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Symmetric multiple zeta functions∗
Maki Nakasuji and Wataru Takeda

Abstract. In this study, we introduce multiple zeta functions with structures similar to those of
symmetric functions such as the Schur 𝑃-, Schur 𝑄-, symplectic and orthogonal functions in rep-
resentation theory. Their basic properties, such as the domain of absolute convergence, are first
considered. Then, by restricting ourselves to the truncated multiple zeta functions, we derive the
Pfaffian expression of the Schur 𝑄-multiple zeta functions, the sum formula for Schur 𝑃- and
Schur 𝑄-multiple zeta functions, the determinant expressions of symplectic and orthogonal Schur
multiple zeta functions by making an assumption on variables. Finally, we generalize those to the
quasi-symmetric functions.

1 Introduction

Thewell-knownHall–Littlewood symmetric functions 𝑃𝜆 (𝑥𝑥𝑥; 𝑡) are a family of symmet-
ric functions that depend on a parameter 𝑡:
For 𝜆 = (𝜆1, 𝜆2, · · · , 𝜆𝑟 ) being a partition, that is, 𝜆𝑖 ∈ Z, 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑟 ≥ 0 and
𝑥𝑥𝑥 = (𝑥1, 𝑥2, · · · , 𝑥𝑟 ) being variables,

𝑃𝜆 (𝑥𝑥𝑥; 𝑡) =
1

𝑣𝜆 (𝑡)
∑︁
𝜎∈𝔖𝑟

𝜎

(
𝑥𝑥𝑥𝜆

∏
1≤𝑖< 𝑗≤𝑟

𝑥𝑖 − 𝑡𝑥 𝑗

𝑥𝑖 − 𝑥 𝑗

)
, (1.1)

where 𝑣𝜆 (𝑡) =
∏
𝑗≥0

𝑚 𝑗∏
𝑘=1

1 − 𝑡𝑘

1 − 𝑡
with 𝑚 𝑗 = #{𝑖 | 1 ≤ 𝑖 ≤ 𝑟, 𝜆𝑖 = 𝑗},𝔖𝑟 is the sym-

metric group of degree 𝑟 , and 𝑥𝑥𝑥𝜆 = 𝑥
𝜆1
1 . . . 𝑥

𝜆𝑟
𝑟 . When 𝑡 = 0, the function is the

Schur polynomial which we denote by 𝑠𝜆 (𝑥𝑥𝑥) = 𝑃𝜆 (𝑥𝑥𝑥; 0). Schur polynomials are irre-
ducible general linear characters and can be written combinatorially by means of a
semi-standard Young tableau. Mainly in representation theory, much research has been
studied on this function since its introduction. One of them is the determinant for-
mula called the Jacobi–Trudi identity, which is proved by the method of lattice path
model known as the Lindström–Gessel–Viennot lattice path procedure. When 𝑡 = −1
in (1.1), the function is known as the Schur 𝑃-function or the𝑄-function, expressed as
𝑃𝜆 (𝑥𝑥𝑥) = 𝑃𝜆 (𝑥𝑥𝑥;−1) or 𝑄𝜆 (𝑥𝑥𝑥) = 2𝑟𝑃𝜆 (𝑥𝑥𝑥;−1), respectively, which was introduced by
Schur ([22]). We note that the Schur𝑄-function was originally defined via certain pfaf-
fian expressions in his analysis of projective representations of symmetric groups. The
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2 M. Nakasuji and W. Takeda

tableau description of Schur𝑄-functions was introduced by Stembridge ([23]) for using
the theory of shifted tableaux developed byWorley ([25]) and Sagan ([20]), and the com-
binatorial structure of this function was revealed. In his paper [24], Stembridge showed
that the tableau definition agrees with Schur’s pfaffian expressions by a generalization
of the Lindström–Gessel–Viennot lattice path procedure. In parallel with the above the-
ory, symplectic and orthogonal Schur functions, which are irreducible symplectic and
orthogonal characters and can also be defined combinatorially, have been developed. It
is well-known that a similar discussion such as a determinant formula holds by using an
analogue of the Lindström–Gessel–Viennot lattice path procedure. (seeHamel-Goulden
[10], Hamel [9] and Foley-King [4]).

The Schurmultiple zeta function introduced byNakasuji, Phuksuwan, and Yamasaki
([17]), is a generalization of both the multiple zeta and zeta-star functions of the Euler-
Zagier type with a combinatorial structure similar to a Schur polynomial. Because this
function has combinatorial and analytic features, the characteristics of both of these
features have been investigated in recent years. Nakasuji, Phuksuwan, and Yamasaki
[17] obtained some determinant formulas such as the Jacobi–Trudi, Giambelli, and dual
Cauchy formulas for Schur multiple zeta functions by using the Lindström–Gessel–
Viennot lattice path procedure and the properties of Young tableaux. These type formu-
las gave a new type of identities among the multiple zeta-functions of the Euler-Zagier
type. Therefore, it is natural to ask whether we can define multiple zeta functions with
structures similar to those of symmetric functions such as the Schur 𝑃- or𝑄-functions,
symplectic or orthogonal functions. In this study, we focus on this point.

Remark 1.1 The term symmetric multiple zeta function has been previously defined by
Kaneko and Zagier in [12, 13]. While their definition differs from the one we propose
in this paper, we adopt the same terminology to highlight the symmetric structures
inherent in our definition.

In Section 2, for 𝑠𝑠𝑠 = (𝑠𝑖 𝑗 ) ∈ 𝑆𝑇 (𝜆,C) being the set of all shifted tableaux of shape
𝜆 over C, we introduce the Schur 𝑃-multiple zeta functions and the Schur 𝑄-multiple zeta
functions of shape 𝜆 as the following series

𝜁𝑃𝜆 (𝑠𝑠𝑠) =
∑︁

𝑀∈𝑃𝑆𝑆𝑇 (𝜆)

1
𝑀𝑠𝑠𝑠

, and 𝜁
𝑄

𝜆
(𝑠𝑠𝑠) =

∑︁
𝑀∈𝑄𝑆𝑆𝑇 (𝜆)

1
𝑀𝑠𝑠𝑠

,

respectively, where 𝑃𝑆𝑆𝑇 (𝜆) and 𝑄𝑆𝑆𝑇 (𝜆) are the sets of semi-standard marked
shifted tableaux of shape 𝜆 satisfying certain conditions (see the detail in Section 2),
and discuss their basic properties such as the domain of convergence. In Section 3, we
consider the pfaffian expression of the (truncated) Schur 𝑄-multiple zeta functions by
following Stembridge’s way ([23]). Here, the truncated Schur𝑄-multiple zeta function is

𝜁
𝑄,𝑁

𝜆
(𝑠𝑠𝑠) =

∑︁
𝑀∈𝑄𝑆𝑆𝑇𝑁 (𝜆)

1
𝑀𝑠𝑠𝑠

for a fixed positive integer 𝑁 ∈ N, where 𝑄𝑆𝑆𝑇𝑁 (𝜆) are the sets of all (𝑚𝑖 𝑗 ) ∈
𝑄𝑆𝑆𝑇 (𝜆) such that 𝑚𝑖 𝑗 ≤ 𝑁 for all 𝑖, 𝑗 . In Section 4, we demonstrate that the pfaffian
expression, obtained in Section 3, can be easily generalized to the skew type. In Section
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Symmetric multiple zeta functions 3

5, after reviewing the outside decomposition of the shifted Young diagram according to
Hamel-Goulden [10], we apply it to our skew type Schur𝑄-multiple zeta functions and
derive the pfaffian expressions associated with that decomposition. In Section 6, we dis-
cuss the sum formula for our Schur 𝑃- and𝑄-multiple zeta functions. Sections 7, 8, and
9 are devoted to discussions of symplectic and orthogonal Schurmultiple zeta functions,
which are defined as follows. For a positive integer 𝑁 and 𝑠𝑠𝑠 = (𝑠𝑖 𝑗 ) ∈ 𝑇 (𝜆,C) being the
set of all Young tableaux of shape 𝜆 over C, we define the symplectic Schur multiple zeta
functions and the orthogonal Schur multiple zeta functions of shape𝜆 as the following series

𝜁
sp,𝑁
𝜆

(𝑠𝑠𝑠) =
∑︁

𝑀∈𝑆𝑃𝑁 (𝜆)

1
𝑀𝑠𝑠𝑠

, and 𝜁
so,𝑁
𝜆

(𝑠𝑠𝑠) =
∑︁

𝑀∈𝑆𝑂𝑁 (𝜆)

1
𝑀𝑠𝑠𝑠

,

respectively, where 𝑆𝑃𝑁 (𝜆) and 𝑆𝑂𝑁 (𝜆) are the sets of all symplectic tableaux and so-
tableaux of shape 𝜆 (see the detail in Section 7 and 8). We construct directed graphs
corresponding to these functions as analogous to the original symplectic and orthogo-
nal Schur functions attributed to Hamel ([9]) and provide the determinant expressions
in a manner similar to that of Hamel where we apply the Stembridge Theorem [24].
Further, we provide their decomposition into a sum of truncated multiple zeta or zeta-
star functions. Lastly, in Section 10, we study the extension of all of these functions to
quasi-symmetric functions. We derive the pfaffian expressions for Schur𝑄-type quasi-
symmetric functions and determinant expressions for symplectic type and orthogonal
type quasi-symmetric functions.

2 Basic properties of the Schur 𝑃- and𝑄-multiple zeta functions

We first review the basic terminology to define Schur 𝑃- and𝑄-multiple zeta functions.
A partition 𝜆 = (𝜆1, . . . , 𝜆𝑟 ) is termed strict, if 𝜆1 > 𝜆2 > · · · > 𝜆𝑟 ≥ 0. Then, we
associate the strict partition 𝜆 with the shifted diagram

𝑆𝐷 (𝜆) = {(𝑖, 𝑗) ∈ Z2 | 1 ≤ 𝑖 ≤ 𝑟, 𝑖 ≤ 𝑗 ≤ 𝜆𝑖 + 𝑖 − 1}

depicted as a collection of square boxes where the 𝑖-th row has 𝜆𝑖 boxes. We say that
(𝑖, 𝑗) ∈ 𝑆𝐷 (𝜆) is a corner of𝜆 if (𝑖+1, 𝑗) ∉ 𝑆𝐷 (𝜆) and (𝑖, 𝑗+1) ∉ 𝑆𝐷 (𝜆) and denote by
𝑆𝐶 (𝜆) ⊂ 𝑆𝐷 (𝜆) the set of all corners of𝜆; for example, 𝑆𝐶 ((4, 2, 1)) = {(1, 4), (3, 3)}.
For a strict partition 𝜆, a shifted tableau (𝑡𝑖 𝑗 ) of shape 𝜆 over a set 𝑋 is a filling of 𝑆𝐷 (𝜆)
with 𝑡𝑖 𝑗 ∈ 𝑋 into the (𝑖, 𝑗) box of 𝑆𝐷 (𝜆). We denote by 𝑆𝑇 (𝜆, 𝑋) the set of all shifted
tableaux of shape 𝜆 over 𝑋 .

Definition 2.1 (semi-standard marked shifted tableau) Let N′ be the set
{1′, 1, 2′, 2, . . .} with the total ordering 1′ < 1 < 2′ < 2 < · · · . Then, a semi-
standard marked shifted tableau 𝑡𝑡𝑡 = (𝑡𝑖 𝑗 ) ∈ 𝑆𝑇 (𝜆,N′) is obtained by numbering all the
boxes of 𝑆𝐷 (𝜆) with numbers fromN′ such that

PST1 the entries of 𝑡𝑡𝑡 are weakly increasing along each column and row of 𝑡𝑡𝑡,
PST2 for each 𝑖 = 1, 2, . . ., there is at most one 𝑖′ per row,
PST3 for each 𝑖 = 1, 2, . . ., there is at most one 𝑖 per column,
PST4 there is no 𝑖′ on the main diagonal.
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4 M. Nakasuji and W. Takeda

We denote by 𝑃𝑆𝑆𝑇 (𝜆) the set of semi-standard marked shifted tableaux of shape 𝜆.
Similarly, we denote by 𝑄𝑆𝑆𝑇 (𝜆) the set of semi-standard marked shifted tableaux of
shape 𝜆 without the diagonal condition PST4.

Definition 2.2 (Schur 𝑃-multiple zeta functions) For a given set 𝑠𝑠𝑠 = (𝑠𝑖 𝑗 ) ∈ 𝑆𝑇 (𝜆,C)
of variables, the Schur 𝑃-multiple zeta functions of shape 𝜆 are defined as

𝜁𝑃𝜆 (𝑠𝑠𝑠) =
∑︁

𝑀∈𝑃𝑆𝑆𝑇 (𝜆)

1
𝑀𝑠𝑠𝑠

, (2.1)

where 𝑀𝑠𝑠𝑠 =
∏

(𝑖, 𝑗) ∈𝑆𝐷 (𝜆)
|𝑚𝑖 𝑗 |𝑠𝑖 𝑗 for 𝑀 = (𝑚𝑖 𝑗 ) ∈ 𝑃𝑆𝑆𝑇 (𝜆) and |𝑖 | = |𝑖′ | = 𝑖.

For example, when 𝜆 = (6, 5, 3, 1),

𝑀 =

1 1 1 2′ 3′ 4′

2 2 3 4′ 5′

3 4′ 4
5

∈ 𝑃𝑆𝑆𝑇 (𝜆),

and

1
𝑀𝑠𝑠𝑠

=
1

1𝑠111𝑠121𝑠132𝑠143𝑠154𝑠162𝑠222𝑠233𝑠244𝑠255𝑠263𝑠334𝑠344𝑠355𝑠44
.

Similarly, We define the Schur𝑄-multiple zeta functions.

Definition 2.3 (Schur𝑄-multiple zeta functions) For a given set 𝑠𝑠𝑠 = (𝑠𝑖 𝑗 ) ∈ 𝑆𝑇 (𝜆,C)
of variables, the Schur𝑄-multiple zeta functions of shape 𝜆 are defined to be

𝜁
𝑄

𝜆
(𝑠𝑠𝑠) =

∑︁
𝑀∈𝑄𝑆𝑆𝑇 (𝜆)

1
𝑀𝑠𝑠𝑠

, (2.2)

where 𝑀𝑠𝑠𝑠 =
∏

(𝑖, 𝑗) ∈𝑆𝐷 (𝜆)
|𝑚𝑖 𝑗 |𝑠𝑖 𝑗 for 𝑀 = (𝑚𝑖 𝑗 ) ∈ 𝑄𝑆𝑆𝑇 (𝜆) and |𝑖 | = |𝑖′ | = 𝑖.

For a strict partition 𝜆 = (𝜆1, . . . , 𝜆𝑟 ), by the definitions of 𝜁𝑃𝜆 and 𝜁𝑄
𝜆
, we can allow

the main diagonal entries in tableaux 𝑀 ∈ 𝑄𝑆𝑆𝑇 (𝜆) to be marked and obtain

𝜁
𝑄

𝜆
(𝑠𝑠𝑠) = 2𝑟 𝜁𝑃𝜆 (𝑠𝑠𝑠). (2.3)

As in the Introduction, we define the truncated 𝑃- and𝑄-multiple zeta functions:
For a fixed positive integer 𝑁 ∈ N, let 𝑃𝑆𝑆𝑇𝑁 (𝜆) and 𝑄𝑆𝑆𝑇𝑁 (𝜆) be the sets of all

(𝑚𝑖 𝑗 ) ∈ 𝑃𝑆𝑆𝑇 (𝜆) and𝑄𝑆𝑆𝑇 (𝜆) such that 𝑚𝑖 𝑗 ≤ 𝑁 for all 𝑖, 𝑗 . Then, we define

𝜁
𝑃,𝑁

𝜆
(𝑠𝑠𝑠) =

∑︁
𝑀∈𝑃𝑆𝑆𝑇𝑁 (𝜆)

1
𝑀𝑠𝑠𝑠

, and 𝜁𝑄,𝑁

𝜆
(𝑠𝑠𝑠) =

∑︁
𝑀∈𝑄𝑆𝑆𝑇𝑁 (𝜆)

1
𝑀𝑠𝑠𝑠

.
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Symmetric multiple zeta functions 5

In this section, we prove some basic properties of the Schur 𝑃- and 𝑄-multiple zeta
functions. We first consider the domain of absolute convergence of the series (2.1) and
(2.2).

