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The transformation of internal waves on a stepwise underwater obstacle is studied in
the linear approximation. The transmission and reflection coefficients are derived for a
two-layer fluid. The results are obtained and presented as functions of incident wave
wavenumber, density ratio of layers, pycnocline position, and height of the bottom step.
Excitation coefficients of evanescent modes are also calculated, and their importance is
demonstrated. This allows one to estimate the number of evanescent modes necessary to
take into account to attain the required accuracy for the transformation coefficients.
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1. Introduction

The more and more intense exploration of oceanic resources in the past decades makes
topical the problem of safety and protection of marine engineering constructions, harbours,
gulfs, beaches and ships. Great attention has been paid to the consequences of surface
wave impacts, especially those caused by tidal and tsunami waves, as well as swells
and wind waves. Internal waves represent another typical kind of wave motion in the
oceans, and similarly to the surface waves, they commonly occur in the oceans, seas,
lakes and other large-scale estuaries, including artificially constructed storage ponds. They
can significantly affect climate change, water mixing, migration of plankton, sediment
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transport and coastal engineering constructions (platform, oil and gas pipelines, etc.), as
well as underwater navigation.

One of the topical problems related to the impact of oceanic waves on the coastal
zone is the calculation of wave transformation when waves pass over the continental
shelf. This problem has been studied sufficiently well for small-amplitude surface waves
passing over the stepwise obstacle. The first entry into the problem was made by Lamb
(1932), who derived simple formulae for the transformation coefficients in the long-wave
approximation. The rigorous problem statement for quasi-monochromatic linear waves
of arbitrary wavelength was considered then by many authors, starting from the seminal
paper by Bartholomeusz (1958), who took into account not only travelling waves but also
evanescent modes localised in the vicinity of the bottom step edge. The reviews of results
obtained can be found, for example, in Massel (1989), Dingemans (1997) and Kurkin,
Semin & Stepanyants (2015).

The major outcome of these studies is that exact values of transformation coefficients
(the coefficients of transmission and reflection) can be obtained via numerical solution of a
set of algebraic equations for the transformation coefficients and coefficients of excitation
of evanescent modes. The number of equations required to reach a certain accuracy
depends on the depth ratio h2/h1, where h1 is the depth in front of the edge of the bottom
step, and h2 is the depth behind the edge. When the ratio h2/h1 is too small (say, of the
order of 10−2) or too big (of the order of 102), the total number of required equations may
reach 500. This is, certainly, not handy for practical applications and theoretical analysis of
dependences of the transformation coefficients on the parameters. (In reality, such extreme
values of depth drops are out of practical interest.) When a high accuracy is not required,
the transmission coefficient can be calculated analytically, taking into consideration only
travelling modes and neglecting evanescent modes. This idea was suggested by Miles
(1967) and realised in Kurkin et al. (2015), where the corresponding analytical formulae
were derived. It was shown by comparison with exact formulae and numerical calculations
that the transmission coefficient within such approximations can be obtained with an error
less than 5 %, whereas the error of the reflection coefficient is much greater (however, the
reflection coefficient is usually not so topical from the practical point of view).

Another heuristic approach was suggested by one of these authors for the approximate
calculation of transformation coefficients (Giniyatullin et al. 2014; Churaev, Semin &
Stepanyants 2015; Kurkin et al. 2015; Meylan & Stepanyants 2024). The idea of this
approach is based on the classical Lamb formulae for the transformation coefficients of
long surface waves (Lamb 1932) presented in terms of wave speed ratio on both sides of
the bottom-step edge c2/c1. As shown in the cited papers, very good agreement with the
rigorous analytical approach can be achieved if, in the transmission coefficient, the ratio
of group speeds cg2/cg1 is used instead of c2/c1, whereas in the reflection coefficient, the
ratio of phase speeds cp2/cp1 is used. This approach has been validated by direct numerical
modelling, and it was shown that it is accurate enough, robust, and handy for analysis and
application.

The problem of internal wave transformation on a bottom step has not been studied thus
far with the same completeness as for surface waves. The transformation coefficients for
internal waves passing over the bottom step in a two-layer fluid were derived only in the
shallow-water limit, assuming that the density difference between the layers is small, i.e.
in the Boussinesq approximation (Brekhovskikh & Goncharov 1994; Miropol’sky 2001;
Grimshaw, Pelinovsky & Talipova 2008). On the basis of the derived formula, the problem
of internal soliton transformation on the bottom step was studied for different polarities
of solitons and position of the pycnocline (sharp density interface between the layers)
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Transformation of internal waves on a bottom step
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Figure 1. Sketch of the problem geometry: (a) h2/h1 < 1, a wavetrain propagates from the deeper region to
the shallower one; (b) h2/h1 > 1, a wavetrain propagates from the shallower region to the deeper one.

