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Abstract
We prove a stability result of isometric immersions of hypersurfaces in Riemannian manifolds, with respect to
𝐿𝑝-perturbations of their fundamental forms: For a manifold M𝑑 endowed with a reference metric and a reference
shape operator, we show that a sequence of immersions 𝑓𝑛 : M𝑑 → N 𝑑+1, whose pullback metrics and shape
operators are arbitrary close in 𝐿𝑝 to the reference ones, converge to an isometric immersion having the reference
shape operator. This result is motivated by elasticity theory and generalizes a previous result [AKM22] to a general
target manifold N , removing a constant curvature assumption. The method of proof differs from that in [AKM22]:
it extends a Young measure approach that was used in codimension-0 stability results, together with an appropriate
relaxation of the energy and a regularity result for immersions satisfying given fundamental forms. In addition,
we prove a related quantitative (rather than asymptotic) stability result in the case of Euclidean target, similar to
[CMM19] but with no a priori assumed bounds.
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1. Introduction

Background: rigidity in codimension 0

In 1850, Liouville proved that isometries in R𝑑 are rigid [Lio50]: if Ω ⊂ R𝑑 is open and connected and
𝑓 ∈ 𝐶1 (Ω;R𝑑), and if for every 𝑥 ∈ Ω, 𝑑𝑓 (𝑥) ∈ SO(𝑑), then, in fact, f is a rigid motion, 𝑓 (𝑥) = 𝑄𝑥 + 𝑏
for some𝑄 ∈ SO(𝑑) and 𝑏 ∈ R𝑑 . This theorem has been generalized over the years in a number of ways:
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◦ Regularity: Reshetnyak showed that the theorem holds for Lipschitz maps [Res67a]. This is essentially
a regularity result, as the proof proceeds by showing that such Lipschitz maps are harmonic, and
hence smooth. (Reshetnyak’s theorem can be reformulated as follows: if a Lipschitz map is a.e.
orientation-preserving and pulls back a smooth metric, then it is smooth.)

◦ Asymptotic stability: Reshetnyak also showed that this rigidity is stable: if dist(𝑑𝑓𝑛, SO(𝑑)) → 0 in
𝐿𝑝 for some 𝑝 ∈ [1,∞), then, modulo a subsequence and translations, 𝑓𝑛 → 𝑄𝑥 + 𝑏 in𝑊1, 𝑝 (Ω;R𝑑)
[Res67b].

◦ Quantitative stability: Friesecke, James and Müller (FJM) ([FJM02] – see also [CS06, Section 2.4])
– proved a quantitative version of this theorem: for 𝑝 ∈ (1,∞), there exists 𝐶 = 𝐶 (Ω, 𝑝) such that
there exists for every 𝑓 ∈ 𝑊1, 𝑝 (Ω;R𝑑) a rigid map 𝑓 (𝑥) = 𝑄𝑥 + 𝑏, such that

‖ 𝑓 − 𝑓 ‖𝑊 1, 𝑝 (Ω;R𝑑) ≤ 𝐶‖ dist(𝑑𝑓 , SO(𝑑))‖𝐿𝑝 (Ω) .

There are many generalizations in other directions (e.g., for conformal maps, multiple energy wells,
incompatible fields), which are beyond the scope of this short discussion. In the context of Riemannian
geometry, Liouville’s and Reshetnyak’s theorems generalize to maps between two compact oriented Rie-
mannian manifolds (M, 𝔤) and (N , 𝔥) of the same dimension. In this context, we denote by SO(𝔤𝑞 , 𝔥𝑞′ )
the space of orientation-preserving isometries 𝑇𝑞M → 𝑇𝑞′N (or simply by SO(𝔤, 𝔥), when no confu-
sion may arise).
◦ Rigidity: The following well-known fact can be thought of as a generalization of Liouville’s theorem:

if 𝑓 ∈ 𝐶2 (M;N ) satisfies 𝑑𝑓𝑞 ∈ SO(𝔤𝑞 , 𝔥 𝑓 (𝑞) ) for every 𝑞 ∈ M, then f is rigid, in the sense that it
is determined by its value and the value of its differential at a single point. Every 𝑞 ∈ M has an open
neighborhood 𝑈 	 𝑞, such that

𝑓 |𝑈 = exp𝔥
𝑓 (𝑞) ◦𝑑𝑓𝑞 ◦ (exp𝔤𝑞)−1,

where exp𝔤 and exp𝔥 are the exponential maps in M and N .
◦ Regularity: If 𝑓 : M → N is Lipschitz and satisfies 𝑑𝑓 ∈ SO(𝔤, 𝔥) almost everywhere, then f is a

smooth isometric immersion, and the previous statement applies. This result (or variants of it) has
been proved several times, using various techniques [Res78, Res94, LP11, LS14, KMS19].

◦ Asymptotic stability: It was shown in [KMS19] that if 𝑓𝑛 ∈ 𝑊1, 𝑝 (M;N ) satisfy
dist(𝑑𝑓𝑛, SO(𝔤, 𝔥)) → 0 in 𝐿 𝑝 (M), then (modulo a subsequence) 𝑓𝑛 converges strongly in 𝑊1, 𝑝

to a smooth isometric immersion 𝑓 : M → N (in particular, such an isometric immersion exists).
A generalization of the FJM quantitative stability result to a Riemannian setting is yet missing, and even
its formulation as a conjecture is not obvious. A particular case concerning mappings between round
spheres appears in [CLS22, Theorem 3.2]; a stronger version of that result can, in fact, be deduced from
the Euclidean result and will be proved in a forthcoming paper [KM24].

The above results have direct relevance to elasticity theory: In the Euclidean settings,
‖ dist(𝑑𝑓 , SO(𝑑))‖ 𝑝𝐿𝑝 is a prototypical model for the elastic energy of a strained elastic solid; hence,
these theorems relate the smallness of the elastic energy to being close to a zero energy state. Essen-
tially, any rigorous derivation of a low-energy limit in elasticity uses these results. The Riemannian case
arises in non-Euclidean elasticity, which is an elastic theory for pre-stressed bodies (see, for example,
[KES07, ESK09, ESK13, LM22]). The asymptotic stability result in [KMS19], for example, implies
that (as expected by physicists) if M cannot be immersed isometrically in N , then the infimal elastic
energy is positive, and the elastic body cannot release all of it stresses by, say, forming microstructures.

Main result: asymptotic stability of isometric immersions in codimension-1

In this paper, we are concerned with codimension-1 versions of the above results. The classical theorem
in this context (for a Euclidean target) is the fundamental theorem of surface theory (see, for example,
[Ten71]):
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Let (M, 𝔤) be an oriented, connected, simply connected, compact d-dimensional Riemannian man-
ifold with Lipschitz boundary. Let S by a smooth symmetric (1, 1) tensor field on M. If 𝔤 and S
satisfy the Gauss-Codazzi compatibility conditions, then there exists a smooth isometric immersion
𝑓 : M → R

𝑑+1 having shape operator S. This immersion is unique modulo a composition with a
Euclidean rigid map.

