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Sums of the first  odd integersn
CHRIS SANGWIN

There is a long tradition of mathematicians valuing collections of
proofs, e.g. [1] is a famous recent collection. In the past, professional
mathematicians have also written many different proofs of single important
theorems, e.g. [2]. Proofs of the Pythagorean Theorem were collected by
[3], and [4] discusses mathematical style through proofs of the irrationality
of . The recent work of [5] is a discussion of mathematical style via a
comparison of 99 different ‘proofs’ the following ‘theorem’.

2

Let . If  then  or .x ∈ � x3 − 6x2 + 11x − 6 = 2x − 2 x = 1 x = 4

Reference [5] is one of the most interesting and enjoyable mathematics
books I have read in many years. Some of the proofs from [5] were used by
[6] recently as research materials to investigate the nature of mathematical
explanations. I wanted to undertake research on rigour and insight in
mathematics education but was dissatisfied with the choice of theorem and,
to a lesser extent, the selection of proofs used. So I set about searching for
what is, in my view, a more suitable theorem for my research purposes and
ultimately I chose the following.

Theorem 1: The sum of the first  odd integers, starting from 1, is .n n2

In this paper, I collect, and discuss, proofs of Theorem 1. Thirteen
proofs from this collection are being used for research into whether students
understand insight and rigour as separate constructs, and that work will be
published elsewhere. This paper however records the full collection together
with comments about the proofs. I was also motivated to create this
collection partly for personal interest, and with a clear expectation that my
collection of proofs will be useful for future discussions with students about
proof in a broad range of aspects. The famous collection Proofs from THE
BOOK, [1], contains proofs which, by their very nature, are atypical
mathematical arguments; that is precisely why they have been collected
together. Part of education involves learning to read, write and understand
agreed forms of proof, which can be somewhat repetitive. For example,
proof by induction could be reduced to a mantra to recite but at some
important level it is precisely the fact that these ‘patterns of reasoning’
(adopting Pólya's phrase, [7]) are accepted as standard arguments which
releases the student from worrying ‘Is this a proof?’. I hope other teachers
find this collection a useful starting point for discussions of their own.

Expressed in algebraic notation, Theorem 1 becomes

1 + 3 + 5 + 7 +  …  + (2n − 1) = ∑
n

k = 1

(2k − 1) = n2. (1)
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SUMS OF THE FIRST   ODD INTEGERS 11

Theorem 1 is related to finding formulae for

∑
n

k = 1

km for m = 0,  1,  2,  3,  4,  … . (2)

For example,  gives  and
 gives . The

sums of powers of integers have an important history, e.g. [8], [9], [10], [11]
and [12].

m = 1 1 + 2 + 3 +  …  + n = 1
2n (n + 1)

m = 2 12 + 22 + 32 +  …  + n2 = 1
6n (n + 1) (2n + 1)

Theorem 1 is classical, see Example 3, Pictorial I below. According to
[13] the first use of the name ‘mathematical induction’ is found in [14]
which calls it successive induction, and Theorem 1 is included by De
Morgan as an example proof. Knowledge of the historical importance of
these two proofs contributed to selecting Theorem 1 specifically from the
possible finite integer series.

I set about writing as many proofs as possible, from memory, before
searching for different approaches to establishing Theorem 1 itself or
summation formulae more generally. I then searched a wide variety of
textbooks, including those explicitly teaching proof as a subject, e.g. [15],
[16], and a range of historic textbooks. For my research purposes, the cubic
solved by [5] is too elementary, so elementary that one might question
whether the result deserves the description ‘theorem’ beyond a very formal
sense. My research participants might view this merely as a rather routine
calculation and not a theorem at all. Also, some of the proofs in [5] are
outlandish and are unlikely to ever arise ‘naturally’ in a discussion with
students. I have given attribution to any proofs I found, adding evidence that
these are indeed arguments put forward by others as legitimate proofs.
Where proofs below are unattributed then I wrote them myself; however the
arguments are certainly not novel*. Some arguments adapt well-known
proof techniques used in this particular situation. This search readily
uncovered many proofs of the result, together with many statements of the
theorem as a recreational problem or an exercise. Indeed, it turns out that I
am not the first person to suggest students use Theorem 1 to collect different
proof techniques themselves.