Lemma 2.1 Let

𝑊
𝑄

𝜆
=

{
𝑠𝑠𝑠 = (𝑠𝑖 𝑗 ) ∈ 𝑆𝑇 (𝜆,C)

����� Re(𝑠𝑖 𝑗 ) ≥ 1 for all (𝑖, 𝑗) ∈ 𝑆𝐷 (𝜆) \ 𝑆𝐶 (𝜆)
Re(𝑠𝑖 𝑗 ) > 1 for all (𝑖, 𝑗) ∈ 𝑆𝐶 (𝜆)

}
.

Then, the series (2.1) and (2.2) converge absolutely if 𝑠𝑠𝑠 ∈ 𝑊
𝑄

𝜆
.

Proof By (2.3), it suffices to consider 𝜁𝑄
𝜆
. Let 𝜆 be a strict partition and 𝑆𝐶 (𝜆) =

{(𝑖1, 𝑗1), . . . , (𝑖𝑘 , 𝑗𝑘)} where 𝑖1 < · · · < 𝑖𝑘 and 𝑗1 > · · · > 𝑗𝑘 . Let 𝑖0 = 0. Because��������
∑︁

𝑀∈𝑄𝑆𝑆𝑇 (𝜆)
𝑚𝑖 𝑗 ≤𝑁

1
𝑀𝑠𝑠𝑠

�������� ≤
𝑘∏

ℓ=1

∑︁
𝑀∈𝑄𝑆𝑆𝑇 (𝜆ℓ )

𝑚𝑖 𝑗 ≤𝑁

∏
(𝑖, 𝑗) ∈𝑆𝐷 (𝜆ℓ )

1
|𝑚𝑖 𝑗 |Re(𝑡𝑖 𝑗,ℓ )

,

where 𝜆ℓ = ( 𝑗ℓ − 𝑖ℓ−1, 𝑗ℓ − 𝑖ℓ−1 − 1, . . . , 𝑗ℓ − 𝑖ℓ + 1) and 𝑡𝑖 𝑗 ,ℓ = 𝑠𝑖+𝑖ℓ−1 , 𝑗+𝑖ℓ−1 , we prove
that for 𝜆 = (𝜆1, . . . , 𝜆𝑟 ) := (𝜆1, 𝜆1 − 1, . . . , 𝜆1 − 𝑟 + 1),

∑︁
𝑀∈𝑄𝑆𝑆𝑇 (𝜆)

𝑚𝑖 𝑗 ≤𝑁

∏
(𝑖, 𝑗) ∈𝑆𝐷 (𝜆)

1
|𝑚𝑖 𝑗 |Re(𝑠𝑖 𝑗 )

(2.4)

converges absolutely for 𝑠𝑠𝑠 ∈ 𝑊
𝑄

𝜆
as 𝑁 → ∞. Rearranging the order of summation, we

have

∑︁
𝑀∈𝑄𝑆𝑆𝑇 (𝜆)

𝑚𝑖 𝑗 ≤𝑁

∏
(𝑖, 𝑗) ∈𝑆𝐷 (𝜆)

1
|𝑚𝑖 𝑗 |Re(𝑠𝑖 𝑗 )

=

𝑁∑︁
𝑁1=1

©­­­«
∑︁

(𝑚𝑖 𝑗 ) ∈𝑄𝑆𝑆𝑇 (𝜆)
𝑚𝑟𝜆𝑟 =𝑁1

∏
(𝑖, 𝑗) ∈𝑆𝐷 (𝜆)
(𝑖, 𝑗)≠(𝑟 ,𝜆𝑟 )

1
|𝑚𝑖 𝑗 |Re(𝑠𝑖 𝑗 )

ª®®®¬
1

𝑁
Re(𝑠𝑟𝜆𝑟 )
1

.

By extending the region of summation and product, it holds that

∑︁
𝑀∈𝑄𝑆𝑆𝑇 (𝜆)

𝑚𝑖 𝑗 ≤𝑁

∏
(𝑖, 𝑗) ∈𝑆𝐷 (𝜆)

1
|𝑚𝑖 𝑗 |Re(𝑠𝑖 𝑗 )

≤ 2𝑟𝜆𝑟
𝑁∑︁

𝑁1=1

©­­­«
𝑟∏
𝑖=1

𝜆𝑟∏
𝑗=1

(𝑖, 𝑗)≠(𝑟 ,𝜆𝑟 )

𝑁1∑︁
𝑚𝑖 𝑗=1

1
𝑚𝑖 𝑗

ª®®®¬
1

𝑁
Re(𝑠𝑟𝜆𝑟 )
1

.
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6 M. Nakasuji and W. Takeda

Because for any 𝜀 > 0, there exists a constant𝐶𝜀 > 1 such that
𝑁∑︁

𝑚𝑖 𝑗=1

1
𝑚𝑖 𝑗

<
𝐶𝜀

2
𝑁 𝜀 ,

we can estimate that

∑︁
𝑀∈𝑄𝑆𝑆𝑇 (𝜆)

𝑚𝑖 𝑗 ≤𝑁

∏
(𝑖, 𝑗) ∈𝑆𝐷 (𝜆)

1
|𝑚𝑖 𝑗 |Re(𝑠𝑖 𝑗 )

≤ 𝐶𝑟𝜆𝑟
𝜀

𝑁∑︁
𝑁1=1

𝑁
𝜀𝑟𝜆𝑟
1

𝑁
Re(𝑠𝑟𝜆𝑟 )
1

.

Wecan choose a sufficiently small 𝜀 such that Re(𝑠𝑟𝜆𝑟 )−𝜀𝑟𝜆𝑟 > 1. Thus, (2.4) converges
absolutely and we obtain the lemma. ■

We next show that a Schur𝑄-multiple zeta function can be written as a linear com-
bination of themultiple zeta (star) functions as well as the Schurmultiple zeta functions.
Indeed, for a strict partition 𝜆 of 𝑛, let SF (𝜆) be the set of all bijections 𝑓 : 𝑆𝐷 (𝜆) →
{1, 2, . . . , 𝑛} satisfying the following two conditions:

(i) for all 𝑖, 𝑓 ((𝑖, 𝑗1)) < 𝑓 ((𝑖, 𝑗2)) if and only if 𝑗1 < 𝑗2,
(ii) for all 𝑗 , 𝑓 ((𝑖1, 𝑗)) < 𝑓 ((𝑖2, 𝑗)) if and only if 𝑖1 < 𝑖2.

For 𝑠𝑠𝑠 = (𝑠𝑖 𝑗 ) ∈ 𝑆𝑇 (𝜆,C), put

𝑉 (𝑠𝑠𝑠) =
{ (
𝑠 𝑓 −1 (1) , 𝑠 𝑓 −1 (2) , . . . , 𝑠 𝑓 −1 (𝑛)

)
∈ C𝑛

�� 𝑓 ∈ SF (𝜆)
}
.

We write 𝑡𝑡𝑡 ⪯𝑠 𝑠𝑠𝑠 for 𝑡𝑡𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑚) ∈ C𝑚 if there exists (𝑣1, 𝑣2, . . . , 𝑣𝑛) ∈ 𝑉 (𝑠𝑠𝑠)
satisfying the following: for all 1 ≤ 𝑘 ≤ 𝑚, there exist 1 ≤ ℎ𝑘 ≤ 𝑚 and 𝑙𝑘 ≥ 0 such that

(i) 𝑡𝑘 = 𝑣ℎ𝑘
+ 𝑣ℎ𝑘+1 + · · · + 𝑣ℎ𝑘+𝑙𝑘 ,

(ii) there are no (𝑖1, 𝑖2; 𝑗1, 𝑗2) with 𝑖1 < 𝑖2 and 𝑗1 < 𝑗2 such that
{𝑠𝑖1 𝑗1 , 𝑠𝑖1 𝑗2 , 𝑠𝑖2 𝑗2 } ⊂ {𝑣ℎ𝑘

, 𝑣ℎ𝑘+1, . . . , 𝑣ℎ𝑘+𝑙𝑘 }, and
(iii)

⊔𝑚
𝑘=1{ℎ𝑘 , ℎ𝑘 + 1, . . . , ℎ𝑘 + 𝑙𝑘} = {1, 2, . . . , 𝑛} (disjoint union).

Here, we note that since |𝑚𝑖 𝑗 | = |𝑚′
𝑖 𝑗
| = 𝑚𝑖 𝑗 for any positive integer𝑚𝑖 𝑗 in (2.2), the

definition of 𝜁𝑄
𝜆
, we have

𝜁
𝑄

𝜆
(𝑠𝑠𝑠) =

∑︁
𝑡𝑡𝑡 ⪯𝑠 𝑠𝑠𝑠

2𝑚(𝑡𝑡𝑡) 𝜁 (𝑡𝑡𝑡), (2.5)

where𝑚(𝑡𝑡𝑡) is a positive integer that depends on theway inwhich the comma , is changed
to the plus + sign. Moreover, by an Inclusion-Exclusion principle, one can also obtain
its “dual” expression

𝜁
𝑄

𝜆
(𝑠𝑠𝑠) =

∑︁
𝑡𝑡𝑡 ⪯𝑠 𝑠𝑠𝑠

(−1)𝑛−dep(𝑡𝑡𝑡)2𝑚(𝑡𝑡𝑡) 𝜁★(𝑡𝑡𝑡), (2.6)

where dep is the number of variables. Combining (2.5) and (2.6) with identity (2.3), we
can decompose the Schur 𝑃-multiple zeta function into a linear combination ofmultiple
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Symmetric multiple zeta functions 7

zeta (star) functions defined by

𝜁 (𝑠1, . . . , 𝑠𝑟 ) =
∑︁

1≤𝑛1<· · ·<𝑛𝑟

1
𝑛
𝑠1
1 · · · 𝑛𝑠𝑟𝑟

, 𝜁★(𝑠1, . . . , 𝑠𝑟 ) =
∑︁

1≤𝑛1≤···≤𝑛𝑟

1
𝑛
𝑠1
1 · · · 𝑛𝑠𝑟𝑟

.

Example 2.2 For 𝑠𝑠𝑠 = (𝑠𝑖 𝑗 ) ∈ 𝑆𝑇 ((3, 1),C), we have

𝑉 (𝑠𝑠𝑠) = {(𝑠11, 𝑠12, 𝑠13, 𝑠22), (𝑠11, 𝑠12, 𝑠22, 𝑠13)}.

One can confirm that 𝑡𝑡𝑡 ⪯𝑠 𝑠𝑠𝑠 if and only if 𝑡𝑡𝑡 is one of the following:

(𝑠11, 𝑠12, 𝑠13, 𝑠22), (𝑠11 + 𝑠12, 𝑠13, 𝑠22), (𝑠11, 𝑠12 + 𝑠13, 𝑠22), (𝑠11, 𝑠12, 𝑠13 + 𝑠22),
(𝑠11 + 𝑠12 + 𝑠13, 𝑠22), (𝑠11 + 𝑠12, 𝑠13 + 𝑠22), (𝑠11, 𝑠12 + 𝑠13 + 𝑠22),
(𝑠11, 𝑠12, 𝑠22, 𝑠13), (𝑠11 + 𝑠12, 𝑠22, 𝑠13), (𝑠11, 𝑠12 + 𝑠22, 𝑠13).

This shows that when 𝑠𝑠𝑠 ∈ 𝑊
𝑄

(3,1)

𝜁
𝑄

(3,1)

(
𝑠11 𝑠12 𝑠13

𝑠22

)
= 16𝜁 (𝑠11, 𝑠12, 𝑠13, 𝑠22) + 8𝜁 (𝑠11 + 𝑠12, 𝑠13, 𝑠22) + 8𝜁 (𝑠11, 𝑠12 + 𝑠13, 𝑠22)

+ 16𝜁 (𝑠11, 𝑠12, 𝑠13 + 𝑠22) + 4𝜁 (𝑠11 + 𝑠12 + 𝑠13, 𝑠22)
+ 8𝜁 (𝑠11 + 𝑠12, 𝑠13 + 𝑠22) + 4𝜁 (𝑠11, 𝑠12 + 𝑠13 + 𝑠22)
+ 16𝜁 (𝑠11, 𝑠12, 𝑠22, 𝑠13) + 8𝜁 (𝑠11 + 𝑠12, 𝑠22, 𝑠13) + 8𝜁 (𝑠11, 𝑠12 + 𝑠22, 𝑠13)

= 16𝜁★(𝑠11, 𝑠12, 𝑠13, 𝑠22) − 8𝜁★(𝑠11 + 𝑠12, 𝑠13, 𝑠22) − 8𝜁★(𝑠11, 𝑠12 + 𝑠13, 𝑠22)
− 16𝜁★(𝑠11, 𝑠12, 𝑠13 + 𝑠22) + 4𝜁★(𝑠11 + 𝑠12 + 𝑠13, 𝑠22)
+ 8𝜁★(𝑠11 + 𝑠12, 𝑠13 + 𝑠22) + 4𝜁★(𝑠11, 𝑠12 + 𝑠13 + 𝑠22)
+ 16𝜁★(𝑠11, 𝑠12, 𝑠22, 𝑠13) − 8𝜁★(𝑠11 + 𝑠12, 𝑠22, 𝑠13) − 8𝜁★(𝑠11, 𝑠12 + 𝑠22, 𝑠13).

Example 2.3 It holds that

𝜁
𝑄

(𝑟)

(
𝑠11 · · · 𝑠1𝑟

)
=

∑︁
ℓℓℓ

2dep(ℓℓℓ) 𝜁 (ℓℓℓ),

𝜁
𝑄

(𝑟)

(
𝑠11 · · · 𝑠1𝑟

)
=

∑︁
ℓℓℓ

(−1)𝑟−dep(ℓℓℓ)2dep(ℓℓℓ) 𝜁★(ℓℓℓ),

where ℓℓℓ runs over all indices of the form ℓℓℓ = (𝑠11□𝑠12□ · · ·□𝑠1𝑟 ) in which each □ is
filled by a comma , or a plus + sign.

By (2.3), the Schur 𝑃-multiple zeta functions can be similarly decomposed into a
linear combination of multiple zeta (star) functions.

We next provide a short observation for a relation between Schur 𝑄-multiple zeta
values and the Two-One formula conjectured by Ohno and Zudilin [19], and proved by
Zhao [28].
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8 M. Nakasuji and W. Takeda

Theorem 2.4 (Two-One formula [19, 28]) For a non-negative integer 𝑘 , we denote 𝜇2𝑘+1 =
(1, {2}𝑘). Then for any admissible index 𝑘𝑘𝑘 = (𝑘1, . . . , 𝑘𝑟 ) with odd entries 𝑘1, . . . , 𝑘𝑟 , the
following identities are valid:

𝜁★(𝜇𝑘1 , . . . , 𝜇𝑘𝑟 ) =
∑︁
ℓℓℓ⪯𝑘𝑘𝑘

2dep(ℓℓℓ) 𝜁 (ℓℓℓ),

=
∑︁
ℓℓℓ⪯𝑘𝑘𝑘

(−1)𝑟−dep(ℓℓℓ)2dep(ℓℓℓ) 𝜁★(ℓℓℓ),

where the sum
∑︁
ℓℓℓ⪯𝑘𝑘𝑘

extends over all indices of the form ℓℓℓ = (𝑘1□𝑘2□ · · ·□𝑘𝑟 ) in which each

□ is filled by the comma , or the plus + sign.

Combining Theorem 2.4 with Lemma 2.3, we have the following theorem.

Theorem 2.5 For 𝑟-tuple (𝑘1, . . . , 𝑘𝑟 ) of positive odd integers with 𝑘𝑟 ≥ 3,

𝜁
𝑄

(𝑟)

(
𝑘1 𝑘2 · · · 𝑘𝑟

)
= 𝜁★(𝜇𝑘1 , . . . , 𝜇𝑘𝑟 )

= 𝜁★(1, {2}
𝑘1−1
2 , . . . , 1, {2}

𝑘𝑟−1
2 ).

This theorem contributes a non-trivial identity between a single Schur 𝑄-multiple
zeta value and multiple zeta star value.

