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Symmetric multiple zeta functions®

Maki Nakasuji and Wataru Takeda

Abstract. In this study, we introduce multiple zeta functions with structures similar to those of
symmetric functions such as the Schur P-, Schur Q-, symplectic and orthogonal functions in rep-
resentation theory. Their basic properties, such as the domain of absolute convergence, are first
considered. Then, by restricting ourselves to the truncated multiple zeta functions, we derive the
Pfaffian expression of the Schur Q-multiple zeta functions, the sum formula for Schur P- and
Schur Q-multiple zeta functions, the determinant expressions of symplectic and orthogonal Schur
multiple zeta functions by making an assumption on variables. Finally, we generalize those to the
quasi-symmetric functions.

1 Introduction

The well-known Hall-Littlewood symmetric functions P, (x; t) are a family of symmet-
ric functions that depend on a parameter ¢:

For A = (41,43, -+, A,) being a partition, thatis, 4; € Z,1; > A, > --- > A, > 0and
x = (x1,X2,- -, Xx,) being variables,

1 Xi —1X;
Py(x;t) = W Z (o x’l 1_[ % , (1.1)
vall) fee, 1<icj<r X T
mj 1tk
where v (t) = l_[l_[ ——withm; = #{i|1 < i < r,A; = j}, S is the sym-
. 1—1¢
Jj=0 k=1
metric group of degree r, and x! = xfl ...x" When t = 0, the function is the

Schur polynomial which we denote by s,(x) = P,(x;0). Schur polynomials are irre-
ducible general linear characters and can be written combinatorially by means of a
semi-standard Young tableau. Mainly in representation theory, much research has been
studied on this function since its introduction. One of them is the determinant for-
mula called the Jacobi-Trudi identity, which is proved by the method of lattice path
model known as the Lindstrom-Gessel-Viennot lattice path procedure. When # = —1
in (1.1), the function is known as the Schur P-function or the Q-function, expressed as
Pay(x) = Pa(x;—1) or Q (x) = 2" Py(x; —1), respectively, which was introduced by
Schur ([22]). We note that the Schur Q-function was originally defined via certain pfaf-
fian expressions in his analysis of projective representations of symmetric groups. The
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tableau description of Schur Q-functions was introduced by Stembridge ([23]) for using
the theory of shifted tableaux developed by Worley ([25]) and Sagan ([20]), and the com-
binatorial structure of this function was revealed. In his paper [24], Stembridge showed
that the tableau definition agrees with Schur’s pfaffian expressions by a generalization
of the Lindstrom-Gessel-Viennot lattice path procedure. In parallel with the above the-
ory, symplectic and orthogonal Schur functions, which are irreducible symplectic and
orthogonal characters and can also be defined combinatorially, have been developed. It
is well-known that a similar discussion such as a determinant formula holds by using an
analogue of the Lindstrom-Gessel-Viennot lattice path procedure. (see Hamel-Goulden
[10], Hamel [9] and Foley-King [4]).

The Schur multiple zeta function introduced by Nakasuji, Phuksuwan, and Yamasaki
([17]), is a generalization of both the multiple zeta and zeta-star functions of the Euler-
Zagier type with a combinatorial structure similar to a Schur polynomial. Because this
function has combinatorial and analytic features, the characteristics of both of these
features have been investigated in recent years. Nakasuji, Phuksuwan, and Yamasaki
[17] obtained some determinant formulas such as the Jacobi-Trudi, Giambelli, and dual
Cauchy formulas for Schur multiple zeta functions by using the Lindstrom-Gessel—
Viennot lattice path procedure and the properties of Young tableaux. These type formu-
las gave a new type of identities among the multiple zeta-functions of the Euler-Zagier
type. Therefore, it is natural to ask whether we can define multiple zeta functions with
structures similar to those of symmetric functions such as the Schur P- or Q-functions,
symplectic or orthogonal functions. In this study, we focus on this point.

Remark 1.1 The term symmetric multiple zeta function has been previously defined by
Kaneko and Zagier in [12, 13]. While their definition differs from the one we propose
in this paper, we adopt the same terminology to highlight the symmetric structures
inherent in our definition.

In Section 2, for s = (s;;) € ST(A4,C) being the set of all shifted tableaux of shape
A over C, we introduce the Schur P-multiple zeta functions and the Schur Q-multiple zeta
functions of shape A as the following series

1 1
= ) o owmd = ) Lo

MePSST(Q) MeQSST(A)

respectively, where PSST (1) and QSST(A) are the sets of semi-standard marked
shifted tableaux of shape A satisfying certain conditions (see the detail in Section 2),
and discuss their basic properties such as the domain of convergence. In Section 3, we
consider the pfaffian expression of the (truncated) Schur Q-multiple zeta functions by
following Stembridge’s way ([23]). Here, the truncated Schur Q-multiple zeta function is
M= Y

MeQSSTn ()

for a fixed positive integer N € N, where QSSTy (1) are the sets of all (m;;) €
QSST(A) such that m;; < N for alli, j. In Section 4, we demonstrate that the pfaffian
expression, obtained in Section 3, can be easily generalized to the skew type. In Section
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5, after reviewing the outside decomposition of the shifted Young diagram according to
Hamel-Goulden [10], we apply it to our skew type Schur Q-multiple zeta functions and
derive the pfaffian expressions associated with that decomposition. In Section 6, we dis-
cuss the sum formula for our Schur P- and Q-multiple zeta functions. Sections 7, 8, and
9 are devoted to discussions of symplectic and orthogonal Schur multiple zeta functions,
which are defined as follows. For a positive integer N and s = (s;;) € T(4, C) being the
set of all Young tableaux of shape A over C, we define the symplectic Schur multiple zeta
functions and the orthogonal Schur multiple zeta functions of shape A as the following series

Sp, 1 S0, 1
GV =), e wmd Vo= ) Lo

MESPN(/I) MESON(/U

respectively, where SPx (1) and SO y (1) are the sets of all symplectic tableaux and so-
tableaux of shape A (see the detail in Section 7 and 8). We construct directed graphs
corresponding to these functions as analogous to the original symplectic and orthogo-
nal Schur functions attributed to Hamel ([9]) and provide the determinant expressions
in a manner similar to that of Hamel where we apply the Stembridge Theorem [24].
Further, we provide their decomposition into a sum of truncated multiple zeta or zeta-
star functions. Lastly, in Section 10, we study the extension of all of these functions to
quasi-symmetric functions. We derive the pfaffian expressions for Schur Q-type quasi-
symmetric functions and determinant expressions for symplectic type and orthogonal
type quasi-symmetric functions.

2 Basic properties of the Schur P- and O-multiple zeta functions

We first review the basic terminology to define Schur P- and Q-multiple zeta functions.
A partition 4 = (A4,...,4,) is termed strict, if ; > A, > -+ > A, > 0. Then, we
associate the strict partition A with the shifted diagram

SDA) ={(i,j) €eZ*|1<i<r,i<j<li+i-1}

depicted as a collection of square boxes where the i-th row has A; boxes. We say that
(i, j) € SD(Q)isacornerof Aif (i+1, j) ¢ SD(A) and (i, j+1) ¢ SD(A) and denote by
SC(A) € SD(Q) the set of all corners of 4; for example, SC((4,2,1)) = {(1,4), (3,3)}.
For a strict partition A, a shifted tableau (;;) of shape A over a set X is a filling of SD (1)
with #;; € X into the (7, j) box of SD(1). We denote by ST (2, X) the set of all shifted
tableaux of shape A over X.

Definition 2.1 (semi-standard marked shifted tableau) Let N’ be the set
{1’,1,2/,2,...} with the total ordering 1’ < 1 < 2’ < 2 < ---. Then, a semi-
standard marked shifted tableau t = (t;;) € ST(A,N’) is obtained by numbering all the
boxes of SD (A1) with numbers from N’ such that

PST1 the entries of t are weakly increasing along each column and row of ¢,
PST2 foreachi =1,2,...,there is at most one i’ per row,

PST3 foreachi =1,2,..., there is at most one i per column,

PST4 there is no i’ on the main diagonal.
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We denote by PSST (1) the set of semi-standard marked shifted tableaux of shape A.
Similarly, we denote by QSST (1) the set of semi-standard marked shifted tableaux of
shape A without the diagonal condition PST4.