3.12 Find , the sum of the first
odd numbers. (List as many different approaches as you can.).
[17, I. p. 81]

1 + 3 + 5 +  …  + (2n − 1) n

The theorem gives a formula for the sum of a series and so it is unreasonable
to expect to find a fully non-constructive proof. Some proofs merely state
and establish the full result. Other proofs essentially solve the problem
‘What is the sum of any number of successive odd numbers, beginning from

* Current legal movement restrictions as a response to suppress covid-19 mean most
of my books, which are in my office at the University of Edinburgh, are not at the
time of writing available to me for more systematic review.
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12 THE MATHEMATICAL GAZETTE

unity?’, without anticipating the answer  at the outset. Within those
proofs which solve the problem some work only for this situation whereas
others clearly and readily generalise to a range of other situations. [18]
refers to this as generality: ‘The idea of the proof generalizes to a larger
class of theorems’. Another of their criteria is connectedness: ‘The proof
idea connects to proof ideas of other theorems’. For example, two of the
proofs make direct use of (2), whereas other proofs connect to more
advanced areas of mathematics.

(n2)

The rest of this paper contains the example proofs.

The problem is stated in [19, p. 95] as a recreational puzzle, without
proof.

Example 1: Recreational
If odde numbers bee continually added from the unitie successively,

there will bee made all square numbers, and if cubike numbers bee added
successuvely from unitie, there will be likewise made square numbers.

Example 2: Experimental evidence

1 = 1 = 12

1 + 3 = 4 = 22

1 + 3 + 5 = 9 = 32

1 + 3 + 5 + 7 = 16 = 42

1 + 3 + 5 + 7 + 9 = 25 = 52

1 + 3 + 5 + 7 + 9 + 11 = 36 = 62

 …

1 + 3 + 5 + 7 +  …  + (2n − 1) = n2.

When asked to rank the proofs from most to least rigourous, students
clearly and consistently ranked experimental evidence as the least rigorous
‘proof’. The following pictorial proofs were ranked the next least rigourous.
However students were asked which proof gave more ‘understanding of
why the theorem is true’ and the following pictorial proof was one of the
highest ranking proofs for understanding. See [20] for an interesting
discussion about the relationship of pictures to rigorous proof. The
following ‘proof by picture’ is attributed to Nicomachus of Gerasa, circa
100CE: [21, p. 243], see also [22, p. 71]. There are many references to this
picture, throughout the books I consulted, e.g. [23, I. p. 442].
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SUMS OF THE FIRST   ODD INTEGERS 13

Example 3: Pictorial I

1 + 3 + 5 + 7 +  …  + (2n − 1) = n2.

The next ‘proof by picture’ was not so well received by students. In the
form below, it was ranked very poorly on both rigour and in giving students
understanding. However, adding two sentences explaining (1) the stepped
triangle at the bottom has  dots and (2) four
copies of this triangle can be fitted together to give a square, changed
significantly how much the proof helped students to understand the theorem.

1 + 3 + 5 +  …  + (2n − 1)

Example 4: Pictorial II [22, p. 72]

1 + 3 + 5 + 7 +  …  + (2n − 1) = 1
4 (2n)2 = n2.

Example 5: Expert's approach

1 + 3 + 5 + 7 +  …  + (2n − 1)

is an arithmetic progression with difference 2 and  terms. The first term
, and the last term , and the sum of an AP is

, which in this case is .

n
a1 = 1 an = 2n − 1
1
2n (a1 + an) 1

2n (1 + 2n − 1) = n2

The arithmetic progression approach is found in [24, §422], [25, p. 219],
and many others. Fibonacci, [26, p. 260], uses this result to illustrate
summing an arithmetic progression.
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14 THE MATHEMATICAL GAZETTE

Example 6: Reversed list
Write the terms twice, with the second list reversed.

1 + 3 + 5 + … + 2n − 3 + 2n − 1
2n − 1 + 2n − 3 + 2n − 5 + … + 3 + 1

Each column has total  and there are  columns. So the total is ,

proving that . 

2n n 2n2

∑
n

k = 1

(2k − 1) = n2

The reversed argument is often part of an apocryphal story which
suggests Gauss summed the integers from 1 to 100 by reversing the lists and
adding, [27].

Example 7: Telescope
Notice that , so that adding up we have2k − 1 = k2 − (k − 1)2

∑
n

k = 1

(2k − 1) = ∑
n

k = 1

k2 − (k − 1)2 .

Then in

∑
n

k =1

k2 − (k − 1)2 = (12 − 02) + (22 − 12) + (32 − 22) +  …  + (n2 − (n − 1)2)

all terms cancel except two, one from the first term and one from the last,
i.e. , leaving .−02 + n2 n2

Example 8: Backwards reasoning [28, p. 210]

The Fundamental Theorem of Finite Differences says that

if, and only if, (i) , and (ii) . 