(Maderich et al. 2009, 2010). For the calculation of transformation coefficients of internal
waves of arbitrary wavelength in a two-layer fluid of arbitrary layer densities, only the
approximate approach was suggested thus far (Churaev et al. 2015). It was demonstrated
that the approximate formulae agree well with the numerical data, and can be used for
practical applications when high accuracy is not required. However, to our best knowledge,
the rigorous approach to the problem of internal wave transformation on a bottom step
has not been developed thus far. In this paper, we derive transformation coefficients
for linear internal waves in two-layer fluid free from the restriction on wavelength and
layer densities. We show that accurate results can be obtained from the solution of an
infinite set of algebraic equations for the transformation coefficients of travelling waves
and coefficients of excitation of evanescent modes. In practice, the set should be truncated
and solved numerically. The number of used equations depends on the required accuracy
and hydrological parameters (depth ratio h2/h1, density ratio ρ2/ρ1, pycnocline depth h0,
dimensionless wavenumber of an incident wave κ = kh1). In the limiting case ρ2/ρ1 → 0,
our results reduce to that for surface waves (see e.g. Massel 1989; Kurkin et al. 2015).
In another limiting case, ρ2/ρ1 → 1 and κ → 0, our results reduce to the Lamb-type
formulae derived in Grimshaw et al. (2008). We show also that the results derived earlier
on the basis of the heuristic approach agree well with the rigorous approach developed
here. Data from direct numerical modelling also validate our theoretical results. We also
derive the relationship between the transmission and reflection coefficients that constitute
the energy flux conservation, and show that the theoretical and numerical data agree well
with this law.

2. Problem formulation

In this section, we formulate the mathematical model, which we employ to describe the
transformation of small-amplitude internal gravity waves passing over the underwater
obstacle in the form of a bottom step in a two-layer density stratified fluid. The physical
model is considered in a two-dimensional Cartesian coordinate system with x-axis along
the mean water level at the interface, and z-axis directed vertically upwards, as exhibited
in figure 1. Further, figure 1 illustrates two potential configurations with an incident wave
originating either from the deeper region (as seen in figure 1a) or from the shallower
region (as depicted in figure 1b). It is assumed that the interface is at the depth h0 from
the water surface, whereas the depth of the rigid bottom bed is hj, j = 1, 2 on either side
of the bottom step located at x = 0.

We implement the ‘rigid lid approximation’ at the free surface to effectively filter surface
waves (see e.g. Miropol’sky 2001). The fluid is assumed to be inviscid and incompressible,
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and flow is considered to be irrotational. Additionally, the densities of the upper and lower
layers are assumed to be ρ1 and ρ2, respectively, with a = ρ1/ρ2 ≤ 1. Consequently, the
velocity potentials exist on both sides of the bottom step, which are introduced as v1 =
∇ϕ1 in the domain Ω1 (see figure 1), and v2 = ∇ϕ2 in the domain Ω2. The velocity
potentials satisfy the Laplace equation as the governing equation, and are given by

∇2φi = 0, i = 1, 2. (2.1)

The rigid lid approximation at the air–water interface and the impermeable rigid bottom
bed boundary conditions yield

∂φj

∂z
= 0 on z = h0, (2.2)

∂φj

∂z
= 0 on z = −hj for j = 1, 2. (2.3)

Further, the linearised continuity conditions for the fluid velocity and pressure along the
interface are presented as (Lamb 1932)

∂η

∂t
= ∂φi

∂z

∣∣∣∣
z=0−

= ∂φi

∂z

∣∣∣∣
z=0+

,

a
(

g
∂φi

∂z
+ ∂2φi

∂t2

)∣∣∣∣
z=0−

=
(

g
∂φi

∂z
+ ∂2φi

∂t2

)∣∣∣∣
z=0+

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

for i = 1, 2, (2.4)

where g is the acceleration due to gravity. Then the continuity of pressure and velocity
along the step wall at x = 0 gives

h1 > h2

{
φ1(0, z) = φ2(0, z) for − h2 < z < h0,

φ1x(0, z) = φ2x(0, z)H (z + h2) for − h1 < z < h0,
(2.5)

h1 < h2

{
φ1(0, z) = φ2(0, z) for − h1 < z < h0,

φ1x(0, z) H(z + h1) = φ2x(0, z) for − h2 < z < h0,
(2.6)

where H is the Heaviside unit step function.
As we study the scattering problem, we assume that in the far-field zone, |x| → ∞, the

boundary conditions are

φ1 = Ai exp(i(k10x − ωt)) + Ar0 exp(−i(k10x − ωt)) as x → −∞, (2.7)

φ2 = At0 exp(i(k20x − ωt)) as x → ∞, (2.8)

where kj0 for j = 1, 2 are wavenumbers of plane progressive waves in the reflection and
transmission zones.

3. Plane wave solution

Let us consider a plane wave travelling on the pycnocline between two layers in a fluid
of finite depth. In the linear approximation, the interfacial wave can be presented as
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η = A exp(i(kx − ωt)). The associated velocity potential can be presented in each layer
in the form (Brekhovskikh & Goncharov 1994)

φ =

⎧⎪⎪⎨
⎪⎪⎩

−i
Aω

k
cosh k(z − h0)

sinh kh0
exp(i(kx − ωt)) for − ∞ < x < ∞, 0 < z < h0,

i
Aω

k
cosh k(z + hj)

sinh khj
exp(i(kx − ωt)) for − ∞ < x < ∞, −hj < z < 0,

(3.1)

where the wave frequency ω is linked with the wavenumber kj by the dispersion relation

ω2 = (1 − a)gkj

a coth kjh0 + coth kjhj
. (3.2)

This dispersion relation reduces to the dispersion relation for surface gravity waves if
a = 0. It is worth mentioning that the dispersion relation (3.2) possesses one positive real
root that pertains to the travelling mode, and an infinite number of purely imaginary roots
that pertain to evanescent modes, in each region Ω1 and Ω2 shown in figure 1. For such
modes, the dispersion relation follows from (3.2) by replacing kj with iγj; then it takes the
form

ω2 = −(1 − a)gγj

a cot γjh0 + cot γjhj
. (3.3)

