθ ), λ4 = ε2 f4(kph, γ, σθ ). (4.3a,b)

To investigate how the skewness and kurtosis depend on the sea-state parameters kph,
γ and σθ , the exact skewness and kurtosis were calculated for a large number of
combinations (in total 51 × 19 × 19 = 18 411) of these parameters, as summarized in
table 3.
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Parametrization of sea surface skewness and kurtosis

Min Max Step No. of values

tanh(kph) 0.5 1.0 0.01 51
γ 1.0 10.0 0.50 19
σθ 0◦ 45◦ 2.5◦ 19

Table 3. Minimum and maximum values, as well as the step size and number of unique values for which the
exact skewness and kurtosis were calculated.

The resulting skewness and kurtosis as functions of tanh (kph) and JONSWAP γ , for
three different directional spreadings, are shown in figure 3. The first and second rows in
figure 3 show skewness and kurtosis normalized by ε and ε2, respectively, while the third
row shows the ratio of kurtosis to skewness squared, λ4/λ

2
3.

It is observed that both skewness and kurtosis increase with decreasing water depth.
Interestingly, the dependence of the frequency bandwidth controlled by JONSWAP γ is
different in deep and shallow water: in deep water, the skewness and kurtosis are larger
for broader spectra (smaller γ ), while in more shallow water, the kurtosis and skewness
increase with increasing γ . Both kurtosis and skewness decrease with larger directional
spreading. It is worth noting that the ratio of kurtosis to skewness squared, λ4/λ

2
3, is close

to 2 (approximately within ±10 %) over the full range of spectral parameters considered.
Here, we have considered a JONSWAP spectrum since this is probably the most

commonly used model spectrum, in a wide range of engineering applications. However,
it should be mentioned that real ocean spectra do not follow a perfect JONSWAP shape,
although it has proven to be a good model in many ocean regions (Mazzaretto, Menéndez
& Lobeto 2022). The present numerical approach is, however, general, and can be applied
to any type of wave spectrum, and a natural application of the present approach would
be to obtain the skewness and kurtosis directly from more general types of wave spectra,
e.g. for multimodal spectra describing simultaneous wind sea and swell, measured wave
spectra or spectra predicted by operational spectral wave forecasting models (e.g. WAM,
WAVEWATCH III). In this way, direct information about skewness and kurtosis, and
hence associated statistical distributions of e.g. crest heights or wave heights, could be
obtained without needing to rely on a few integrated parameters.

As a test of the robustness of the results obtained for JONSWAP spectra, skewness
and kurtosis were calculated for 100 directional spectra taken from an operational wave
forecasting model, and compared with the corresponding results obtained from the best-fit
JONSWAP spectrum on the form (4.1a,b). The results are shown in figure 4. As seen
from the figure there is relatively good agreement between these two approaches, which
indicates that the results obtained for JONSWAP spectra may be applicable also for more
general types of spectra. The spectra considered in figure 4 were chosen as the 100 largest
sea states (largest significant wave-height) during a three-year period in a North-Sea
location.

4.1. Accuracy of existing parametrizations
Based on the exact calculations of skewness and kurtosis shown in figure 3, the accuracy
of the existing parametrizations that were summarized in § 2.1 are evaluated. The errors
in per cent associated with the different parametrizations are shown in figures 5–10. As
expected, the existing parametrizations are generally reasonably accurate within the range
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Figure 3. Exact (a–c) normalized skewness λ3/ε and (d– f ) normalized kurtosis λ4/ε
2, as well as (g–i) the

ratio λ4/λ
2
3, as functions of tanh (kph) and JONSWAP γ , for three different directional spreadings (from left to

right, σθ = 10◦, 20◦, 40◦, corresponding to n ≈ 32, n ≈ 7 and n ≈ 1, in the cosn θ directional distribution).

of parameters for which they were developed (see table 1), but in some cases are highly
inaccurate outside these regions.

Based on the discussion in § 2.1.1, we have considered both choices of the coefficient Δ

in the narrow-band approximation, i.e. Δ = Δ1D (Janssen 2009) and Δ = ΔPS (Pezzutto
& Shrira 2023). The prediction errors for these two forms of the narrow-band limit are
shown in figures 5 and 6, respectively. It is seen that both forms of the narrow-band limit
are quite accurate for deep water (the two forms coincide for infinite depth), but they
have larger errors in more shallow water. As also indicated by the results in figure 1,
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Figure 4. (a) Skewness λ3 and (b) kurtosis λ4, estimated directly from 100 empirical wave-model spectra
compared to results obtained for the corresponding best-fit JONSWAP spectra.
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Figure 5. Error (in per cent) in estimated skewness and kurtosis for the narrow-band approximation (2.5a,b)
with Δ = Δ1D.

using Δ = ΔPS leads to larger values of skewness and kurtosis compared to using Δ =
Δ1D, with the consequence that for most conditions, the narrow-band limit with Δ = Δ1D
underestimates the real skewness and kurtosis, while Δ = ΔPS leads to overestimation.