Sn = ∑
n

k = 1

ak

an +1 = Sn +1 − Sn S1 = a1

Consider  then Sn = n2

Sn + 1 − Sn = (n + 1)2 − n2 = 2n + 1.
Take  and then  from which .

Hence .

an+1 = 2n + 1 an = 2n − 1 S1 = 12 = 2 × 1 − 1 = a1

∑
n

k = 1

(2k − 1) = n2

The Telescoping argument is self-contained, but makes use of the
ellipsis . The ellipsis also occurred in Experimental evidence in
vertical form. In many situations the ellipsis can be an aid to readability by
creating succinct written arguments and here it is a helpful abbreviation. In
general the ellipsis is ambiguous since the reader has to spot a pattern, and
hence the ellipsis lacks formal rigour. The Backwards argument side-steps
the lack of rigour by applying a theorem to avoid this problem. However,
the proof of the Fundamental Theorem given by [28, p. 210] does no more

( … )

https://doi.org/10.1017/mag.2023.3 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2023.3


SUMS OF THE FIRST   ODD INTEGERS 15

than use an ellipsis anyway, and does not use a formal induction: applying a
Fundamental Theorem may appear more rigorous, but it relies on the
strength of the foundations upon which it is built.  It is interesting that
fashion plays a role in what we do and what we do not teach. The Theory of
Finite Differences itself is now completely neglected as a subject [29]. The
sums of the powers of the integers, i.e. (2), do not seem to appear widely in
core undergraduate courses despite being an important and classical topic.
The sums of the powers of the integers provide a way to prove Theorem 1
and systematically sum integer series of a similar type.

Example 9: Rearranging I

We use the standard results  and  and

rearrange:

∑
n

k = 1

k = 1
2n(n + 1) ∑

n

k = 1

1 = n

∑
n

k = 1

(2k − 1) = 2 ∑
n

k = 1

k − ∑
n

k = 1

1 = 2
n (n + 1)

2
− n = n2.

Example 10: Rearranging II

We use the standard result  and rearrange:∑
n

k = 1

k = 1
2n(n + 1)

∑
n

k = 1

2k − 1
odd

= (1 + 2 + 3 +  …  + 2n)
all

− (2 + 4 + 6 +  …  + 2n)
even

{ { {
= (1 + 2 + 3 +  …  + 2n) − 2 (1 + 2 + 3 +  …  + n) .

Hence

∑
n

k = 1

(2k − 1) = ∑
2n

k = 1

k − 2 ∑
n

k = 1

k

=
2n (2n + 1)

2
− 2

n (n + 1)
2

= n2.

The Telescope and the Backwards reasoning proof generalise but do not
solve. Rearranging I solves and generalises, but Rearranging II solves but
does not generalise! Some of the following proofs both generalise and solve
the problem (e.g. linear system and undetermined coefficients).

Example 11: Historical form
The sum of any number of successive odd numbers, beginning from

unity, is a square number, namely the square of half the even number which
follows the last odd number. Let this proposition be true in any one single
instance; that is,  being some whole number, let  up to
put together give . Then the next odd number being , the

n 1,  3,  5, … 2n + 1
(n + 1)2 2n + 3
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16 THE MATHEMATICAL GAZETTE

sum of all the odd numbers up to  will be , or
, or . But  is half of the even number next

following : consequently, if the proposition be true of any one set of
odd numbers, it is true of one more. But it is true of the first odd number 1,
for this is the square of half the even number next following. Consequently,
being true of 1, it is true of 1 + 3; being true of 1 + 3, it is true of 1 + 3 + 5;
being true of 1 + 3 + 5, it is true of 1 + 3 + 5 + 7, and so on, ad infinitum.

2n + 3 (n + 1)2 + 2n + 3
n2 + 4n + 4 (n + 2)2 n + 2

2n + 3

This is De Morgan's proof. One thing to note about it is the rhetorical
style in which he states the induction hypothesis without any algebraic
symbolism, making for densely packed text. The following is a more
modern presentation of induction. In our research the modern proof by
induction below was, by far, considered the most rigorous proof by the
student research participants.