Definition 2.2 (Schur P-multiple zeta functions) For a givenset s = (s;;) € ST(4,C)
of variables, the Schur P-multiple zeta functions of shape A are defined as
1
GE= ) 2.1)
MePSST(A)

where MS = ]_[ Imy;|% for M = (my;;) € PSST(A) and |i| = |i’] = i.
(i,j)eSD(A)

For example, when A = (6, 5,3, 1),

\1 11234

202345
M= € PSST(A),
34| 4

and

1 1

W - 151171512 15132514 3515 4516 D522 D523 3524 4525 5526 3533 4534 4535 5544 ’

Similarly, We define the Schur Q-multiple zeta functions.

Definition 2.3 (Schur Q-multiple zeta functions) For a given set s = (s;;) € ST(4,C)
of variables, the Schur Q-multiple zeta functions of shape A are defined to be

0 _ 1
gy (s) = Z ws (2.2)
MeQSST(Q)
where M5 = [ | |mij|" for M = (m;j) € QSST(A) and |i| = |i'| = i

(i.j)eSD ()

For a strict partition A = (14, ..., 4;), by the definitions of §/{) and {/1Q, we can allow
the main diagonal entries in tableaux M € QSST (1) to be marked and obtain

£2(s) =278 (s). (2.3)

As in the Introduction, we define the truncated P- and Q-multiple zeta functions:
For a fixed positive integer N € N, let PSSTy (1) and QSSTx (1) be the sets of all
(m;;) € PSST(A) and QSST (A) such that m;; < N for all i, j. Then, we define

1 1
g = Y, mad®Ve = )

S £
MePSSTy (1) MeQSSTy ()
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In this section, we prove some basic properties of the Schur P- and Q-multiple zeta
functions. We first consider the domain of absolute convergence of the series (2.1) and

(2.2).

Lemma 2.1 Let

we = {s = (sij) € ST(1,C)

Re(s;ij) = 1 forall (i, j) € SD(A) \ SC(1)
Re(s;j) > 1 forall (i, j) € SC(A) '

Then, the series (2.1) and (2.2) converge absolutely if s € W/?.

Proof By (2.3), it suffices to consider g"/lQ. Let A be a strict partition and SC(1) =
{@i1,j1)5 -+, ik, jx)} where iy < --- <igand j; > --+ > ji.Letip = 0. Because

k
1 1
Z Ms < l_[ Z 1_[ |m; .|Re(tij,€) ’
MeQSST (1) £=1 MeQSST (1) (i,j)eSD () "1

mi_,'SN mij <N

where A¢ = (je —ie—1, je —ie-1—=1,..., je —i¢+1)and t;j ¢ = Siti,_,, j+i;_,» W€ Prove
that for A = (/115~-~,/1r) = (/11,/11 - 1,...,/11 —-r+ 1),

1

|m; ;|Re(sii)
MeQSST(A) (i,j)eSD(A) "1
m;j <N

(2.4

converges absolutely for s € W/IQ as N — oo. Rearranging the order of summation, we
have

N

1 1 1

Z l_[ |m; .|Re(Sij) - Z Z 1—[ |m; .|Re(Sij) NRe(SMr) ’

MeQSST(Q) (i,j)eSD() " Ni=1\ (m;i;)€QSST(Q) (i,j)eSD () " 1
mij <N mpa, =Ny (L)#(F,4)

By extending the region of summation and product, it holds that

1 . 1 1
> w2 2| T 2 |
MeQSST () (i,j)eSD(a) """ Ni=1| i=1 =1 mg=1 N

mij <N (&,7)#(r,A)
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Because for any € > 0, there exists a constant C; > 1 such that

N

m;;=1 mij
we can estimate that
N erd,
1 < ' Z N,
|m..|Re(Sij) - e Re(sra,)
MeQSST(Q) (i,j)eSD() "1 Ni=1 NV,

mjj <N

We can choose a sufficiently small £ such that Re(s, 5, ) —&rd, > 1. Thus, (2.4) converges
absolutely and we obtain the lemma. |

We next show that a Schur Q-multiple zeta function can be written as a linear com-
bination of the multiple zeta (star) functions as well as the Schur multiple zeta functions.
Indeed, for a strict partition A of n, let SF (A1) be the set of all bijections f : SD(1) —
{1,2,...,n} satisfying the following two conditions:

(i) foralli, £((i,j1)) < f((i,j2)) if and only if j; < jo,
(i) forall j, f((i1,))) < f((iz,J)) ifand only if i; < .

Fors = (s;;) € ST(,C), put

V(S) = {(Sf—l(l),Sf—1<2), N ,Sf—l(n)) € Cni f S 87:(/1)} .

We writet <; s fort = (t1,13,...,tn) € C™if there exists (vi,v2,...,V,) € V(s)
satisfying the following: forall 1 < k < m, there exist 1 < hy < mandl; > O such that

(1) I = Vhy + Vhp+1 R Vhy+li
(ii) there are no (iy,i3;J1, j») withi; < i; and j; < j, such that

{siljl» siljza Sizjz} c {th7 th+17 ceey th+lk }y and
(i) Lle{hr, b +1,..., he + 1k} = {1,2,.. ., n} (disjoint union).

Here, we note that since |m; ;| = |sz1| = m,; for any positive integer m;; in (2.2), the

definition of {/IQ, we have

(2=, 2"V, 2.5)

t=ss

where m(t) is a positive integer that depends on the way in which the comma, is changed
to the plus + sign. Moreover, by an Inclusion-Exclusion principle, one can also obtain
its “dual” expression

(2(s)= ) (-0 ), (2.6)

t=ss

where dep is the number of variables. Combining (2.5) and (2.6) with identity (2.3), we
can decompose the Schur P-multiple zeta function into a linear combination of multiple

2025/03/13  01:51
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zeta (star) functions defined by

1 1
g(Sl,...,Sr)Z Z W, {*(sl,...,sr)z Z ﬁ

1<ny<--<n, 1 r 1<n;<---<n, m hr

Example 2.2 Fors = (s;;) € ST((3,1),C), we have
V(s) = {(s11, 512, 813, $22)> (S115 12 522, $13) }-
One can confirm that ¢t < s if and only if # is one of the following:

(S115 S125 8135 522)5 (S11 + S12, 513, 822), (11, S12 + 513, 522), (S11, S12, 813 + $22),
(5114 812 + 513, 522), (511 + 512, S13 + 522), (S11, S12 + S13 + 522),

(5115 8125 522, 813), (S11 + S12, 22, 513), (511, S12 + 522, 513).

This shows that when s € W(Q3 D

‘Sll §12 S13‘

o
4(3-1)

522

=164 (511, S12, 513, 522) + 8L (s11 + S12, 513, 522) + 8 (811, S12 + 513, 522)
+164(811, 812, S13 + §22) + 4L (511 + 512 + 513, 522)
+84(s11+ 512, 813 + 522) + 4L (511, 512 + 513 + 522)
+ 164 (511,512, 22, 513) + 8L (S11 + S12, 822, 513) + 8L (511, S12 + 522, 513)
=164 (511, S12, 513, 822) — 8™ (811 + 512, 513, 522) — 84 (811, 512 + 513, 522)
— 167 (s11, S12, 813 + 522) + 40 (811 + $12 + 813, 522)
+ 807 (511 + 512, 513 + 522) + 4% (511, 512 + 513 + 522)

+16* (511, 512, 522, 513) — 8L (s11 + 5125 522, 513) — 8L (511, S12 + 522, 513)-

Example 2.3 It holds that

2, (sul-~Jsv)) = Y 2@ cce.
1

g(Qr) () = Z(_l)r—dep(f)zdep(t’)ér*(e)’
1

where £ runs over all indices of the form € = (s1;0s1,0- - - Os1,-) in which each O is
filled by a comma, or a plus + sign.

By (2.3), the Schur P-multiple zeta functions can be similarly decomposed into a
linear combination of multiple zeta (star) functions.

We next provide a short observation for a relation between Schur Q-multiple zeta
values and the Two-One formula conjectured by Ohno and Zudilin [19], and proved by
Zhao [28].

2025/03/13 01:51
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Theorem 2.4 (Two-One formula [19, 28])  For a non-negative integer k, we denote o1 =
(1, {2}¥). Then for any admissible index k = (ky, ..., k,) with odd entries k1, . .., k,, the
following identities are valid:

é’*(ukw e ’/’tkr) = Z Zdep(t’)é,(e)’

£=<k

— Z (_1)r—dep(t’) Zdep(t’)é’*(f)’

t=<k

where the sum Z extends over all indices of the form € = (k\0k,0- - - Ok,) in which each

<k
O is filled by the comma , or the plus + sign.