4. Method of solution

In this section, we present a complete solution of internal wave scattering by the bottom
step in a two-layer fluid in terms of the velocity potential. The velocity potentials are
considered as sums of travelling and evanescent modes:

φ1(x, z) = iω
k10

(Ai exp(ik10x) + Ar0 exp(−ik10x)) f10(z) +
∞∑

n=1

ω

γ1n
Arn exp(γ1nx) f1n(z),

(4.1)

φ2(x, z) = iω
k20

At0 f20(z) exp(ik20x) +
∞∑

n=1

ω

γ2n
Atn exp(−γ2nx) f2n(z), (4.2)

where Arn and Atn for n = 0, 1, 2, . . . are the unknown amplitudes associated with the
reflected and transmitted waves, whereas Ai is known incident wave amplitude. The
vertical eigenfunctions fj0(z) are given by (cf. (3.1))

fj0(z) =

⎧⎪⎪⎨
⎪⎪⎩

−cosh kj0(z − h0)

sinh kj0h0
for 0 ≤ z < h0,

cosh kj0(z + hj)

sinh kj0hj
for − hj < z < 0,

(4.3)
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for j = 1, 2. The vertical eigenfunctions fjn for n = 1, 2, 3, . . . can be obtained similarly
by replacing the wavenumber kjn with iγjn. Substituting (4.1) and (4.2) in (2.5), we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
k10

(1 + R0) f10(z) +
∞∑

n=1

1
γ1n

Rn f1n(z)

= i
k20

T0 f20(z) +
∞∑

n=1

1
γ2n

Tn f2n(z) for − h2 < z < h0,

i(1 − R0) f10(z) +
∞∑

n=1

Rn f1n(z)

=
{

iT0 f20(z) −
∞∑

n=0

Tn f2n(z)

}
H(z + h2) for − h1 < z < h0,

(4.4)

where Rn = Arn/Ai and Tn = Atn/Ai. Similarly, substituting (4.1) and (4.2) in (2.6) yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i
k10

(1 + R0) f10(z) +
∞∑

n=1

1
γ1n

Rn f1n(z)

= i
k20

T0 f20(z) +
∞∑

n=1

1
γ2n

Tn f2n(z) for − h1 < z < h0,{
−(1 − R0) f10(z) +

∞∑
n=1

Rn f1n(z)

}
H(z + h1)

= −T0 f20(z) −
∞∑

n=0

Tn f2n(z) for − h2 < z < h0.

(4.5)

5. Results and discussions

Here, we apply the formulae derived in the previous section to the analysis of
transformation coefficients setting the following parameters: ρ2 = 1025 kg m−3, g =
9.81 m s−2 and a = 0.9, unless otherwise mentioned below. The infinite sums in (A11)
and (A12) are truncated to contain a finite number of terms, N. A convergence study on
transformation coefficients has been made to determine an appropriate number of terms N
for the subsequent analysis.

Tables 1–3 show that 400 evanescent modes for h2/h1 < 1 and 200 evanescent modes
for h2/h1 > 1 are quite sufficient to get five decimal places accuracy in the transformation
coefficients, irrespective of the ratio of water depths.

Figure 2 demonstrates the variations of the reflection and transmission coefficients as
functions of the water depth ratio h2/h1 (0.01 < h2/h1 < 100) for different values of
dimensionless wavenumber κ = kh1 with h0/h1 = 0.1. It shows that a significant amount
of wave energy is reflected and transmitted when h2/h1 < 1. Besides, the transmission
coefficient Kt is greater than 1 for certain values of h2/h1 < 1, irrespective of the values
of κ . However, for large values of κ , e.g. for κ = 10, the transmission coefficient is a
non-monotonic function of depth ratio in the range h2/h1 < 1. This phenomenon has been
revealed both for surface (Kurkin et al. 2015) and internal (Churaev et al. 2015) waves.
In figure 2, we present the reflection and transmission coefficients obtained both within the
current study and with the help of approximate formulae proposed in Churaev et al. (2015)
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Transformation of internal waves on a bottom step

N Kr Kt

50 0.1238896 1.1422038
100 0.1238771 1.1422056
150 0.1238730 1.1422061
200 0.1238710 1.1422064
250 0.1238698 1.1422066
300 0.1238690 1.1422067
350 0.1238689 1.1422067

(a) h2/h1 = 0.1

N Kr Kt

10 0.0014261 1.0001303
50 0.0014261 1.0001303
100 0.0014261 1.0001303

(b) h2/h1 = 10

Table 1. Convergence study for two different values of h2/h1 with κ = 1 and h0/h1 = 0.1.

N Kr Kt

50 0.3177156 1.3004093
100 0.3184318 1.3000798
150 0.3183826 1.3001024
200 0.3183763 1.3001053
250 0.3183638 1.3001111
300 0.3183765 1.3001053
350 0.3183683 1.3001091
400 0.3183663 1.3001100
450 0.3183663 1.3001100

(a) h2/h1 = 0.1

N Kr Kt

10 0.0507847 1.0216736
50 0.0507847 1.0216736
100 0.0507847 1.0216736

(b) h2/h1 = 10

Table 2. Convergence studies for two different values of h2/h1 with κ = 1 and h0/h1 = 1.

for a = 0.9961. Some discrepancies between the data can be explained by the influence of
the non-Boussinesq effect in our case with a = 0.9.

For h2/h1 > 1, the reflection coefficient Kr is close to zero, consequently the
transmission coefficient is close to unity for κ = 0.1, 1 and 10.