It should be noted that when comparing the narrow-band limits with results for finite
bandwidth spectra, it is not a priori clear how to best define the wavenumber appearing
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Figure 6. Error (in per cent) in estimated skewness and kurtosis for the narrow-band approximation (2.5a,b)
with Δ = ΔPS.

in the narrow-band limits. Here, we have used the peak wavenumber of the JONSWAP
spectrum, but it may be that other choices of this wavenumber may improve the accuracy
of the narrow-band limits. Some discussion on this can be found in § 3.3 in Janssen (2017).

The accuracy of the expressions (2.10a,b) presented in Vinje & Haver (1994) is shown
in figure 7. As seen from the figure, their estimate for the skewness is relatively good
for quite deep water (kph larger than approximately 1), but it overestimates significantly
in more shallow water. For the kurtosis, the accuracy is also best for deep water, but
consistently overestimates the exact values, extremely so in shallow water. Consistent with
the assumptions made in Vinje & Haver (1994), the error is smallest for γ ≈ 1 and narrow
directional spreading.

The accuracy of the parametrizations of Jha & Winterstein (2000) is shown in figure 8.
The results from Winterstein & Jha (1995) are very similar, but are not shown here.
These parametrizations were developed for unidirectional waves, for different values of
JONSWAP γ and water depths. The expression for the skewness (2.13) is quite accurate
for relatively deep water as long as the directional spreading is not too broad. The accuracy
is less good for shallow water, where the correct skewness is underestimated up to about
80 %. For the kurtosis, the fit is consistently lower than the correct values, which is
likely explained by the fact that third-order effects necessary for a consistent estimate of
kurtosis to O(ε2) were not included in the analysis of Winterstein & Jha (1995) and Jha &
Winterstein (2000).
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Figure 7. Error (in per cent) in estimated skewness and kurtosis for the parametrizations of Vinje & Haver
(1994).

The accuracy of the Tayfun–Forristall approximation for the skewness, shown in
figure 9, is mostly within 30 % of the correct skewness, except for the broadest directional
spreading in relatively shallow water depth where it overestimates up to 70 %. Note that
also this approximation is consistently conservative.

Finally, the accuracy of the fit for the kurtosis presented in Annenkov & Shrira (2014)
is shown in figure 10. This fit was developed for infinitely deep water and for a specific
frequency-dependent directional spreading function. It should be noted that this fit also
includes the dynamical kurtosis, and is therefore not directly comparable to the other
results discussed here. Nevertheless, it is seen that this parametrization is reasonably
accurate for broad spectra (γ closer to 1) in deep water.

4.2. New parametrizations for skewness and kurtosis
Although the exact skewness and kurtosis can be calculated relatively efficiently for any
spectrum using the method described in § 3, for many applications it is useful to have
simple explicit formulas that enable easy estimation of the skewness and kurtosis. As
documented in the previous subsection, none of the existing parametrizations provides
accurate representations over the entire range of sea-state conditions encountered in typical
ocean engineering applications. Therefore, by using the dataset of exact skewness and
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Figure 8. Error (in per cent) in estimated skewness and kurtosis for the parametrizations from Jha &
Winterstein (2000).
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kurtosis values described above, the following expressions were fitted:

λ3 = (2.89 + 1.19ξ3.3 − 0.28ν0.8 + 0.35ξ2.9ν1.1)(1 + 1.42ζ − 3.81ζ 2 + 2.25ζ 3)ε,
(4.4a)

λ4 = (2.34 − 0.31ξ)λ2
3, (4.4b)
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Figure 10. Error (in per cent) in estimated kurtosis for the parametrization from Annenkov & Shrira (2014).
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Figure 11. Error (in per cent) in estimated skewness and kurtosis for the parametrization suggested in this
paper, (4.4).

where

ξ = (kph)−1, ν = ln γ, ζ = sin σθ . (4.5a–c)

The accuracy of the parametrizations (4.4) is shown in figure 11, showing that they are
accurate over a wide range of sea-state parameters. In the fitting of the expressions (4.4),
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a priority was to have good accuracy for realistic sea-state parameters, e.g. for common
directional spreading parameters in the range of σθ between 15◦ and 35◦.