Example 12: Induction

Let  be the statement .P (n) ∑
n

k = 1

(2k − 1) = n2

Since  we see  is true.∑
1

k = 1

(2k − 1) = 1 = 12 P (1)

Assume  is true thenP (n)

∑
n+ 1

k =1

(2k + 1) = ∑
n

k =1

(2k − 1) + (2(n + 1) − 1) = n2 + 2n + 1 = (n + 1)2 .

Hence  is true.P (n + 1)
Since  is true and  follows from  we conclude that
 is true for all  by the principle of mathematical induction.

P (1) P (n + 1) P (n)
P (n) n

The following proof by contradiction is a proof by infinite descent, also
known as Fermat's method of descent. Any induction can be reformulated as
such a proof by contradiction, but, to my taste at least, an induction (when
available) is more direct and has greater clarity. I wrote some thoughts about
proof by contradiction elsewhere, [30].

Example 13: Contradiction 

To prove , assume, for a contradiction,

that . Let  be the smallest such example.

Note,  since . If  then

∀n ∈ � : ∑
n

k = 1

(2k − 1) = n2

∃n ∈ � : ∑
n

k = 1

(2k − 1) ≠ n2 m

m > 1 (2 × 1) − 1 = 12 ∑
m

k = 1

(2k − 1) > m2

∑
m

k = 1

(2k − 1) = 2m − 1 + ∑
m − 1

k = 1

(2k − 1) > m2
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and so

∑
m − 1

k = 1

(2k − 1) > m2 − 2m + 1 = (m − 1)2 .

This proves , which contradicts the minimality of .

The case  leads to an identical contradiction.

∑
m−1

k = 1

(2k − 1) ≠ (m − 1)2 m

∑
m − 1

k = 1

(2k − 1) < (m − 1)2

An anonymous reviewer of this Article asked why this argument is split
into cases > and <, rather than using  throughout the argument. The law of
trichotomy states that every real number is either positive, negative, or zero.
This particular contradiction argument uses the law of trichotomy to create
three exhaustive cases. An alternative argument could be created using  but
that is not the particular contradiction I choose to write. Which is better
style? This is precisely the sort of discussion collections of proofs of the
same theorem, such as this, is designed to provoke.

≠

≠

The following two proofs rely on assuming that the sum takes a
particular algebraic form.

Example 14: Linear system

Since the sum is always an integer and  the

growth of  is quadratic in . We therefore assume 

Sn = ∑
n

k = 1

(2k − 1) ≤ n(2n − 1)

Sn n

∑
n

k = 1

(2k − 1) = an2 + bn + c for all  n ∈ �.

Since this formula holds for all  it must hold for . Hencen n = 1,  2,  3

1 = a + b + c, (n = 1) ,
1 + 3 = 4a + 2b + c, (n = 2) ,
1 + 3 + 5 = 9a + 3b + c, (n = 3) .

This is a linear system in  which we set up asa, b, c

( ) ( ) = ( ) .
1 1 1
4 2 1
9 3 1

a
b
c

1
4
9

The matrix clearly has non-zero determinant, so the system has a unique
solution. This solution is (exercise to check) , . Hence

.

a = 1 b = c = 0

∑
n

k = 1

(2k − 1) = n2
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18 THE MATHEMATICAL GAZETTE

Example 15: Undetermined coefficients [31, p. 408]
Assume .

Then
1 + 3 + 5 + 7 +  …  + (2n − 1) = A + Bn + Cn2 + Dn3 + En4 +…

1 + 3 + 5 + 7 +  …  + (2n − 1) + (2(n + 1) − 1)
= A + B(n + 1) + C (n + 1)2 + Dn(n + 1)3 + E(n + 1)4 +  … .

Subtracting:

2n + 1 = B + C (2n + 1) + D(3n2 + 3n + 1) + E(4n3 + 6n2 + 4n + 1) +  … .
Equating powers of  on both sides we see .
Therefore

n2, n3, … D = E =  … = 0

2n + 1 = B + C (2n + 1) .

Hence  and , from which  and so .B = 0 C = 1 A = 0 ∑
n

k = 1

(2k − 1) = n2

The particular form of undetermined coefficients used here makes an
assumption of a series solution, rather than a polynomial. Historically,
mathematicians were less worried about the rigours of convergence than we
are today and I have consciously chosen this historical form here to contrast
with the assumption of a particular polynomial in the previous Linear
system proof. The use of an ansatz, i.e. an educated guess, is a relatively
common proof gambit.