We recall that for an immersion 𝑓 : M → R𝑑+1, we can define the Gauss map 𝔫 𝑓 : M → 𝑇R𝑑+1 �
R
𝑑+1, where 𝔫 𝑓 (𝑞) is the unique unit vector such that (𝑑𝑓𝑞 (𝑢1), . . . , 𝑑𝑓𝑞 (𝑢𝑑), 𝔫 𝑓 (𝑞)) is an oriented basis

of R𝑑+1 for any oriented basis (𝑢1, . . . , 𝑢𝑑) of 𝑇𝑞 (M). The second fundamental form of an immersion is
a (2, 0) tensor which is given by II 𝑓 = −𝑑𝑓 𝑇 ∇𝔫 𝑓 : 𝑇M × 𝑇M → R; it contains the same information
as the shape operator 𝑆 𝑓 : 𝑇M → 𝑇M, a (1,1) tensor implicitly defined via ∇𝔫 𝑓 = −𝑑𝑓 ◦ 𝑆 𝑓 (which
is well defined since the image of ∇𝔫 𝑓 is normal to 𝔫 𝑓 , and thus in the image of 𝑑𝑓 ). Thus, given a
metric 𝔤 and a (1,1) tensor S, 𝑓 : M → R𝑑+1 is an isometric immersion having a shape operator S if

𝑑𝑓 ∈ O(𝔤,𝔢) and ∇𝔫 𝑓 = −𝑑𝑓 ◦ 𝑆, (1.1)

where 𝔢 is the Euclidean metric, and O(𝔤𝑞 ,𝔢) is the set of isometric linear maps 𝑇𝑞M → R𝑑+1.
The last clause of the fundamental theorem of surface theory is, again, a rigidity statement: An

immersion 𝑓 : M → R𝑑+1 satisfying (1.1) is determined by the values of 𝑓 (𝑞) and 𝑑𝑓𝑞 at any 𝑞 ∈ M.
This rigidity statement generalizes to any target (𝑑 + 1)-dimensional manifold (N , 𝔥), by replacing in
(1.1) 𝔢 with 𝔥 and ∇ with ∇ 𝑓 ∗𝑇N , the pullback connection of the Levi-Civita connection of (N , 𝔥),
which is the natural derivative of vector fields in N along f – that is, maps that take 𝑝 ∈ M to a vector
in 𝑇 𝑓 (𝑝)N .1

The main focus of this article is the asymptotic stability of isometric immersions. The codimension-0
property of being 𝐿 𝑝-close to an orientation-preserving isometry is replaced by being 𝐿𝑝-close to first
and second fundamental forms. For 𝑓 : M → N , we define

E𝑝 ( 𝑓 ) = ‖ dist𝑝 (𝑑𝑓 ,O(𝔤, 𝔥))‖ 𝑝
𝐿𝑝 (M) + ‖∇ 𝑓 ∗𝑇N𝔫 𝑓 + 𝑑𝑓 ◦ 𝑆‖ 𝑝𝐿𝑝 (M) . (1.2)

The first term, denoted E𝑆𝑝 ( 𝑓 ), is called a stretching energy, and the second term, denoted E𝐵𝑝 ( 𝑓 ), is
called a bending energy. As these names suggest, this energy is motivated by the elastic theory of thin
bodies. There, one often compares the second fundamental forms ((2, 0) tensors) rather than the shape
operators ((1, 1) tensors); from a physical point of view, these energies are equivalent, and using the
shape operator is more convenient from a calculus of variations point of view. See [AKM22] for further
details and implications to elasticity theory.

The natural space on which the energy (1.2) is defined and finite is the space of p-Sobolev immersions,

Imm𝑝 (M;N ) = { 𝑓 ∈ 𝑊1, 𝑝 (M;N ) : rank 𝑑𝑓 = 𝑑 a.e. and 𝔫 𝑓 ∈ 𝑊1, 𝑝 (M;𝑇N )}, (1.3)

where 𝔫 𝑓 is the unit normal vector field in N along f, which is defined a.e. Note that for such non-
smooth maps, the pullback bundle 𝑓 ∗𝑇N is a non-smooth bundle; we therefore define ∇ 𝑓 ∗𝑇N𝔫 𝑓 using
a connector operator, as explained in the next section.

Our main result is the following:

Theorem 1.1. Suppose that there exists a sequence of p-immersions 𝑓𝑛 ∈ Imm𝑝 (M;N ), 𝑝 ≥ 1,
satisfying

lim
𝑛→∞

E𝑝 ( 𝑓𝑛) → 0.

1The uniqueness of an isometric immersion 𝑓 : M → N having a given shape operator S and given initial data 𝑓 (𝑞) and 𝑑 𝑓𝑞
follows from integrating along geodesics of M: Given 𝑞′ ∈ M, let 𝛾 be a geodesic from q to 𝑞′. Choose a parallel orthonormal
frame (𝑢1 , . . . , 𝑢𝑑) along 𝛾, with 𝑢1 = �𝛾. Then the image of 𝛾 and the frame under f is obtained uniquely by solving the system
𝐷
𝑑𝑡 𝑒𝑖 = 𝑆

1
𝑖 𝔫, 𝐷𝑑𝑡 𝔫 = −𝑆𝑖1𝑒𝑖 , where 𝑒𝑖 is the image of 𝑢𝑖 , 𝔫 is their normal, and 𝐷

𝑑𝑡 is the covariant derivative in (N , 𝔥) .

https://doi.org/10.1017/fms.2024.30 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.30


4 I. Alpern, R. Kupferman and C. Maor et al.

Then there exists a subsequence of 𝑓𝑛 converging in 𝑊1, 𝑝 (M;N ) to a smooth isometric immersion
𝑓 : (M, 𝔤) → (N , 𝔥). Furthermore, 𝔫 𝑓𝑛 → 𝔫 𝑓 in 𝑊1, 𝑝 (M;𝑇N ), and the shape operator of the limit
equals the reference shape operator, ∇ 𝑓 ∗𝑇N𝔫 𝑓 = −𝑑𝑓 ◦ 𝑆.

This result was obtained in [AKM22] for the case where (N , 𝔥) has constant sectional curvature.
The proof there was essentially based on reducing the problem to the codimension-0 problem, by
‘thickening’ (M, 𝔤) into a (𝑑 + 1)-dimensional manifold, (M × [−ℎ, ℎ], 𝐺) for some ℎ > 0, extending
f into a map 𝐹 : M × [−ℎ, ℎ] → N , and using the non-Euclidean version [KMS19] of Reshetnyak’s
stability theorem in codimension-0. This approach has difficulties generalizing beyond constant sectional
curvature, since we exploited in constant curvature the fact that the metric G is uniquely determined by
𝔤 and S, independently of the maps 𝑓𝑛.

We overcome this by using a different approach. As a first step, we need the following regularity
theorem:

Theorem 1.2. Let 𝑓 ∈ Imm∞(M;N ) such that the first fundamental form 𝑓 ∗𝔥 and the shape operator
𝑆 𝑓 , implicitly defined by2

∇ 𝑓 ∗𝑇N𝔫 𝑓 = −𝑑𝑓 ◦ 𝑆 𝑓 (1.4)

are smooth. Then, f is smooth.

Note that if f was in 𝑊2, 𝑝 , this result would follow by bootstrapping the expressions for the second
derivatives in terms of the frame induced by 𝑑𝑓 and 𝔫 𝑓 . However, we only know that 𝑓 ∈ 𝑊1,∞ and that
𝔫 𝑓 ∈ 𝑊1,∞. The improved regularity is then deduced from compactness of low energy configurations
of thin bodies of arbitrary dimension and codimension [KS14], which, in turn, uses the FJM Euclidean
rigidity estimate. It is interesting whether one can deduce Theorem 1.2 directly from elliptic regularity,
as done in codimension-0, using an adaptation of the Piola identity to codimension-1 (see [KMS19]).

Given this regularity result, it is sufficient, in order to prove Theorem 1.1, to prove that if E𝑝 ( 𝑓𝑛) → 0,
then 𝑓𝑛 converges in 𝑊1.𝑝 to a zero energy map. To this end, we deploy an approach using Young
measures, first suggested for the proof of Reshetnyak’s asymptotic stability theorem in [JK89], and
then developed in [KMS19] for proving the non-Euclidean equivalent result. Since in our case, as in
[KMS19], the target space of 𝑓𝑛 is not a vector space, one needs to work in local coordinates in order
to use the Young measure limit.