Combining Theorem 2.4 with Lemma 2.3, we have the following theorem.
Theorem 2.5  For r-tuple (ky, . .., k;) of positive odd integers with k, > 3,

gg) () = f*(ﬂkl, ces Hk,)
k-

- LY L2,

This theorem contributes a non-trivial identity between a single Schur Q-multiple
zeta value and multiple zeta star value.

Corollary 2.6  For a positive integer k > 4

2, (T 3) =552 (%)

Proof By Theorem 2.5 and the sum formula (Theorem 6.1), we have

& (][ ]3) =22 = k- ek,

By (2.5), we have g(Ql) () = 2{ (k) and

&, (T 3) =554 (%)

3 Pfaffian expression of the Schur Q-multiple zeta functions

The original Schur Q-polynomial is known to have a pfaffian expression [15]. In this
section, we provide a pfaffian expression of the Schur Q-multiple zeta function by fol-
lowing the Stembridge approach [24]. We first recall the definition of a pfaffian. Let S,
be the symmetric group of degree n. Then, for a given square matrix A = (a;;)1<i j<n,

2025/03/13  01:51
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the determinant det(A) is defined by

n

det(A) = Z sgn(o) l_[ai,o-(i)’
i=1

o€, i=

where sgn(o) is the signature of o.
We derive the pfaffian by defining a set &, a subset of the symmetric group S,,, of
an even degree,

() <n(3)<---<n(2n-1), }

Bon = {ﬂ € n(1) < n(2),7(3) < n(4),...,7(2n— 1) < n(2n)

For an ordered 2n-tuple v = (vy,...,vy,) of vertices, we say that a set of edges 7 =
{((vi,vj), ..., (Vk,vi))} onvisa 1-factor if each v; is incident with exactly one edge.

Example 3.1 The following are 1-factors of {1, 2, 3, 4}.

e N N m
1 2 3 4 1 2 3 4 1 2 3 4
m=e m=1(23) = (243)

By convention, we always list the edges of a 1-factor 7 in the form (v;, v;) withi < j.
It is known that a bijection can be constructed from &;,, to the set of 1-factors by 7

{vr)svz@)s -+ (Va2n-1)>Va(2n))}, and

(2n)!
2npl

|g‘2n| =

Then, for a given 21 X 2n upper triangular or anti-symmetric matrix A = (a;)1<i,j<2n
the pfaffian pf(A) of A is defined by

n
pf(A) = > sgn(m) [ | ancion. xci-
i=1

7 E€Fan

Let D = (V, E) be adirected graph with vertices V and edges E, with the assignment
of adirection to each edge with no directed cycles. Multiple edges are allowed. We denote
by u — v an edge directed from u to v. For any pair of vertices u, v, we denote by
P (u,v) the set of directed D-paths from u to v on D. If u = u, then 9P (u, u) is a set of
a single path of length zero.

Let I and J be ordered sets of vertices of D. Then [ is said to be D-compatible with
J if, wheneveru < u’inIandv > v’ in J, every path P € 2 (u, v) intersects every path
0 € P(u',v’). Here, if two paths have a common vertex, we say that they intersect.

2025/03/13  01:51
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For any vertex u € V and subset I C V, let P (u; I) denote the set of directed paths
fromu toany v € I, and let

Q= Y w(P),

PeP(ul)

where w is a particular weight function defined on edges. For any r-tuple u =
(u1,...,u,) of vertices, let (u; I) be the set of r-tuples of paths P; € P(u;;I). The
weight function w is extended to tuples of paths by

r

w(Py,...,P,) = ]_[w(P,-).

i=1

Then we define

Or(uy, ... ,u.) = Z w(Py,...,P).
(P1,....Pr)eP(wI)

Theorem 3.2 ([24, Theorem 3.1)) Letu = (uy,.. ., u,) be anr-tuple of vertices in a directed
acyclic graph D, and assume that r is even. If I C V is a totally ordered subset of the vertices
such that u is D-compatible with I, then

O (u) = pf(Qr(ui, uj))i<i<j<r-

Remark 3.3 ([24]) In the case of r being odd, we may adjoin a phantom vertex u, 41 to
V, with no incident edges, and include u,. in 1. We order all other vertices of I before
ur+1 and replace r by r + 1.

Stembridge constructed a directed graph D corresponding to the Schur Q-functions
[24]. Moreover, Stembridge applied Theorem 3.2 to obtain the following pfaffian expres-
sion of the Schur Q-polynomial.

Theorem 3.4 ([24, Theorem 6.1]) Let A = (A4, ..., A4;) be a strict partition of even length.
Then

04 =pi(Q.25))1<i<j<r

Following the Stembridge approach, we construct a directed graph D corresponding
to the Schur Q-multiple zeta functions. We begin with the vertex set of pairs of non-
negative integers, and direct an edge u — v whenever u — v = (1,0), (0, 1), or (1, 1).
Subsequently, we delete the edges # — v that contain points whose first coordinates
are both zero, as well as those of which the second coordinates are both zero. Finally, we
divide each of the vertices (0, j) with j > 1 into two vertices, say (0, j) and (0, j + 1)/,
such that the edge (1,7 + 1) — (0, j) is redirected to (0, j + 1)’, whereas the edge
(1, j) — (0, ) remains intact. Fix a positive integer N and a partition 4, and let u =
(uy,...,u,) be the r-tuple of vertices with u; = (1;, N). Without loss of generality, we
may assume that r is even (if 7 is odd, set 4,41 = O and u,-4; = (0, N + 1)’, and replace r
with r + 1). Let Iy = {(0,0), (0, 1), (0,2)",(0,2),...,(0,N)’, (0,N), (0O, N +1)’}.

2025/03/13  01:51

https://doi.org/10.4153/S0008414X25000203 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25000203

Symmetric multiple zeta functions 11

For any vertex u € V, let % (u; I) be the set of non-intersecting path P € 9 (u; I).
For any r-tuple u = (uy, . .., u;) of vertices, let Py (u; I) be the set of non-intersecting
r-tuples of paths P; € %Py (u;; I). Then, an element in QSSTy (1) can be identified with
a tuple of non-intersecting paths in %y (u; Iy ), and u is D-compatible with I .

Let vi(P) = (vi j(P))js0 be the sequence of vertices representing a path P €
@0(14,'; IN) and let g;cy be the edge Vi,j(Z (x, y)) — Vi j+l- If Vi,j(P) - Vi’j+1(P) =
(1,0) or (1, 1), we assign the weight w(fiy) =y Ify; i (P)=vi j+1(P) = (0, 1),
we assign the weight w(ffcy) = 1. Here, we put (1,y) — (0, y)’ = (1, 1) for any positive
integer y. Then, we define

w(Py) = [w(e,)
Cry
(see Example 3.5), and for (Py,..., P,) € P(u;Iy),

r

w(Pi,...,Py) = ]_[w(P,-).

i=1

Then, according to the above discussion, we find that

(2N (s) = D WP, Py).
(Py,....P) €2y (wIN)

For a set X, we define
ST, X) = {(t;;) € W | t;j = taycif j —i = k — 1 forany k}.

Example 35 Letd = (6,5,3,1) and N = 5. Then, Figure 1 is a 4-tuple of paths
(Pl,Pz,P3,P4) € 9({”1,'42};1N) ©® 9({143,”4};11\]). Let (S,'j) € ST(/l,C)The

27125

Figure I: (P, P2, P3, P4) satisfying the condition in Example 3.5.
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weights w(P;) are

1 1
1511 181215132514 35154516 ’ W(PZ) - 3522 3523 3524 4525 5526

1 P = 1
253305345535 W( 4) T gsas’

w(Py) =

w(P3) =

Theorem 3.6 (Pfaffian expression of the Schur Q-multiple zeta functions) Let r be an
even positive integer. Let 1 = (A1, ..., A,) be a strict partition with A; > 0. Then for s €
ST48( A, C),

g,lQ (S) = pf(M,l),
where My = (a;;) is an r X r upper triangular matrix with
a;j = g(Q/li,/lj)(s(/li,/lj)) fori < j’
' 0 otherwise,

and

T ]
S,2;) = >
Sjj| 1St

wheret; =i+ A; — 1.

Proof We can prove this by following Stembridge’s method (see [24, Theorem 3.1]).
Indeed, a similar discussion is proceeded in terms of appropriate weight corresponding
to multiple zeta functions:

By the definition of pfaffian,

f(M,) = sgn(m Q (S 3.1)
pf(My) %} gn () (i’jl_)leﬂ.(wdj)( (Ae)

It suffices to show that there exists a sign-reversing summand for each summand
resulting from (P1, ..., P,) with at least one pair of intersecting paths.