Corollary 2.6 For a positive integer 𝑘 ≥ 4

𝜁
𝑄

(𝑘−2)

(
1 · · · 1 3

)
=

𝑘 − 1
2

𝜁
𝑄

(1)

(
𝑘

)
.

Proof By Theorem 2.5 and the sum formula (Theorem 6.1), we have

𝜁
𝑄

(𝑘−2)

(
1 · · · 1 3

)
= 𝜁★({1}𝑘−2, 2) = (𝑘 − 1)𝜁 (𝑘).

By (2.5), we have 𝜁𝑄(1)
(
𝑘

)
= 2𝜁 (𝑘) and

𝜁
𝑄

(𝑘−2)

(
1 · · · 1 3

)
=

𝑘 − 1
2

𝜁
𝑄

(1)

(
𝑘

)
.

■

3 Pfaffian expression of the Schur 𝑄-multiple zeta functions

The original Schur 𝑄-polynomial is known to have a pfaffian expression [15]. In this
section, we provide a pfaffian expression of the Schur 𝑄-multiple zeta function by fol-
lowing the Stembridge approach [24]. We first recall the definition of a pfaffian. Let𝔖𝑛

be the symmetric group of degree 𝑛. Then, for a given square matrix 𝐴 = (𝑎𝑖 𝑗 )1≤𝑖, 𝑗≤𝑛,
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Symmetric multiple zeta functions 9

the determinant det(𝐴) is defined by

det(𝐴) =
∑︁
𝜎∈𝔖𝑛

sgn(𝜎)
𝑛∏
𝑖=1

𝑎𝑖,𝜎 (𝑖) ,

where sgn(𝜎) is the signature of 𝜎.
We derive the pfaffian by defining a set𝔉2𝑛, a subset of the symmetric group𝔖2𝑛 of

an even degree,

𝔉2𝑛 =

{
𝜋 ∈ 𝔖2𝑛

���� 𝜋(1) < 𝜋(3) < · · · < 𝜋(2𝑛 − 1),
𝜋(1) < 𝜋(2), 𝜋(3) < 𝜋(4), . . . , 𝜋(2𝑛 − 1) < 𝜋(2𝑛)

}
.

For an ordered 2𝑛-tuple 𝑣𝑣𝑣 = (𝑣1, . . . , 𝑣2𝑛) of vertices, we say that a set of edges 𝜋 =

{((𝑣𝑖 , 𝑣 𝑗 ), . . . , (𝑣𝑘 , 𝑣𝑙))} on 𝑣𝑣𝑣 is a 1-factor if each 𝑣𝑖 is incident with exactly one edge.

Example 3.1 The following are 1-factors of {1, 2, 3, 4}.

◦ ◦ ◦ ◦ ◦◦ ◦ ◦◦ ◦ ◦ ◦
1 2 3 4 41 2 43 1 2 3

𝜋 = 𝑒 𝜋 = (23) 𝜋 = (243)

By convention, we always list the edges of a 1-factor 𝜋 in the form (𝑣𝑖 , 𝑣 𝑗 ) with 𝑖 < 𝑗 .
It is known that a bijection can be constructed from𝔉2𝑛 to the set of 1-factors by 𝜋 ↦→
{(𝑣𝜋 (1) , 𝑣𝜋 (2) ), . . . , (𝑣𝜋 (2𝑛−1) , 𝑣𝜋 (2𝑛) )}, and

|𝔉2𝑛 | =
(2𝑛)!
2𝑛𝑛!

.

Then, for a given 2𝑛×2𝑛 upper triangular or anti-symmetric matrix 𝐴 = (𝑎𝑖 𝑗 )1≤𝑖, 𝑗≤2𝑛,
the pfaffian pf(𝐴) of 𝐴 is defined by

pf(𝐴) =
∑︁
𝜋∈𝔉2𝑛

sgn(𝜋)
𝑛∏
𝑖=1

𝑎𝜋 (2𝑖−1) , 𝜋 (2𝑖) .

Let𝐷 = (𝑉, 𝐸) be a directed graphwith vertices𝑉 and edges 𝐸 , with the assignment
of a direction to each edgewithnodirected cycles.Multiple edges are allowed.Wedenote
by 𝑢 → 𝑣 an edge directed from 𝑢 to 𝑣. For any pair of vertices 𝑢, 𝑣, we denote by
𝒫(𝑢, 𝑣) the set of directed 𝐷-paths from 𝑢 to 𝑣 on 𝐷. If 𝑢 = 𝑢, then𝒫(𝑢, 𝑢) is a set of
a single path of length zero.

Let 𝐼 and 𝐽 be ordered sets of vertices of 𝐷. Then 𝐼 is said to be 𝐷-compatible with
𝐽 if, whenever 𝑢 < 𝑢′ in 𝐼 and 𝑣 > 𝑣′ in 𝐽 , every path 𝑃 ∈ 𝒫(𝑢, 𝑣) intersects every path
𝑄 ∈ 𝒫(𝑢′, 𝑣′). Here, if two paths have a common vertex, we say that they intersect.
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10 M. Nakasuji and W. Takeda

For any vertex 𝑢 ∈ 𝑉 and subset 𝐼 ⊂ 𝑉 , let𝒫(𝑢; 𝐼) denote the set of directed paths
from 𝑢 to any 𝑣 ∈ 𝐼 , and let

𝑄𝐼 (𝑢) =
∑︁

𝑃∈𝒫 (𝑢;𝐼)
𝑤(𝑃),

where 𝑤 is a particular weight function defined on edges. For any 𝑟-tuple 𝑢𝑢𝑢 =

(𝑢1, . . . , 𝑢𝑟 ) of vertices, let𝒫(𝑢𝑢𝑢; 𝐼) be the set of 𝑟-tuples of paths 𝑃𝑖 ∈ 𝒫(𝑢𝑖 ; 𝐼). The
weight function 𝑤 is extended to tuples of paths by

𝑤(𝑃1, . . . , 𝑃𝑟 ) =
𝑟∏
𝑖=1

𝑤(𝑃𝑖).

Then we define

𝑄𝐼 (𝑢1, . . . , 𝑢𝑟 ) =
∑︁

(𝑃1 ,...,𝑃𝑟 ) ∈𝒫 (𝑢𝑢𝑢;𝐼)
𝑤(𝑃1, . . . , 𝑃𝑟 ).

Theorem 3.2 ([24, Theorem 3.1]) Let𝑢𝑢𝑢 = (𝑢1, . . . , 𝑢𝑟 ) be an 𝑟-tuple of vertices in a directed
acyclic graph 𝐷 , and assume that 𝑟 is even. If 𝐼 ⊂ 𝑉 is a totally ordered subset of the vertices
such that 𝑢 is 𝐷-compatible with 𝐼 , then

𝑄𝐼 (𝑢𝑢𝑢) = pf(𝑄𝐼 (𝑢𝑖 , 𝑢 𝑗 ))1≤𝑖< 𝑗≤𝑟 .

Remark 3.3 ([24]) In the case of 𝑟 being odd, we may adjoin a phantom vertex 𝑢𝑟+1 to
𝑉 , with no incident edges, and include 𝑢𝑟+1 in 𝐼 . We order all other vertices of 𝐼 before
𝑢𝑟+1 and replace 𝑟 by 𝑟 + 1.

Stembridge constructed a directed graph 𝐷 corresponding to the Schur𝑄-functions
[24].Moreover, Stembridge appliedTheorem3.2 to obtain the following pfaffian expres-
sion of the Schur𝑄-polynomial.

Theorem 3.4 ([24, Theorem 6.1]) Let 𝜆 = (𝜆1, . . . , 𝜆𝑟 ) be a strict partition of even length.
Then

𝑄𝜆 = pf(𝑄 (𝜆𝑖 ,𝜆 𝑗 ) )1≤𝑖< 𝑗≤𝑟 .

Following the Stembridge approach, we construct a directed graph𝐷 corresponding
to the Schur 𝑄-multiple zeta functions. We begin with the vertex set of pairs of non-
negative integers, and direct an edge 𝑢 → 𝑣 whenever 𝑢 − 𝑣 = (1, 0), (0, 1), or (1, 1).
Subsequently, we delete the edges 𝑢 → 𝑣 that contain points whose first coordinates
are both zero, as well as those of which the second coordinates are both zero. Finally, we
divide each of the vertices (0, 𝑗) with 𝑗 > 1 into two vertices, say (0, 𝑗) and (0, 𝑗 + 1) ′,
such that the edge (1, 𝑗 + 1) → (0, 𝑗) is redirected to (0, 𝑗 + 1) ′, whereas the edge
(1, 𝑗) → (0, 𝑗) remains intact. Fix a positive integer 𝑁 and a partition 𝜆, and let 𝑢𝑢𝑢 =

(𝑢1, . . . , 𝑢𝑟 ) be the 𝑟-tuple of vertices with 𝑢𝑖 = (𝜆𝑖 , 𝑁). Without loss of generality, we
may assume that 𝑟 is even (if 𝑟 is odd, set 𝜆𝑟+1 = 0 and 𝑢𝑟+1 = (0, 𝑁 + 1) ′, and replace 𝑟
with 𝑟 + 1). Let 𝐼𝑁 = {(0, 0), (0, 1), (0, 2) ′, (0, 2), . . . , (0, 𝑁) ′, (0, 𝑁), (0, 𝑁 + 1) ′}.
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For any vertex 𝑢 ∈ 𝑉 , let𝒫0 (𝑢; 𝐼) be the set of non-intersecting path 𝑃 ∈ 𝒫(𝑢; 𝐼).
For any 𝑟-tuple 𝑢𝑢𝑢 = (𝑢1, . . . , 𝑢𝑟 ) of vertices, let𝒫0 (𝑢𝑢𝑢; 𝐼) be the set of non-intersecting
𝑟-tuples of paths 𝑃𝑖 ∈ 𝒫0 (𝑢𝑖 ; 𝐼). Then, an element in𝑄𝑆𝑆𝑇𝑁 (𝜆) can be identified with
a tuple of non-intersecting paths in𝒫0 (𝑢𝑢𝑢; 𝐼𝑁 ), and 𝑢𝑢𝑢 is 𝐷-compatible with 𝐼𝑁 .

Let 𝑣𝑖 (𝑃) = (𝑣𝑖, 𝑗 (𝑃)) 𝑗≥0 be the sequence of vertices representing a path 𝑃 ∈
𝒫0 (𝑢𝑖 ; 𝐼𝑁 ) and let ℓ𝑖𝑥𝑦 be the edge 𝑣𝑖, 𝑗 (= (𝑥, 𝑦)) → 𝑣𝑖, 𝑗+1. If 𝑣𝑖, 𝑗 (𝑃) − 𝑣𝑖, 𝑗+1 (𝑃) =

(1, 0) or (1, 1), we assign the weight𝑤(ℓ𝑖𝑥𝑦) = 𝑦−𝑠𝑖,𝑥+𝑖−1 . If 𝑣𝑖, 𝑗 (𝑃) −𝑣𝑖, 𝑗+1 (𝑃) = (0, 1),
we assign the weight 𝑤(ℓ𝑖𝑥𝑦) = 1. Here, we put (1, 𝑦) − (0, 𝑦) ′ = (1, 1) for any positive
integer 𝑦. Then, we define

𝑤(𝑃𝑖) =
∏
ℓ𝑖𝑥𝑦

𝑤(ℓ𝑖𝑥𝑦)

(see Example 3.5), and for (𝑃1, . . . , 𝑃𝑟 ) ∈ 𝒫(𝑢𝑢𝑢; 𝐼𝑁 ),

𝑤(𝑃1, . . . , 𝑃𝑟 ) =
𝑟∏
𝑖=1

𝑤(𝑃𝑖).

Then, according to the above discussion, we find that

𝜁
𝑄,𝑁

𝜆
(𝑠𝑠𝑠) =

∑︁
(𝑃1 ,...,𝑃𝑟 ) ∈𝒫0 (𝑢𝑢𝑢;𝐼𝑁 )

𝑤(𝑃1, . . . , 𝑃𝑟 ).

For a set 𝑋 , we define

𝑆𝑇diag (𝜆, 𝑋) = {(𝑡𝑖 𝑗 ) ∈ 𝑊
𝑄

𝜆
| 𝑡𝑖 𝑗 = 𝑡1𝑘 if 𝑗 − 𝑖 = 𝑘 − 1 for any 𝑘}.

Example 3.5 Let 𝜆 = (6, 5, 3, 1) and 𝑁 = 5. Then, Figure 1 is a 4-tuple of paths
(𝑃1, 𝑃2, 𝑃3, 𝑃4) ∈ 𝒫({𝑢1, 𝑢2}; 𝐼𝑁 ) ⊕ 𝒫({𝑢3, 𝑢4}; 𝐼𝑁 ). Let (𝑠𝑖 𝑗 ) ∈ 𝑆𝑇 (𝜆,C). The

1 1 1 2′ 3′ 4′

3′ 3 3 4′ 5′

2′ 2 5′

4′

𝑢1𝑢2𝑢3𝑢4

𝑂 6531 2 4

(0, 2) ′

(0, 3) ′

(0, 4)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • • • • • •

• • • • • • •

Figure 1: (𝑃1, 𝑃2, 𝑃3, 𝑃4) satisfying the condition in Example 3.5.
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12 M. Nakasuji and W. Takeda

weights 𝑤(𝑃𝑖) are

𝑤(𝑃1) =
1

1𝑠111𝑠121𝑠132𝑠143𝑠154𝑠16
, 𝑤(𝑃2) =

1
3𝑠223𝑠233𝑠244𝑠255𝑠26

𝑤(𝑃3) =
1

2𝑠332𝑠345𝑠35
, 𝑤(𝑃4) =

1
4𝑠44

.

Theorem 3.6 (Pfaffian expression of the Schur 𝑄-multiple zeta functions) Let 𝑟 be an
even positive integer. Let 𝜆 = (𝜆1, . . . , 𝜆𝑟 ) be a strict partition with 𝜆𝑖 ≥ 0. Then for 𝑠𝑠𝑠 ∈
𝑆𝑇diag (𝜆,C),

𝜁
𝑄

𝜆
(𝑠𝑠𝑠) = pf(𝑀𝜆),

where 𝑀𝜆 = (𝑎𝑖 𝑗 ) is an 𝑟 × 𝑟 upper triangular matrix with

𝑎𝑖 𝑗 =

{
𝜁
𝑄

(𝜆𝑖 ,𝜆 𝑗 ) (𝑠𝑠𝑠 (𝜆𝑖 ,𝜆 𝑗 ) ) for 𝑖 < 𝑗 ,

0 otherwise,

and

𝑠𝑠𝑠 (𝜆𝑖 ,𝜆 𝑗 ) =
𝑠𝑖𝑖 · · · · · · · · · · · · 𝑠𝑖𝑡𝑖

𝑠 𝑗 𝑗 · · · 𝑠 𝑗𝑡 𝑗
,

where 𝑡𝑖 = 𝑖 + 𝜆𝑖 − 1.

Proof We can prove this by following Stembridge’s method (see [24, Theorem 3.1]).
Indeed, a similar discussion is proceeded in terms of appropriate weight corresponding
to multiple zeta functions:

By the definition of pfaffian,

pf(𝑀𝜆) =
∑︁
𝜋∈𝔉𝑛

sgn(𝜋)
∏

(𝑖, 𝑗) ∈𝜋
𝜁
𝑄

(𝜆𝑖 ,𝜆 𝑗 ) (𝑠𝑠𝑠 (𝜆𝑖 ,𝜆 𝑗 ) ). (3.1)

It suffices to show that there exists a sign-reversing summand for each summand
resulting from (𝑃1, . . . , 𝑃𝑟 ) with at least one pair of intersecting paths.