As such, this approach works for 𝑝 > 𝑑, since only then, maps in𝑊1, 𝑝 (M;N ) are guaranteed to be
localizable. In [KMS19], the lower integrability regime 𝑝 ≤ 𝑑 (which includes the most important case
from the elasticity point of view, 𝑝 = 2), is obtained by first approximating 𝑓𝑛 by uniformly Lipschitz
maps 𝑓𝑛. A similar use of Lipschitz truncation for overcoming the localization problem of Sobolev maps
between manifolds was done also in [KM21].

This approach, however, does not work directly on the energy E𝑝 , since it is not clear how to
approximate immersions in Imm𝑝 (M;N ) by Lipschitz immersions (the immersion property is lost
in the truncation process). To overcome this difficulty, we first relax the energy E𝑝 into an energy
Ẽ𝑝 : 𝑊1, 𝑝 (M;𝑇N ) → [0,∞) (see Definition 3.1), which is defined and finite over all vector fields
in 𝑊1, 𝑝 (M;𝑇N ), and not only for vector fields that are perpendicular to their projection on N , as
in Imm𝑝 (M;N ). From an elasticity point of view, the energy Ẽ𝑝 is essentially an energy for director
fields, rather than configurations of the elastic body. Thus, we prove a stronger version of Theorem 1.1
for the energy Ẽ𝑝 (Theorem 3.4) by applying Young measures for the case 𝑝 > 𝑑, and precede this
analysis with a Lipschitz truncation for 𝑝 ≤ 𝑑, to get to the localizable regime.

2As in the Euclidean target case, the shape operator 𝑆 𝑓 : 𝑇M → 𝑇M, is well defined by the definition of 𝔫 𝑓 as a unit vector
normal to the image of 𝑑 𝑓 . Note that linear maps in 𝑇M are canonically identified with (1, 1) tensors – that is, as sections of
𝑇 ∗M ⊗ 𝑇M.
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Codimension-0 Codimension-1
Euclidean Riemannian Euclidean Riemannian

Rigidity [Lio50] ‘Folklore’ Fundamental
theorem of
surfaces [Ten71]

‘Folklore’

Regularity [Res67a] [Res78, Res94,
LS14, KMS19]

[AKM22] Theorem 1.2

Lp Asymptotic
Stability

[Res67b] [KMS19] [AKM22] Theorem 1.1

Lp Quantitative
Stability

[FJM02] Constant
curvature
𝜅 > 0 [CLS22,
KM24]

[CMM19],
Theorem A.1

Figure 1. A summary of the results presented in the introduction. This list is not comprehensive: there
are many other results on regularity of isometries (e.g., [Har58, CH70, Tay06]), of isometric immersions
without assumptions on the second fundamental form (e.g., [Pak04, MP05, Hor11, LP13, JP17, HV18]),
and of stability of immersions in Euclidean setting in various topologies, stronger than the 𝐿𝑝 stability
discussed here [Cia03, CM16, CM19, CMM20].

Additional quantitative stability result

In the appendix, we include a short quantitative stability result, in the spirit of the FJM estimate.
We show in Theorem A.1 that if N = R𝑑+1, 𝑝 ∈ (1,∞), and if the metric 𝔤 of M and shape operator

S are compatible (i.e., if there exists an isometric immersion M → R𝑑+1 with shape operator S), then
for any 𝑓 ∈ Imm𝑝 (M;R𝑑+1), there exists an isometric immersion 𝑓0 : M → R𝑑+1 with shape operator
S such that

‖ 𝑓 − 𝑓0‖ 𝑝𝑊 1, 𝑝 + ‖𝔫 𝑓 − 𝔫 𝑓0 ‖
𝑝

𝑊 1, 𝑝 ≤ 𝐶E𝑝 ( 𝑓 ),

where 𝐶 > 0 is a constant independent of f. In particular, this implies Theorem 1.1 for a Euclidean
target space, under the assumption of compatibility. Similar results, comparing the left-hand side of two
immersions with an energy that measures stretching (discrepancy of the first fundamental forms) and
bending (discrepancy of the second fundamental form), appear in [CMM19] (in particular, Theorem 4.3).
These results, however, require f to be in Imm𝑞 (M;R𝑑+1) for 𝑞 ≥ min{𝑝, 2}, and, more importantly,
require a priori uniform bounds on the first and second fundamental forms; Theorem A.1 does not require
such a priori bounds, and also admits a simpler proof. Additionally, Theorem A.1 can be generalized
to director fields, using the relaxed energy Ẽ𝑝 (Definition 3.1), whereas the result of [CMM19] cannot.
The difference is mainly because of the different structures of the stretching and bending energy (in
[CMM19], the bending energy measures a discrepancy in the second fundamental forms rather than in
the shape operators). This can be seen as additional evidence that the energy E𝑝 is the natural ‘stretching
plus bending’ energy from a calculus of variations point of view.

Structure of the paper

In Section 2, we review the definitions of Sobolev spaces between manifolds and prove some basic
properties – in particular, for Sobolev vector fields. We also introduce coordinate representations of the
energy and the main fields in Section 2.1. In Section 3, we define the relaxed energy (Section 3.1) and
prove Theorem 1.1, modulo the smoothness result (Theorem 1.2), which we proof in Section 4. Finally,
we prove in Appendix A the codimension-1 Euclidean stability result. Figure 1 displays a table in which
our results are put in context with the existing literature.
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Notations

Let (𝑉, 𝔤) and (𝑊, 𝔥) be oriented inner-product spaces. We denote the inner-products by 〈·, ·〉𝔤 and
〈·, ·〉𝔥. We denote the corresponding norms by | · |, unless the notations | · |𝔤 and | · |𝔥 help readability. We
denote by Hom(𝑉,𝑊) the space of linear maps from V to W; we denote by O(𝔤, 𝔥) ⊂ Hom(𝑉,𝑊) the
subset of orthogonal maps. If V and W have equal dimensions, we denote by SO(𝔤, 𝔥) ⊂ O(𝔤, 𝔥) the set
of orientation-preserving orthogonal maps. We denote the norm on Hom(𝑉,𝑊) induced by 𝔤 and 𝔥 by
| · |, rather than by the more cumbersome notation | · |𝔤,𝔥. For a set 𝐾 ⊂ Hom(𝑉,𝑊) and 𝐴 ∈ Hom(𝑉,𝑊),
we denote by dist(𝐴, 𝐾) the distance (with respect to the norm | · |) between the element A and the set
K. These notations carry on naturally if V and W are replaced by vector bundles over a manifold (in
particular, to the tangent bundle endowed with a Riemannian metric).

For a manifold M, we denote by Ω𝑘 (M) the space of k-forms on M. For a vector bundle 𝐸 → M,
we denote by Γ(𝐸) the space of sections of E, and by Ω𝑘 (M; 𝐸) the space of E-valued k-forms on
M. Likewise, we denote by 𝐿𝑝Γ(𝐸), 𝐿 𝑝Ω𝑘 (M; 𝐸),𝑊1, 𝑝Γ(𝐸) and𝑊1, 𝑝Ω𝑘 (M; 𝐸) the corresponding
spaces having 𝐿𝑝- and𝑊1, 𝑝-regularity; the corresponding norms are induced by norms on 𝑇M and E.
Finally, for a Riemannian manifold (M, 𝔤), dVol𝔤 denotes the Riemannian volume form. More notations
are introduced in the next section in the context of mappings between manifolds.