We consider the right-most intersection point (p,q) appearing in paths
(Pi,...,P,) for a 1-factor 7. For the sake of simplicity, we can assume that for
the 1-factor 7 the two paths Py and P, intersect at (p, q) (Figure 2). Then, the paths
(Py,...,P,) giverise to

131 12 r ti
s =scn T Lo [ ([ To7)
j=1 j=2

i=3 \j=i
where a;; is the y-coordinate of the corresponding element of le‘J’.(P,-). On the other
hand, we consider the 7-tuple of paths (ﬁl , ﬁz, Ps,...,P,). Here, ﬁi follows P; until it
meets the first intersection point (p, g), whereupon it follows the other path P; to the
end (Figure 3).
Let 7 be the 1-factor obtained by interchanging 1 and 2. Here, it is necessary to verify
that for each 1-factor (i, j) € 7, the paths P; and P; do not intersect. It suffices to

consider the cases involving the modified paths P; and P ;. The definition of v implies
that points of intersection other than v do not exist on the right-hand side of v. Hence,
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° ° ° ° ° ° ° ° ° ° ° ° °
p p
Figure 2: (P1,..., Py). Figure 3: (Fl,ﬁz, P3,...,P).

the path Py will intersect Py (resp. P) if and onl)L if Py intersects P, (resp. P)). Thus,
we confirm that 7 appears in (3.1) and the paths (Py, Py, . .., P,) yield

p+l t P t r ti
—\ _ — —S82j —S1j —S1j 825 —Sij
$(x) = sgn() l_[ %2j l—[ 4j 4 l_[ %2j l_[ l_[ dij |-
j=2 j=p+1 j=1 j=p+2 i=3 \ j=i
As sgn(m)sgn(m) = —1and 51 = 53(j41), one can confirm that

S(x) +S(7) = 0,

and this proves the assertion. |

Example 3.7 Let A = (3,2,1,0). Then, if (a;—;) = (sij) € ST98( A, C),

o8 (el e, (o) e fufale)
£2(s) =pf| 0 0 _{3,1) ‘ao Z;) {(% ()
: o ()
0 0 0

<2, [hf) et o] - 2, (212
+25) () £6.) (‘ = ) :

ao

Q
[ S}
S —
0%
S0
H
H
S—
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As in [18], we can consider an extension of Theorem 3.6. In preparation, we define

Zz Z Z oo, (3.2)

diag o1 €S o2, €S,

for S ; being the set of permutations of the elements of 1(j) = {(k,[) € SD(A) |-k =

J}- The sum Z signifies the sum taken over all permutations of all elements on each
diag
diagonal /() for all j. We now give an example of (3.2).

Example 3.8 For A = (3,2),

1(0) ={(k,{) e D(1) | £ — k =0} = {(1,1),(2,2)},
I(l) = {(k7€) € D(/l) |f— k= l} = {(172)’(2’ 3)}v
I1(2) ={(k,0) e D(V) | £ -k =0} ={(1,3)}.

This leads to
So =81 =26 ={id, 01}, S; = &; = {id},

where o implies the substitution of the first and second components of /(j) for any ;.
Therefore,

Zﬁf(‘“ - )=

diag
0 ‘a b|c
é’/l (id,id,id)ESOX51XSZ
d|e
0 ‘d b|c o
+é’/l (U],ld,ld)ESoXSIXSZ
a | e
0 ‘a e ) )
+é’/l (1d,0’1,1d)€SoXSl><Sz
dl|b
0 ‘d e ]
+§/l b (O’],O‘I,Id)ESOXSIXSz.
a

: o
Also, we define a set W/l,H by

we, = {s = (sij) € ST(4,C)

Re(s;;) = 1forall (i, j) € SD(A) \ H()
Re(s;j) > 1forall (i, j) € H(A) ’

where H(2) = {(i,j) € SD(A) |i—j € {k —Ax | 1 < k < r}}. Following the proof of
Theorem 3.6 and [18, Lemma 3.1], the following theorem can be proved.
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Theorem 3.9  For any strict partition A = (4, ...,4,) and s € W/?H, we have
D189 = > pf(My),
diag diag

where M ) is defined as in Theorem 3.6.

4 Pfaffian expression of the skew type Schur O-multiple zeta
functions

For the strict partitions A, u, we write u < A if SD(u) € SD(A). For u < A, the
skew shifted diagram of A/ is defined as SD(1/u) = SD(A) \ SD (). We use the same
notations ST (A/u, X), STY%8(1/u, X) for a set X, and PSST (1/u) as in the previous
sections.

Definition 4.1 (skew Schur P- and skew Q-multiple zeta functions) Lets = (s;;) €
ST (/u, C). We define skew Schur P- and skew Q-multiple zeta functions associated

with A/u by
1
au®= > = (4.1)
MePSST(A/u)
and
1
L= > - (4.2)
MeQSST(A/u)

Let D be the directed graph defined above and Iy be the same as in the previ-
ous section for a fixed positive integer N. We define two sequences of vertices u =
(ug,...,up)andv = (vq,...,vs)byu; = (4;, N)andv; = (u;,0). We defineve Iy by
the union of v and I}y, ordered such that each v; precedes each v € Iy. Then the shifted
Young tableaux of shape A/u with maximal entry N can be identified with the non-
intersecting paths (Py, ..., P,) in P (u,v & Iy), and u is D-compatible with v & Iy
such that P; € P(u;,v;) for1 <i < sand P; € P(u;, Iy) for s < i < r. The weights
of paths are defined in the same way as in Section 3.

Example 41 Let A = (6,5,3,1) and u = (3, 1). Then Figure 4 is a 4-tuple of non-
intersecting paths (P1, P, P3, Py) € Po(u,v & I5).
Let (s;;) € ST(1/u, C). The weights w(P;) are

Py) = ! P;) = !

WP = g WP = g
1 1

W(P3) = 253335345535 ’ W(P4) = 4544 :

Then, we find that

N
STOE Z w(Pi,...,P).
(Py,..., P.)ePy(u;valy)
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Uy U3 Uz up
[ ]
B 1]3]4
12 a4 ]
[ ]
2|35
4
[ ] L1
[ ]

Figure 4: (P1, P2, P3, P4) satisfying the condition in Example 4.1.

As we proceed a similar discussion as in Theorem 3.6 for the skew Schur Q-multiple
zeta functions, in another word, applying the Stembridge method in [24, Theorem 3.2]
to our case, we have the following result.

Theorem 4.2 (Pfaffian expression of the skew Schur Q-multiple zeta functions) Let A =
(A1 .oy ), = (W1, - .., W) be strict partitions into with 4; > 0 and 2|r + 5. Then for
s € STY8(2/u, C),

My H
SRCEE ]

where My = (a;;) is an r X r upper triangular matrix with

_ Q9
aij = é/(/li,/lj) (s(/li,/lj))s

IPEEE™
S,2;) = >
Sj 0l Pt

wheret; =i+ A; — 1and Hy ;, = (b;;) is anr X s matrix with
_ 0
bij = €y Sisitjru=1s -+ Siy)-

Remark 43 1In [24, Theorem 3.2], one may find —H, , in the lower left part of the
matrix. Pfaffian can be computed for upper triangular or anti-symmetric matrices.
For simplicity, we focus on upper triangular matrices, as the symmetry conditions
automatically enforce the full structure of the skew-symmetric matrix.
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Example 44 Let A =(3,2,1) and u = (2). Then, if (a;_;) = (s;;) € ST4*(1/u, C)

o g [l o, (el e ()

0] aogla
&5, (s) =pf Q ‘0 !
Au 0 0 Lo ” 1
0 0 0o 0
0 0 0 0
__ 0 ‘ao aj Clz‘ 1o) ( ) 1o) ‘ao aj
= g<3,1)( o 40 ‘e all

5 Outside decomposition

Hamel and Goulden proved a general determinant formula which expressed a Schur
function as a determinant of skew Schur functions whose shapes are strips ([10], see also
[3]). Subsequently, Hamel proved expressions of Schur Q-functions as determinants or
pfaffians associated with the outside decomposition of shifted Young diagrams into strips
([8]). In their study of the multiple zeta function, Bachmann and Charlton proved general
Jacobi-Trudi formulas for Schur multiple zeta functions for each outside decomposition.
In fact, they proved the Jacobi-Trudi formula for more general functions ([1]).