Differentiating a geometric progression
repeatedly with respect to  is one way to establish formulae for the sums of
the powers of the integers, (2). An identical approach can be used to prove
Theorem 1, but the following proof is somewhat forced and the calculus
steps have a level of technical difficulty out of proportion with the
complexity of Theorem 1.

1 + r + r2 +  …  + rn − 1

r

Example 16: Calculus
The sum of a geometric progression  is

given by  for . So for 

1 + r + r2 +  …  + rn − 1

∑
n − 1

k = 0

rk =
rn − 1
r − 1

r ≠ 1 r ≠ 1

∑
n

k = 1

(r2)k
=

r2 (r2n − 1)
r2 − 1

and so  ∑
n

k = 1

r2k − 1 =
r2n + 1 − r

r2 − 1
.

Differentiating both sides with respect to  (details left as an exercise)r

∑
n

k = 1

(2k − 1) r2k − 2 =
r2n ((2n − 1) r2 − 2n − 1) + (r2 + 1)

(r − 1)2 (r + 1)2
.

Since we cannot directly substitute  on the right-hand side we take the
limit (two applications of l'Hôpital)

r = 1

∑
n

k = 1

(2k − 1) = lim
r → 1

r2n ((2n − 1) r2 − 2n + 1) + (r2 + 1)
(r − 1)2 (r + 1)2

= n2.
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The following proofs illustrate other, more advanced, mathematical
ideas. Given the variety of proofs above, these are unlikely to be used as
serious proofs in an elementary setting. These proofs could be used to make
use of a very familiar result (Theorem 1) to illustrate applying a new
technique. I make no further comments about the individual proofs.

Example 17: Linear difference equation

 gives the linear difference equation with constant

coefficients

Sn = ∑
n

k = 1

2k − 1

Sn + 1 − Sn = (2n + 1) , (3)

 Sn + 2 − Sn + 1 = (2 (n + 1) + 1) . (4)
Subtracting (3) from (4) gives

Sn + 2 − 2Sn + 1 + Sn = (2 (n + 1) + 1) − (2n + 1) = 2. (5)
It follows that

Sn + 3 − 2Sn + 2 + Sn + 1 = 2. (6)
Subtracting (5) from (6) gives the following homogenous linear difference
equation with constant coefficients

Sn + 3 − 3Sn + 2 + 3Sn + 1 − Sn = 0.
Substitute in the standard ansatz  gives ,
so  is a repeated root of the homogenous equation. Since we have a
repeated root, the general solution takes the form

Sn = λn λn +3 − 3λn +2 + 3λn +1 − λn = 0
λ = 1

Sn = cλn + bnλn + an2λn = an2 + bn + c.
Substituting this into  givesSn + 1 − Sn = (2n + 1)

a (n + 1)2 + b (n + 1) + c = 2n + 1.

Equating coefficients, and using , gives .S1 = 1 Sn = ∑
n

k = 1

2k − 1 = n2

Example 18: Matrix power

 gives rise to a linear difference equation with constant

coefficients . Define 

Sn = ∑
n

k = 1

2k − 1

Sn + 1 − Sn = an

xn = ( )Sn

an

tn
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20 THE MATHEMATICAL GAZETTE

then we have the vector equation  wherexn + 1 = Mxn

( ) = ( ) ( ) , x1 = ( ) = ( ) .
Sn + 1

an + 1

tn + 1

1 1 2
0 1 2
0 0 1

Sn

an

tn

S1

a1

t1

1
1
1

Note  for all , and . Unfortunately  is not
diagnonalisable, (otherwise we could readily calculate the matrix power). If

 where  is in Jordan form we can calculate the power of the
matrix, and the power of each Jordan block can be written as:

tn = 1 n xn = Mn − 1x1 M

M = PJP−1 J

Jk (λ)n = ( ) .

λn ( ) λn − 1n
1 ( ) λn − 2n

2
… … ( ) λn − k + 1n

k − 1

 λn ( ) λn − 1n
1

… … ( ) λn − k + 2n
k − 2

  … … … …

   … … …

    λn ( ) λn − 1n
1

     λn

Calculating the Jordan form in our case:

M = ( ) ( ) ( ) ,
2 1 0
0 2 −1
0 0 1

1 1 0
0 1 1
0 0 1

1
2 −1

4 −1
4

0 1
2

1
2

0 0 1

so

Mn = ( ) ( )n ( )2 1 0
0 2 −1
0 0 1

1 1 0
0 1 1
0 0 1

1
2 −1

4 −1
4

0 1
2

1
2

0 0 1

= ( ) ( ) ( )2 1 0
0 2 −1
0 0 1

1n ( ) 1n − 1n
1 ( ) 1n − 2n

2

0 1n ( )1n − 1
n
1

0 0 1n

1
2 −1

4 −1
4

0 1
2

1
2

0 0 1
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= ( ) ( ) ( )2 1 0
0 2 −1
0 0 1