2. Sobolev maps between manifolds

This work is concerned with Sobolev maps between Riemannian manifolds. Let (M, 𝔤) and (𝔛, 𝔵)
be Riemannian manifolds of arbitrary dimensions, with M compact, possibly with boundary, and 𝔛
without boundary (in the sequel, (𝔛, 𝔵) is either a compact Riemannian manifold (N , 𝔥), or its non-
compact tangent space (𝑇N , 𝑆𝔥), where the metric 𝑆𝔥 is described below). For smooth 𝑓 : M → 𝔛,
we denote by 𝐷 𝑓 : 𝑇M → 𝑇𝔛 the tangent map, acting as

𝐷 𝑓 : (𝑞, 𝜉) ↦→ ( 𝑓 (𝑞), 𝑑𝑓𝑞 (𝜉)) 𝑞 ∈ M, 𝜉 ∈ 𝑇𝑞M,

which is a linear bundle morphism covering f (e.g., [Sau89, Chap. 2]). The map 𝐷 𝑓 should be distin-
guished from the differential 𝑑𝑓 ∈ Γ(𝑇∗M ⊗ 𝑓 ∗𝑇𝔛), acting as

𝑑𝑓𝑞 : 𝜉 ↦→ 𝑑𝑓𝑞 (𝜉),

which is a linear bundle map; 𝑑𝑓 is the pullback of 𝐷 𝑓 , where as common, 𝑓 ∗𝑇𝔛 denotes a vector
bundle over M, with the canonical identification ( 𝑓 ∗𝑇𝔛)𝑞 � 𝑇 𝑓 (𝑞)𝔛.

For 𝑝 ≥ 1, the space of Sobolev maps𝑊1, 𝑝 (M;𝔛) can be defined intrinsically, along with a notion
of a weak derivative (see Convent and van Schaftingen [CS16] for a recent account). An equivalent
extrinsic (and more common) definition is given by using Nash’s embedding theorem, introducing an
isometric embedding 𝜄 : (𝔛, 𝔵) → (R𝐷 ,𝔢), for some D large enough. Then,

𝑊1, 𝑝 (M;𝔛) = { 𝑓 : M → 𝔛 : 𝜄 ◦ 𝑓 ∈ 𝑊1, 𝑝 (M;R𝐷)}.

This space inherits the strong and weak topologies of 𝑊1, 𝑝 (M;R𝐷), and it is independent of the
embedding 𝜄. Moreover, 𝜄 ◦𝑊1, 𝑝 (M;𝔛) is a weakly closed subset of𝑊1, 𝑝 (M;R𝐷), and in particular,
bounded sequences have weakly convergent subsequences for 𝑝 ∈ (1,∞). That is, if 𝑓𝑛 ∈ 𝑊1, 𝑝 (M;𝔛)
satisfies that 𝜄◦ 𝑓𝑛 is bounded in𝑊1, 𝑝 (M;R𝐷), then there exists a subsequence and an 𝑓 ∈ 𝑊1, 𝑝 (M;𝔛)
such that 𝑓𝑛 ⇀ 𝑓 in𝑊1, 𝑝 (M;𝔛), which by definition means that 𝜄◦ 𝑓𝑛 ⇀ 𝜄◦ 𝑓 in𝑊1, 𝑝 (M;R𝐷). Even
though 𝑑𝑓 has to be interpreted as a weak derivative, it still holds that 𝑑𝑓𝑞 is a linear map from 𝑇𝑞M to
𝑇 𝑓 (𝑞)𝔛 for almost every 𝑞 ∈ M. Furthermore, the chain rule holds a.e., 𝐷 (𝜄 ◦ 𝑓 ) = 𝐷𝜄 ◦ 𝐷 𝑓 [CS16,
Prop. 1.8].

Our choice of working with the tangent map 𝐷 𝑓 rather than the differential 𝑑𝑓 is due to the following.
When f is a Sobolev map, the pullback bundle 𝑓 ∗𝑇𝔛 is a not a smooth vector bundle, and consequently,
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𝑑𝑓 is a bundle map into a non-smooth vector bundle; this is in contrast with the tangent map 𝐷 𝑓 , which
is a map between two smooth vector bundles, 𝑇M and 𝑇𝔛. The price to pay is that 𝐷 𝑓 is not a linear
vector bundle map, but rather a linear bundle morphism.

Note that if 𝜄 : (𝔛, 𝔵) → (R𝐷 ,𝔢) is an isometric embedding, then by our convention,

𝐷𝜄 : 𝑇𝔛 → R𝐷 × R𝐷 , 𝐷𝜄 : (𝑞, 𝜉) ↦→ (𝜄(𝑞), 𝑑𝜄𝑞 (𝜉)),

which is an embedding of 𝑇𝔛 into Euclidean space (though not necessarily isometric), whereas

𝑑𝜄 : 𝑇𝔛 → R𝐷 , 𝑑𝜄 : (𝑞, 𝜉) ↦→ 𝑑𝜄𝑞 (𝜉)

is not an embedding. For 𝑓 ∈ 𝑊1, 𝑝 (M,𝔛),

𝐷 (𝜄 ◦ 𝑓 ) = 𝐷𝜄 ◦ 𝐷 𝑓 : 𝑇M → R𝐷 × R𝐷

is an immersion if f is an immersion, whereas

𝑑 (𝜄 ◦ 𝑓 ) = 𝑑𝜄 ◦ 𝐷 𝑓 : 𝑇M → R𝐷

is not. In this context, 𝑇∗M ⊗ 𝑇𝔛 is a vector bundle over M×𝔛, and the latter can be viewed as a fiber
bundle over M. A section of 𝑇∗M ⊗ 𝑇𝔛 → M is a map 𝜁 : M → 𝑇∗M ⊗ 𝑇𝔛, such that for 𝑞 ∈ M,
𝜁 (𝑞) is a linear map from 𝑇𝑞M to 𝑇𝜋 (𝜁 (𝑞))𝔛. Moreover, we interpret 𝐷𝜄◦ 𝜁 : M → R𝐷 × (𝑇∗M⊗R𝐷)
– that is, 𝐷𝜄 only acts here on the 𝑇𝔛 component. We define

𝐿𝑝 (M;𝑇∗M ⊗ 𝑇𝔛) = {𝜁 : M → 𝑇∗M ⊗ 𝑇𝔛 : 𝐷𝜄 ◦ 𝜁 ∈ 𝐿 𝑝 (M;R𝐷 × 𝑇∗M ⊗ R𝐷)}.

Finally, for 𝜉 : M → 𝑇𝔛, we denote

|𝜉 |𝔵 = |𝑑𝜄 ◦ 𝜉 |𝔢

(that is, for 𝑞 ∈ M, the norm only captures the linear part of the mapping 𝜉 (𝑞) ∈ 𝑇𝜋 ( 𝜉 (𝑞))𝔛).
When 𝑝 > dimM, one can equivalently define 𝑊1, 𝑝 (M;𝔛) as the set of continuous functions,

which upon composition with charts in M and 𝔛 are in 𝑊1, 𝑝 (RdimM;Rdim𝔛); strong convergence in
𝑊1, 𝑝 (M;𝔛) is equivalent to strong convergence in every coordinate chart [Weh04, Lemmata B.5, B.7].

Sobolev vector fields

Given two compact Riemannian manifolds (M, 𝔤) and (N , 𝔥), we apply the above construction to
Sobolev maps from M into vector fields in N (i.e., to maps 𝜉 : M → 𝑇N ). To this end, we need to
introduce a Riemannian metric on 𝑇N .

The Riemannian metric 𝔥 on𝑇N induces in a canonical way a Riemannian metric on𝑇N . Specifically,
there exists a one-to-one correspondence between an affine connection ∇ on 𝑇N and a connector
operator, 𝐾 : 𝑇𝑇N → 𝑇N , such that for 𝑞 ∈ N and 𝑠 ∈ 𝑇𝑞N ,

𝐾𝑠 : 𝑇𝑠𝑇N → 𝑇𝑞N .

The connector induces the covariant derivative via

∇𝑠𝜂 = 𝐾𝔥 ◦ 𝐷𝜂(𝑠) for every 𝜂 ∈ Γ(𝑇N ) and 𝑠 ∈ 𝑇N .

