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Transformation Formulas for Bilinear Sums
of Basic Hypergeometric Series
Dedicated to Professor Richard Askey for his 80th birthday

Yasushi Kajihara

Abstract. A master formula of transformation formulas for bilinear sums of basic hypergeometric
series is proposed. It is obtained from the author’s previous results on a transformation formula for
Milne’s multivariate generalization of basic hypergeometric series of type A with diòerent dimen-
sions and it can be considered as a generalization of the Whipple–Sears transformation formula for
terminating balanced 4ϕ3 series. As an application of the master formula, the one-variable cases of
some transformation formulas for bilinear sums of basic hypergeometric series are given as exam-
ples. _e bilinear transformation formulas seem to be new in the literature, even in the one-variable
case.

1 Introduction

Classical orthogonal polynomials (or orthogonal polynomials of (basic) hypergeo-
metric type), which notion was introduced in G. E. Andrews and R. Askey [2], have
been investigated in various aspects, and important applications to other branches of
mathematics and related areas were found. Askey and Wilson [3] arranged the clas-
sical orthogonal polynomials for q = 1 in a scheme that soon became known as the
Askey scheme. A q-Askey scheme was also arranged. _e ûrst published version of
the Askey scheme is in [14], which was presented at the Bar-Le-Duc conference. For
the proofs of various properties of these polynomials, transformation and summation
formulas of (basic) hypergeometric series turned out to be useful.

On the other hand, S. C. Milne [15] has introduced a class of multivariate gener-
alizations of basic hypergeometric series that are nowadays called An basic hyperge-
ometric series (or basic hypergeometric series in SU(n + 1)). Transformation and
summation formulas for An hypergeometric series including their elliptic generaliza-
tion, and applications to other branches in mathematics and related areas have been
investigated by many authors.
Among these results, the author [8] obtained a number of transformation formulas

that relate (mainly basic) hypergeometric series of type A with diòerent dimensions
(see also [7, 9–11]). In this paper, we propose a master formula (see (3.1)) of transfor-
mation formulas for bilinear sums of basic hypergeometric series. We obtain it from
our previous results on the Euler transformation formula [8] for basic hypergeometric
series of type A with diòerent dimensions, and it can be considered a generalization
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Transformation Formulas for Bilinear Sums of Basic Hypergeometric Series 137

of the Whipple–Sears transformation formula:

(1.1) 4ϕ3[
a, b, c, q−N

d , e , f , ; q ; q] = (e/a, de/bc)N

(e , de/abc)N
4ϕ3[

a, d/b, d/c
d , d f /bc, de/bc ; q ; q] ,

(abc = de f qN−1)

for terminating balanced 4ϕ3 series. As an application of the master formula (3.1), we
give one-variable cases of some transformation formulas for bilinear sums of basic
hypergeometric series as examples. _e bilinear transformation formulas involve a
high degree of freedom of parameters and seem to be new in the literature, even in
the one-variable case. What is remarkable is that transformations for strictly multi-
variate basic hypergeometric series of type A, especially with diòerent dimensions,
may shed light on future investigations of basic hypergeometric series and related
classical orthogonal polynomials, even in the one variable case. It is expected that the
bilinear transformations in this paper will have applications to the moment represen-
tations (see Ismail and Stanton [5,6]) and the Poisson kernel (see Rahman [18,19]) for
classical orthogonal polynomials. Furthermore, it would be interesting if the bilinear
transformations could be useful for a deeper understanding of fundamental proper-
ties of classical orthogonal polynomials (see the lecture notes by Askey [1]), such as
orthogonality, addition formulas (see Noumi and Mimachi [17]), linearization of the
products, connection coeõcients, positivity, and, in particular, convolution structures
(see Koelink and van der Jeugt [13]).

2 Notation and Terminology

In this section, we give some notation for basic hypergeometric series, and we recall
a result of our previous work [8]. In this paper we basically follow the notation from
the book by Gasper and Rahman [4]. Let q be a complex number under the condition
0 < ∣q∣ < 1. Deûne the q-shi�ed factorial as

(a)∞ ∶= (a; q)∞ = ∏
n∈N

(1 − aqn), (a)k ∶= (a; q)k =
(a)∞

(aqk)∞
for k ∈ C.

Unless otherwise indicated, we omit the basis q. We will write

(a1 , a2 , . . . , an)k ∶= (a1)k(a2)k ⋅ ⋅ ⋅ (an)k .

We denote the basic hypergeometric series n+1ϕn as

n+1ϕn[
a0 , {a i}n
{c i}n

; q ; u] ∶= n+1ϕn[
a0 , a1 , . . . , an
c1 , . . . , cn

; q ; u] = ∑
k∈N

(a0 , a1 , . . . , an)k

(q, c1 , . . . , cn)k
uk .