The importance of evanescent modes in the scattering phenomenon has been mentioned
in the literature; their role in the scattering of surface gravity waves in a homogeneous
fluid was studied in Kurkin et al. (2015). In figure 3, we show excitation coefficients
Arj/Ai, for j = 1, . . . , 5, of the first five evanescent wave modes that appear on the left
from the bottom step edge for three values of κ as functions of the depth ratio h2/h1.
Figure 3 reveals that the excitation coefficients, being rather small, attain maxima for
certain values of h2/h1 < 1. The role of higher-order evanescent modes hardly becomes
visible regardless of the thickness of the lower layer h2. Noticeably, the coefficients Arj/Ai,
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N Kr Kt

50 0.2988206 1.2591978
100 0.2988096 1.2592023
150 0.2988084 1.2592028
200 0.2988079 1.2592030
250 0.2988077 1.2592031

(a) h2/h1 = 0.1

N Kr Kt

10 0.0192953 1.0578001
50 0.0208304 1.0577112
100 0.0208869 1.0577088
150 0.0208974 1.0577083
200 0.0209011 1.0577082
250 0.0209028 1.0577081
300 0.0209028 1.0577081

(b) h2/h1 = 10

Table 3. Convergence studies for two different values of h2/h1 with κ = 1 and h0/h1 = 10.

10–2 10–1 100 101

h2/h1

K
r a

n
d
 K

t

102

κ = 0.1

κ = 1

κ = 10

0

0.25

0.50

0.75

1.00

1.25

1.50
Kt

Kr

1.75

2.00

Figure 2. Variations of the reflection coefficient Kr and transmission coefficient Kt for different values of the
dimensionless wavenumber κ for h0/h1 = 0.1 and a = 0.9. Colour dots show the results derived with the help
of the approximate formulae proposed in Churaev et al. (2015) for a = 0.9961.

j = 1, . . . , 5, possess multiple zero minima with maxima in the interim for h2/h1 < 1;
then they smoothly approach small constant values when h2/h1 becomes greater than 1.
As follows from figure 3, the dependence of excitation coefficients Arj/Ai on h2/h1
qualitatively is the same for all three values of κ . However, their values at κ = 1 are much
greater than at κ = 0.1 or at κ = 10. In all cases, the amplitude of the first evanescent mode
Ar1/Ai is noticeably greater than amplitudes of other evanescent modes with j > 1. This
supports Miles’ idea (Miles 1967) that the first evanescent mode plays a dominant role,
and transformation coefficients can be evaluated with an acceptable accuracy by using
only one first evanescent mode in the sums of (A11) and (A12). This idea was realised in
Kurkin et al. (2015).

Figures 4 and 5, as well as figures 6 and 7, show the same dependences as in figures 2 and
3 but for h0/h1 = 1 and h0/h1 = 10, respectively. However, the reflection and transmission
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Figure 3. Variations of the first six excitation coefficients associated with the reflected wave amplitudes Arj/Ai,
j = 1, 2, . . . , 5, versus depth ratio h2/h1 for different values of dimensionless wavenumber κ for h0/h1 = 0.1:
(a) κ = 0.1, (b) κ = 1, (c) κ = 10.

coefficients become greater in the range h2/h1 < 1 when the ratio h0/h1 increases.
A simultaneous increase of the reflection and transmission coefficients does not contradict
the energy flux conservation because the increase in wave amplitude is accompanied by a
decrease in the wavelength.

One can notice that fewer numbers of zero minima and maxima occur for h2/h1 < 1
when h0/h1 increases from 0.1 to 10.

Noticeably, figures 2, 4 and 6 show that practically complete wave transmission occurs
when h2/h1 becomes greater than unity, regardless of the depth of the interface from the
rigid surface h0. When the pycnocline position becomes closer to the bottom so that h0/h1
is too big, and the depth ratio h2/h1 is too small, a numerical solution of the systems
(A11) and (A12) becomes difficult and even impossible. Apparently, this happens because
the main matrix of the system becomes ill-conditioned. In particular, we were unable to
obtain a numerical solution for h0/h1 = 10 when κ = 10 and h2/h1 < 0.03 (see figure 6).
Apparently, a more advanced asymptotic analysis is needed to get solutions for small and
large depth ratios. Note that the approximate formulae derived in Churaev et al. (2015) are
in good agreement with the analytical formulae developed here for h2/h1 > 1, irrespective
of the pycnocline position and non-dimensional wavenumber.
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Figure 4. The same as in figure 2 but for h0/h1 = 1.
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Figure 5. The same as in figure 3 but for h0/h1 = 1: (a) κ = 0.1, (b) κ = 1, (c) κ = 10.

It is interesting to note that while the first evanescent mode with the coefficient Ar1
predominates in figures 7(a) and 7(b) for κ = 0.1 and κ = 1 when h2/h1 < 1, the second
evanescent mode with the coefficient Ar2 predominates in figure 7(c) for kh0 = 10. Note
that for small h2/h1, the excitation coefficient of the third mode becomes predominant in
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Figure 6. The same as in figure 2 but for h0/h1 = 10.
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Figure 7. The same as in figure 3 but for h0/h1 = 10: (a) κ = 0.1, (b) κ = 1, (c) κ = 10.

the case of deep-water waves shown in figures 5(c) and 7(c). Figures 3, 5 and 7 provide an
estimate of considering a higher number of evanescent modes to obtain the transformation
coefficients for a given accuracy. It may be noted that in Churaev et al. (2015), the authors
studied the transformation problem on the basis of the heuristic formula leaving aside the
evanescent modes.
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Figure 8. Influence of the density ratio a on transmission coefficients Kr and Kt for h0/h1 = 0.1 and κ = 1.