Denote by 𝑥 ∈ RdimN coordinates on N ; by choosing a local frame field in this coordinate patch, we
obtain local coordinates (𝑥, 𝑣) ∈ R2 dimN of 𝑇N . We denote the associated coordinates on 𝑇𝑇N by
(𝑥, 𝑣, 𝑤, 𝑠) ∈ R4 dimN . In these coordinates, the projection 𝜋 : 𝑇N → N is given by 𝜋(𝑥, 𝑣) = 𝑥, its
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derivative 𝐷𝜋 : 𝑇𝑇N → 𝑇N by 𝐷𝜋(𝑥, 𝑣, 𝑤, 𝑠) = (𝑥, 𝑤), and the connector K is given by

𝐾 (𝑥, 𝑣, 𝑤, 𝑠) = (𝑥, 𝑠 + Γ(𝑥) [𝑣, 𝑤]),

where Γ : RdimN → Bil(RdimN ) is a smooth map into the space of bilinear maps onRdimN (representing
the Christoffel symbols). In the following, we will always take the Levi-Civita connection ∇𝔥, and its
corresponding connector 𝐾𝔥.

The map 𝐷𝜋 × 𝐾𝔥 : 𝑇𝑇N → 𝑇N ×N 𝑇N is a linear bundle isomorphism (covering the projection
𝜋 : 𝑇N → N ), turned into an isometry by introducing the Sasaki metric 𝑆𝔥 on 𝑇𝑇N [Sas58],

〈𝑉,𝑊〉𝑆𝔥 = 〈𝐷𝜋(𝑉), 𝐷𝜋(𝑊)〉𝔥 + 〈𝐾𝔥 (𝑉), 𝐾𝔥 (𝑊)〉𝔥 . (2.1)

By choosing an isometric embedding 𝜄 : (𝑇N , 𝑆𝔥) → (R𝐷 ,𝔢), where 𝔢 is the Euclidean metric, that
is,

〈𝑑𝜄(𝑉), 𝑑𝜄(𝑊)〉𝔢 = 〈𝑉,𝑊〉𝑆𝔥 𝑉,𝑊 ∈ 𝑇𝑇N ,

we can define the Sobolev space𝑊1, 𝑝 (M;𝑇N ) as above.
The zero section 𝜁 ∈ Γ(𝑇N ) is an isometric embedding of (N , 𝔥) into (𝑇N , 𝑆𝔥): indeed, for 𝑞 ∈ N

and 𝑣, 𝑤 ∈ 𝑇𝑞N ,

〈𝑣, 𝑤〉𝜁 #𝑆𝔥 = 〈𝐷𝜁 (𝑣), 𝐷𝜁 (𝑤)〉𝑆𝔥
= 〈𝐷𝜋 ◦ 𝐷𝜁 (𝑣), 𝐷𝜋 ◦ 𝐷𝜁 (𝑣)〉𝔥 + 〈𝐾𝔥 ◦ 𝐷𝜁 (𝑣), 𝐾𝔥 ◦ 𝐷𝜁 (𝑣)〉𝔥
= 〈𝑣, 𝑤〉𝔥,

where the first equality is the definition of the pullback metric 𝜁#𝑆𝔥, and in the last passage we used the
fact that 𝐷𝜋 ◦ 𝐷𝜁 = Id𝑇N and 𝐾𝔥 ◦ 𝐷𝜁 = 0. Thus, 𝚥 : N → R

𝐷 given by 𝚥 = 𝜄 ◦ 𝜁 is an isometric
embedding of (N , 𝔥) into (R𝐷 ,𝔢) (although for our uses, one can choose any other isometric embedding
of N into Euclidean space).

For a map 𝜉 : M → 𝑇N , we denote 𝑓𝜉 = 𝜋 ◦ 𝜉 : M → N . Note that by the definition of the Sasaki
metric,

|𝐷𝜉 |2 = |𝐷 𝑓𝜉 |2 + |𝐾𝔥 ◦ 𝐷𝜉 |2, (2.2)

or equivalently,

|𝑑𝜄 ◦ 𝐷𝜉 |2 = |𝑑 𝚥 ◦ 𝐷 𝑓𝜉 |2 + |𝑑 𝚥 ◦ 𝐾𝔥 ◦ 𝐷𝜉 |2. (2.3)

(Note that 𝑑 𝚥 : 𝑇N → R
𝐷 rather than 𝜄 : 𝑇N → R

𝐷 is the linear isometry.) The following lemma
asserts that strong and weak convergence of a sequence 𝜉𝑛 implies the corresponding convergence of
𝑓𝜉𝑛 .

Lemma 2.1. Let 𝑝 ∈ [1,∞). If 𝜉 ∈ 𝑊1, 𝑝 (M;𝑇N ), then 𝑓𝜉 ∈ 𝑊1, 𝑝 (M;N ). Furthermore, if 𝜉𝑛 ⇀ 𝜉
in𝑊1, 𝑝 (M;𝑇N ), then 𝑓𝜉𝑛 ⇀ 𝑓𝜉 in𝑊1, 𝑝 (M;N ), and similarly for strong convergence.

Proof. Let 𝜄 : (𝑇N , 𝑆𝔥) → (R𝐷 ,𝔢) and 𝚥 : (N , 𝔥) → (R𝐷 ,𝔢) be defined as above. Let 𝜉 ∈
𝑊1, 𝑝 (M;𝑇N ). Since N is compact, the fact that 𝑓𝜉 ∈ 𝑊1, 𝑝 (M;N ) follows from (2.2) (or equiva-
lently, (2.3)).

Let 𝜉𝑛 ⇀ 𝜉 in 𝑊1, 𝑝 (M;𝑇N ) (i.e., 𝜄 ◦ 𝜉𝑛 ⇀ 𝜄 ◦ 𝜉 in 𝑊1, 𝑝 (M;R𝐷)). By (2.3) and the compactness
of N , 𝚥 ◦ 𝑓𝜉𝑛 is bounded in 𝑊1, 𝑝 (M;R𝐷) (and equi-integrable if 𝑝 = 1), and thus 𝚥 ◦ 𝑓𝜉𝑛 weakly
converges to some 𝐹 ∈ 𝑊1, 𝑝 (M;R𝐷) (modulo a subsequence). We need to show that 𝐹 = 𝚥 ◦ 𝑓𝜉 . Since
weak 𝑊1, 𝑝-convergence implies strong 𝐿 𝑝-convergence, we can move to a subsequence and obtain
that 𝜄 ◦ 𝜉𝑛 → 𝜄 ◦ 𝜉 almost everywhere, and thus, for that same subsequence, 𝚥 ◦ 𝑓𝜉𝑛 → 𝚥 ◦ 𝑓𝜉 almost
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everywhere, which by the uniqueness of the limit implies that 𝐹 = 𝚥 ◦ 𝑓𝜉 . As we could have started
with any subsequence of 𝜉𝑛 and obtain the result for a sub-subsequence, the claim holds for the whole
sequence.