We first review the basic terminology of an outside decomposition given by Hamel and
Goulden ([10]). For each box @ of skew (shifted) diagram of 1/u, we define the content
of @ as the quantity j — i where « lies in row i and in column j of the skew (shifted)
diagram (conveniently referred to as (i, j)). A strip in a skew-shaped diagram is a skew
(shifted) diagram with an edgewise connected set of boxes that contains no 2 X 2 block
of boxes. In other words, a strip has at most one box on each of its diagonals. We say that
the starting box of a strip is the box that is bottommost and leftmost in the strip and the
ending box of a strip is the box which is topmost and rightmost in the strip.

Definition 5.1 (Outside decomposition) Suppose (61, ..., 8, ) are disjoint strips in a
skew (shifted) diagram of A/u and each strip has a starting box on the left or bottom
perimeter of the diagram and an ending box on the right or top perimeter of the diagram.
Then if the union of these strips is the skew shape diagram of A/u, we say the totally
ordered set (61, .. .,0,) is an outside decomposition of 1/ u.

Example 51(1 = (5,4,2,1)) We provide two examples of an outside decomposition
(01, N ,95) Of/l.

We now define an operation 6;#6; of strips §; and 6; in the same skew diagram.
They are part of an outside decomposition. The following procedure is well-defined by
[9, Property 2.4].
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64 | 0,
_ ] 4%
6, 0, l
I [
6, 0Os 03— 05
0, || 0,1 |

Case.1 Suppose 6; and 6 have some boxes with the same content. Slide 6; along top-
left-to-bottom-right diagonals so that the box of content k of 8; is superimposed on the
box of content k of §; for all k € Z such that both 6; and §; admit a box of content k.
We define #;#6 to be the diagram obtained from this superposition by taking all boxes
between the ending box of 6; and the starting box of §; inclusive.

Case.2 Suppose 6; and 0 are two disconnected pieces and thus do not have any boxes of
the same content. The starting box of one will be to the right and/or above the ending box
of the other. To bridge the gap between ; and 6, insert boxes from the ending box of the
one to the starting box of the other such that these inserted boxes follow the approached-
from-the-left or approached-from-below arrangement as do other boxes of the same
content in the outside decomposition. If there exists content such that the diagram does
not include a box with that content (and therefore no determination of the direction
from which the box is approached), then arbitrarily choose from which direction boxes
of this content should be approached, fix this choice for all boxes of the same content
in that particular diagram, and bridge the gap between 6; and #; accordingly. Define
0;#0 as in Case 1 with the following additional conventions: if the ending box of 6; is
connected via an edge to the starting box of 6 ;, and occurs below or to the left of it, then
0;#0; = 0; if the ending box of 6; is not edge connected but occurs below or to the left
of the starting box of 6}, 6;#6 ; is undefined.

Ifs = (s;;) satisfies s;; = sxe withi—j = k—¢, then we may define operation s, #84; of
54, and $4;in the same manner with the operation 6;#6 ;. We note that because s = (s;;)
have constant entries on the diagonals, this procedure is well-defined.

Example 5.2 For the outside decomposition of the Young diagram A in the figure on

2
the left in Example 5.1, for example, in 64#6;, 6; = E moved below 64 = . The

approached-from-below arrangement gives 04#6; = . Similarly, we have

0,40, = , 0,40, = , 0,40, = 0,
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61405 is undefined, and 0546, = 2 s
\ 01

where the numbers indicate contents.

Example 5.3 Let

do|dy|dy|asz|dy

ap|ap|az|as

ap | a

ao

For the outside decomposition of the shifted Young diagram A in Example 5.1 (the figure
on the right in the example),

as | a4

0146, =, 0,46, :, 0,404 =, 0440, = Z_? ,

a
61405 is undefined, and 6546, = .
ai

Hamel ([8]) generalized the classical pfaffian expression of the Schur Q-function
involving outside decompositions. To explain the result, we extend the strips of our out-
side decomposition to the main diagonal, let p be a strip consisting of a single box of

content 0 so that p = @, where the number indicates the content. This allows us to
define 6; = 0;#p. Let (ép, éq) be formed by juxtaposing 513 and éq with their boxes of
content O lying on the main diagonal with that of 5,, immediately above and to the left
of éq.

Example 54 The 5,, and (5,,, Eq) of the shifted Young diagram A in Example 5.1 (the
figure on the right in the example) are @ =6pforl < p < 4and

3]4] 3] 4]

o] o _ 12 &
(61,00 =t @200 =[ 0| (@20 =1 @ub)=|1] ,
L 0| . 01

L 0
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o =[]«

4
3
2|, (65.604) =
1
0

3

2

1

0
where the numbers indicate contents.

Proceeding the discussion in terms of Schur Q-multiple zeta function following the
method in [8, Theorem 1.4] (cf. [4, Theorem 4.3]), we have the theorem below.

Theorem 5.5 Let A and [ be strict partitions with u < A Let 6 =
(61,02, ...,0k, k41, . ..,0,) be an outside decomposition of SD (1] ), where 8, includes
a box on the main diagonal of SD(A/p) for 1 < p < k and 6, does not fork+1 < p <r.
If k is odd, we replace 6 by (0,61, ...,0,). Then, for s € STY#(A/u,C), the Schur
Q-multiple zeta functions satisfy the identity

Q

2
ISTRORS: 1 I Ll
- ({gi

Q
(s(gp,gq)) {gi#9r+k+lfj (Sei#9r+k+l—j)

#0p 1 ky1-) (Sai”ew-kﬂ—j)) 0

withl < p,q < kandk +1 < j < r. Here, if (5,,,54) is not a shifted tableau, then we
replace

Q _ _ V- _p9 _
éV@,,,gq)(“"(e,,,eq)) = éV@q,gp)(‘"(eé,,e,,))’

and further we put {(QEI,,EP) (S(Ep ,54)) =0.

6 Sum formula

Multiple zeta values of the Euler-Zagier type are well known to satisfy a large number
of linear relations among these multiple zeta values, such as the sum formula and duality
formula. The following is the sum formula for multiple zeta values of the Euler-Zagier

type.
Theorem 6.1 (Granville [7], Zagier)  For positive integers k and r with k > r, we have

D k) = (),

ki+-+k,-=k
kiseees kr_121,ky>2

> 4*(1«1,...,1«,):(":11)4(1«).

r
ki+-+ky=k
kise.es kro121,kp 22

As in the classical case, we prove the sum formula for a special case of Schur P- and
Q-multiple zeta values.
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Theorem 6.2 For positive integers k and r with k > r, we have

2 Goluldx) =22i(k;: 1)f(k)
klklzr:g:}fr >2 i=1
and

A AR (T ew.
i=1

ki+--+k,-=k
kiy.okpo121,kp 22

Proof Fork = , let |k| = ki +---+k, and dep(k) = r. By (2.3), it suffices
to show the first identity. Example 2.3 leads to

> wm= > e

ki+-+k,y=k ki+-+k,=k  €=5k

Kiyeurs ky_121,k,->2 Kiyeers ky—121,k;>2
r
e IL D VD W ()
i=1 ki+--+k,=k €<k

kiseees ky—1 21,k 22 dep(€)=i

For fixed £ with |£| = k and dep(£) = i, we count the number of k with £ <; k with
k € ST((r),Z). Because k has to be admissible, it suffices to choose r — i new division
points of £ out of (k — 1) — (i — 1) — 1 possibilities. Therefore,

4k € ST((r),C) | € <, k} = (k —i 1)

and we have

> ew=-3(70) 3 o

ky+:-+ky=k i=1 [€]|=k
kiy.oskpo1 21,k 22 dep(€)=i

The sum formula for multiple zeta values of Euler-Zagier type leads to

r

(k—i—1
Q _ i
> aw=y( e
ki+-+k,=k i=1
Kiyeurs ky—121,k,>2
This proves the first identity. Dividing both sides by 2, we can confirm that the second
identity holds. This completes the proof of the theorem. [ ]

Example 6.3 For (k,r) = (5, 3), we have

> () =118, () = 22¢(5).

ky+ky+k3=5
ki,ky>1,k3>2

2025/03/13  01:51

https://doi.org/10.4153/S0008414X25000203 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X25000203

22 M. Nakasuji and W. Takeda

We have the following corollaries of Theorem 6.2. The first is the sum formula in
Schur P- or Q-multiple zeta values.