We consider the right-most intersection point (𝑝, 𝑞) appearing in paths
(𝑃1, . . . , 𝑃𝑟 ) for a 1-factor 𝜋. For the sake of simplicity, we can assume that for
the 1-factor 𝜋 the two paths 𝑃1 and 𝑃2 intersect at (𝑝, 𝑞) (Figure 2). Then, the paths
(𝑃1, . . . , 𝑃𝑟 ) give rise to

𝑆(𝜋) = sgn(𝜋)
𝑡1∏
𝑗=1

𝑎
−𝑠1 𝑗
1 𝑗

𝑡2∏
𝑗=2

𝑎
−𝑠2 𝑗
2 𝑗

𝑟∏
𝑖=3

(
𝑡𝑖∏
𝑗=𝑖

𝑎
−𝑠𝑖 𝑗
𝑖 𝑗

)
,

where 𝑎𝑖 𝑗 is the 𝑦-coordinate of the corresponding element of 𝑣𝑤
𝑖 𝑗
(𝑃𝑖). On the other

hand, we consider the 𝑟-tuple of paths (𝑃1, 𝑃2, 𝑃3, . . . , 𝑃𝑟 ). Here, 𝑃𝑖 follows 𝑃𝑖 until it
meets the first intersection point (𝑝, 𝑞), whereupon it follows the other path 𝑃 𝑗 to the
end (Figure 3).

Let 𝜋 be the 1-factor obtained by interchanging 1 and 2. Here, it is necessary to verify
that for each 1-factor (𝑖, 𝑗) ∈ 𝜋, the paths 𝑃𝑖 and 𝑃 𝑗 do not intersect. It suffices to
consider the cases involving the modified paths 𝑃𝑖 and 𝑃 𝑗 . The definition of 𝑣 implies
that points of intersection other than 𝑣 do not exist on the right-hand side of 𝑣. Hence,
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Figure 2: (𝑃1, . . . , 𝑃𝑟 ).

𝑢1𝑢2𝑢3𝑢4

𝑝

𝑞

•

•

•

•

•

•

•

•

•
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Figure 3: (𝑃1, 𝑃2, 𝑃3, . . . , 𝑃𝑟 ).

the path 𝑃𝑘 will intersect 𝑃1 (resp. 𝑃2) if and only if 𝑃𝑘 intersects 𝑃2 (resp. 𝑃1). Thus,
we confirm that 𝜋 appears in (3.1) and the paths (𝑃1, 𝑃2, . . . , 𝑃𝑟 ) yield

𝑆(𝜋) = sgn(𝜋)
𝑝+1∏
𝑗=2

𝑎
−𝑠2 𝑗
2 𝑗

𝑡1∏
𝑗=𝑝+1

𝑎
−𝑠1 𝑗
1 𝑗

𝑝∏
𝑗=1

𝑎
−𝑠1 𝑗
1 𝑗

𝑡2∏
𝑗=𝑝+2

𝑎
−𝑠2 𝑗
2 𝑗

𝑟∏
𝑖=3

(
𝑡𝑖∏
𝑗=𝑖

𝑎
−𝑠𝑖 𝑗
𝑖 𝑗

)
.

As sgn(𝜋)sgn(𝜋) = −1 and 𝑠1 𝑗 = 𝑠2( 𝑗+1) , one can confirm that

𝑆(𝜋) + 𝑆(𝜋) = 0,

and this proves the assertion. ■

Example 3.7 Let 𝜆 = (3, 2, 1, 0). Then, if (𝑎 𝑗−𝑖) = (𝑠𝑖 𝑗 ) ∈ 𝑆𝑇diag (𝜆,C),

𝜁
𝑄

𝜆
(𝑠𝑠𝑠) =pf

©­­­­­­­­­­«

0 𝜁
𝑄

(3,2)

(
𝑎0 𝑎1 𝑎2

𝑎0 𝑎1

)
𝜁
𝑄

(3,1)

(
𝑎0 𝑎1 𝑎2

𝑎0

)
𝜁
𝑄

(3)

(
𝑎0 𝑎1 𝑎2

)
0 0 𝜁

𝑄

(2,1)

(
𝑎0 𝑎1

𝑎0

)
𝜁
𝑄

(2)

(
𝑎0 𝑎1

)
0 0 0 𝜁

𝑄

(1)

(
𝑎0

)
0 0 0 0

ª®®®®®®®®®®¬
=𝜁

𝑄

(3,2)

(
𝑎0 𝑎1 𝑎2

𝑎0 𝑎1

)
𝜁
𝑄

(1)

(
𝑎0

)
− 𝜁

𝑄

(3,1)

(
𝑎0 𝑎1 𝑎2

𝑎0

)
𝜁
𝑄

(2)

(
𝑎0 𝑎1

)
+ 𝜁

𝑄

(3)

(
𝑎0 𝑎1 𝑎2

)
𝜁
𝑄

(2,1)

(
𝑎0 𝑎1

𝑎0

)
.
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14 M. Nakasuji and W. Takeda

As in [18], we can consider an extension of Theorem 3.6. In preparation, we define∑︁
diag

=
∑︁
𝜎1∈𝑆1

· · ·
∑︁

𝜎𝜆1 ∈𝑆𝜆1

𝜎1 · · ·𝜎𝜆1 (3.2)

for 𝑆 𝑗 being the set of permutations of the elements of 𝐼 ( 𝑗) = {(𝑘, 𝑙) ∈ 𝑆𝐷 (𝜆) | 𝑙− 𝑘 =

𝑗}. The sum
∑︁
diag

signifies the sum taken over all permutations of all elements on each

diagonal 𝐼 ( 𝑗) for all 𝑗 . We now give an example of (3.2).

Example 3.8 For 𝜆 = (3, 2),

𝐼 (0) = {(𝑘, ℓ) ∈ 𝐷 (𝜆) | ℓ − 𝑘 = 0} = {(1, 1), (2, 2)},
𝐼 (1) = {(𝑘, ℓ) ∈ 𝐷 (𝜆) | ℓ − 𝑘 = 1} = {(1, 2), (2, 3)},
𝐼 (2) = {(𝑘, ℓ) ∈ 𝐷 (𝜆) | ℓ − 𝑘 = 0} = {(1, 3)}.

This leads to

𝑆0 � 𝑆1 � 𝔖2 = {id, 𝜎1}, 𝑆2 � 𝔖1 = {id},

where 𝜎1 implies the substitution of the first and second components of 𝐼 ( 𝑗) for any 𝑗 .
Therefore, ∑︁

𝑑𝑖𝑎𝑔

𝜁
𝑄

𝜆

(
𝑎 𝑏 𝑐

𝑑 𝑒

)
=

𝜁
𝑄

𝜆

(
𝑎 𝑏 𝑐

𝑑 𝑒

)
(id, id, id) ∈ 𝑆0 × 𝑆1 × 𝑆2

+ 𝜁
𝑄

𝜆

(
𝑑 𝑏 𝑐

𝑎 𝑒

)
(𝜎1, id, id) ∈ 𝑆0 × 𝑆1 × 𝑆2

+ 𝜁
𝑄

𝜆

(
𝑎 𝑒 𝑐

𝑑 𝑏

)
(id, 𝜎1, id) ∈ 𝑆0 × 𝑆1 × 𝑆2

+ 𝜁
𝑄

𝜆

(
𝑑 𝑒 𝑐

𝑎 𝑏

)
(𝜎1, 𝜎1, id) ∈ 𝑆0 × 𝑆1 × 𝑆2.

Also, we define a set𝑊𝑄

𝜆,𝐻
by

𝑊
𝑄

𝜆,𝐻
=

{
𝑠𝑠𝑠 = (𝑠𝑖 𝑗 ) ∈ 𝑆𝑇 (𝜆,C)

����� Re(𝑠𝑖 𝑗 ) ≥ 1 for all (𝑖, 𝑗) ∈ 𝑆𝐷 (𝜆) \ 𝐻 (𝜆)
Re(𝑠𝑖 𝑗 ) > 1 for all (𝑖, 𝑗) ∈ 𝐻 (𝜆)

}
,

where 𝐻 (𝜆) = {(𝑖, 𝑗) ∈ 𝑆𝐷 (𝜆) | 𝑖 − 𝑗 ∈ {𝑘 − 𝜆𝑘 | 1 ≤ 𝑘 ≤ 𝑟}}. Following the proof of
Theorem 3.6 and [18, Lemma 3.1], the following theorem can be proved.
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Theorem 3.9 For any strict partition 𝜆 = (𝜆1, . . . , 𝜆𝑟 ) and 𝑠𝑠𝑠 ∈ 𝑊
𝑄

𝜆,𝐻
, we have∑︁

diag
𝜁
𝑄

𝜆
(𝑠𝑠𝑠) =

∑︁
diag

pf(𝑀𝜆),

where 𝑀𝜆 is defined as in Theorem 3.6.

4 Pfaffian expression of the skew type Schur 𝑄-multiple zeta
functions

For the strict partitions 𝜆, 𝜇, we write 𝜇 ≤ 𝜆 if 𝑆𝐷 (𝜇) ⊂ 𝑆𝐷 (𝜆). For 𝜇 ≤ 𝜆, the
skew shifted diagram of 𝜆/𝜇 is defined as 𝑆𝐷 (𝜆/𝜇) = 𝑆𝐷 (𝜆) \ 𝑆𝐷 (𝜇). We use the same
notations 𝑆𝑇 (𝜆/𝜇, 𝑋), 𝑆𝑇diag (𝜆/𝜇, 𝑋) for a set 𝑋 , and 𝑃𝑆𝑆𝑇 (𝜆/𝜇) as in the previous
sections.

Definition 4.1 (skew Schur 𝑃- and skew 𝑄-multiple zeta functions) Let 𝑠𝑠𝑠 = (𝑠𝑖 𝑗 ) ∈
𝑆𝑇 (𝜆/𝜇,C). We define skew Schur 𝑃- and skew 𝑄-multiple zeta functions associated
with 𝜆/𝜇 by

𝜁𝑃
𝜆/𝜇 (𝑠𝑠𝑠) =

∑︁
𝑀∈𝑃𝑆𝑆𝑇 (𝜆/𝜇)

1
𝑀𝑠𝑠𝑠

, (4.1)

and

𝜁
𝑄

𝜆/𝜇 (𝑠𝑠𝑠) =
∑︁

𝑀∈𝑄𝑆𝑆𝑇 (𝜆/𝜇)

1
𝑀𝑠𝑠𝑠

. (4.2)

Let 𝐷 be the directed graph defined above and 𝐼𝑁 be the same as in the previ-
ous section for a fixed positive integer 𝑁 . We define two sequences of vertices 𝑢𝑢𝑢 =

(𝑢1, . . . , 𝑢𝑟 ) and𝑣𝑣𝑣 = (𝑣1, . . . , 𝑣𝑠) by 𝑢𝑖 = (𝜆𝑖 , 𝑁) and 𝑣𝑖 = (𝜇𝑖 , 0). We define𝑣𝑣𝑣⊕ 𝐼𝑁 by
the union of 𝑣𝑣𝑣 and 𝐼𝑁 , ordered such that each 𝑣𝑖 precedes each 𝑣 ∈ 𝐼𝑁 . Then the shifted
Young tableaux of shape 𝜆/𝜇 with maximal entry 𝑁 can be identified with the non-
intersecting paths (𝑃1, . . . , 𝑃𝑟 ) in𝒫0 (𝑢𝑢𝑢, 𝑣𝑣𝑣 ⊕ 𝐼𝑁 ), and 𝑢𝑢𝑢 is 𝐷-compatible with 𝑣𝑣𝑣 ⊕ 𝐼𝑁
such that 𝑃𝑖 ∈ 𝒫(𝑢𝑖 , 𝑣𝑖) for 1 ≤ 𝑖 ≤ 𝑠 and 𝑃𝑖 ∈ 𝒫(𝑢𝑖 , 𝐼𝑁 ) for 𝑠 < 𝑖 ≤ 𝑟 . The weights
of paths are defined in the same way as in Section 3.

Example 4.1 Let 𝜆 = (6, 5, 3, 1) and 𝜇 = (3, 1). Then Figure 4 is a 4-tuple of non-
intersecting paths (𝑃1, 𝑃2, 𝑃3, 𝑃4) ∈ 𝒫0 (𝑢𝑢𝑢, 𝑣𝑣𝑣 ⊕ 𝐼5).

Let (𝑠𝑖 𝑗 ) ∈ 𝑆𝑇 (𝜆/𝜇,C). The weights 𝑤(𝑃𝑖) are

𝑤(𝑃1) =
1

1𝑠143𝑠154𝑠16
, 𝑤(𝑃2) =

1
1𝑠232𝑠244𝑠255𝑠26

,

𝑤(𝑃3) =
1

2𝑠333𝑠345𝑠35
, 𝑤(𝑃4) =

1
4𝑠44

.

Then, we find that

𝜁
𝑄,𝑁

𝜆/𝜇 (𝑠𝑠𝑠) =
∑︁

(𝑃1 ,...,𝑃𝑟 ) ∈𝒫0 (𝑢𝑢𝑢;𝑣𝑣𝑣⊕𝐼𝑁 )
𝑤(𝑃1, . . . , 𝑃𝑟 ).
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Figure 4: (𝑃1, 𝑃2, 𝑃3, 𝑃4) satisfying the condition in Example 4.1.

As we proceed a similar discussion as in Theorem 3.6 for the skew Schur 𝑄-multiple
zeta functions, in another word, applying the Stembridge method in [24, Theorem 3.2]
to our case, we have the following result.

Theorem 4.2 (Pfaffian expression of the skew Schur 𝑄-multiple zeta functions) Let 𝜆 =

(𝜆1, . . . , 𝜆𝑟 ), 𝜇 = (𝜇1, . . . , 𝜇𝑠) be strict partitions into with 𝜆𝑖 ≥ 0 and 2|𝑟 + 𝑠. Then for
𝑠𝑠𝑠 ∈ 𝑆𝑇diag (𝜆/𝜇,C),

𝜁
𝑄

𝜆/𝜇 (𝑠𝑠𝑠) = pf
(
𝑀𝜆 𝐻𝜆,𝜇

0 0

)
,

where 𝑀𝜆 = (𝑎𝑖 𝑗 ) is an 𝑟 × 𝑟 upper triangular matrix with

𝑎𝑖 𝑗 = 𝜁
𝑄

(𝜆𝑖 ,𝜆 𝑗 ) (𝑠𝑠𝑠 (𝜆𝑖 ,𝜆 𝑗 ) ),

𝑠𝑠𝑠 (𝜆𝑖 ,𝜆 𝑗 ) =
𝑠𝑖,𝑖 · · · · · · · · · 𝑠𝑖,𝑡𝑖

𝑠 𝑗 , 𝑗 · · · 𝑠 𝑗 ,𝑡 𝑗
,

where 𝑡𝑖 = 𝑖 + 𝜆𝑖 − 1 and 𝐻𝜆,𝜇 = (𝑏𝑖 𝑗 ) is an 𝑟 × 𝑠 matrix with

𝑏𝑖 𝑗 = 𝜁
𝑄

(𝜆𝑖−𝜇𝑠− 𝑗+1) (𝑠𝑖,𝑖+ 𝑗+𝜇𝑠−1, . . . , 𝑠𝑖,𝑡𝑖 ).

Remark 4.3 In [24, Theorem 3.2], one may find −𝐻𝜆,𝜇 in the lower left part of the
matrix. Pfaffian can be computed for upper triangular or anti-symmetric matrices.
For simplicity, we focus on upper triangular matrices, as the symmetry conditions
automatically enforce the full structure of the skew-symmetric matrix.
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Example 4.4 Let 𝜆 = (3, 2, 1) and 𝜇 = (2). Then, if (𝑎 𝑗−𝑖) = (𝑠𝑖 𝑗 ) ∈ 𝑆𝑇diag (𝜆/𝜇,C)

𝜁
𝑄

𝜆/𝜇 (𝑠𝑠𝑠) =pf

©­­­­­­­­­«

0 𝜁
𝑄

(3,2)

(
𝑎0 𝑎1 𝑎2

𝑎0 𝑎1

)
𝜁
𝑄

(3,1)

(
𝑎0 𝑎1 𝑎2

𝑎0

)
𝜁
𝑄

(1)

(
𝑎2

)
0 0 𝜁

𝑄

(2,1)

(
𝑎0 𝑎1

𝑎0

)
1

0 0 0 0
0 0 0 0

ª®®®®®®®®®¬
= − 𝜁

𝑄

(3,1)

(
𝑎0 𝑎1 𝑎2

𝑎0

)
+ 𝜁

𝑄

(1)

(
𝑎2

)
𝜁
𝑄

(2,1)

(
𝑎0 𝑎1

𝑎0

)
.