Next, assume that 𝜉𝑛 → 𝜉 strongly in𝑊1, 𝑝 (M;𝑇N ). Since, a fortiori, 𝜉𝑛 ⇀ 𝜉 in𝑊1, 𝑝 (M;𝑇N ), it
follows from the previous clause that 𝑓𝜉𝑛 ⇀ 𝑓𝜉 in𝑊1, 𝑝 (M;N ), or equivalently, that 𝚥 ◦ 𝑓𝜉𝑛 ⇀ 𝚥 ◦ 𝑓𝜉 in
𝑊1, 𝑝 (M;R𝐷). We need to show that 𝑑 ( 𝚥 ◦ 𝑓𝜉𝑛 ) → 𝑑 ( 𝚥 ◦ 𝑓𝜉 ) in 𝐿 𝑝 (M;𝑇∗M ⊗ R𝐷). It is sufficient to
prove this for a subsequence, and thus we can assume, without loss of generality, that𝐷𝜄◦𝐷𝜉𝑛 → 𝐷𝜄◦𝐷𝜉
almost everywhere. Since 𝐷𝜄 is an embedding, it follows that 𝐷𝜉𝑛 → 𝐷𝜉 almost everywhere (as
maps from M → 𝑇∗M ⊗ 𝑇𝑇N ). In particular, 𝐷𝜋 ◦ 𝐷𝜉𝑛 → 𝐷𝜋 ◦ 𝐷𝜉 almost everywhere (as maps
M → 𝑇∗M ⊗ 𝑇N ), i.e., 𝐷 𝑓𝜉𝑛 → 𝐷 𝑓𝜉𝑛 almost everywhere, and thus also 𝑑 ( 𝚥 ◦ 𝑓𝜉𝑛 ) → 𝑑 ( 𝚥 ◦ 𝑓𝜉 ). To
complete the proof, it remains to show that

lim
𝑛→∞

∫
M

|𝐷 𝑓𝜉𝑛 |𝑝 dVol𝔤 =
∫
M

|𝐷 𝑓𝜉 |𝑝 dVol𝔤 . (2.4)

Since 𝐷 𝑓𝜉𝑛 → 𝐷 𝑓𝜉𝑛 almost everywhere, we also have that |𝐷 𝑓𝜉𝑛 |𝑝 → |𝐷 𝑓𝜉 |𝑝 almost everywhere,
and since

|𝐷 𝑓𝜉𝑛 |𝑝 ≤ |𝐷𝜉𝑛 |𝑝 and |𝐷 𝑓𝜉 |𝑝 ≤ |𝐷𝜉 |𝑝 ,

and since it follows from the strong𝑊1, 𝑝-convergence of 𝜉𝑛 that

lim
𝑛→∞

∫
M

|𝐷𝜉𝑛 |𝑝 dVol𝔤 =
∫
M

|𝐷𝜉 |𝑝 dVol𝔤,

the limit (2.4) follows from a refinement of the dominated convergence theorem (e.g., [EG15, Theorem
1.20]). �

The following lemma, which will be needed in the sequel, addresses a situation where 𝜉𝑛 ⇀ 𝜉 in𝑊1, 𝑝

along with 𝐾𝔥 ◦𝐷𝜉𝑛 converging strongly in 𝐿 𝑝 . The fact that the limit is, as one would expect, 𝐾𝔥 ◦𝐷𝜉
is somewhat nontrivial, since the two converging sequences have to be interpreted with respect to two
different maps into R𝐷 . Since this suffices in the application below, we assume that p is large enough.

Lemma 2.2. Let 𝑝 > dimM, and let 𝜄 and 𝚥 be defined as above. Assume that 𝜉𝑛 ⇀ 𝜉 in𝑊1, 𝑝 (M;𝑇N ).
Assume further that 𝑑 𝚥 ◦ 𝐾𝔥 ◦ 𝐷𝜉𝑛 → 𝑑 𝚥 ◦ 𝑇 in 𝐿 𝑝 (M;𝑇∗M ⊗ R𝐷) for some map 𝑇 : M →
Hom(𝑇M, 𝑇N ). Then 𝑇 = 𝐾𝔥 ◦ 𝐷𝜉 a.e.

Proof. Since 𝑝 > dimM, 𝜉𝑛 → 𝜉 uniformly; hence, we can work with local coordinates. Let 𝑋 : Ω ⊂
R

dimM → M and 𝑌 : Ω̃ ⊂ RdimN → N be local coordinate systems, and denote (𝑥𝑛, 𝑣𝑛) = (𝐷𝑌 )−1 ◦
𝜉𝑛 ◦ 𝑋 , and similarly (𝑥, 𝑣) = (𝐷𝑌 )−1 ◦ 𝜉 ◦ 𝑋 , both maps Ω → Ω̃ × RdimN . The uniform convergence
𝜉𝑛 → 𝜉 implies that (𝑥𝑛, 𝑣𝑛) → (𝑥, 𝑣) uniformly. The boundedness of 𝜉𝑛 in𝑊1, 𝑝 (M;𝑇N ) implies the
boundedness of the coordinate expressions (𝑥𝑛, 𝑣𝑛) in 𝑊1, 𝑝 (Ω,R2 dimN ); hence, (𝑥𝑛, 𝑣𝑛) ⇀ (𝑥, 𝑣) in
𝑊1, 𝑝 (Ω,R2 dimN ) to (𝑥, 𝑣). In these coordinates,

𝐷𝜉𝑛 = (𝑥𝑛, 𝑣𝑛, 𝐷𝑥𝑛 [·], 𝐷𝑣𝑛 [·]) : Ω → (Ω̃ × RdimM) × Hom(RdimN ,R2 dimN ).

Hence,

𝐾𝔥 ◦ 𝐷𝜉𝑛 = (𝑥𝑛, 𝐷𝑣𝑛 [·] + Γ(𝑥𝑛) [𝑣𝑛, 𝐷𝑥𝑛 [·]]).

Since 𝐷𝑣𝑛 ⇀ 𝐷𝑣 and 𝐷𝑥𝑛 ⇀ 𝐷𝑥 in 𝐿 𝑝 , Γ is smooth and (𝑥𝑛, 𝑣𝑛) → (𝑥, 𝑣) uniformly, we obtain that

(𝑥𝑛, 𝐷𝑣𝑛 [·] + Γ(𝑥𝑛) [𝑣𝑛, 𝐷𝑥𝑛 [·]]) ⇀ (𝑥, 𝐷𝑣 [·] + Γ(𝑥) [𝑣, 𝐷𝑥 [·]])
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in 𝐿 𝑝 (Ω; Ω̃ × Hom(RdimM,RdimN )). We have thus proved that 𝐾𝔥 ◦ 𝐷𝜉𝑛 ⇀ 𝐾𝔥 ◦ 𝐷𝜉 weakly in 𝐿𝑝 in
every coordinate patch.

Add now the fact that 𝑑𝑗 ◦ 𝐾𝔥 ◦ 𝐷𝜉𝑛 → 𝑑𝑗 ◦ 𝑇 strongly in 𝐿 𝑝 . By moving to subsequences, we
can assume that 𝑑𝑗 ◦ 𝐾𝔥 ◦ 𝐷𝜉𝑛 → 𝑑𝑗 ◦ 𝑇 a.e. Since 𝐷 𝑗 : N → R2𝐾 is an embedding, it follows that
𝐾 ◦ 𝐷𝜉𝑛 → 𝑇 a.e. Therefore, in coordinates, for almost every 𝑝 ∈ Ω,

(𝑥𝑛 (𝑝), 𝐷 𝑝𝑣𝑛 [·] + Γ(𝑥𝑛 (𝑝)) [𝑣𝑛 (𝑝), 𝐷 𝑝𝑥𝑛 [·]]) → 𝑇 (𝑝) [·] .

Thus, 𝑇 = 𝐾 ◦ 𝐷𝜉 a.e. in every coordinate patch; hence, a.e. �

The following is an immediate application of [AKM22, Prop. D.1]:

Proposition 2.3. Let 𝑝 > dimM. Then, 𝜉𝑛 → 𝜉 in 𝑊1, 𝑝 (M;𝑇N ) if and only if 𝑓𝜉𝑛 → 𝑓𝜉 in
𝑊1, 𝑝 (M;N ), and for some isometric embedding 𝚥 : N → R𝐷 ,

𝑑 𝚥 ◦ 𝜉𝑛 → 𝑑 𝚥 ◦ 𝜉 in 𝐿 𝑝 (M;R𝐷),

and

𝑑 𝚥 ◦ 𝐾𝔥 ◦ 𝐷𝜉𝑛 → 𝑑 𝚥 ◦ 𝐾𝔥 ◦ 𝐷𝜉 in 𝐿 𝑝 (𝑇∗M;R𝐷).