Corollary 6.4  For positive integers k and r with k > r, we have

N fk—i—1

5 m )= Ze (L e ()
kiyeokpo1 21,k 22

and

R = (T e (1)

ki+--+k,=k
kiyeonskpo1 21,k 22

Remark 6.5 In[26], Yamamoto introduced the interpolation ¢’ (k) of multiple zeta and
zeta star functions. Theorem 1.1 in [26] with ¢ = % is the same shape with our Theorem

6.2. One can verify that our {(Qr) (k) and g’% (k) in [26] are equal (up to a multiplicative
constant).

Remark 6.6 Recently, In [2], Bachmann-Kadota-Suzuki-Yamamoto-Yamasaki
obtained a different type of sum formulas for the Schur multiple zeta values for other
types of partition.

The next corollary is the duality formula for a certain shape and weight. Before we
explain the duality property of the Schur Q-multiple zeta function, we review the orig-
inal duality formula for multiple zeta functions. We denote a string 1,...,1 of 1’s by

—————
r
{1}". Then for an admissible index
k= ({1}‘11*1, bl + 17 {1}02*1’ bZ + la e {l}amil’ bm + 1)

with positive integers ay, by, az, by, - -+ , ap, by € Z>1, the following index is referred
to as the dual index of k:

=1 an, + 1, {1} g, + 1, {10 a4+ 1),

The duality formula is the following.

Theorem 6.7 (Duality formula [27])  For any admissible index k = (kq, ..., k,) and its
dual index k" = (kT., cey kz), we have

C(ky,y o ky) = C(KT, . kD).
As a special case of Theorem 6.7, it holds that
C({13472,2) = (k).

Taking A = (k—1) and k = . € ST (4, C), we have the following formula

similar to the above identity.
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Corollary 6.8  For positive integers k, we have

oy ([ T2) =@ - nef [+ ) = @ - 20

and

iy (][] 2]) =@ -0 ([(K]) = @ - vz,

Remark 6.9 We can say that there may hold the duality-like formula for /¥ and /€ in
general.

7 Symplectic Schur Multiple zeta functions

First, we review the basic terminology to define symplectic or orthogonal Schur multiple
zeta functions. We identify a partition A with the Young diagram

D) ={(i,j)eZ*|1<i<r,1<j<A}

depicted as a collection of square boxes with the i-th row having A; boxes. For a partition
A, aYoung tableau (;;) of shape A over a set X is a filling of D (1) with#;; € X into each
box (7, j) of D(A). We denote by T (A, X) the set of all Young tableaux of shape A over X.

Let [N] be the set {1,1,2,2,..., N, N} with the total orderingl <1 <2<2<
.-+ < N < N.Then, asymplectic tableaut = (tij) € T(A, [N]) is obtained by numbering

all the boxes of D (1) with letters from [N] such that

SP1 the entries of t are weakly increasing along each row of ¢,

SP2 the entries of t are strictly increasing down each column of ¢,

SP3 for non-negative integer i, the boxes of content —i contain entries that are greater
than or equal to 7 + 1.

We refer to the third condition SP3 as the symplectic condition. We denote by SP (1)
the set of symplectic tableaux of shape A.

Definition 7.1 (symplectic Schur multiple zeta functions) For a given sets = (s;;) €
T (4, C) of variables, the symplectic Schur multiple zeta functions of shape A are defined as

sp,IN _ 1
aNe= ) (7.1)

MeSPN ()

where M* = 1_[ |m;i;|* for M = (m;;) € SPN () and |i| =i, ]i] = i7"
(i,))eD ()

Hamel constructed a directed graph D corresponding to the symplectic Schur func-
tions [9] and applied the Stembridge Theorem ([24]) to obtain the following determinant
expression of the symplectic Schur functions.
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Theorem 7.1 ([9, Theorem 3.1])  Let A/ u be a partition of the skew type. Then, for any outside
decomposition (01, ...,0,) of /1,

SPa/u = det(spgi,,gj)lg,jg.

Following the Hamel approach, we construct a directed graph D corresponding to
the symplectic Schur multiple zeta functions. For a fixed positive integer N, we begin
with the y-axis labeled by 1,1,2,2,..., N,N and direct an edge 1 — v whenever
v—u = (0,1),(0,-1),(1,0), or (1,—1). We add four restrictions: A down-vertical
step must not precede an up-vertical step, an up-vertical step must not precede a down-
vertical step, a down-vertical step must not precede a horizontal step, and an up-vertical
step must not precede a diagonal step. Because of the symplectic condition, we add a
left boundary in the form of a “backwards lattice path” from (0, 1) to (0, 1) to (0, 2) to
(-1,2)to (=1,2) to (=1, 3) to (=2, 3) to (=2, 3) to (=2, 4) to (=3, 4) .. .. We indicate
this left boundary by the dotted line in Figure 5.

4 o . . ° ° ° ) .
3 e ° ° ° ° ° ° °
3 e . . o . . . .
2 e ° ° ° ° ° ° °
2 e ° ° ° . ° ° °
1 ® ] [ ° ° ° ° ]
1 e . . ° ® ) ) .
0

Figure 5: Left boundary given by the symplectic condition.

Hereinafter, we may omit this left boundary for simplicity.

For a fixed outside decomposition (6i,...,6,) of A/u, we construct a non-
intersecting r-tuple of lattice paths that corresponds to a symplectic tableau of shape
A/ with the outside decomposition (61, .. ., 8, ), such that the i-th path corresponds
to the i-th strip and begins at B; and ends at E; as described next. Fix points B; =
(t —s,—(t — s) + 1) if the i-th strip has the starting box (s, 7) on the left perimeter of
the diagram and if # — s < 0 (i.e,, B; is on the left boundary), or B; = (¢ — s, 1) if the i-th
strip has the starting box (s, #) on the left perimeter of the diagram and if t — s > 0, or
B; = (t—s, ) if the i-th strip has the starting box (s, #) on the bottom perimeter of the
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diagram (B; = (¢ — s, 00) if both). Fix points E; = (v — u + 1, 1) if the i-th strip has the
ending box (u, v) on the top perimeter of the diagram, or E; = (v —u + 1, 00) if the i-th
strip has the ending box (u, v) on the right perimeter of the diagram (E; = (v—u+1, )
if both).

For the j-th strip construct a path starting at B; (termed the starting point) and
ending at E; (termed the ending point) as follows: if a box containing i (resp. i) and at
coordinates (a, b) in the diagram is approached from the left in the strip, add a horizon-
tal step from (b—a, i) to (b—a+1,i) (vesp. (b—a, i) to (b—a+1,1)); if a box containing
i (resp. 7) and at coordinates (a, b) in the diagram is approached from below in the strip,
add a diagonal step from (b —a, i) to (b—a+1,i) (resp. (b—a,i+1) to (b—a+1,1)). We
note that the physical locations of the termination points of the steps are independent
of the outside decomposition and depend only on the contents of the boxes. In Figure
6, the ending points of the steps are first shown alone and then the complete paths for
two different outside decompositions are shown. We note that no two paths can have
the same starting and/or ending points, because that would imply two boxes of the same
content on the same section of the perimeter. Connect these non-vertical steps with
vertical steps. This routine is intended to verify that a unique path exists. In the above
setup, Hamel showed that the symplectic tableaux of shape 1/u can be identified with
the non-intersecting paths in 2 ((B;); (E;)), and (B;) is D-compatible with (E;).

We next define the weight of each step. Let v; (P) = (v; j(P)) >0 be the sequence of
vertices representing the path P € 9Py(By; E;) and let ff(y be the edge v; ; (= (x,y)) —
vij+1-Ifvi j(P)=vi jr1(P) = (1,0) or (1, —1), we assign the weights w({’;y) = |y|™Spa
with v;; = (x,y) and (p, q) being the j-th component of 6;. If v; ;(P) — v; j+1(P) =
(0, 1) or (0, —1), we assign the weights w({},,) = 1. Then, we define

w(Py) = [wit,),
iy,

and for an r-tuple of non-intersecting paths of (Py, ..., P,) with P; € P(B;; E;),

r

w(Py,...,P,) = ]_[w(P,-).

i=1

Then, owing to the Hamel composition in [9], we find that

PN (s) = Z w(Py,...,P,).