Generally, it is shown that the expressions (4.4) predict the skewness and kurtosis within
about 5 % accuracy for typical realistic sea-state conditions in deep and intermediate water
depths. It is worth noting the simple parametrization for the kurtosis, which for infinite
depth reduces to the very simple approximation λ4 = 2.34λ2

3.

5. Comparison to model tests and phase-resolved simulations

In the following, we compare the exact integral expressions for skewness and kurtosis with
results from model tests of mechanically generated waves in a directional wave basin and
results from phase-resolved numerical simulation using a nonlinear wave model based on
the higher-order spectral method (HOSM) (Dommermuth & Yue 1987; West et al. 1987).

The model tests were carried out in the Hydrodynamics Laboratory at Imperial College
London in a directional wave basin having width 20 m and length 10 m, and water depth
h = 1.25 m. A model-scale 1 : 100 is assumed so that the full-scale water depth is h =
125 m. The model tests include eleven different sea states with different significant wave
heights Hs and peak periods Tp, generated according to a JONSWAP spectrum with a
directional distribution in the form of a normal distribution with standard deviation σθ .
For one of the sea states, three different directional spreadings were considered (σθ =
9◦, 18◦ and 27◦), while the remaining sea states were run for σθ = 18◦. Each test was
repeated about 60 times with different random amplitudes and phases. The duration of
each repetition was about three hours full-scale, i.e. a total duration about 180 hours in
each sea state. Skewness and kurtosis were estimated for each repetition from the time
series of surface elevation, which was measured 5 m from the wave paddle, corresponding
to a distance 500 m full scale. For some additional information on the model tests, see
Gramstad, Johannessen & Lian (2023).

In addition to the model-test results, the same sea states were simulated with the HOSM.
The nonlinear order in HOSM was set to M = 3, consistent with the order to which the
integral expressions for skewness and kurtosis are valid. The HOSM simulations were
initialized with the same directional JONSWAP spectra as used for the model tests.
For each sea state, the wave field was simulated in a periodic domain with dimensions
16λp × 16λp for duration 25 min, where the first five minutes were discarded due to
possible transient startup effects. It was observed that for the remaining 20 min of the
simulations, the skewness and kurtosis were close to stationary, and for each seed, the
skewness and kurtosis were estimated over the entire computational domain in space and
the 20 min duration in time. For each sea state, 50 repetitions were run, with different
random amplitudes and phases each repetition. Some testing was carried out to ensure
that the HOSM results were not affected significantly by choice of computational domain,
discretization of the spectrum, and so on.

The resulting estimates of skewness and kurtosis, compared to the exact values
calculated from (3.1a,b), are shown in figure 12. Results from the proposed
parametrization (4.4) are also included in the figure. The sea states in figure 12 are sorted in
order of increasing sea-state steepness kp

√
m0. For the model tests, the boxes and whiskers

show the variation over approximately 60 random repetitions of each sea state. Here, the
boxes cover the range from the first to the third quartile, and the whiskers show the entire
range of the data. For the HOSM results, the whiskers indicate ± one standard deviation of
the skewness and kurtosis estimated from the individual repetitions of the same sea state.
Naturally, the HOSM estimates are associated with smaller statistical uncertainty than the
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Figure 12. (a) Skewness λ3 and (b) excess kurtosis λ4 from model tests and HOSM simulations compared to
‘exact’ values as well as results from the new parametrization suggested in this paper, (4.4).

model-test results since the HOSM estimates are based on an average over a large area in
space and time, while the model-test results are based on single-point time series only.

As seen from figure 12, there is quite good agreement between model-test results, the
HOSM and the exact values, except for the two steepest sea states, where there is a
significant contribution from wave breaking in the model tests. In these sea states, the
validity of the HOSM is also more questionable. In fact, in these sea states, occasional
failures of the HOSM simulations were observed, due to numerical instabilities arising
from too steep waves. In such steep sea states, ideally the HOSM should be accompanied
by a breaking model, as discussed in e.g. Gramstad et al. (2023). With the exception of
these two steepest sea states, there is good agreement between the exact skewness and
kurtosis and the HOSM estimates. It should be noted that obtaining the skewness and
kurtosis from short crested HOSM simulation is significantly more computationally heavy
than evaluating the integrals (3.1a,b). Further, it should be noted that both the HOSM
and model-test results in principle include contributions to the dynamical kurtosis. In this
sense, the close agreement between HOSM and the exact values for the bound kurtosis
suggests that the contribution from the dynamical kurtosis is quite small in the cases
considered here.