0

0.5

1.0

1.5

2.0

0

0.05

0.10

10–2 10–1 100 101 102

h2/h1

K
r a

n
d
 K

t

a = 0.40

a = 0.65

a = 0.97Kt

Kr
Kr

10110–1 100

Figure 9. The same as in figure 8 but with h0/h1 = 1.
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Figure 10. The same as in figure 8 but with h0/h1 = 10.

Figures 8–10 demonstrate the influence of the density ratio a = ρ1/ρ2 on the reflection
and transmission coefficients for different values of the depth ratio h0/h1 with κ = 1.
Qualitatively, the shown dependences are similar: the smaller the parameter a, the bigger
the transmission coefficient and the smaller the reflection coefficient. The influence of
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Transformation of internal waves on a bottom step

this parameter is noticeable only for h2/h1 < 1. The analysis of these three figures reveals
that the reflection coefficient Kr has a minimum that can be zero not only at h2/h1 = 1.
In particular, Kr = 0 at h2/h1 ≈ 0.15 in the case a = 0.4 (see figure 8). Positions of
secondary minima depend on the relative depth of a pycnocline that is characterised by the
parameter h2/h1; minima of Kr can occur at h2/h1 > 1 as illustrated by figures 9 and 10.

To conclude this section, we mention that in all calculations presented above, the
quantity F defined in (A22) was indistinguishable from 1 up to the numerical accuracy.

6. Concluding remarks

In this paper, we have addressed a gap in the derivation of transformation coefficients
for internal waves in a two-layer fluid due to scattering on the underwater step. This
study extends earlier known results (Grimshaw et al. 2008) for long internal waves in a
two-layer fluid. For fluid of arbitrary depth and density ratio, we have derived an infinite
set of equations for the transmission and reflection coefficients, as well as for the excitation
coefficients of evanescent modes localised on both sides of the bottom step edge. This set
of equations was solved numerically after truncation with a finite number N of equations.
The number of equations in our calculations attained N = 450 (see table 2), but in fact
can be much fewer because the amplitudes of evanescent modes quickly decrease with
mode number. We presented the analysis of transformation coefficients for the different
dimensionless wavenumbers of an incident wave κ = kh1, different relative depths of a
pycnocline h0/h1, and different values of the density ratio a = ρ1/ρ2. We have derived
the relationship between the transmission and reflection coefficients that constitute the
energy flux conservation, and show that the theoretical and numerical data agree well
with this law; this can be considered as an independent validation of the results obtained.
In such fullness, the problem of internal wave transformation on a bottom step has not
been studied thus far even in the linear approximation.

The constructed transformation coefficients and their dependences on parameters agree
well with earlier obtained results of the direct numerical modelling of internal wave
transformation and approximate heuristic formulae (Churaev et al. 2015), as well as with
the results obtained for surface waves in a homogeneous fluid (Kurkin et al. 2015). We have
also demonstrated that Miles’ idea (Miles 1967) to use only one first evanescent mode to
calculate the transformation coefficients analytically can be quite acceptable when high
accuracy is not required. However, an important question on the character of amplitude
decay of evanescent modes with the mode number remains open; this can be a matter for
a separate study.

It is worthwhile mentioning that the derived formulae are free from the Boussinesq
approximation and can be used for any density ratio a = ρ1/ρ2 of fluid layers. Such
situations when the Boussinesq approximation becomes inapplicable can be met in
some technological processes where fluids of different densities are considered. Other
examples can occur in oceans. As is well known, nowadays oil spill accidents rather
often occur in oceans leading to the two-layer oil–water fluid with density ratio ρ1/ρ2 ≈
0.8–0.9. Another example when the Boussinesq approximation becomes inapplicable is
the interface between clean water overlaying a mud layer near the bottom with a big density
difference between the layers.

Further development of the results obtained can be associated with the influence of
nonlinearity on wave transformation. The nonlinear effects in the internal solitary wave
transformation on a bottom step were studied in Grimshaw et al. (2008) and Maderich
et al. (2009, 2010) in the long-wave approximation. It is also a matter of interest to consider
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a transformation of internal envelope solitons and breathers on the underwater step similar
to what was considered for surface waves (Ducrozet, Slunyaev & Stepanyants 2021).

We have studied here a model problem of wave transformation on the stepwise bottom
topography with sharp change of the depth. In the opposite limit when the topography
is smooth compared to the wavelength, the traditional WKB approximation can be used.
For some particular bottom profiles, exact solutions can be obtained (see e.g. Churilov &
Stepanyants (2022a,b) and references therein).
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Appendix. Numerical determining of the transformation coefficients and coefficients
of evanescent mode excitation

Equations (4.4) and (4.5) represent an infinite system of equations with an infinite number
of unknowns, which include the reflected and transmitted wave amplitudes R0 and T0,
respectively, and coefficients of excitation of evanescent modes Rn and Tn for n ≥ 1.
The approach for resolving such systems was outlined initially in the seminal work of
Takano (1960), and subsequently adapted to solutions of similar problems (see e.g. Takano
1967; Massel 1989; Dingemans 1997; Kurkin et al. 2015; Meylan & Stepanyants 2024).
Employing this methodology, we integrate each equation over the vertical coordinate z
from the bottom to the rigid lid, incorporating appropriately selected weights from the
vertical eigenfunctions denoted as fjn(z).