Sobolev immersions
Let dimM = 𝑑 and dimN = 𝑑 + 1, and let 𝑓 ∈ 𝑊1, 𝑝 (M;N ) satisfy rank 𝑑𝑓 = 𝑑 a.e. We may define
a.e. a map 𝔫 𝑓 ∈ 𝐿∞(M;𝑇N ) covering f, such that 𝔫 𝑓 (𝑞) ∈ 𝑇 𝑓 (𝑞)N is a unit vector, normal to the
image of 𝐷 𝑓𝑞 , and for every oriented basis (𝑢1, . . . , 𝑢𝑑) ⊂ 𝑇𝑞M,

(𝑑𝑓𝑞 (𝑢1), . . . , 𝑑𝑓𝑞 (𝑢𝑑), 𝔫 𝑓 (𝑞)) ⊂ 𝑇 𝑓 (𝑞)N

is an oriented basis. If 𝔫 𝑓 ∈ 𝑊1, 𝑝 (M;𝑇N ), we say that f belongs to the set of p-Sobolev im-
mersions (this is the definition in (1.3)). Since there is a one-to-one correspondence between f and
𝔫 𝑓 , Imm𝑝 (M;N ) can be identified with a subset of 𝑊1, 𝑝 (M;𝑇N ), and specifically a subset of
𝑊1, 𝑝 (M; 𝑆N ), where 𝑆N ⊂ 𝑇N is the sphere bundle of N . It is, however, not a closed subset, as the
rank condition is not closed under𝑊1, 𝑝-convergence.

For 𝑓 ∈ Imm𝑝 (M;N ), the total energy (1.2) is more rigorously written as

E𝑝 ( 𝑓 ) =
∫
M

(
dist𝑝 (𝐷 𝑓 ,O(𝔤, 𝔥)) + |𝐷 𝑓 ◦ 𝑆 + 𝐾𝔥 ◦ 𝐷𝔫 𝑓 |𝑝

)
dVol𝔤, (2.5)

as this notation does not rely on non-smooth pullback bundles and their corresponding pullback con-
nections.

Trivializations

Let 𝜉𝑛 ∈ 𝑊1, 𝑝 (M;𝑇N ) be a sequence converging to 𝜉 ∈ 𝑊1, 𝑝 (M;𝑇N ) uniformly (hence, in particular,
𝑓𝜉𝑛 → 𝑓𝜉 uniformly). The compactness of M and N implies the existence of finite open covers
U = {𝑈𝑖} and V = {𝑉𝑖} of M and N such that 𝑇N |𝑉𝑖 is a trivial bundle for every i, and such that
𝑓𝜉𝑛 (𝑈𝑖) ⊂ 𝑉𝑖 for n large enough. For every such U and V (to simplify notations, we omit the index i),
let 𝑅 : 𝑉 → SO(𝔥,RdimN ) be a smooth orthonormal frame (which may or may not be a coordinate
frame); namely, for every 𝑞 ∈ 𝑉 and 𝜂, 𝜉 ∈ 𝑇𝑞N ,

〈𝜂, 𝜉〉𝔥 = 〈𝑅 ◦ 𝜂, 𝑅 ◦ 𝜉〉𝔢 .
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Such a frame exists by the triviality of 𝑇N |𝑉 . Then, restricting to U,

𝑅 ◦ 𝐷 𝑓𝜉𝑛 , 𝑅 ◦ 𝐷 𝑓𝜉 ∈ 𝐿 𝑝Ω1(𝑈;N × RdimN ),

where R acts on the vector part 𝑑𝑓𝜉𝑛 of 𝐷 𝑓𝜉𝑛 . Note that 𝑅◦𝐷 𝑓𝜉𝑛 −𝑅◦𝐷 𝑓𝜉 ≠ 𝑅◦ (𝐷 𝑓𝜉𝑛 −𝐷 𝑓𝜉 ); in fact,
the right-hand side is not well defined, as the images of 𝜉𝑛 and 𝜉 do not belong to the same fiber of 𝑇N .

Proposition 2.4. Assume that 𝑝 > dimM. Then,

𝑓𝜉𝑛 → 𝑓𝜉 in𝑊1, 𝑝 (M;N )

if and only if

𝑅 ◦ 𝐷 𝑓𝜉𝑛 → 𝑅 ◦ 𝐷 𝑓𝜉 in 𝐿 𝑝Ω1(𝑈;N × RdimN )

for every𝑈 ∈ U . Likewise, if

𝑓𝜉𝑛 ⇀ 𝑓𝜉 in𝑊1, 𝑝 (M;N ),

then

𝑅 ◦ 𝐷 𝑓𝜉𝑛 ⇀ 𝑅 ◦ 𝐷 𝑓𝜉 in 𝐿 𝑝Ω1(𝑈;N × RdimN )

for every𝑈 ∈ U .

Proof. Since 𝑅 ◦ 𝐷 𝑓𝜉𝑛 (𝑥) = ( 𝑓𝜉𝑛 (𝑥), 𝑅 𝑓𝜉𝑛 (𝑥) ◦ (𝑑𝑓𝜉𝑛 )𝑥), and 𝑅𝑞 is a linear map depending smoothly
on the footpoint, and the footpoints 𝑓𝜉𝑛 converge uniformly to 𝑓𝜉 by assumption, the proof follows from
the same arguments as the one of Proposition 2.2. �

2.1. Coordinate representation of the energy

In this section, we present some of the geometric constructs and the energy (1.2) in coordinates for the
benefit of readers who are more used to this notation. For simplicity, assume that both M and N are
covered by single coordinate charts,

𝑥M : M → R𝑑 and 𝑥N : N → R𝑑+1.

A map 𝑓 : M → N is represented by a map R𝑑 ⊃ 𝑥M (M) → R𝑑+1,

𝑥 ↦→ 𝑥N ◦ 𝑓 ◦ 𝑥−1
M,

with components 𝑓 𝛼, where for the sake of clarity, we use Latin indexes for the body manifold M and
Greek indexes for the space manifold N .

Throughout this section, we will denote the projection of a vector bundle onto its base by 𝜋, where
the type (e.g., 𝑇M → M or 𝑇𝑇N → 𝑇N ) should be clear from the context. The tangent bundle 𝑇M
has coordinates (𝑥M, �𝑥M) : 𝑇M → R

𝑑 × R𝑑 , where, with a slight abuse of notations which will be
used repeatedly, 𝑥M = 𝑥M ◦ 𝜋 and �𝑥M = 𝑑𝑥M; the metric 𝔤 is represented by a matrix-valued function
𝑥M (M) → R𝑑 ⊗ R𝑑 , with entries 𝔤𝑖 𝑗 , such that for 𝑉 ∈ 𝑇M,

|𝑉 |2 = 𝔤𝑖 𝑗 (𝑥M (𝑉)) �𝑥𝑖M (𝑉) �𝑥 𝑗M (𝑉),

with the Einstein summation convention over repeated indexes. Similarly, the tangent bundle 𝑇N has
coordinates (𝑥N , �𝑥N ) : 𝑇N → R𝑑+1 × R𝑑+1; the metric 𝔥 is represented by a matrix-valued function
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𝑥N (N ) → R𝑑+1 ⊗ R𝑑+1, with entries 𝔥𝛼𝛽 , so that for a vector𝑊 ∈ 𝑇N ,

|𝑊 |2 = 𝔥𝛼𝛽 (𝑥N (𝑊)) �𝑥𝛼N (𝑊) �𝑥𝛽N (𝑊).