A n+1ϕn series is called well-poised if a0q = a1c1 = ⋅ ⋅ ⋅ = ancn . In addition, if
a1 = q√a0 and a2 = −q√a0, then the r+1ϕr is called very well-poised. _roughout
this paper, we denote the very well-poised basic hypergeometric series r+1ϕr as r+1Wr
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series deûned as follows:

n+1ϕn[
a0 , q

√a0 , −q
√a0 , a3 , . . . , an√a0 , −
√a0 , a0q/a3 , . . . , a0q/an

; q ; u]

= ∑
k∈N

1 − a0q2

1 − a0
(a0)k(a3)k ⋅ ⋅ ⋅ (an)k

(q)k(a0q/a3)k ⋅ ⋅ ⋅ (a0q/an)k
uk

∶= n+1Wn[a0 ; a3 , . . . , an ; q ; u].

Our fundamental tool to derive the master formula (3.1) will be the multiple Euler
transformation formula for basic hypergeometric series of type A.

_eorem 2.1 ([8, _eorem 1.1])

∑
γ∈Nn

u∣γ∣∆(xq
γ)

∆(x) ∏
1≤i ,
j≤n

(a jx i/x j)γ i

(qx i/x j)γ i

∏
1≤i≤n ,
1≤k≤m

(bkx i yk)γ i

(cx i yk)γ i

= (ABu/cm)∞
(u)∞

∑
δ∈Nm

( ABu
cm

)
∣δ∣∆(yqδ)

∆(y)

× ∏
1≤k ,
l≤m

((c/b l)yk/y l)δk
(qyk/y l)δk

∏
1≤i≤n ,
1≤k≤m

((c/a i)x i yk)δk
(cx i yk)δk

(2.1)

where A ∶= a1a2 ⋅ ⋅ ⋅ an , B ∶= b1b2 ⋅ ⋅ ⋅ bm and

∆(x) ∶= ∏
1≤i< j≤n

(x i − x j) and ∆(xqγ) ∶= ∏
1≤i< j≤n

(x iqγ i − x jqγ j)

are the Vandermonde determinant for the sets of variables x = (x1 , . . . , xn) and xγ =
(x1qγ1 , . . . , xnqγn), respectively.

Remark 2.1 In the case m = n = 1 and x1 = y1 = 1, (2.1) reduces to the third Heine
transformation formula for basic hypergeometric series 2ϕ1 (a basic analogue of Euler
transformation formula for the Gauss hypergeometric series 2F1):

2ϕ1[
a, b
c ; q ; u] = (abu/c)∞

(u)∞ 2ϕ1[
c/b, c/a
c ; q ; abu/c] .

Here we present themultiple Euler transformation formula (2.1) in a slightly diòer-
ent expression than in [8]. We note that (2.1) is valid for any pair of positive integers n
andm, and (2.1) is a transformation formula between An m+1ϕm series and Am n+1ϕn
series. _e deûnitions and terminology for An basic hypergeometric series can be
found in [10].

3 Master Formula

In this section, we present the master formula (3.1).
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First, notice that (2.1) is an identity for formal power series of the variable u. Set
the homogeneous part in An basic hypergeometric series in (2.1) as Φn ,m

N :

Φn ,m
N ( {a i}n

{x i}n
∣ {bk yk}m
{cyk}m

) ∶= ∑
γ∈Nn ,
∣γ∣=N

∆(xqγ)
∆(x)

× ∏
1≤i ,
j≤n

(a jx i/x j)γ i

(qx i/x j)γ i

∏
1≤i≤n ,
1≤k≤m

(bkx i yk/xn ym)γ i

(cx i yk/xn ym)γ i

.

_e multiple Euler transformation (2.1) can be expressed in terms of Φn ,m
N . Namely,

it can be stated as

∑
K∈N

Φn ,m
K ( {a i}n1

{x i}n1
∣ {bk yk}m1
{cyk}m1

)uK = (ABu/cm)∞
(u)∞

× ∑
L∈N

Φm ,n
L ( {c/bk}m1

{yk}m1
∣ {(c/a i)x i}n1

{cx i}n1
)( ABu

cm
)

L
.