The methodology proposed by Takano (1960) involves a sequence of orthogonal
functions appropriate for the dispersion characteristics of surface gravity waves. However,
this framework does not hold for internal gravity waves. Therefore, we integrate the system
(2.5) over z with suitably chosen weight functions:

h1 > h2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ h0

−h2

φ1(0, z) f2m(z) dz =
∫ h0

−h2

φ2(0, z) f2m(z) dz,

∫ h0

−h1

φ1x(0, z) f1m(z) dz =
∫ h0

−h1

φ2x(0, z) f1m(z) H(z + h2) dz.

(A1)

Similarly, we integrate the system (2.6):

h1 < h2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ h0

−h1

φ1(0, z) f1m(z) dz =
∫ h0

−h1

φ2(0, z) f1m(z) dz,

∫ h0

−h2

φ1x(0, z) f2m(z) H(z + h1) dz =
∫ h0

−h2

φ2x(0, z) f2m(z) dz.

(A2)

1002 A49-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

12
12

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-0590-5442
https://orcid.org/0000-0003-0590-5442
https://orcid.org/0000-0003-4546-0310
https://orcid.org/0000-0003-4546-0310
https://doi.org/10.1017/jfm.2024.1212


Transformation of internal waves on a bottom step

Using (4.1) and (4.4), and taking into account the Heaviside functions that shift the limits
of integration, (A1) is rewritten as

i
k10

(1 + R0)

[∫ 0

−h2

cosh k10(z + h1) cosh k2m(z + h2)

sinh k10h1 sinh k2mh2
dz

+
∫ h0

0

cosh k10(z − h0) cosh k2m(z − h0)

sinh k10h0 sinh k2mh0
dz

]

+
∞∑

n=1

1
k1n

Rn

[∫ 0

−h2

cosh k1n(z + h1) cosh k2m(z + h2)

sinh k1nh1 sinh k2mh2
dz

+
∫ h0

0

cosh k1n(z − h0) cosh k2m(z − h0)

sinh k1nh0 sinh k2mh0
dz

]

= i
k20

T0

[∫ 0

−h2

cosh k20(z + h2) cosh k2m(z + h2)

sinh k20h2 sinh k2mh2
dz

+
∫ h0

0

cosh k20(z − h0) cosh k2m(z − h0)

sinh k20h0 sinh k2mh0
dz

]

+
∞∑

n=1

1
k2n

Tn

[∫ 0

−h2

cosh k2n(z + h2) cosh k2m(z + h2)

sinh k2nh2 sinh k2mh2
dz

+
∫ h0

0

cosh k2n(z − h0) cosh k2m(z − h0)

sinh k2nh0 sinh k2mh0
dz

]
(A3)

and

− (1 − R0)

[∫ 0

−h1

cosh k10(z + h1) cosh k1m(z + h1)

sinh k10h1 sinh k1mh1
dz

+
∫ h0

0

cosh k10(z − h0) cosh k1m(z − h0)

sinh k10h0 sinh k1mh0
dz

]

+
∞∑

n=1

Rn

[∫ 0

−h1

cosh k1n(z + h1) cosh k1m(z + h1)

sinh k1nh1 sinh k1mh1
dz

+
∫ h0

0

cosh k1n(z − h0) cosh k1m(z − h0)

sinh k1nh0 sinh k1mh0
dz

]

= −T0

[∫ 0

−h2

cosh k20(z + h2) cosh k1m(z + h1)

sinh k20h2 sinh k1mh1
dz

+
∫ h0

0

cosh k20(z − h0) cosh k1m(z − h0)

sinh k20h0 sinh k1mh0
dz

]
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−
∞∑

n=1

Tn

[∫ 0

−h2

cosh k2n(z + h2) cosh k1m(z + h1)

sinh k2nh2 sinh k1mh1
dz

+
∫ h0

0

cosh k2n(z − h0) cosh k1m(z − h0)

sinh k2nh0 sinh k1mh0
dz

]
. (A4)

Similarly, using (4.1) and (4.4), (A2) can be rewritten as

i
k10

(1 + R0)

[∫ 0

−h1

cosh k10(z + h1) cosh k1m(z + h1)

sinh k10h1 sinh k1mh1
dz

+
∫ h0

0

cosh k10(z − h0) cosh k1m(z − h0)

sinh k10h0 sinh k1mh0
dz

]

+
∞∑

n=1

1
k1n

Rn

[∫ 0

−h1

cosh k1n(z + h1) cosh k1m(z + h1)

sinh k1nh1 sinh k1mh1
dz

+
∫ h0

0

cosh k1n(z − h0) cosh k1m(z − h0)

sinh k1nh0 sinh k1mh0
dz

]

= i
k20

T0

[∫ 0

−h1

cosh k20(z + h2) cosh k1m(z + h1)

sinh k20h2 sinh k1mh1
dz

+
∫ h0

0

cosh k20(z − h0) cosh k1m(z − h0)

sinh k20h0 sinh k1mh0
dz

]

+
∞∑

n=1

1
k2n

Tn

[∫ 0

−h1

cosh k2n(z + h2) cosh k1m(z + h1)

sinh k2nh2 sinh k1mh1
dz

+
∫ h0

0

cosh k2n(z − h0) cosh k1m(z − h0)

sinh k2nh0 sinh k1mh0
dz

]
(A5)

and

− (1 − R0)

[∫ 0

−h1

cosh k10(z + h1) cosh k2m(z + h2)

sinh k10h1 sinh k2mh2
dz

+
∫ h0

0

cosh k10(z − h0) cosh k2m(z − h0)

sinh k10h0 sinh k2mh0
dz

]