P;eP(Bi;E:)

Example 7.2 For A = (5, 3,3, 1), let a 4-tuple of paths (P, P, P3, P4) € P(B;; E;)
be given as in Figure 6. For (s;;) € T (4, C), the weights w(P;) are

s 2S21

— 1511 - -

w(Py) =17, wP2) = o
3S32 3S33 3514

W(P3) = 4541353135232513 W(P4) = 4515”7
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4 o \\? ° . . \‘o 0‘7774‘
i | |
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| ! |
2 e ° - - ° ‘o\ ‘o\ ° °
i ~ \-\\
2 e ° 32 ® ° ° \Q ™, °

.
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=

|

o - -o
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Figure 6: (P1, P2, P3, P4) satisfying the condition in Example 7.2.

and the corresponding symplectic tableau is

3[4]

W[ W |
W[ W | o

’-Jk [SSII ST |

As the proof in Theorem 3.6, proceeding the discussion in terms of symplectic
Schur multiple zeta function following the Hamel method in Theorem 7.1, we have the
theorem below.

Theorem 7.3 Let A = (A1,...,4:), g = (U1,...,Us) be partitions. Then, for s €
T8 (A/u, C) and any outside decomposition (01, .. .,6,) of 1/,

N N
g;f;” (s) = det((;f:,,gj(S(/li,/lj)))lsi,jsﬁ

where 8(1;,0,) =S4, #82;

Example 7.4 Let A = (3,2) and its outside decomposition (61, 6,) be depicted as
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6, 0,

Then, if (a;_;) = (s;;) € T¢(2,C),

ap|az
_é,sp,N ao é,sp,N ap|da; ‘ _ é,sp,N é,sp,N a
50, ; 0, 0,46, 0,460, 0

Remark 7.5 The function in Example 7.4 satisfies

ap|ay ‘ ap|ay ‘
sp, N sp, N
492”91 4o * §(2,1,1) _ao
a—q a—q

in general. We note that for i = —1, 0, 1, 2 the contents of each are not the same.

8 Orthogonal Schur multiple zeta functions

Hamel also constructed a directed graph D corresponding to the orthogonal Schur func-
tions [9] and derived the determinant expression of the orthogonal Schur functions. As
in Section 7, we construct a directed graph D corresponding to the orthogonal Schur
multiple zeta functions. As in Section 7, we prove the results corresponding to the
following Hamel result.

We define orthogonal Schur multiple zeta functions. Let [N]® be the set
{1,1 2,2,... ,N,N,OO} with the total ordering 1 < 1<2<2<---<N<N < oo.
For a fixed partition A, a so-tableaut = (¢;;) € T(A, [N]®) is obtained by numbering all

the boxes of D (A1) with letters from [N]* such that

SO1 the entries of t are weakly increasing along each row of ¢,

SO2 the entries of t are strictly increasing down each column of ¢,

SO3 for non-negative integer 7, the boxes of content —i contain entries which are greater
than or equal toi + 1,

SO4 no two symbols co appear in the same row.
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One may find that the conditions SO1-SO3 are the same as SP1-SP3. We denote by
SO n () the set of so-tableaux of shape A.

Definition 8.1 (orthogonal Schur multiple zeta functions) For a given set s = (;;) €
T (4, C) of variables, the orthogonal Schur multiple zeta functions of shape A are defined as

oNe= Y (8.1)
MeSOn (1)

where we set |oo| = 1.

We note that the co contributes 1 to the weight of the tableau. Therefore, they are
“dummy elements” in a sense.

Theorem 8.1 ([9, Theorem 3.2])  Let A/ i1 be a partition of the skew type. Then, for any outside
decomposition (01, . .., 0,) of 1/,

504/ = det(s0g;20,)1<i.j<r-

As in the symplectic Schur multiple zeta functions, we consider the y-axis with
1,1,2,2,...,N, N, oo, We define lattice paths with five types of permissible steps. These
steps are the four steps in Section 7, and up-diagonal steps from height N to height co
that increase the x- and y-coordinates by 1, respectively. We distinguish between hori-
zontal steps at integer levels and horizontal steps at co. The steps are subject to the same
restrictions as in Section 7 plus the following additional restrictions: an up-vertical step
must not precede a horizontal step at oo, and a down-vertical step must not precede an
up-diagonal step. We also require that all steps between lines x = ¢ and x = ¢ + 1 for all
c are either

(1) horizontal at co or down-diagonal, or
(2) horizontal at integer levels or up-diagonal.

Determining whether the steps are of type (1) or (2) depends on the outside decomposi-
tion: if boxes of content ¢ are approached from the left, then the steps between x = ¢ and
X = ¢ + 1 must be of type (2); if the boxes of content ¢ are approached from below, then
the steps between x = ¢ and x = ¢+ 1 must be of type (1). We fix beginning points B; and
ending points E; as in Section 7 with the adjustment that the y-coordinate of the high-
est points is oo + 1 instead of co. Given s € SO(A1/u, C) with an outside decomposition,
we can construct an r-tuple of non-intersecting lattice paths. For each strip construct a
path as follows: if a box contains i or 7, place a step as in the proof of Section 7. If a box
contains oo, is at coordinates (a, b) in the diagram, and is approached from the left in
the strip, add an up-diagonal step from (a — b, N) to (a — b + 1, o); if it is approached
from below, add a horizontal step from (a — b, o) to (a — b + 1, 00). We connect these
non-vertical paths with vertical paths. The weights of paths are defined in the same way
as in Section 7. Note that we put w(fiy) =1ify=oco.
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Then, owing to the Hamel composition [9], we find that

20N (s) = Z w(P1,...

P; €% (Bi;E;)

Pr).

29

Example 8.2 For A = (5,3,3,1),let (s;;) € T(A,C). The weights w(P;) are

35323533
w(Ps) = 3531352325137

and the corresponding orthogonal tableau is

w(Py) =

2521
3522512

w(Py) = 35435,

N B3 N B4 !
N \\ |
o e \? ° ° ° ‘o ‘07777.
i | |
i ! |
3 ® * - -0 - -9 e . °
3 * \.\ 1 \,\ \\ ‘,
o N R
3 e . e o- -9 e b °
‘ ! l
— | |
2 e ° o-. - L '\\ ° °
2 e e B, ¢ ° ° K “e °
|
! I
|
1 e . ° s L) °
! I
| |
1 e ° o B ° ‘o

>

E4

Figure 7: (P1, P2, P3, P4) satisfying the condition in Example 8.2.

W[ W | N
W[ W |

’8 W [ I =]

As similar in the previous sections, proceeding the discussion in terms of orthogonal
Schur multiple zeta function following the Hamel method in Theorem 8.1, we have the

theorem below.
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Theorem 8.3 Let A = (A1,...,4:), g = (U1,...,Us) be partitions. Then, for s €
T%8(A/u, C) and any outside decomposition (61, .. .,6,) of 1/,

N ,N
L (8) = det(Lylg (s(aap)hsij<rs
where S, = s/li#s,lj.

Example 8.4 Let A = (3,2) and its outside decomposition (61, 6,) be depicted as

6, 0,

Then, if (a;-;) = (si)) € 7428 (1, C), we obtain

N ( gty ([ao))

§;°’N(s) =det aila;
ap|a
so, N so, N 1 2 ‘
Co,00, || 90 o, (ao
a_q L
ap Clz‘
_(so,N ao (so,N ai az‘ _(so,N m gSO,N a
50 a ) 0, o 50,40, 6,50, | | 40|
L a_,

9 Decomposition of Symplectic and Orthogonal multiple zeta
functions
In this section, we express a symplectic and an orthogonal multiple zeta function as a
linear combination of the truncated multiple zeta functions. Analogous to the method

of the proof of (2.5) and (2.6), by the Inclusion-Exclusion principle, we may find the
following decompositions.

Theorem 9.1  For any positive integer N and s € T (A, C), the function (E’N(s) foro e
{sp, so} can be decomposed as a sum of truncated multiple zeta functions: for a positive integer
N,

N
é’ (Sl,...,Sr)Z Z ﬁ
1<m<--<n-<N "1
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Example 9.2 For any positive integer N and a, b € C, we have

i ([a]) = M@+ M -,
ot () = N(a,b) + N (—a,=b) + N (=a,b) + (N (a,=b) + (N (a = b) - 1.

Example 9.3 For any positive integer N and a, b € C, we have

gt (o) =@+ Moy +1,
o () =V (a.b) + N (—a,=b) + (M (=a.b) + (M (a.~b) + (N (a - b) - 1
+{M (@) + ¢V (-a).