Now consider the product of the multiple series

( ∑
K∈N

Φn1 ,m1
K ( {a i}n1

{x i}n1
∣ {bk yk}m1
{cyk}m1

)uK )

× ( ∑
L∈N

Φn2 ,m2
L ( { f /ep}n2

{zp}n2
∣ {( f /ds)ws}m2

{ f ws}m2
)( f

n2u
DE

)
L
) ,

under the restriction AB/cm1 = DE/ f n2 . By virtue of multiple Euler transformation
(2.1), we obtain the following formal power series identity of variable u under the
condition above:

( ∑
K∈N

Φn1 ,m1
K ( {a i}n1

{x i}n1
∣ {bk yk}m1
{cyk}m1

)uK )

× ( ∑
L∈N

Φn2 ,m2
L ( { f /ep}n2

{zp}n2
∣ {( f /ds)ws}m2

{ f ws}m2
)( f

n2u
DE

)
L
)

= ( ∑
K∈N

Φm1 ,n1
K ( {c/bk}m1

{yk}m1
∣ {(c/a i)x i}n1

{cx i}n1
)( c

m1u
AB

)
K
)

× ( ∑
L∈N

Φm2 ,n2
L ( {ds}m2

{ws}m2
∣ {epzp}n2

{ f zp}n2
)uL) .

By taking the coeõcient of uN in the identity above, we arrive at the following theo-
rem.

_eorem 3.1
(3.1)

∑
K∈N

Φn1 ,m1
K ( {a i}n1

{x i}n1
∣ {bk yk}m1
{cyk}m1

)Φn2 ,m2
N−K ( { f /ep}n2

{zp}n2
∣ {( f /ds)ws}m2

{ f ws}m2
)( f

n2

DE
)

N−K

= ∑
L∈N

Φm1 ,n1
L ( {c/bk}m1

{yk}m1
∣ {(c/a i)x i}n1

{cx i}n1
)Φm2 ,n2

N−L ( {ds}m2
{ws}m2

∣ {epzp}n2

{ f zp}n2
)( c

m1

AB
)

L

https://doi.org/10.4153/CMB-2015-016-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-016-8


140 Y. Kajihara

under the condition

(3.2) AB/cm1 = DE/ f n2 .

Herea�er, we call (3.1) themaster formula and (3.2) the totally balancing condition.

4 Bilinear Transformation Formulas

In this section, we present three transformation formulas for bilinear sums of basic
hypergeometric series.

One of the most remarkable and fundamental features of multiple hypergeomet-
ric series is that the homogeneous part of multiple hypergeometric series can be ex-
pressed in terms of (multiple) very well-poised hypergeometric series.

Lemma 4.1

(4.1) Φ2,m
N ( {a i}2

{x i}2
∣ {bk yk}m
{cyk}m

) = (a2)N

(q)N

(a2x2/x1)N

(x2/x1)N
∏

1≤k≤m
(bkx2 yk)N

(cx2 yk)N

× 2m+6W2m+5[q−N/x2 ; a1 , {bk yk}m , a2/x2 ,{(q1−N/x2)c−1 y−1
k }m , q−N ; q ;

cmq
a1a2B

]

and

Φ1,m
N ( a⋅ ∣

{bk yk}m
{cyk}m

) = (a)N

(q)N
∏

1≤k≤m
(bk yk)N

(cyk)N
.

Proof It is not hard to see that in the case when n = 1, Φ1,m
N is the coeõcient of uN

in the (1-dimensional) basic hypergeometric series

m+1ϕm[ a, {bk yk}m
{cyk}m

; q ; u] .

Equation (4.1) can be obtained by setting γ2 = N − γ1 and elementary series manipu-
lations.

We mention that the homogeneous part of An+1 basic hypergeometric series
Φn+1,m

N can be expressed in terms of An very well-poised basic hypergeometric se-
ries. _is fact ûrst appeared as [16, Lemma 1.22] with a slightly diòerent notation.
Readers interested in the elliptic case might also have a look at [12, Proposition 3.2]
for An elliptic hypergeometric series.
By using Lemma 4.1 and some replacements of parameters, we obtain the follow-

ing transformations for bilinear sums of very well-poised basic hypergeometric series
Φn ,m

N from the master formula (3.1).
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_e n1 = m1 = n2 = m2 = 2 case of (3.1), i.e.,

∑
K∈N

(b/t, c/t, d1/t, d2/t, σq, є, ϕ, q−N)K

(q, 1/t, q/e , q/ f , σq/β, σq/γ, σq/δ1 , σq/δ2)K
qK

× 10W9[ tq−K ; b, c, d1 , d2 , eq−K , f q−K , q−K ; q ;
t3q3

bcd1d2e f
]

× 10W9[σqK ; β, γ, δ1 , δ2 , єqK , ϕqK , qK−N ; q ;
σ 3qN+3

βγδ1δ2єϕ
]