5 Outside decomposition

Hamel and Goulden proved a general determinant formula which expressed a Schur
function as a determinant of skew Schur functions whose shapes are strips ([10], see also
[3]). Subsequently, Hamel proved expressions of Schur𝑄-functions as determinants or
pfaffians associated with the outside decomposition of shifted Young diagrams into strips
([8]). In their study of themultiple zeta function, Bachmann andCharlton proved general
Jacobi–Trudi formulas for Schur multiple zeta functions for each outside decomposition.
In fact, they proved the Jacobi–Trudi formula for more general functions ([1]).

We first review the basic terminology of an outside decomposition given by Hamel and
Goulden ([10]). For each box 𝛼 of skew (shifted) diagram of 𝜆/𝜇, we define the content
of 𝛼 as the quantity 𝑗 − 𝑖 where 𝛼 lies in row 𝑖 and in column 𝑗 of the skew (shifted)
diagram (conveniently referred to as (𝑖, 𝑗)). A strip in a skew-shaped diagram is a skew
(shifted) diagram with an edgewise connected set of boxes that contains no 2 × 2 block
of boxes. In other words, a strip has at most one box on each of its diagonals. We say that
the starting box of a strip is the box that is bottommost and leftmost in the strip and the
ending box of a strip is the box which is topmost and rightmost in the strip.

Definition 5.1 (Outside decomposition) Suppose (𝜃1, . . . , 𝜃𝑟 ) are disjoint strips in a
skew (shifted) diagram of 𝜆/𝜇 and each strip has a starting box on the left or bottom
perimeter of the diagram and an ending box on the right or top perimeter of the diagram.
Then if the union of these strips is the skew shape diagram of 𝜆/𝜇, we say the totally
ordered set (𝜃1, . . . , 𝜃𝑟 ) is an outside decomposition of 𝜆/𝜇.

Example 5.1 (𝜆 = (5, 4, 2, 1)) We provide two examples of an outside decomposition
(𝜃1, . . . , 𝜃5) of 𝜆.

We now define an operation 𝜃𝑖#𝜃 𝑗 of strips 𝜃𝑖 and 𝜃 𝑗 in the same skew diagram.
They are part of an outside decomposition. The following procedure is well-defined by
[9, Property 2.4].
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𝜃1

𝜃2

𝜃3

𝜃4 𝜃5

𝜃1

𝜃2

𝜃4

𝜃3 𝜃5

Case.1 Suppose 𝜃𝑖 and 𝜃 𝑗 have some boxes with the same content. Slide 𝜃𝑖 along top-
left-to-bottom-right diagonals so that the box of content 𝑘 of 𝜃𝑖 is superimposed on the
box of content 𝑘 of 𝜃 𝑗 for all 𝑘 ∈ Z such that both 𝜃𝑖 and 𝜃 𝑗 admit a box of content 𝑘 .
We define 𝜃𝑖#𝜃 𝑗 to be the diagram obtained from this superposition by taking all boxes
between the ending box of 𝜃𝑖 and the starting box of 𝜃 𝑗 inclusive.
Case.2 Suppose 𝜃𝑖 and 𝜃 𝑗 are two disconnected pieces and thus do not have any boxes of
the same content. The starting boxof onewill be to the right and/or above the ending box
of the other. To bridge the gap between 𝜃𝑖 and 𝜃 𝑗 , insert boxes from the ending box of the
one to the starting box of the other such that these inserted boxes follow the approached-
from-the-left or approached-from-below arrangement as do other boxes of the same
content in the outside decomposition. If there exists content such that the diagram does
not include a box with that content (and therefore no determination of the direction
from which the box is approached), then arbitrarily choose from which direction boxes
of this content should be approached, fix this choice for all boxes of the same content
in that particular diagram, and bridge the gap between 𝜃𝑖 and 𝜃 𝑗 accordingly. Define
𝜃𝑖#𝜃 𝑗 as in Case 1 with the following additional conventions: if the ending box of 𝜃𝑖 is
connected via an edge to the starting box of 𝜃 𝑗 , and occurs below or to the left of it, then
𝜃𝑖#𝜃 𝑗 = ∅; if the ending box of 𝜃𝑖 is not edge connected but occurs below or to the left
of the starting box of 𝜃 𝑗 , 𝜃𝑖#𝜃 𝑗 is undefined.

If 𝑠𝑠𝑠 = (𝑠𝑖 𝑗 ) satisfies 𝑠𝑖 𝑗 = 𝑠𝑘ℓ with 𝑖− 𝑗 = 𝑘−ℓ, thenwemay define operation 𝑠𝑠𝑠𝜆𝑖#𝑠𝑠𝑠𝜆 𝑗
of

𝑠𝑠𝑠𝜆𝑖 and 𝑠𝑠𝑠𝜆 𝑗
in the samemannerwith the operation 𝜃𝑖#𝜃 𝑗 .We note that because 𝑠𝑠𝑠 = (𝑠𝑖 𝑗 )

have constant entries on the diagonals, this procedure is well-defined.

Example 5.2 For the outside decomposition of the Young diagram 𝜆 in the figure on

the left in Example 5.1, for example, in 𝜃4#𝜃1, 𝜃1 = 0 moved below 𝜃4 =
2
1

. The

approached-from-below arrangement gives 𝜃4#𝜃1 =
2
1
0

. Similarly, we have

𝜃1#𝜃2 = −1 0 , 𝜃2#𝜃1 =
1
0

, 𝜃1#𝜃4 = ∅,
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𝜃1#𝜃5 is undefined, and 𝜃5#𝜃1 =
3 4
2

0 1
,

where the numbers indicate contents.

Example 5.3 Let

𝑠𝑠𝑠 =

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4

𝑎0 𝑎1 𝑎2 𝑎3

𝑎0 𝑎1

𝑎0

.

For the outside decomposition of the shifted Young diagram𝜆 in Example 5.1 (the figure
on the right in the example),

𝜃1#𝜃2 = 𝑎0 , 𝜃2#𝜃1 =
𝑎1

𝑎0
, 𝜃1#𝜃4 = 𝑎0 , 𝜃4#𝜃1 =

𝑎3 𝑎4

𝑎2

𝑎1

𝑎0

,

𝜃1#𝜃5 is undefined, and 𝜃5#𝜃1 =

𝑎3

𝑎2

𝑎1

𝑎0

.

Hamel ([8]) generalized the classical pfaffian expression of the Schur 𝑄-function
involving outside decompositions. To explain the result, we extend the strips of our out-
side decomposition to the main diagonal, let 𝜌 be a strip consisting of a single box of
content 0 so that 𝜌 = 0 , where the number indicates the content. This allows us to
define 𝜃𝑖 = 𝜃𝑖#𝜌. Let (𝜃 𝑝 , 𝜃𝑞) be formed by juxtaposing 𝜃 𝑝 and 𝜃𝑞 with their boxes of
content 0 lying on the main diagonal with that of 𝜃 𝑝 immediately above and to the left
of 𝜃𝑞 .

Example 5.4 The 𝜃 𝑝 and (𝜃 𝑝 , 𝜃𝑞) of the shifted Young diagram 𝜆 in Example 5.1 (the
figure on the right in the example) are 𝜃𝑝 = 𝜃𝑝 for 1 ≤ 𝑝 ≤ 4 and

(𝜃1, 𝜃2) =
0 1

0
, (𝜃2, 𝜃1) =

1
0

0
, (𝜃2, 𝜃4) =

3 4
1 2
0 1

0

, (𝜃4, 𝜃2) =

3 4
2
1
0 1

0

,
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𝜃5 =

3
2
1
0

, (𝜃4, 𝜃5) =

3 4
2 3
1 2
0 1

0

, (𝜃5, 𝜃4) =

3
2 3 4
1 2
0 1

0

,

where the numbers indicate contents.

Proceeding the discussion in terms of Schur𝑄-multiple zeta function following the
method in [8, Theorem 1.4] (cf. [4, Theorem 4.3]), we have the theorem below.

Theorem 5.5 Let 𝜆 and 𝜇 be strict partitions with 𝜇 ≤ 𝜆. Let 𝜃 =

(𝜃1, 𝜃2, . . . , 𝜃𝑘 , 𝜃𝑘+1, . . . , 𝜃𝑟 ) be an outside decomposition of 𝑆𝐷 (𝜆/𝜇), where 𝜃𝑝 includes
a box on the main diagonal of 𝑆𝐷 (𝜆/𝜇) for 1 ≤ 𝑝 ≤ 𝑘 and 𝜃𝑝 does not for 𝑘 + 1 ≤ 𝑝 ≤ 𝑟 .
If 𝑘 is odd, we replace 𝜃 by (∅, 𝜃1, . . . , 𝜃𝑟 ). Then, for 𝑠𝑠𝑠 ∈ 𝑆𝑇diag (𝜆/𝜇,C), the Schur
𝑄-multiple zeta functions satisfy the identity

𝜁
𝑄

𝜆/𝜇 (𝑠𝑠𝑠) = pf

(
𝜁
𝑄

(𝜃 𝑝 , 𝜃𝑞)
(𝑠𝑠𝑠 (𝜃 𝑝 , 𝜃𝑞) ) 𝜁

𝑄

𝜃𝑖#𝜃𝑟+𝑘+1− 𝑗
(𝑠𝑠𝑠𝜃𝑖#𝜃𝑟+𝑘+1− 𝑗

)
−𝑡 (𝜁𝑄

𝜃𝑖#𝜃𝑟+𝑘+1− 𝑗
(𝑠𝑠𝑠𝜃𝑖#𝜃𝑟+𝑘+1− 𝑗

)) 0

)
with 1 ≤ 𝑝, 𝑞 ≤ 𝑘 and 𝑘 + 1 ≤ 𝑗 ≤ 𝑟 . Here, if (𝜃 𝑝 , 𝜃𝑞) is not a shifted tableau, then we
replace

𝜁
𝑄

(𝜃 𝑝 , 𝜃𝑞)
(𝑠𝑠𝑠 (𝜃 𝑝 , 𝜃𝑞) ) = −𝜁𝑄

(𝜃𝑞 , 𝜃 𝑝)
(𝑠𝑠𝑠 (𝜃𝑞 , 𝜃 𝑝) ),

and further we put 𝜁𝑄
(𝜃 𝑝 , 𝜃 𝑝)

(𝑠𝑠𝑠 (𝜃 𝑝 , 𝜃𝑞) ) = 0.

6 Sum formula

Multiple zeta values of the Euler-Zagier type are well known to satisfy a large number
of linear relations among thesemultiple zeta values, such as the sum formula and duality
formula. The following is the sum formula for multiple zeta values of the Euler-Zagier
type.

Theorem 6.1 (Granville [7], Zagier) For positive integers 𝑘 and 𝑟 with 𝑘 > 𝑟 , we have∑︁
𝑘1+···+𝑘𝑟=𝑘

𝑘1 ,...,𝑘𝑟−1≥1,𝑘𝑟 ≥2

𝜁 (𝑘1, . . . , 𝑘𝑟 ) = 𝜁 (𝑘),

∑︁
𝑘1+···+𝑘𝑟=𝑘

𝑘1 ,...,𝑘𝑟−1≥1,𝑘𝑟 ≥2

𝜁★(𝑘1, . . . , 𝑘𝑟 ) =
(
𝑘 − 1
𝑟 − 1

)
𝜁 (𝑘).

As in the classical case, we prove the sum formula for a special case of Schur 𝑃- and
𝑄-multiple zeta values.
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Theorem 6.2 For positive integers 𝑘 and 𝑟 with 𝑘 > 𝑟 , we have∑︁
𝑘1+···+𝑘𝑟=𝑘

𝑘1 ,...,𝑘𝑟−1≥1,𝑘𝑟 ≥2

𝜁
𝑄

(𝑟)

(
𝑘1 · · · 𝑘𝑟

)
=

𝑟∑︁
𝑖=1

2𝑖
(
𝑘 − 𝑖 − 1
𝑟 − 𝑖

)
𝜁 (𝑘)

and ∑︁
𝑘1+···+𝑘𝑟=𝑘

𝑘1 ,...,𝑘𝑟−1≥1,𝑘𝑟 ≥2

𝜁𝑃(𝑟)

(
𝑘1 · · · 𝑘𝑟

)
=

𝑟∑︁
𝑖=1

2𝑖−1
(
𝑘 − 𝑖 − 1
𝑟 − 𝑖

)
𝜁 (𝑘).

Proof For 𝑘𝑘𝑘 = 𝑘1 · · · 𝑘𝑟 , let |𝑘𝑘𝑘 | = 𝑘1 + · · · + 𝑘𝑟 and dep(𝑘𝑘𝑘) = 𝑟 . By (2.3), it suffices
to show the first identity. Example 2.3 leads to∑︁

𝑘1+···+𝑘𝑟=𝑘
𝑘1 ,...,𝑘𝑟−1≥1,𝑘𝑟 ≥2

𝜁
𝑄

(𝑟) (𝑘𝑘𝑘) =
∑︁

𝑘1+···+𝑘𝑟=𝑘
𝑘1 ,...,𝑘𝑟−1≥1,𝑘𝑟 ≥2

∑︁
ℓℓℓ⪯𝑠𝑘𝑘𝑘

2dep(ℓℓℓ) 𝜁 (ℓℓℓ)

=

𝑟∑︁
𝑖=1

2𝑖
∑︁

𝑘1+···+𝑘𝑟=𝑘
𝑘1 ,...,𝑘𝑟−1≥1,𝑘𝑟 ≥2

∑︁
ℓℓℓ⪯𝑠𝑘𝑘𝑘

dep(ℓℓℓ)=𝑖

𝜁 (ℓℓℓ).

For fixed ℓℓℓ with |ℓℓℓ | = 𝑘 and dep(ℓℓℓ) = 𝑖, we count the number of 𝑘𝑘𝑘 with ℓℓℓ ⪯𝑠 𝑘𝑘𝑘 with
𝑘𝑘𝑘 ∈ 𝑆𝑇 ((𝑟),Z). Because 𝑘𝑘𝑘 has to be admissible, it suffices to choose 𝑟 − 𝑖 new division
points of ℓℓℓ out of (𝑘 − 1) − (𝑖 − 1) − 1 possibilities. Therefore,

#{𝑘𝑘𝑘 ∈ 𝑆𝑇 ((𝑟),C) | ℓℓℓ ⪯𝑠 𝑘𝑘𝑘} =
(
𝑘 − 𝑖 − 1
𝑟 − 𝑖

)
and we have ∑︁

𝑘1+···+𝑘𝑟=𝑘
𝑘1 ,...,𝑘𝑟−1≥1,𝑘𝑟 ≥2

𝜁
𝑄

(𝑟) (𝑘𝑘𝑘) =
𝑟∑︁
𝑖=1

2𝑖
(
𝑘 − 𝑖 − 1
𝑟 − 𝑖

) ∑︁
|ℓℓℓ |=𝑘

dep(ℓℓℓ)=𝑖

𝜁 (ℓℓℓ).

The sum formula for multiple zeta values of Euler-Zagier type leads to∑︁
𝑘1+···+𝑘𝑟=𝑘

𝑘1 ,...,𝑘𝑟−1≥1,𝑘𝑟 ≥2

𝜁
𝑄

(𝑟) (𝑘𝑘𝑘) =
𝑟∑︁
𝑖=1

2𝑖
(
𝑘 − 𝑖 − 1
𝑟 − 𝑖

)
𝜁 (𝑘).

This proves the first identity. Dividing both sides by 2, we can confirm that the second
identity holds. This completes the proof of the theorem. ■

Example 6.3 For (𝑘, 𝑟) = (5, 3), we have∑︁
𝑘1+𝑘2+𝑘3=5
𝑘1 ,𝑘2≥1,𝑘3≥2

𝜁
𝑄

(3)

(
𝑘1 𝑘2 𝑘3

)
= 11𝜁𝑄(1)

(
5

)
= 22𝜁 (5).
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We have the following corollaries of Theorem 6.2. The first is the sum formula in
Schur 𝑃- or𝑄-multiple zeta values.