1 n 1
2n (n − 1)

0 1 n
0 0 1

1
2 −1

4 −1
4

0 1
2

1
2

0 0 1

= ( ) .
1 n n (n + 1)
0 1 2n
0 0 1

Hence, using ,xn = Mn − 1x1

( ) = ( ) ( ) = ( ) .
Sn

an

tn

1 n − 1 (n − 1) n
0 1 2 (n − 1)
0 0 1

1
1
1

n2

2n − 1
1

Example 19: -transformz

 gives a linear difference equation x(n) = ∑
n

k = 1

2k − 1

x (n + 1) − x (n) = 2n + 1, x (0) = 0.
Taking the one-sided -transform  givesz X (z) = Z [x (n)]

zX (z) − x (0) − X (z) =
2z

(z − 1)2
+

x
(z − 1)

X (z) (z − 1) =
z (z + 1)
(z − 1)2

.

Giving . The inverse -transform gives .X (z) =
z (z + 1)
(z − 1)3

z x (n) = n2

Example 20: Generating functions [32, pp. 249-250]
Let  and consider :S = 1 + 3x + 5x2 + 7x3 +  … (1 + 3x) + 2x(S − 1) − x2S

(1 + 3x) + 2x (S − 1) − x2S

= 1 + 3x + (6x2 + 10x3 + 14x4 +  … ) − (x2 + 3x3 + 5x4 +  … )
= 1 + 3x + 5x2 + 7x3 +  … = S.

So , and solving for  gives the generating
function

S = (1 + 3x) + 2x(S − 1) − x2S S

∑
∞

k = 0

(2k − 1) xk =
1 + x

(1 − x)2
. (7)
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Similarly

(2n + 1) xn + (2n + 3) xn + 1 + (2n + 5) xn + 2 +  …

= ∑
∞

k = n
(2k + 1) xk =

(2n + 1) xn − (2n − 1) xn + 1

(1 − x)2
.

Hence

∑
∞

k = n
(2k − 1) xk =

1 + x − (2n + 1) xn + (2n − 1) xn + 1

(1 − x)2
.

Taking the limit as  we get .x → 1 ∑
n

k = 1

(2k − 1) = n2

The generating function (7) is derived in a different way by

[33, pp. 181-185]. The power series  and

its derivative  can be substituted

into

1
1 − x

= 1 + x + x2 + x3 +  …
1

(1 − x)2
= 1 + 2x + 3x2 + 4x3 +  …

1 + 3x + 5x2 + 7x3 +  …

= 2 (1 + 2x + 3x2 + 4x3 +  … ) − (1 + x + x2 + x3 +  … )
to derive (7). The rest of the argument is identical.

Conclusion
Reference [5] is an inspirational book, destined (I hope) to become a

classic. [34, p. 14] opens by saying: ‘The main use of a model is the
pleasure derived from making it’, and I have derived considerable personal
pleasure in collecting together these proofs of Theorem 1. A selection of
these proofs is being used to investigate conceptions of insight and rigour,
and I hope publishing the full collection of proofs is helpful for future
educational research. Lastly, I suggest this collection of proofs might be a
useful resource for teachers when discussing proof with their students, e.g.
to consider different styles of proof and the relative merits of different
proofs, both in relation to a particular theorem and more generally.
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Quotations for Nemo (continued from page 9)

3. He could take the small clutching child from his nurse's arms with
an iteration grimly discountenanced, in respect to their contents, by
the glass doors of high cabinets.

4. ‘But we can wait a long time,’ said poor Catherine in a tone which
was meant to express the humblest conciliation, but which had upon
her father's nerves the effect of an iteration not characterised by tact.

5 Oh, he was princely indeed: that came out more and more with every
word he said and with the particular way he said it, and M could feel
his monitress stiffen almost with anguish against the increase of his
spell and then hurl herself as a desperate defence of it into the quite
confessed poorness of violence, of iteration. 

6. His answer came, promptly, with his reawakened wrath: it was of
course exactly what they wanted, and what they were “at” him for
daily, with the iteration of people who couldn't for their life
understand a man's liability to decent feelings
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