Another point that should be mentioned is that the spectrum in both HOSM simulations
and model-tests evolves with time, so that the actual spectral shapes after some time,
or some distance down the wave basin, deviate from the target JONSWAP spectrum on
which the exact calculations are based. We stress that in addition to being much more
computationally efficient and not affected by statistical uncertainty, the direct solution
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of the integrals for skewness and kurtosis has the advantage of not having to deal with
non-stationary statistics and non-stationary spectra in phase-resolved simulation.

6. Application to crest height distributions

As mentioned in the Introduction, the skewness and kurtosis appear as parameters in the
theoretical higher-order statistical distributions for surface elevation, wave heights and
crest heights. In the following, we will focus on the third-order crest distribution in the
form given by Tayfun & Fedele (2007), which in terms of its cumulative distribution
function F(ζ ) can be written in the form

1 − F(ζ ) = P
(

ηc

Hs
> ζ

)
= exp (−8χ2)

[
1 + 8

3
λ4ζ

2(4ζ 2 − 1)

]
, (6.1)

where χ is given by the quadratic equation ζ = χ + 2λ3χ
2/3. If we set λ4 = 0 and

approximate λ3 by the Tayfun–Forristall approximation discussed in § 2.1.4, then this
reduces to the crest distribution of Tayfun (2006), which has also been adopted in recent
crest distributions developed in the LOADS joint industry project (JIP) (Gibson 2021;
Karmpadakis & Swan 2022). Note that Gibson (2021) and Karmpadakis & Swan (2022)
include also terms to account for effects beyond second order (as well as corrections to
account for wave breaking as discussed below). These corrections are, however, empirical
and not based on theoretical derivations, as is the case for the terms involving λ4 in the
Tayfun–Fedele model (6.1).

To evaluate the effect of using the exact skewness and kurtosis in the crest height
models, the Tayfun–Fedele model (6.1) with λ3 and λ4 from exact calculations as well
as from the parametrization (4.4) are shown in figure 13 for nine of of the model-test
sea states considered in § 5. The two steepest sea states, which are affected strongly
by wave breaking, are not shown. The empirical crest distributions from both model
tests and HOSM simulation are also plotted, together with various other relevant crest
height distributions: the Rayleigh distribution for crest heights, the Forristall crest
distribution (Forristall 2000), the second-order Tayfun model with λ3 approximated by
the Tayfun–Forristall approximation (Tayfun 1980, 2006), as well as the recent crest
distribution suggested in the LOADS JIP (Gibson 2021), referred to as LOADS-OCG in
the following.

In order to be able to distinguish the different distributions visually, as well as to exclude
the effect of wave breaking (which, with the exception of the LOADS-OCG crest height
model, is not included in any of the approaches considered here), the distributions are
plotted for a smaller range of exceedance probabilities limited by 10−3, or at the probability
level for which the generalized Pareto wave breaking tail model starts in the LOADS-OCG
model, in the case that this happens for exceedance probabilities above 10−3.

From figure 13, it is first noted that the results obtained with exact λ3 and λ4, and from
the new parametrization (4.4), are practically identical (in practice, the difference is not
visible in the figure), confirming the accuracy of (4.4). Further, it is observed that the
Tayfun–Fedele model (6.1) with exact λ3 and λ4 is in all sea states in very good agreement
with the crest heights from the HOSM simulations. For the model tests, the results show
some qualitative variations from sea state to sea state, some of which are not explained
readily. For example, in the sea state Hs = 14.2 m, Tp = 16.7 s, the model tests are clearly
above all other results, while in the quite similar sea state Hs = 15.0 m, Tp = 18.3 s, the
model tests are clearly lower than the third-order based models. This may be explained
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Figure 13. Distributions of crest heights from model tests, HOSM simulations and the Tayfun–Fedele model
with exact skewness and kurtosis, as well as other relevant crest height distributions.

by uncertainties and inaccuracies in the wave-tank measurements. However, overall it is
observed that the model-test results are in best agreement with the approaches that include
third-order effects (the Tayfun–Fedele model with non-zero kurtosis, HOSM simulations
and LOADS-OCG model). In fact, especially in the steeper sea states, the LOADS-OCG
model seems to be in best agreement with the model-test results. To some extent this may
be expected considering that the higher-order term in the LOADS-OCG model is fitted to
model tests. Interestingly, the HOSM results are, however, in somewhat better agreement
with the Tayfun–Fedele model than the LOADS-OCG model. However, the differences
between the approaches considering third-order effects are generally relatively small. The
models based on second-order only (Forristall, Tayfun–Fedele with λ4 = 0) are generally
underestimating both HOSM simulations and the model tests.