Corollary 6.4 For positive integers 𝑘 and 𝑟 with 𝑘 > 𝑟 , we have∑︁
𝑘1+···+𝑘𝑟=𝑘

𝑘1 ,...,𝑘𝑟−1≥1,𝑘𝑟 ≥2

𝜁
𝑄

(𝑟)

(
𝑘1 · · · 𝑘𝑟

)
=

𝑟∑︁
𝑖=1

2𝑖−1
(
𝑘 − 𝑖 − 1
𝑟 − 𝑖

)
𝜁
𝑄

(1)

(
𝑘

)
and ∑︁

𝑘1+···+𝑘𝑟=𝑘
𝑘1 ,...,𝑘𝑟−1≥1,𝑘𝑟 ≥2

𝜁𝑃(𝑟)

(
𝑘1 · · · 𝑘𝑟

)
=

𝑟∑︁
𝑖=1

2𝑖−1
(
𝑘 − 𝑖 − 1
𝑟 − 𝑖

)
𝜁𝑃(1)

(
𝑘

)
.

Remark 6.5 In [26], Yamamoto introduced the interpolation 𝜁 𝑡 (𝑘𝑘𝑘) ofmultiple zeta and
zeta star functions. Theorem 1.1 in [26] with 𝑡 = 1

2 is the same shape with our Theorem
6.2. One can verify that our 𝜁𝑄(𝑟) (𝑘𝑘𝑘) and 𝜁 1

2
(𝑘𝑘𝑘) in [26] are equal (up to a multiplicative

constant).

Remark 6.6 Recently, In [2], Bachmann–Kadota–Suzuki–Yamamoto–Yamasaki
obtained a different type of sum formulas for the Schur multiple zeta values for other
types of partition.

The next corollary is the duality formula for a certain shape and weight. Before we
explain the duality property of the Schur𝑄-multiple zeta function, we review the orig-
inal duality formula for multiple zeta functions. We denote a string 1, . . . , 1︸   ︷︷   ︸

𝑟

of 1’s by

{1}𝑟 . Then for an admissible index

𝒌 = ({1}𝑎1−1, 𝑏1 + 1, {1}𝑎2−1, 𝑏2 + 1, . . . , {1}𝑎𝑚−1, 𝑏𝑚 + 1)

with positive integers 𝑎1, 𝑏1, 𝑎2, 𝑏2, · · · , 𝑎𝑚, 𝑏𝑚 ∈ Z≥1, the following index is referred
to as the dual index of 𝒌:

𝒌† = ({1}𝑏𝑚−1, 𝑎𝑚 + 1, {1}𝑏𝑚−1−1, 𝑎𝑚1 + 1, . . . , {1}𝑏1−1, 𝑎1 + 1).

The duality formula is the following.

Theorem 6.7 (Duality formula [27]) For any admissible index 𝒌 = (𝑘1, . . . , 𝑘𝑟 ) and its
dual index 𝒌† = (𝑘†1 ., . . . , 𝑘

†
𝑠), we have

𝜁 (𝑘1, . . . , 𝑘𝑟 ) = 𝜁 (𝑘†1 , . . . , 𝑘
†
𝑠).

As a special case of Theorem 6.7, it holds that

𝜁 ({1}𝑘−2, 2) = 𝜁 (𝑘).

Taking𝜆 = (𝑘−1) and 𝑘𝑘𝑘 = 1 · · · 1 2 ∈ 𝑆𝑇 (𝜆,C), we have the following formula
similar to the above identity.
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Corollary 6.8 For positive integers 𝑘 , we have

𝜁
𝑄

(𝑘−1)

(
1 · · · 1 2

)
= (2𝑘−1 − 1)𝜁𝑄(1)

(
𝑘

)
= (2𝑘 − 2)𝜁 (𝑘)

and

𝜁𝑃(𝑘−1)

(
1 · · · 1 2

)
= (2𝑘−1 − 1)𝜁𝑃(1)

(
𝑘

)
= (2𝑘−1 − 1)𝜁 (𝑘).

Remark 6.9 We can say that there may hold the duality-like formula for 𝜁𝑃 and 𝜁𝑄 in
general.

7 Symplectic Schur Multiple zeta functions

First, we review the basic terminology to define symplectic or orthogonal Schurmultiple
zeta functions. We identify a partition 𝜆 with the Young diagram

𝐷 (𝜆) = {(𝑖, 𝑗) ∈ Z2 | 1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝜆𝑖}

depicted as a collection of square boxeswith the 𝑖-th rowhaving𝜆𝑖 boxes. For a partition
𝜆, a Young tableau (𝑡𝑖 𝑗 ) of shape 𝜆 over a set 𝑋 is a filling of𝐷 (𝜆) with 𝑡𝑖 𝑗 ∈ 𝑋 into each
box (𝑖, 𝑗) of𝐷 (𝜆). We denote by𝑇 (𝜆, 𝑋) the set of all Young tableaux of shape𝜆 over 𝑋 .

Let [𝑁] be the set {1, 1, 2, 2, . . . , 𝑁, 𝑁} with the total ordering 1 < 1 < 2 < 2 <

· · · < 𝑁 < 𝑁 . Then, a symplectic tableau 𝑡𝑡𝑡 = (𝑡𝑖 𝑗 ) ∈ 𝑇 (𝜆, [𝑁]) is obtained by numbering
all the boxes of 𝐷 (𝜆) with letters from [𝑁] such that

SP1 the entries of 𝑡𝑡𝑡 are weakly increasing along each row of 𝑡𝑡𝑡,
SP2 the entries of 𝑡𝑡𝑡 are strictly increasing down each column of 𝑡𝑡𝑡,
SP3 for non-negative integer 𝑖, the boxes of content −𝑖 contain entries that are greater
than or equal to 𝑖 + 1.

We refer to the third condition SP3 as the symplectic condition. We denote by 𝑆𝑃𝑁 (𝜆)
the set of symplectic tableaux of shape 𝜆.

Definition 7.1 (symplectic Schur multiple zeta functions) For a given set 𝑠𝑠𝑠 = (𝑠𝑖 𝑗 ) ∈
𝑇 (𝜆,C) of variables, the symplectic Schur multiple zeta functions of shape 𝜆 are defined as

𝜁
sp,𝑁
𝜆

(𝑠𝑠𝑠) =
∑︁

𝑀∈𝑆𝑃𝑁 (𝜆)

1
𝑀𝑠𝑠𝑠

, (7.1)

where 𝑀𝑠𝑠𝑠 =
∏

(𝑖, 𝑗) ∈𝐷 (𝜆)
|𝑚𝑖 𝑗 |𝑠𝑖 𝑗 for 𝑀 = (𝑚𝑖 𝑗 ) ∈ 𝑆𝑃𝑁 (𝜆) and |𝑖 | = 𝑖, |𝑖 | = 𝑖−1.

Hamel constructed a directed graph 𝐷 corresponding to the symplectic Schur func-
tions [9] and applied the Stembridge Theorem ([24]) to obtain the following determinant
expression of the symplectic Schur functions.
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Theorem 7.1 ([9, Theorem 3.1]) Let𝜆/𝜇 be a partition of the skew type. Then, for any outside
decomposition (𝜃1, . . . , 𝜃𝑟 ) of 𝜆/𝜇,

sp𝜆/𝜇 = det(sp𝜃𝑖#𝜃 𝑗
)1≤𝑖, 𝑗≤𝑟 .

Following the Hamel approach, we construct a directed graph 𝐷 corresponding to
the symplectic Schur multiple zeta functions. For a fixed positive integer 𝑁 , we begin
with the 𝑦-axis labeled by 1, 1, 2, 2, . . . , 𝑁, 𝑁 and direct an edge 𝑢 → 𝑣 whenever
𝑣 − 𝑢 = (0, 1), (0,−1), (1, 0), or (1,−1). We add four restrictions: A down-vertical
step must not precede an up-vertical step, an up-vertical step must not precede a down-
vertical step, a down-vertical stepmust not precede a horizontal step, and an up-vertical
step must not precede a diagonal step. Because of the symplectic condition, we add a
left boundary in the form of a “backwards lattice path” from (0, 1) to (0, 1) to (0, 2) to
(−1, 2) to (−1, 2) to (−1, 3) to (−2, 3) to (−2, 3) to (−2, 4) to (−3, 4) . . .. We indicate
this left boundary by the dotted line in Figure 5.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • • • • • •

• • • • • • •

• • • • • • • •4

3

3

2

2

1

1
0

Figure 5: Left boundary given by the symplectic condition.

Hereinafter, we may omit this left boundary for simplicity.
For a fixed outside decomposition (𝜃1, . . . , 𝜃𝑟 ) of 𝜆/𝜇, we construct a non-

intersecting 𝑟-tuple of lattice paths that corresponds to a symplectic tableau of shape
𝜆/𝜇 with the outside decomposition (𝜃1, . . . , 𝜃𝑟 ), such that the 𝑖-th path corresponds
to the 𝑖-th strip and begins at 𝐵𝑖 and ends at 𝐸𝑖 as described next. Fix points 𝐵𝑖 =

(𝑡 − 𝑠,−(𝑡 − 𝑠) + 1) if the 𝑖-th strip has the starting box (𝑠, 𝑡) on the left perimeter of
the diagram and if 𝑡 − 𝑠 ≤ 0 (i.e., 𝐵𝑖 is on the left boundary), or 𝐵𝑖 = (𝑡 − 𝑠, 1) if the 𝑖-th
strip has the starting box (𝑠, 𝑡) on the left perimeter of the diagram and if 𝑡 − 𝑠 > 0, or
𝐵𝑖 = (𝑡− 𝑠,∞) if the 𝑖-th strip has the starting box (𝑠, 𝑡) on the bottom perimeter of the
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diagram (𝐵𝑖 = (𝑡 − 𝑠,∞) if both). Fix points 𝐸𝑖 = (𝑣 − 𝑢 + 1, 1) if the 𝑖-th strip has the
ending box (𝑢, 𝑣) on the top perimeter of the diagram, or 𝐸𝑖 = (𝑣 − 𝑢 + 1,∞) if the 𝑖-th
strip has the ending box (𝑢, 𝑣) on the right perimeter of the diagram (𝐸𝑖 = (𝑣−𝑢+1,∞)
if both).

For the 𝑗-th strip construct a path starting at 𝐵 𝑗 (termed the starting point) and
ending at 𝐸 𝑗 (termed the ending point) as follows: if a box containing 𝑖 (resp. 𝑖) and at
coordinates (𝑎, 𝑏) in the diagram is approached from the left in the strip, add a horizon-
tal step from (𝑏−𝑎, 𝑖) to (𝑏−𝑎+1, 𝑖) (resp. (𝑏−𝑎, 𝑖) to (𝑏−𝑎+1, 𝑖)); if a box containing
𝑖 (resp. 𝑖) and at coordinates (𝑎, 𝑏) in the diagram is approached from below in the strip,
add a diagonal step from (𝑏−𝑎, 𝑖) to (𝑏−𝑎+1, 𝑖) (resp. (𝑏−𝑎, 𝑖+1) to (𝑏−𝑎+1, 𝑖)). We
note that the physical locations of the termination points of the steps are independent
of the outside decomposition and depend only on the contents of the boxes. In Figure
6, the ending points of the steps are first shown alone and then the complete paths for
two different outside decompositions are shown. We note that no two paths can have
the same starting and/or ending points, because that would imply two boxes of the same
content on the same section of the perimeter. Connect these non-vertical steps with
vertical steps. This routine is intended to verify that a unique path exists. In the above
setup, Hamel showed that the symplectic tableaux of shape 𝜆/𝜇 can be identified with
the non-intersecting paths in𝒫0 ((𝐵𝑖); (𝐸𝑖)), and (𝐵𝑖) is 𝐷-compatible with (𝐸𝑖).

We next define the weight of each step. Let 𝑣𝑖 (𝑃) = (𝑣𝑖, 𝑗 (𝑃)) 𝑗≥0 be the sequence of
vertices representing the path 𝑃 ∈ 𝒫0 (𝐵𝑖 ; 𝐸𝑖) and let ℓ𝑖𝑥𝑦 be the edge 𝑣𝑖, 𝑗 (= (𝑥, 𝑦)) →
𝑣𝑖, 𝑗+1. If 𝑣𝑖, 𝑗 (𝑃)−𝑣𝑖, 𝑗+1 (𝑃) = (1, 0) or (1,−1), we assign theweights𝑤(ℓ𝑖𝑥𝑦) = |𝑦 |−𝑠𝑝𝑞
with 𝑣𝑖 𝑗 = (𝑥, 𝑦) and (𝑝, 𝑞) being the 𝑗-th component of 𝜃𝑖 . If 𝑣𝑖, 𝑗 (𝑃) − 𝑣𝑖, 𝑗+1 (𝑃) =
(0, 1) or (0,−1), we assign the weights 𝑤(ℓ𝑖𝑥𝑦) = 1. Then, we define

𝑤(𝑃𝑖) =
∏
ℓ𝑖𝑥𝑦

𝑤(ℓ𝑖𝑥𝑦),

and for an 𝑟-tuple of non-intersecting paths of (𝑃1, . . . , 𝑃𝑟 ) with 𝑃𝑖 ∈ 𝒫(𝐵𝑖 ; 𝐸𝑖),

𝑤(𝑃1, . . . , 𝑃𝑟 ) =
𝑟∏
𝑖=1

𝑤(𝑃𝑖).

Then, owing to the Hamel composition in [9], we find that

𝜁
sp,𝑁
𝜆

(𝑠𝑠𝑠) =
∑︁

𝑃𝑖 ∈𝒫 (𝐵𝑖 ;𝐸𝑖)
𝑤(𝑃1, . . . , 𝑃𝑟 ).

Example 7.2 For 𝜆 = (5, 3, 3, 1), let a 4-tuple of paths (𝑃1, 𝑃2, 𝑃3, 𝑃4) ∈ 𝒫(𝐵𝑖 ; 𝐸𝑖)
be given as in Figure 6. For (𝑠𝑖 𝑗 ) ∈ 𝑇 (𝜆,C), the weights 𝑤(𝑃𝑖) are

𝑤(𝑃1) = 1𝑠11 , 𝑤(𝑃2) =
2𝑠21

3𝑠222𝑠12
,

𝑤(𝑃3) =
3𝑠323𝑠33

4𝑠413𝑠313𝑠232𝑠13
, 𝑤(𝑃4) =

3𝑠14
4𝑠15

,

2025/03/13 01:51

https://doi.org/10.4153/S0008414X25000203 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25000203


26 M. Nakasuji and W. Takeda

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • • • • • •

• • • • • • •

• • • • • • •4

3

3

2

2

1

1
40−1−2−3

𝐵1

𝐵2

𝐵3 𝐵4

𝐸1 𝐸2 𝐸3

𝐸4

Figure 6: (𝑃1, 𝑃2, 𝑃3, 𝑃4) satisfying the condition in Example 7.2.

and the corresponding symplectic tableau is

1 2 2 3 4
2 3 3
3 3 3
4

.

As the proof in Theorem 3.6, proceeding the discussion in terms of symplectic
Schur multiple zeta function following the Hamel method in Theorem 7.1, we have the
theorem below.

Theorem 7.3 Let 𝜆 = (𝜆1, . . . , 𝜆𝑟 ), 𝜇 = (𝜇1, . . . , 𝜇𝑠) be partitions. Then, for 𝑠𝑠𝑠 ∈
𝑇diag (𝜆/𝜇,C) and any outside decomposition (𝜃1, . . . , 𝜃𝑟 ) of 𝜆/𝜇,

𝜁
sp,𝑁
𝜆/𝜇 (𝑠𝑠𝑠) = det(𝜁 sp,𝑁

𝜃𝑖#𝜃 𝑗
(𝑠𝑠𝑠 (𝜆𝑖 ,𝜆 𝑗 ) ))1≤𝑖, 𝑗≤𝑟 ,

where 𝑠𝑠𝑠 (𝜆𝑖 ,𝜆 𝑗 ) = 𝑠𝑠𝑠𝜆𝑖#𝑠𝑠𝑠𝜆 𝑗
.

Example 7.4 Let 𝜆 = (3, 2) and its outside decomposition (𝜃1, 𝜃2) be depicted as
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𝜃1 𝜃2 .