+
∞∑

n=1

Rn

[∫ 0

−h1

cosh k1n(z + h1) cosh k2m(z + h2)

sinh k1nh1 sinh k2mh2
dz

+
∫ h0

0

cosh k1n(z − h0) cosh k2m(z − h0)

sinh k1nh0 sinh k2mh0
dz

]
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Transformation of internal waves on a bottom step

= −T0

[∫ 0

−h2

cosh k20(z + h2) cosh k2m(z + h2)

sinh k20h2 sinh k2mh2
dz

+
∫ h0

0

cosh k20(z − h0) cosh k2m(z − h0)

sinh k20h0 sinh k2mh0
dz

]

−
∞∑

n=1

Tn

[∫ 0

−h2

cosh k2n(z + h2) cosh k2m(z + h2)

sinh k2nh2 sinh k2mh2
dz

+
∫ h0

0

cosh k2n(z − h0) cosh k2m(z − h0)

sinh k2nh0 sinh k2mh0
dz

]
. (A6)

Then, it is required to calculate the following integrals:

a1)
k1nk2m

=
∫ h0

0

cosh k1n(z − h0) cosh k2m(z − h0)

sinh k1nh0 sinh k2mh0
dz,

a2)
k2nk2m

=
∫ h0

0

cosh k2n(z − h0) cosh k2m(z − h0)

sinh k2nh0 sinh k2mh0
dz,

a3)
k1nk1m

=
∫ h0

0

cosh k1n(z − h0) cosh k1m(z − h0)

sinh k1nh0 sinh k1mh0
dz,

a4)
k2nk1m

=
∫ h0

0

cosh k2n(z − h0) cosh k1m(z − h0)

sinh k2nh0 sinh k1mh0
dz,

b1)
k1nk2m

=
∫ 0

−h2

cosh k1n(z + h1) cosh k2m(z + h2)

sinh k1nh1 sinh k2mh2
dz,

b2)
k2nk2m

=
∫ 0

−h2

cosh k2n(z + h2) cosh k2m(z + h2)

sinh k2nh2 sinh k2mh2
dz,

b3)
k1nk1m

=
∫ 0

−h1

cosh k1n(z + h1) cosh k1m(z + h1)

sinh k1nh1 sinh k1mh1
dz,

b4)
k2nk1m

=
∫ 0

−h1

cosh k2n(z + h2) cosh k1m(z + h1)

sinh k2nh2 sinh k1mh1
dz.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A7)

In short, we need to calculate three types of integrals:

a1)−4)
αnβm

=
∫ h

0

cosh αn(z − h) cosh βm(z − h)

sinh αnh sinh βmh
dz, (A8)

b1),4)
αnβm

=
∫ 0

−h

cosh αn(z + d) cosh βm(z + h)

sinh αnd sinh βmh
dz, (A9)

b2),3)
βnβm

=
∫ 0

−h

cosh βn(z + h) cosh βm(z + h)

sinh βnh sinh βmh
dz. (A10)

Here, h is an arbitrary constant, which may be either h0, or h1 or h2. Note that d is also
an arbitrary constant such that d /= h. For example, if h = h1, then d = h2, and vice versa.
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Consequently, (A3) and (A4) in the case h1 ≥ h2 reduce to the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iR0

k10

[
b1)

k10k2m
+ a1)

k10k2m

]
+

∞∑
n=1

Rn

k1n

[
b1)

k1nk2m
+ a1)

k1nk2m

]
− iT0

k20

[
b2)

k20k2m
+ a2)

k20k2m

]

−
∞∑

n=1

Tn

k2n

[
b2)

k2nk2m
+ a2)

k2nk2m

]
= − i

k10

[
b1)

k10k2m
+ a1)

k10k2m

]
,

−R0

[
b3)

k10k1m
+ a3)

k10k1m

]
−

∞∑
n=1

Rn

[
b3)

k1nk1m
+ a3)

k1nk1m

]

− T0

[
b4)

k20k1m
H(z + h2) + a4)

k20k1m

]
−

∞∑
n=1

Tn

[
b4)

k2nk1m
H(z + h2) + a4)

k2nk1m

]
= −

[
b3)

k10k1m
+ a3)

k10k1m

]
.

(A11)

Proceeding similarly, (A5) and (A6) for h1 ≤ h2 reduce to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iR0

k10

[
b3)

k10k1m
+ a3)

k10k1m

]
+

∞∑
n=1

Rn

k1n

[
b3)

k1nk1m
+ a3)

k1nk1m

]
− iT0

k20

[
b4)

k20k1m
+ a4)

k20k1m

]

−
∞∑

n=1

Tn

k2n

[
b4)

k2nk1m
+ a4)

k2nk1m

]
= − i

k10

[
b3)

k10k1m
+ a3)

k10k1m

]
,

−R0

[
b1)

k10k2m
H(z + h1) + a1)

k10k2m

]
−

∞∑
n=1

Rn

[
b1)

k1nk2m
H(z + h1) + a1)

k1nk2m

]

− T0

[
b2)

k20k2m
+ a2)

k20k2m

]
−

∞∑
n=1

Tn

[
b2)

k2nk2m
+ a2)

k2nk2m

]
= −

[
b1)

k10k2m
H(z + h1) + a1)

k10k2m

]
.