Note that in the case of ¢ (SI{’EJ;.), we have

sign

s N
(];1}) - Z[ (£51,...,%5,)
r—1
N
+ZZ§ (51,0 ESi-1, 8§ = Siv1, £i42, - ., £57)

i=1 sign

- Z >, (]_[ J) %gN({O}", ESi42e .. ES,)

i=1 sign

(),

where Z means the summation over all cases of plus-minus signs and the last term
sign
(- ) is caused from ¢N’s whose elements contain at least two different (s; — s;41)’s like
{N (51 = 52, =53, 84 = 55,56 = 57, 58).
If we use the decompositions by rows as an outside decomposition of 1/, then for
any s € Td (/l/u, 0), {Sp N(s) and {SO N(s) appear to be decomposed into a sum

of £ f?i} " and %% ( {1},), respectively. As in Remark 7.5, we note that the outside decom-
position and operation 6;#6; retains the content and two different functions may be
associated with the same shape A = ({1}") and the same variable s = (s;;).

Similarly, we attain the following results, in which we decompose the symplectic zeta

function into the sum of truncated multiple zeta star functions: for a positive integer N,

1 1
N E E
g* (sl""ssr): I’lsl"'l/lSr, g*(sls--~’sr): P
r r

1<ny<-<n, 1 1<ny<-<ny 1
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Theorem 9.4  For any positive integer N and s; € C, we have

o (o[ ]) = ZZ< 1@ N (g,

sign

and forr > 2

o ()= Y 2 D0 O e

R=r—1 sign

where Z means the summation over all cases of plus-minus signs and £ runs over all indices
sign

of the form €g = (£s510 % 5,0---0 % SR) in which each O is filled by the comma , or the

plus sign +. If O = + then &5 ;0 + 541 is assigned 5 j1 — 5 and the square is not filled with

consecutive plus signs +.

Example 9.5(r < 2) For any positive integer N and a, b € C, we have

g ([a]) =M@+ Y (-a),
g ([a b)) = @by + ™ (-a-by+ 2V (=a.0) + N (0, =)
- -a),
g ([a]) =N @+ N oy 41,

g ([alp]) = @by + ™ (-a-b) + " (=a by + £V (a,-b)

N —a)+ N (@) + N (-a).

10 Schur quasi-symmetric functions

We here investigate the quasi-symmetric functions, introduced by Gessel [5], related to
symmetric multiple zeta functions defined in this paper. We note that the Schur type
quasi-symmetric function was discussed in [17].

10.1 Quasi-symmetric functions

Lett = (t1,1;,...) be variables and P the subalgebra of Z[[t1,1;, . .. ]| consisting of
all formal power series with integer coefficients of bounded degree. We refer to p =
p(t) € B as a quasi-symmetric function if the coefficient of t7‘ 1‘7/2 ty" of p is the same
as that oft”tyz ty" of p whenever k; < ky < --- < ky, and hy < hy < -+ < hy.
The algebra of all qua51 symmetric functions is denoted by Qsym. For a composition

= (Y1, V25 - - -» ¥n) of a positive integer, define the monomial quasi-symmetric function
M,, and the essential quasi-symmetric function E,, respectively, by
M,y = Z tz;lt’)fllzz"'tf);{;’ Ey = Z t?flllltlez l‘};{;
my<my<---<mp mi<my<---<my
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We know that these respective functions form the integral basis of Qsym. Notice that

E, = Z Ms, M, = Z (-1t Es. (10.1)
o<y 6=y

The relation between the multiple zeta values and quasi-symmetric functions was stud-
ied by Hoffman [11] (remark that the notations used for the multiple zeta (star) function
in [11] are different from ours, which are £ (s,,, -1, ..., s1) and £* (s, Sp—1, ..., S1),
respectively). Let $ = Z(x, y) be the noncommutative polynomial algebra over Z. We
can define a commutative and associative multiplication *, known as the harmonic prod-
uct, on §. We refer to (§, *) as (integral) harmonic algebra. Let §' = Z1 + y$), which
is a subalgebra of §. Notice that every w € $' can be written as an integral linear com-
bination of zy,2y, - - 2y, Where z, = yx?~! for y € N. For each N € N, define the
homomorphism ¢n : H! — Z[t1,13,...,tn] by dn (1) = 1 and

thth -tk < N,
¢N(Z7]Zy2 c Zyn) = {m<my<---<my <N
0 otherwise,

and extend it additively to $'. There exists a unique homomorphism ¢ : ! — P
such that 7y ¢ = ¢, where m is the natural projection from B to Z[t1, 15, ..., tn].
We have ¢(2y,2y, - " 2y,) = M(y,,y,,...,y,)- Moreover, as described in [11], ¢ is an
isomorphism between $! and Qsym.

Let e be the function that sends #; to % Moreover, define py : ' — Rby py =
epn. For a composition y, we have

.....

pnd (M) =N (y),  pneT (Ey) = N (y).

We define the map p : §' — RN by p(w) = (on(W))ns1 for w € H'. Notice that
if w € 9% = Z1 + yHx, which is a subalgebra of §!, then we may understand that
p(w) = limy_00 pn(w) € R. In particular, for a compositiony = (y1,¥2,.-.,¥n)
with y,, > 2, we have

pe” (My) =£(y),  p¢™ (Ey) = (). (102)
10.2 Schur P- and Q-type quasi-symmetric functions

Now, the following Schur P- and Q-type quasi-symmetric functions are easily defined. For
strict partitions A and , and s = (s;;) € ST (1/u, C), we define Schur P- and Q-type
quasi-symmetric functions associated with 1/ u by

P _ Sij
St = ) [T s (10.3)
MePSST(A/u) (i,j)€SD(Q)

and

Qo — Sij
STROEEEDY [T (10.4)
MeQSST (/) (i,j)€SD(A)
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Theorem 10.1  Let A = (4, ...,4,), = (U1, ..., i) be strict partitions into with 1; >
0 and 2|r + s. Then, for s € ST%%(1/u, C),

Q _ M/l H/l,;l
Sﬂ/u(s)‘pf(o 0 )

where My = (a;;) is an r X r upper triangular matrix with

— @
aij - S(/l[,/lj)(s(/li’/lj))’

e T e
S,1;) = 4
57 Si

wheret; =i+ A; — 1 and Hy = (b;}) is an r X s matrix with
_ @
bij =S jor) SiGitjape=1)s -+ Sity)-

Theorem 10.2 (cf. [4, Theorem 4.3][8, Theorem 1.4]) Let A and u be strict partitions with
u <ALt =(61,0,,...,0k, 0k1,...,0;) be an outside decomposition of SD (1] ),
where 6, includes a box on the main diagonal of SD(A/u) for 1 < p < k and 6, does not
fork+1 < p < r. If k is odd, we replace 6 by (0,01, ...,0,). Then, the Schur Q-type
quasi-symmetric functions satisfy the identity

0 o Q
59 (s) =pf S(Epﬁq)(s(ep,eq)) S626 111 (SO 0ri-))
u —’(SQNQHHH. (s(-)i#(-lnkn—j)) 0

withl < p,q < kandk+1 < j < r. Here
Qo _ _ V= _¢9 _
S(gl)’gq)(s(ep’oq)) - S(ELI’EP) (S(Hq,é)p))

Q )=
and S(E,,,E,,)(S(Hpﬂq)) =0.

10.3 Symplectic type and Orthogonal type quasi-symmetric functions

Similarly, we define the following symplectic quasi-symmetric functions and orthogonal
quasi-symmetric functions. For partitions A and y, and s = (s;;) € T(4/u, C), we define
symplectic quasi-symmetric functions and orthogonal quasi-symmetric functions asso-
ciated with A/ u by

SN (s) = Z 1—[ £ (10.5)

A/u [m;;|”
MeSPN(A/u) (i,j)€D(A)

and

so, N _ Sij
S/l/;t (S) = § | | tlmijl' (10.6)
MeSON (/) (i,j)eD ()
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Theorem 10.3 Let A = (Ay,...,4,), 0 = (U1,...,HUs) be partitions. Then, for s €
T8 (A /u, C) and any outside decomposition (61, .. .,6,) of 1/,

N N
S;P/l, (s) = det(sg:gaf (Su.aphsijzrs
where $(a;.2,) =S4, #82;-

Theorem 104 Let A = (Ay,...,4,), 4 = ({1, .., Us) be partitions. Then, for s €
T9( 1/, C) and any outside decomposition (01, . . .,6,) of A/,

S (8) = det(S5y (S(a,ap ) 1<ivj<rs

where S(A;,4) = S,liﬁs,lj,
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