Then, if (𝑎 𝑗−𝑖) = (𝑠𝑖 𝑗 ) ∈ 𝑇diag (𝜆,C),

𝜁
sp,𝑁
𝜆

(𝑠𝑠𝑠) =det

©­­­­­­­­«

𝜁
sp,𝑁
𝜃1

(
𝑎0

𝑎−1

)
𝜁
sp,𝑁
𝜃1#𝜃2

(
𝑎0

)
𝜁
sp,𝑁
𝜃2#𝜃1

©­­­«
𝑎1 𝑎2

𝑎0

𝑎−1

ª®®®¬ 𝜁
sp,𝑁
𝜃2

(
𝑎1 𝑎2

𝑎0

)
ª®®®®®®®®¬

=𝜁
sp,𝑁
𝜃1

(
𝑎0

𝑎−1

)
𝜁
sp,𝑁
𝜃2

(
𝑎1 𝑎2

𝑎0

)
− 𝜁

sp,𝑁
𝜃1#𝜃2

(
𝑎0

)
𝜁
sp,𝑁
𝜃2#𝜃1

©­­­«
𝑎1 𝑎2

𝑎0

𝑎−1

ª®®®¬ .
Remark 7.5 The function in Example 7.4 satisfies

𝜁
sp,𝑁
𝜃2#𝜃1

©­­­«
𝑎1 𝑎2

𝑎0

𝑎−1

ª®®®¬ ≠ 𝜁
sp,𝑁
(2,1,1)

©­­­«
𝑎1 𝑎2

𝑎0

𝑎−1

ª®®®¬
in general. We note that for 𝑖 = −1, 0, 1, 2 the contents of each 𝑎𝑖 are not the same.

8 Orthogonal Schur multiple zeta functions

Hamel also constructed a directed graph𝐷 corresponding to the orthogonal Schur func-
tions [9] and derived the determinant expression of the orthogonal Schur functions. As
in Section 7, we construct a directed graph 𝐷 corresponding to the orthogonal Schur
multiple zeta functions. As in Section 7, we prove the results corresponding to the
following Hamel result.

We define orthogonal Schur multiple zeta functions. Let [𝑁]∞ be the set
{1, 1, 2, 2, . . . , 𝑁, 𝑁,∞} with the total ordering 1 < 1 < 2 < 2 < · · · < 𝑁 < 𝑁 < ∞.
For a fixed partition 𝜆, a so-tableau 𝑡𝑡𝑡 = (𝑡𝑖 𝑗 ) ∈ 𝑇 (𝜆, [𝑁]∞) is obtained by numbering all
the boxes of 𝐷 (𝜆) with letters from [𝑁]∞ such that

SO1 the entries of 𝑡𝑡𝑡 are weakly increasing along each row of 𝑡𝑡𝑡,
SO2 the entries of 𝑡𝑡𝑡 are strictly increasing down each column of 𝑡𝑡𝑡,
SO3 for non-negative integer 𝑖, the boxes of content−𝑖 contain entrieswhich are greater
than or equal to 𝑖 + 1,
SO4 no two symbols∞ appear in the same row.
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One may find that the conditions SO1-SO3 are the same as SP1-SP3. We denote by
𝑆𝑂𝑁 (𝜆) the set of so-tableaux of shape 𝜆.

Definition 8.1 (orthogonal Schur multiple zeta functions) For a given set 𝑠𝑠𝑠 = (𝑠𝑖 𝑗 ) ∈
𝑇 (𝜆,C) of variables, the orthogonal Schur multiple zeta functions of shape 𝜆 are defined as

𝜁
so,𝑁
𝜆

(𝑠𝑠𝑠) =
∑︁

𝑀∈𝑆𝑂𝑁 (𝜆)

1
𝑀𝑠𝑠𝑠

, (8.1)

where we set |∞| = 1.

We note that the ∞ contributes 1 to the weight of the tableau. Therefore, they are
“dummy elements” in a sense.

Theorem 8.1 ([9, Theorem 3.2]) Let𝜆/𝜇 be a partition of the skew type. Then, for any outside
decomposition (𝜃1, . . . , 𝜃𝑟 ) of 𝜆/𝜇,

so𝜆/𝜇 = det(so𝜃𝑖#𝜃 𝑗
)1≤𝑖, 𝑗≤𝑟 .

As in the symplectic Schur multiple zeta functions, we consider the 𝑦-axis with
1, 1, 2, 2, . . . , 𝑁, 𝑁,∞.Wedefine lattice pathswith five types of permissible steps. These
steps are the four steps in Section 7, and up-diagonal steps from height 𝑁 to height∞
that increase the 𝑥- and 𝑦-coordinates by 1, respectively. We distinguish between hori-
zontal steps at integer levels and horizontal steps at∞. The steps are subject to the same
restrictions as in Section 7 plus the following additional restrictions: an up-vertical step
must not precede a horizontal step at∞, and a down-vertical step must not precede an
up-diagonal step. We also require that all steps between lines 𝑥 = 𝑐 and 𝑥 = 𝑐 + 1 for all
𝑐 are either

(1) horizontal at∞ or down-diagonal, or
(2) horizontal at integer levels or up-diagonal.

Determining whether the steps are of type (1) or (2) depends on the outside decomposi-
tion: if boxes of content 𝑐 are approached from the left, then the steps between 𝑥 = 𝑐 and
𝑥 = 𝑐 + 1 must be of type (2); if the boxes of content 𝑐 are approached from below, then
the steps between 𝑥 = 𝑐 and 𝑥 = 𝑐+1must be of type (1).We fix beginning points 𝐵𝑖 and
ending points 𝐸𝑖 as in Section 7 with the adjustment that the 𝑦-coordinate of the high-
est points is∞+ 1 instead of∞. Given 𝑠𝑠𝑠 ∈ 𝑆𝑂 (𝜆/𝜇,C) with an outside decomposition,
we can construct an 𝑟-tuple of non-intersecting lattice paths. For each strip construct a
path as follows: if a box contains 𝑖 or 𝑖, place a step as in the proof of Section 7. If a box
contains∞, is at coordinates (𝑎, 𝑏) in the diagram, and is approached from the left in
the strip, add an up-diagonal step from (𝑎 − 𝑏, 𝑁) to (𝑎 − 𝑏 + 1,∞); if it is approached
from below, add a horizontal step from (𝑎 − 𝑏,∞) to (𝑎 − 𝑏 + 1,∞). We connect these
non-vertical paths with vertical paths. The weights of paths are defined in the same way
as in Section 7. Note that we put 𝑤(ℓ𝑖𝑥𝑦) = 1 if 𝑦 = ∞.
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Then, owing to the Hamel composition [9], we find that

𝜁
so,𝑁
𝜆

(𝑠𝑠𝑠) =
∑︁

𝑃𝑖 ∈𝒫 (𝐵𝑖 ;𝐸𝑖)
𝑤(𝑃1, . . . , 𝑃𝑟 ).

Example 8.2 For 𝜆 = (5, 3, 3, 1), let (𝑠𝑖 𝑗 ) ∈ 𝑇 (𝜆,C). The weights 𝑤(𝑃𝑖) are

𝑤(𝑃1) = 1𝑠11 , 𝑤(𝑃2) =
2𝑠21

3𝑠222𝑠12
,

𝑤(𝑃3) =
3𝑠323𝑠33

3𝑠313𝑠232𝑠13
, 𝑤(𝑃4) = 3𝑠243𝑠14 ,

and the corresponding orthogonal tableau is

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • • • • • •

• • • • • • •

• • • • • • •∞

3

3

2

2

1

1
0 40−1−2−3

𝐵1

𝐵2

𝐵3 𝐵4

𝐸1 𝐸2 𝐸3

𝐸4

Figure 7: (𝑃1, 𝑃2, 𝑃3, 𝑃4) satisfying the condition in Example 8.2.

1 2 2 2 ∞
2 3 3
3 3 3
∞

.

As similar in the previous sections, proceeding the discussion in terms of orthogonal
Schur multiple zeta function following the Hamel method in Theorem 8.1, we have the
theorem below.
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Theorem 8.3 Let 𝜆 = (𝜆1, . . . , 𝜆𝑟 ), 𝜇 = (𝜇1, . . . , 𝜇𝑠) be partitions. Then, for 𝑠𝑠𝑠 ∈
𝑇diag (𝜆/𝜇,C) and any outside decomposition (𝜃1, . . . , 𝜃𝑟 ) of 𝜆/𝜇,

𝜁
so,𝑁
𝜆/𝜇 (𝑠𝑠𝑠) = det(𝜁 so,𝑁

𝜃𝑖#𝜃 𝑗
(𝑠𝑠𝑠 (𝜆𝑖 ,𝜆 𝑗 ) ))1≤𝑖, 𝑗≤𝑟 ,

where 𝑠𝑠𝑠 (𝜆𝑖 ,𝜆 𝑗 ) = 𝑠𝑠𝑠𝜆𝑖#𝑠𝑠𝑠𝜆 𝑗
.

Example 8.4 Let 𝜆 = (3, 2) and its outside decomposition (𝜃1, 𝜃2) be depicted as

𝜃1 𝜃2 .

Then, if (𝑎 𝑗−𝑖) = (𝑠𝑖 𝑗 ) ∈ 𝑇diag (𝜆,C), we obtain

𝜁
so,𝑁
𝜆

(𝑠𝑠𝑠) =det

©­­­­­­­­«

𝜁
so,𝑁
𝜃1

(
𝑎0

𝑎1

)
𝜁
so,𝑁
𝜃1#𝜃2

(
𝑎0

)
𝜁
so,𝑁
𝜃2#𝜃1

©­­­«
𝑎1 𝑎2

𝑎0

𝑎−1

ª®®®¬ 𝜁
so,𝑁
𝜃2

(
𝑎1 𝑎2

𝑎0

)
ª®®®®®®®®¬

=𝜁
so,𝑁
𝜃1

(
𝑎0

𝑎1

)
𝜁
so,𝑁
𝜃2

(
𝑎1 𝑎2

𝑎0

)
− 𝜁

so,𝑁
𝜃1#𝜃2

(
𝑎0

)
𝜁
so,𝑁
𝜃2#𝜃1

©­­­«
𝑎1 𝑎2

𝑎0

𝑎−1

ª®®®¬ .
9 Decomposition of Symplectic and Orthogonal multiple zeta

functions

In this section, we express a symplectic and an orthogonal multiple zeta function as a
linear combination of the truncated multiple zeta functions. Analogous to the method
of the proof of (2.5) and (2.6), by the Inclusion-Exclusion principle, we may find the
following decompositions.

Theorem 9.1 For any positive integer 𝑁 and 𝑠𝑠𝑠 ∈ 𝑇 (𝜆,C), the function 𝜁
□,𝑁
𝜆

(𝑠𝑠𝑠) for □ ∈
{sp, so} can be decomposed as a sum of truncated multiple zeta functions: for a positive integer
𝑁 ,

𝜁𝑁 (𝑠1, . . . , 𝑠𝑟 ) =
∑︁

1≤𝑛1<· · ·<𝑛𝑟 ≤𝑁

1
𝑛
𝑠1
1 · · · 𝑛𝑠𝑟𝑟

.
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Example 9.2 For any positive integer 𝑁 and 𝑎, 𝑏 ∈ C, we have

𝜁
sp,𝑁
(1)

(
𝑎

)
= 𝜁𝑁 (𝑎) + 𝜁𝑁 (−𝑎),

𝜁
sp,𝑁
(1,1)

(
𝑎

𝑏

)
= 𝜁𝑁 (𝑎, 𝑏) + 𝜁𝑁 (−𝑎,−𝑏) + 𝜁𝑁 (−𝑎, 𝑏) + 𝜁𝑁 (𝑎,−𝑏) + 𝜁𝑁 (𝑎 − 𝑏) − 1.

Example 9.3 For any positive integer 𝑁 and 𝑎, 𝑏 ∈ C, we have

𝜁
so,𝑁
(1)

(
𝑎

)
=𝜁𝑁 (𝑎) + 𝜁𝑁 (−𝑎) + 1,

𝜁
so,𝑁
(1,1)

(
𝑎

𝑏

)
=𝜁𝑁 (𝑎, 𝑏) + 𝜁𝑁 (−𝑎,−𝑏) + 𝜁𝑁 (−𝑎, 𝑏) + 𝜁𝑁 (𝑎,−𝑏) + 𝜁𝑁 (𝑎 − 𝑏) − 1

+ 𝜁𝑁 (𝑎) + 𝜁𝑁 (−𝑎).

Note that in the case of 𝜁 sp,𝑁( {1}𝑟 ) , we have

𝜁
sp,𝑁
( {1}𝑟 )

©­­­«
𝑠1
...

𝑠𝑟

ª®®®¬ =
∑︁
sign

𝜁𝑁 (±𝑠1, . . . ,±𝑠𝑟 )

+
𝑟−1∑︁
𝑖=1

∑︁
sign

𝜁𝑁 (±𝑠1, . . . ,±𝑠𝑖−1, 𝑠𝑖 − 𝑠𝑖+1,±𝑠𝑖+2, . . . ,±𝑠𝑟 )

−
𝑟−1∑︁
𝑖=1

∑︁
sign

(
𝑖−1∏
𝑗=1

𝑗±𝑠 𝑗

)
𝑖𝑠𝑖+1

𝑖𝑠𝑖
𝜁𝑁 ({0}𝑖 ,±𝑠𝑖+2, . . . ,±𝑠𝑟 )

+ (· · · ),

where
∑︁
sign

means the summation over all cases of plus-minus signs and the last term

(· · · ) is caused from 𝜁𝑁 ’s whose elements contain at least two different (𝑠𝑖 − 𝑠𝑖+1)’s like
𝜁𝑁 (𝑠1 − 𝑠2,−𝑠3, 𝑠4 − 𝑠5, 𝑠6 − 𝑠7, 𝑠8).

If we use the decompositions by rows as an outside decomposition of 𝜆/𝜇, then for
any 𝑠𝑠𝑠 ∈ 𝑇diag (𝜆/𝜇,C), 𝜁 sp,𝑁

𝜆/𝜇 (𝑠𝑠𝑠) and 𝜁
so,𝑁
𝜆/𝜇 (𝑠𝑠𝑠) appear to be decomposed into a sum

of 𝜁 sp,𝑁( {1}𝑟 ) and 𝜁
so,𝑁
( {1}𝑟 ) , respectively. As in Remark 7.5, we note that the outside decom-

position and operation 𝜃𝑖#𝜃 𝑗 retains the content and two different functions may be
associated with the same shape 𝜆 = ({1}𝑟 ) and the same variable 𝑠𝑠𝑠 = (𝑠𝑖 𝑗 ).

Similarly, we attain the following results, in whichwe decompose the symplectic zeta
function into the sum of truncated multiple zeta star functions: for a positive integer 𝑁 ,

𝜁★𝑁 (𝑠1, . . . , 𝑠𝑟 ) =
∑︁

1≤𝑛1<· · ·<𝑛𝑟

1
𝑛
𝑠1
1 · · · 𝑛𝑠𝑟𝑟

, 𝜁★(𝑠1, . . . , 𝑠𝑟 ) =
∑︁

1≤𝑛1≤···≤𝑛𝑟

1
𝑛
𝑠1
1 · · · 𝑛𝑠𝑟𝑟
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Theorem 9.4 For any positive integer 𝑁 and 𝑠𝑖 ∈ C, we have

𝜁
sp,𝑁
(𝑟)

(
𝑠1 · · · 𝑠𝑟

)
=
∑︁
sign

∑︁
ℓℓℓ

(−1)𝑟−dep(ℓℓℓ) 𝜁★𝑁 (ℓℓℓ𝑟 ),

and for 𝑟 ≥ 2

𝜁
so,𝑁
(𝑟)

(
𝑠1 · · · 𝑠𝑟

)
=

𝑟∑︁
𝑅=𝑟−1

∑︁
sign

∑︁
ℓℓℓ

(−1)𝑅−dep(ℓℓℓ) 𝜁★𝑁 (ℓℓℓ𝑅),

where
∑︁
sign

means the summation over all cases of plus-minus signs and ℓℓℓ runs over all indices

of the form ℓℓℓ𝑅 = (±𝑠1□ ± 𝑠2□ · · ·□ ± 𝑠𝑅) in which each □ is filled by the comma , or the
plus sign +. If □ = + then ±𝑠 𝑗□ ± 𝑠 𝑗+1 is assigned 𝑠 𝑗+1 − 𝑠 𝑗 and the square is not filled with
consecutive plus signs +.