(A12)

Here, the integrals a1)−4)
αnβm

, b1),4)
αnβm

and b2),3)
βnβm

are evaluated as

a1)−4)
αnβm

=
∫ h

0

cosh αn(z − h) cosh βm(z − h)

sinh αnh sinh βmh
dz

=

⎧⎪⎪⎨
⎪⎪⎩

αn coth βmh − βm coth αnh
α2

n − β2
m

for αn /=βm,

e4αnh + 4αnh e2αnh − 1
2αn(1 − e2αnh)2 for αn = βm,

(A13)

b1),4)
αnβm

=
∫ 0

−h

cosh αn(z + d) cosh βm(z + h)

sinh αnd sinh βmh
dz,

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αn{sinh αn(h − d) + cosh βmh sinh αnd}
+βm sinh βmh cosh αnd

sinh βmh sinh αnd (α2
n − β2

m)
for αn /=βm,

coth αnd{1 + hαn coth αnh} − αnh
2αn

for αn = βm,

(A14)
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Transformation of internal waves on a bottom step

b2),3)
βnβm

=
∫ 0

−h

cosh βn(z + h) cosh βm(z + h)

sinh βnh sinh βmh
dz,

=

⎧⎪⎪⎨
⎪⎪⎩

βn coth βmh − βm coth βnh
(β2

n − β2
m)

for βm /=βn,

e4βnh + 4βnh e2βnh − 1
2βn(1 − e2βnh)2 for βn = βm.

(A15)

It is important to emphasize that when dealing with gravitational waves at the interface
between two layers of arbitrary density, the eigenfunctions fjm, j = 1, 2, associated with
the set of propagating and evanescent wave modes defined by the dispersion relation (3.2)
are generally non-orthogonal. However, if we restrict our analysis to fluids with almost the
same densities (in the Boussinesq approximation; Brekhovskikh & Goncharov 1994), then
the eigenfunctions become orthogonal, and the corresponding dispersion relation (3.2)
reduces to

ω2 = g′kj

a coth kjh0 + coth kjhj
, (A16)

where g′ = (1 − a)g is the reduced acceleration due to gravity. In this case, the following
relationship holds:

αn coth βmh0 − βm coth αnh0 + αn coth βmh1 − βm coth αnh1

= αn(coth βmh0 + coth βmh1) − βm(coth αnh0 + coth αnh1)

= αnβmg′/ω2 − βmαng′/ω2 = 0. (A17)

This leads to the identity a1)−4)
βnβm

+ b2),3)
βnβm

= 0 for n /= m. However, for the sake of
generality, such a simplification will not be used in further calculations.

Next, we evaluate integrals in (A11):

a1)
k1nk2m

+ b1)
k1nk2m

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1n{sinh k1n(h1 − h2) − cosh k2mh2 sinh k1nh1}
+ k2m cosh k1nh1 sinh k2mh2

sinh k1nh1 sinh k2mh2(k2
2m − k2

1n)

− k1n coth k2mh0

k2
2m − k2

1n
+ k1nk2m cosh k2mh0 coth k1nh0

k2
2m − k2

1n
for k1n /= k2m,

e4k1nh0 + 4k1nh0 e2k1nh0 − 1
2k1n(1 − e2k1nh0)2

+ coth k1nh1 {1 + k1nh2 coth k1nh2} − k1nh2

2k1n
for k1n = k2m,

(A18)
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a2)
k2nk2m

+ b2)
k2nk2m

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k2m coth k2nh0

k2
2m − k2

1n
− k2n coth k2mh2

k2
2m − k2

2n
− k2n coth k2mh0

k2
2m − k2

1n
+ k2m coth k2nh2

k2
2m − k2

2n
for m /= n,

e4h0k2m + 4k2mh0 e2k2mh0 − 1
2k2m(e2k2mh0 − 1)2 + e4h2k2m + 4k2mh2 e2h2k2m − 1

2k2m(e2k2mh2 − 1)2 for m = n,

(A19)

a3)
k1nk1m

+ b3)
k1nk1m

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k1m(coth k1nh0 − coth k1nh1) − k1n(coth k1mh1 + coth k1mh0)

k2
1m − k2

1n
for m /= n,

e4k1nh0 + 4k1nh0 e2k1nh0 − 1
2k1n(e2k1nh0 − 1)2 + e4k1nh1 + 4k1nh1 e2k1nh1 − 1

2k1n(e2k1nh1 − 1)2 for m = n,

(A20)

a4)
k2nk1m

H(z + h2) + b4)
k2nk1m

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−k1m{sinh k1m(h1 − h2) − cosh k2nh2 sinh k1mh1} + k2n cosh k1mh1 sinh k2nh2

sinh k1mh1 sinh k2nh2 (k2
1m − k2

2n)

+ k1m coth k2nh0 − k2n coth k1mh0

k2
1m − k2

2n
for k1m /= k2n,

e4k2nh0 + 4k2nh0 e2k2nh0 − 1
2k2n(1 − e2k2nh0)2 − h2

2

+ cosh k2nh1 {sinh k2nh2 + k2nh2 cosh k2nh2}
2k2n sinh k2nh1 sinh k2nh2

for k1n = k2m.

(A21)

Subsequently, by solving a finite system of linear equations as in each of (A11) and (A12)
for a finite number of sum terms, say N, the unknowns Rn and Tn can be determined. It is
pertinent to note that the reflection and transmission coefficients Kr and Kt are defined as
Kr = |Rn| and Kt = |Tn|.

It can be easily verified that the reflection coefficient Kr and the transmission coefficient
Kt satisfy the energy balance relation

F ≡ K2
r + χK2

t = 1, (A22)

where χ = cg(kt)/cg(ki) is the ratio of group speeds of transmitted and incident waves.
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