In the context of the discussion in § 4.1, where the accuracy of different parametrizations
of skewness and kurtosis was presented in terms of the percentage error, it should be noted
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Figure 14. The errors at (a) the 10−3 level and (b) the 10−5 level in the Tayfun–Fedele (TF) crest distribution
functions of error in estimates of skewness and kurtosis used in the model. Here, a sea state with Hs = 10 m,
Tp = 12.5 s at 125 m water depth is used.

that to what extent a given error in skewness and kurtosis is significant will depend on the
specific application of interest. In order to illustrate this point, in figure 14 we have shown
the error in the Tayfun–Fedele crest distribution as function of the corresponding error in
kurtosis and skewness used in the model. As an example, an overestimation of 50 % in
both skewness and kurtosis leads to an overestimation of the crest height at the 10−3 level
of about 10 %.

7. Conclusions

In this paper, a numerical method for calculating the exact surface elevation skewness
and kurtosis due to second- and third-order non-resonant nonlinear interactions, for
an arbitrary wave spectrum, has been presented and validated. It is shown that the
present numerical approach enables efficient calculation of skewness and kurtosis, and
hence represents an efficient alternative to e.g. phase-resolved time domain Monte Carlo
simulations. It is shown that none of the parametrizations of skewness and kurtosis that are
reported in the existing literature are accurate over the entire range of sea-state parameters
that are encountered in realistic ocean conditions. New parametrizations for skewness and
kurtosis, as functions of wave steepness, water depth, spectral bandwidth and directional
spreading, have therefore been presented, and it is shown that they represent a significant
improvement over existing alternatives.

It is suggested that using the exact skewness and kurtosis, or the accurate
parametrization suggested here, in theoretical higher-order distributions for crest heights,
wave heights and surface elevation, represents the most natural way to include the effects
of nonlinearity in the statistical distributions of the ocean surface. It should be noted,
however, that these theoretically based crest distributions will overestimate wave crests
in steep sea states, if no correction due to wave breaking is applied. Hence, for consistent
statistical distributions over all realistic ocean conditions, these models should be extended
with some correction for wave breaking, e.g. by using an approach similar to the one
adopted by Gibson (2021).

Finally, it should be mentioned that although only JONSWAP-type spectra were
considered here, the present numerical approach is general and can be applied to any
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type of wave spectrum. A natural application of the present approach would be to
obtain the skewness and kurtosis directly from more general types of wave spectra,
e.g. for multimodal spectra describing simultaneous wind sea and swell, measured wave
spectra or spectra predicted by operational spectral wave forecasting models (e.g. WAM,
WAVEWATCH III). In this way, direct information about skewness and kurtosis, and
hence associated statistical distributions of e.g. crest heights or wave heights, could be
obtained without needing to rely on a few integrated parameters.
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Appendix A. Proof for explicit dependence of sea-state steepness

By introducing a change of variables from k to k̃ = k/kp in (2.3a,b), and defining a
normalized spectrum Ẽ(k̃) = k2

p E(kpk̃)/m0, (2.3a,b) can be written as

λ3 = 3ε

∫
Ẽ(k̃1) Ẽ(k̃2) K(3)(k̃1, k̃2) dk̃1,2, (A1a)

λ4 = 12ε2
∫

Ẽ(k̃1) Ẽ(k̃2) Ẽ(k̃3) K(4)(k̃1, k̃2, k̃3) dk̃1,2,3, (A1b)

where ε = kp
√

m0, and we use the fact that the kernel functions possess the properties

K(3)(k1, k2) = kp K(3)(k̃1, k̃2), K(4)(k1, k2, k3) = k2
p K(4)(k̃1, k̃2, k̃3). (A2a,b)

Thus for any spectrum that in normalized form does not depend on ε, the dependence
of steepness can be factored out. For example, for the JONSWAP spectrum (i.e. E(k)

corresponding to (4.1a,b)), it can be shown that Ẽ(k̃) depends only on γ and directional
spreading parameter n.
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