Example 9.5 (𝑟 ≤ 2) For any positive integer 𝑁 and 𝑎, 𝑏 ∈ C, we have

𝜁
sp,𝑁
(1)

(
𝑎

)
=𝜁★

𝑁 (𝑎) + 𝜁★
𝑁 (−𝑎),

𝜁
sp,𝑁
(2)

(
𝑎 𝑏

)
=𝜁★

𝑁 (𝑎, 𝑏) + 𝜁★
𝑁 (−𝑎,−𝑏) + 𝜁★

𝑁 (−𝑎, 𝑏) + 𝜁★
𝑁 (𝑎,−𝑏)

− 𝜁★
𝑁 (𝑏 − 𝑎),

𝜁
so,𝑁
(1)

(
𝑎

)
=𝜁★

𝑁 (𝑎) + 𝜁★
𝑁 (−𝑎) + 1,

𝜁
so,𝑁
(2)

(
𝑎 𝑏

)
=𝜁★

𝑁 (𝑎, 𝑏) + 𝜁★
𝑁 (−𝑎,−𝑏) + 𝜁★

𝑁 (−𝑎, 𝑏) + 𝜁★
𝑁 (𝑎,−𝑏)

− 𝜁★
𝑁 (𝑏 − 𝑎) + 𝜁★

𝑁 (𝑎) + 𝜁★
𝑁 (−𝑎).

10 Schur quasi-symmetric functions

We here investigate the quasi-symmetric functions, introduced by Gessel [5], related to
symmetric multiple zeta functions defined in this paper. We note that the Schur type
quasi-symmetric function was discussed in [17].

10.1 Quasi-symmetric functions

Let 𝑡𝑡𝑡 = (𝑡1, 𝑡2, . . .) be variables and 𝔓 the subalgebra of Z[[𝑡1, 𝑡2, . . . ]] consisting of
all formal power series with integer coefficients of bounded degree. We refer to 𝑝 =

𝑝(𝑡𝑡𝑡) ∈ 𝔓 as a quasi-symmetric function if the coefficient of 𝑡𝛾1
𝑘1
𝑡
𝛾2
𝑘2
· · · 𝑡𝛾𝑛

𝑘𝑛
of 𝑝 is the same

as that of 𝑡𝛾1
ℎ1
𝑡
𝛾2
ℎ2
· · · 𝑡𝛾𝑛

ℎ𝑛
of 𝑝 whenever 𝑘1 < 𝑘2 < · · · < 𝑘𝑛 and ℎ1 < ℎ2 < · · · < ℎ𝑛.

The algebra of all quasi-symmetric functions is denoted by Qsym. For a composition
𝛾𝛾𝛾 = (𝛾1, 𝛾2, . . . , 𝛾𝑛) of a positive integer, define the monomial quasi-symmetric function
𝑀𝛾𝛾𝛾 and the essential quasi-symmetric function 𝐸𝛾𝛾𝛾 , respectively, by

𝑀𝛾𝛾𝛾 =
∑︁

𝑚1<𝑚2<· · ·<𝑚𝑛

𝑡
𝛾1
𝑚1 𝑡

𝛾2
𝑚2 · · · 𝑡

𝛾𝑛
𝑚𝑛

, 𝐸𝛾𝛾𝛾 =
∑︁

𝑚1≤𝑚2≤···≤𝑚𝑛

𝑡
𝛾1
𝑚1 𝑡

𝛾2
𝑚2 · · · 𝑡

𝛾𝑛
𝑚𝑛

.
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We know that these respective functions form the integral basis of Qsym. Notice that

𝐸𝛾𝛾𝛾 =
∑︁
𝛿𝛿𝛿 ⪯ 𝛾𝛾𝛾

𝑀𝛿𝛿𝛿 , 𝑀𝛾𝛾𝛾 =
∑︁
𝛿𝛿𝛿 ⪯ 𝛾𝛾𝛾

(−1)𝑛−ℓ (𝛿𝛿𝛿)𝐸𝛿𝛿𝛿 . (10.1)

The relation between the multiple zeta values and quasi-symmetric functions was stud-
ied by Hoffman [11] (remark that the notations used for the multiple zeta (star) function
in [11] are different from ours, which are 𝜁 (𝑠𝑛, 𝑠𝑛−1, . . . , 𝑠1) and 𝜁★(𝑠𝑛, 𝑠𝑛−1, . . . , 𝑠1),
respectively). Let ℌ = Z⟨𝑥, 𝑦⟩ be the noncommutative polynomial algebra over Z. We
candefine a commutative and associativemultiplication ∗, knownas the harmonic prod-
uct, on ℌ. We refer to (ℌ, ∗) as (integral) harmonic algebra. Let ℌ1 = Z1 + 𝑦ℌ, which
is a subalgebra ofℌ. Notice that every 𝑤 ∈ ℌ1 can be written as an integral linear com-
bination of 𝑧𝛾1 𝑧𝛾2 · · · 𝑧𝛾𝑛 where 𝑧𝛾 = 𝑦𝑥𝛾−1 for 𝛾 ∈ N. For each 𝑁 ∈ N, define the
homomorphism 𝜙𝑁 : ℌ1 → Z[𝑡1, 𝑡2, . . . , 𝑡𝑁 ] by 𝜙𝑁 (1) = 1 and

𝜙𝑁 (𝑧𝛾1 𝑧𝛾2 · · · 𝑧𝛾𝑛 ) =


∑︁
𝑚1<𝑚2<· · ·<𝑚𝑛≤𝑁

𝑡
𝛾1
𝑚1 𝑡

𝛾2
𝑚2 · · · 𝑡

𝛾𝑛
𝑚𝑛

𝑛 ≤ 𝑁,

0 otherwise,

and extend it additively to ℌ1. There exists a unique homomorphism 𝜙 : ℌ1 → 𝔓

such that 𝜋𝑁𝜙 = 𝜙𝑁 , where 𝜋𝑁 is the natural projection from𝔓 to Z[𝑡1, 𝑡2, . . . , 𝑡𝑁 ].
We have 𝜙(𝑧𝛾1 𝑧𝛾2 · · · 𝑧𝛾𝑛 ) = 𝑀(𝛾1 ,𝛾2 ,...,𝛾𝑛) . Moreover, as described in [11], 𝜙 is an
isomorphism betweenℌ1 and Qsym.

Let 𝑒 be the function that sends 𝑡𝑖 to 1
𝑖
. Moreover, define 𝜌𝑁 : ℌ1 → R by 𝜌𝑁 =

𝑒𝜙𝑁 . For a composition 𝛾𝛾𝛾, we have

𝜌𝑁𝜙
−1 (𝑀𝛾𝛾𝛾) = 𝜁𝑁 (𝛾𝛾𝛾), 𝜌𝑁𝜙

−1 (𝐸𝛾𝛾𝛾) = 𝜁★𝑁 (𝛾𝛾𝛾).

We define the map 𝜌 : ℌ1 → RN by 𝜌(𝑤) = (𝜌𝑁 (𝑤))𝑁 ≥1 for 𝑤 ∈ ℌ1. Notice that
if 𝑤 ∈ ℌ0 = Z1 + 𝑦ℌ𝑥, which is a subalgebra of ℌ1, then we may understand that
𝜌(𝑤) = lim𝑁→∞ 𝜌𝑁 (𝑤) ∈ R. In particular, for a composition 𝛾𝛾𝛾 = (𝛾1, 𝛾2, . . . , 𝛾𝑛)
with 𝛾𝑛 ≥ 2, we have

𝜌𝜙−1 (𝑀𝛾𝛾𝛾) = 𝜁 (𝛾𝛾𝛾), 𝜌𝜙−1 (𝐸𝛾𝛾𝛾) = 𝜁★(𝛾𝛾𝛾). (10.2)

10.2 Schur 𝑃- and 𝑄-type quasi-symmetric functions

Now, the following Schur 𝑃- and𝑄-type quasi-symmetric functions are easily defined. For
strict partitions 𝜆 and 𝜇, and 𝑠𝑠𝑠 = (𝑠𝑖 𝑗 ) ∈ 𝑆𝑇 (𝜆/𝜇,C), we define Schur 𝑃- and 𝑄-type
quasi-symmetric functions associated with 𝜆/𝜇 by

𝑆𝑃
𝜆/𝜇 (𝑠𝑠𝑠) =

∑︁
𝑀∈𝑃𝑆𝑆𝑇 (𝜆/𝜇)

∏
(𝑖, 𝑗) ∈𝑆𝐷 (𝜆)

𝑡
𝑠𝑖 𝑗

|𝑚𝑖 𝑗 | , (10.3)

and

𝑆
𝑄

𝜆/𝜇 (𝑠𝑠𝑠) =
∑︁

𝑀∈𝑄𝑆𝑆𝑇 (𝜆/𝜇)

∏
(𝑖, 𝑗) ∈𝑆𝐷 (𝜆)

𝑡
𝑠𝑖 𝑗

|𝑚𝑖 𝑗 | . (10.4)
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Theorem 10.1 Let 𝜆 = (𝜆1, . . . , 𝜆𝑟 ), 𝜇 = (𝜇1, . . . , 𝜇𝑠) be strict partitions into with 𝜆𝑖 ≥
0 and 2|𝑟 + 𝑠. Then, for 𝑠𝑠𝑠 ∈ 𝑆𝑇diag (𝜆/𝜇,C),

𝑆
𝑄

𝜆/𝜇 (𝑠𝑠𝑠) = pf
(
𝑀𝜆 𝐻𝜆,𝜇

0 0

)
,

where 𝑀𝜆 = (𝑎𝑖 𝑗 ) is an 𝑟 × 𝑟 upper triangular matrix with

𝑎𝑖 𝑗 = 𝑆
𝑄

(𝜆𝑖 ,𝜆 𝑗 ) (𝑠𝑠𝑠 (𝜆𝑖 ,𝜆 𝑗 ) ),

𝑠𝑠𝑠 (𝜆𝑖 ,𝜆 𝑗 ) =
𝑠𝑖,𝑖 · · · · · · · · · · · · 𝑠𝑖,𝑡𝑖

𝑠 𝑗 , 𝑗 · · · 𝑠 𝑗 ,𝑡 𝑗
,

where 𝑡𝑖 = 𝑖 + 𝜆𝑖 − 1 and 𝐻𝜆 = (𝑏𝑖 𝑗 ) is an 𝑟 × 𝑠 matrix with

𝑏𝑖 𝑗 = 𝑆
𝑄

(𝜆𝑖−𝜇𝑠− 𝑗+1) (𝑠𝑖 (𝑖+ 𝑗+𝜇𝑠−1) , . . . , 𝑠𝑖𝑡𝑖 ).

Theorem 10.2 (cf. [4, Theorem 4.3],[8, Theorem 1.4]) Let 𝜆 and 𝜇 be strict partitions with
𝜇 ≤ 𝜆. Let 𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑘 , 𝜃𝑘+1, . . . , 𝜃𝑟 ) be an outside decomposition of 𝑆𝐷 (𝜆/𝜇),
where 𝜃𝑝 includes a box on the main diagonal of 𝑆𝐷 (𝜆/𝜇) for 1 ≤ 𝑝 ≤ 𝑘 and 𝜃𝑝 does not
for 𝑘 + 1 ≤ 𝑝 ≤ 𝑟 . If 𝑘 is odd, we replace 𝜃 by (∅, 𝜃1, . . . , 𝜃𝑟 ). Then, the Schur 𝑄-type
quasi-symmetric functions satisfy the identity

𝑆
𝑄

𝜆/𝜇 (𝑠𝑠𝑠) = pf

(
𝑆
𝑄

(𝜃 𝑝 , 𝜃𝑞)
(𝑠𝑠𝑠 (𝜃 𝑝 , 𝜃𝑞) ) 𝑆

𝑄

𝜃𝑖#𝜃𝑟+𝑘+1− 𝑗
(𝑠𝑠𝑠𝜃𝑖#𝜃𝑟+𝑘+1− 𝑗

)
−𝑡 (𝑆𝑄

𝜃𝑖#𝜃𝑟+𝑘+1− 𝑗
(𝑠𝑠𝑠𝜃𝑖#𝜃𝑟+𝑘+1− 𝑗

)) 0

)
with 1 ≤ 𝑝, 𝑞 ≤ 𝑘 and 𝑘 + 1 ≤ 𝑗 ≤ 𝑟 . Here

𝑆
𝑄

(𝜃 𝑝 , 𝜃𝑞)
(𝑠𝑠𝑠 (𝜃 𝑝 , 𝜃𝑞) ) = −𝑆𝑄

(𝜃𝑞 , 𝜃 𝑝)
(𝑠𝑠𝑠 (𝜃𝑞 , 𝜃 𝑝) )

and 𝑆𝑄
(𝜃 𝑝 , 𝜃 𝑝)

(𝑠𝑠𝑠 (𝜃 𝑝 , 𝜃𝑞) ) = 0.

10.3 Symplectic type and Orthogonal type quasi-symmetric functions

Similarly, we define the following symplectic quasi-symmetric functions and orthogonal
quasi-symmetric functions. For partitions 𝜆 and 𝜇, and 𝑠𝑠𝑠 = (𝑠𝑖 𝑗 ) ∈ 𝑇 (𝜆/𝜇,C), we define
symplectic quasi-symmetric functions and orthogonal quasi-symmetric functions asso-
ciated with 𝜆/𝜇 by

𝑆
sp,𝑁
𝜆/𝜇 (𝑠𝑠𝑠) =

∑︁
𝑀∈𝑆𝑃𝑁 (𝜆/𝜇)

∏
(𝑖, 𝑗) ∈𝐷 (𝜆)

𝑡
𝑠𝑖 𝑗

|𝑚𝑖 𝑗 | , (10.5)

and

𝑆
so,𝑁
𝜆/𝜇 (𝑠𝑠𝑠) =

∑︁
𝑀∈𝑆𝑂𝑁 (𝜆/𝜇)

∏
(𝑖, 𝑗) ∈𝐷 (𝜆)

𝑡
𝑠𝑖 𝑗

|𝑚𝑖 𝑗 | . (10.6)
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Theorem 10.3 Let 𝜆 = (𝜆1, . . . , 𝜆𝑟 ), 𝜇 = (𝜇1, . . . , 𝜇𝑠) be partitions. Then, for 𝑠𝑠𝑠 ∈
𝑇diag (𝜆/𝜇,C) and any outside decomposition (𝜃1, . . . , 𝜃𝑟 ) of 𝜆/𝜇,

𝑆
sp,𝑁
𝜆/𝜇 (𝑠𝑠𝑠) = det(𝑆sp,𝑁

𝜃𝑖#𝜃 𝑗
(𝑠𝑠𝑠 (𝜆𝑖 ,𝜆 𝑗 ) ))1≤𝑖, 𝑗≤𝑟 ,

where 𝑠𝑠𝑠 (𝜆𝑖 ,𝜆 𝑗 ) = 𝑠𝑠𝑠𝜆𝑖#𝑠𝑠𝑠𝜆 𝑗
.

Theorem 10.4 Let 𝜆 = (𝜆1, . . . , 𝜆𝑟 ), 𝜇 = (𝜇1, . . . , 𝜇𝑠) be partitions. Then, for 𝑠𝑠𝑠 ∈
𝑇diag (𝜆/𝜇,C) and any outside decomposition (𝜃1, . . . , 𝜃𝑟 ) of 𝜆/𝜇,

𝑆
so,𝑁
𝜆/𝜇 (𝑠𝑠𝑠) = det(𝑆so,𝑁

𝜃𝑖#𝜃 𝑗
(𝑠𝑠𝑠 (𝜆𝑖 ,𝜆 𝑗 ) ))1≤𝑖, 𝑗≤𝑟 ,

where 𝑠𝑠𝑠 (𝜆𝑖 ,𝜆 𝑗 ) = 𝑠𝑠𝑠𝜆𝑖#𝑠𝑠𝑠𝜆 𝑗
.
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