= ϕN (σq/δ1ϕ, σq/δ2ϕ, є, σq/γϕ, σq, σq/βϕ)N

(σq/δ1 , σq/δ2 , є/ϕ, (σq/γ, σq/ϕ, σq/β)N

× ∑
L∈N

(tq/c f , tq/b f , tq/d1 f , tq/d2 f , q1−Nє/ϕ, q−Nϕ/σ , ϕ, q−N)L

(q, e/ f , tq/ f , q/ f , q−Nγϕ/σ , q−Nβϕ/σ , q−Nδ1ϕ/σ , q−Nδ2ϕ/σ)L
qL

× 10W9[q−L f /e ;
tq/ce , tq/be , tq/d1e ,

tq/d2e , f q−L/t, f q−L , q−L ; q ;
bcd1d2e f q−1

t3
]

× 10W9[qL−Nϕ/є ;
σq/γє, σq/βє, σq/δ1є, σq/δ2є,

q−N+Lϕ/σ , qLϕ, qL−N ; q ;
βγδ1δ2єϕq−N−1

σ 3 ] ,

while provided with the “totally balancing condition” (3.2), a�er the parameter sub-
stitution, becomes

t3σ 3qN+4 = bcd1d2e f βγδ1δ2єϕ.

_e n1 = m1 = n2 = 2 and m2 = 1 case of (3.1),

∑
K∈N

(b/t, c/t, d1/t, d2/t, σq, ϕ, q−N)K

(q, 1/t, q/e , q/ f , σq/β, σq/δ1 , σq/δ2)K
qK

× 10W9[ tq−K ; b, c, d1 , d2 , eq−K , f q−K , q−K ; q ;
t3q3

bcd1d2e f
]

× 8W7[σqK ; β, δ1 , δ2 , ϕqK , qK−N ; q ;
σqN+2

βδ1δ2ϕ
]

= ϕN (σq, σq/βϕ, σq/δ1ϕ, σq/δ2ϕ)N

(σq/β, σq/ϕ, σq/δ1 , σq/δ2)N

× ∑
L∈N

(tq/b f , tq/c f , tq/d1 f , tq/d2 f , q−Nϕ/σ , ϕ, q−N)L

(q, e/ f , tq/ f , q/ f , q−Nϕβ/σ , q−Nδ1ϕ/σ , q−Nδ2ϕ/σ)L
qL

× 10W9[ f q−L/e ;
tq/ce , tq/be , tq/d1e , tq/d2e ,

f q−L/t, f q−L , q−L ; q ;
bcd1d2e f q−1

t3
]

when combined with the “totally balancing condition” becomes

t3σ 2qN+3 = bcd1d2e f βδ1δ2ϕ.

Furthermore, the n1 = n2 = 2 and m1 = m2 = 1 case of (3.1) becomes
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∑
K∈N

(b/t, d1/t, d2/t, σq, ϕ, q−N)K

(q, 1/t, q/e , σq/β, σq/δ1 , σq/δ2)K

× 8W7[ tq−K ; b, d1 , d2 , eq−K , q−K ; q ;
t2q2

bd1d2e
]

× 8W7[σqK ; β, δ1 , δ2 , ϕqK , qK−N ; q ;
σ 2qN+2

βδ1δ2ϕ
]

= ϕN (σq, σq/βϕ, σq/δ1ϕ, σq/δ2ϕ)N

(σq/β, σq/ϕ, σq/δ1 , σq/δ2)N

× 6ϕ5[
tq/be , tq/d1e , tq/d2e , q−Nϕ/σ , ϕ, q−N

tq/e , q/e , q−Nβϕ/σ , q−Nδ1ϕ/σ , q−Nδ2ϕ/σ
; q ; q]

together with the “totally balancing condition”

t2σ 2qN+2 = bd1d2eβδ1δ2ϕ.
Finally, we note that in the case when n1 = m1 = n2 = m2 = 1, (3.1) reduces to the

Whipple–Sears transformation formula (1.1).
We propose to consider bilinear transformations as natural generalizations ofmul-

tivariate hypergeometric transformations that extendWhipple–Sears transformations
(1.1). In this sense, the hypergeometric transformations and summations that we
have obtained in [8, Sections 5 and 6] (see also [10]), such as multiple Whipple–
Watson type transformations between 8W7 series and terminating balanced 4ϕ3 se-
ries, Dougall–Jackson summation for terminating balanced 8W7 series, and Bailey
type transformations for terminating balanced 10W9 series, can be interpreted as nat-
ural generalizations of q-Pfaò–Saalschütz summation formula for terminating bal-
anced 3ϕ2 series. Besides those bilinear transformations, the master formula (3.1) in-
volves various types of transformation formulas for bilinear and linear sums of mul-
tivariate basic hypergeometric series. Furthermore, we can obtain another master
formula of alternate type and q-Pfaò–Saalschütz summation type and can deduce a
family of transformations for bilinear and linear sums of very well-poised hyperge-
ometric series from them in the similar manner as in this paper. Details and other
transformation formulas, including linear sums andmultivariate generalizations, will
be given elsewhere.
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