For 𝑓 : M → N , the fiber of the pullback bundle 𝑓 ∗𝑇N at a point 𝑝 ∈ M is canonically identified
with the fiber 𝑇 𝑓 (𝑝)N ; its coordinates are (𝑥M, �𝑥N ) : 𝑓 ∗𝑇N → R

𝑑 × R𝑑+1, where 𝑥M = 𝑥M ◦ 𝜋
and �𝑥N is identified with �𝑥N : 𝑇N → R

𝑑+1, via the canonical identification of fibers of 𝑓 ∗𝑇N with
fibers of 𝑇N . The coordinate representation of 𝑑𝑓 ∈ Γ( 𝑓 ∗𝑇N ) is the map 𝑥M (M) → Hom(R𝑑 ,R𝑑+1)
given by 𝜕𝑖 𝑓 𝛼, whereas the coordinate representation of 𝐷 𝑓 : 𝑇M → 𝑇N is the map 𝑥M (M) →
R
𝑑+1 × Hom(R𝑑 ,R𝑑+1), given by ( 𝑓 𝛼, 𝜕𝑖 𝑓 𝛼).

We denote by 𝔤1/2 : 𝑥M (M) → Hom(R𝑑 ,R𝑑) and 𝔥1/2 : 𝑥N (N ) → Hom(R𝑑+1,R𝑑+1) the
symmetric positive-definite square roots of the matrices 𝔤 and 𝔥; that is,

𝔤𝑖 𝑗 = 𝛿𝑘𝑙 (𝔤1/2)𝑘𝑖 (𝔤1/2)ℓ𝑗 and 𝔥𝛼𝛽 = 𝛿𝛾𝜂 (𝔥1/2)𝛾𝛼 (𝔥1/2)𝜂𝛽 .

The stretching energy of 𝑓 : M → N takes the form

E𝑆𝑝 ( 𝑓 ) =
∫
𝑥M (M)

dist𝑝 (𝑄(𝑥), 𝑂 (𝑑)) det(𝔤1/2 (𝑥)) 𝑑𝑥,

where
𝑄𝛼
𝑖 (𝑥) = (𝔥1/2 ( 𝑓 (𝑥)))𝛼𝛽 𝜕 𝑗 𝑓

𝛽 (𝑥) (𝔤−1/2(𝑥)) 𝑗𝑖 ,

or, in matrix form,

𝑄(𝑥) = ℎ1/2 ( 𝑓 (𝑥)) ◦ 𝑑𝑓 (𝑥) ◦ 𝔤−1/2(𝑥),

and the distance here is with respect to the Euclidean Frobenius norm.
We proceed with the double tangent 𝑇𝑇N , which has coordinates

(𝑥N , �𝑥N , 𝑣N , �𝑣N ) : 𝑇𝑇N → R𝑑+1 × R𝑑+1 × R𝑑+1 × R𝑑+1,

where 𝑥N = 𝑥N ◦ 𝜋, �𝑥N = �𝑥N ◦ 𝜋, 𝑣N = �𝑥N ◦ 𝐷𝜋 and �𝑣N = 𝑑 �𝑥N . That is, a vector in 𝑇(𝑥N , �𝑥N )𝑇N
represents a direction of change, in 𝑇N , from the point (𝑥N , �𝑥N ); the coordinate 𝑣N represents the
direction of change in the coordinate 𝑥N , and �𝑣N the direction of change in the coordinate �𝑥N .

We further denote by Γ : 𝑥N (N ) → Hom(R𝑑+1 ⊗ R𝑑+1,R𝑑+1) the Christoffel symbols of the Levi-
Civita connection, with coordinates Γ𝛼𝛽𝛾; the connection map 𝐾𝔥 : 𝑇𝑇N → 𝑇N is defined by

𝑥N ◦ 𝐾𝔥 = 𝑥N and �𝑥N ◦ 𝐾𝔥 = �𝑣N + Γ(𝑥N ) [ �𝑥N , 𝑣N ] .

Let 𝜉,𝑌 ∈ 𝔛(N ) be vector fields having coordinate representation 𝑥N (N ) → R𝑑+1,

𝜉𝛼 = �𝑥𝛼N ◦ 𝜉 ◦ 𝑥−1
N and 𝑌 𝛼 = �𝑥𝛼N ◦ 𝑌 ◦ 𝑥−1

N .

The coordinate representation of 𝐷𝜉 (𝑌 ) : N → 𝑇𝑇N is the map 𝑥N (N ) → R𝑑+1 ×R𝑑+1 ×R𝑑+1, given
by

(𝑌 𝛼, 𝜉𝛼, 𝑌 𝛽 𝜕𝛽𝜉𝛼).

Thus, the coordinate representation of 𝐾𝔥 ◦ 𝐷𝜉 (𝑌 ) : N → 𝑇N is the map 𝑥N (N ) → R𝑑+1, given by

𝑌 𝛽 𝜕𝛽𝜉
𝛼 + Γ𝛼𝛽𝛾 (𝑥)𝑌

𝛽𝜉𝛾 ,

thus showing that indeed 𝐾𝔥 ◦ 𝐷𝜉 (𝑌 ) = ∇𝑌 𝜉.
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We proceed to write the bending energy in explicit form. The reference shape operator S is represented
by a map 𝑥M (M) → Hom(R𝑑 ,R𝑑) with indexes 𝑆 𝑗𝑖 . The unit normal 𝔫 𝑓 is represented by a function
𝑥M (M) → R𝑑+1 such that

(𝜕1 𝑓
𝛼 (𝑥), . . . , 𝜕𝑑 𝑓 𝛼 (𝑥), 𝔫𝛼𝑓 (𝑥))

is an oriented basis for R𝑑+1, and 𝔫 𝑓 (𝑥) is a unit vector normal to range of ∇ 𝑓 (𝑥) with respect to the
inner-product 𝔥𝛼𝛽 ( 𝑓 (𝑥)). With this, we have

E𝐵𝑝 ( 𝑓 ) =
∫
𝑥M (M)

(
𝔤𝑖 𝑗 (𝑥)𝔥𝛼𝛽 ( 𝑓 (𝑥))𝐴𝛼𝑖 (𝑥)𝐴

𝛽
𝑗 (𝑥)

) 𝑝/2
det(𝔤1/2(𝑥)) 𝑑𝑥,

where

𝐴𝛼𝑖 (𝑥) = 𝜕𝑖𝔫𝛼𝑓 (𝑥) + Γ𝛼𝛽𝛾 ( 𝑓 (𝑥))𝜕𝑖 𝑓
𝛽 (𝑥)𝔫𝛾𝑓 (𝑥) + 𝜕𝑖 𝑓

𝛾 (𝑥)𝑆𝛼𝛾 (𝑥)

represents the discrepancy between the target shape operator S and the shape operator of f as defined in
(1.4).

3. Proof of Theorem 1.1

3.1. The relaxed functional

Denote as above 𝑑 = dimM. Consider the vector bundle of rank 𝑑 + 1, 𝑇M ⊕ R→ M endowed with
the product metric

〈(𝑣, 𝑠), (𝑤, 𝑡)〉𝐺 = 〈𝑣, 𝑤〉𝔤 + 𝑠𝑡, for 𝑞 ∈ M, 𝑣, 𝑤 ∈ 𝑇𝑞M and 𝑠, 𝑡 ∈ R.

The orientation of 𝑇M ⊕ R is induced by the orientation of 𝑇M: if (𝑢1, . . . , 𝑢𝑑) is an oriented basis
for 𝑇𝑞M, then, (𝑢1, . . . , 𝑢𝑑 , 1) is an oriented basis for 𝑇𝑞M ⊕ R.

For 𝜉 ∈ 𝑊1, 𝑝 (M;𝑇N ), we introduce the map

𝐷 𝑓𝜉 ⊕ 𝜉 ∈ 𝐿 𝑝 (M; (𝑇M ⊕ R)∗ ⊗ 𝑇N ),

which is a linear bundle morphism covering 𝑓𝜉 defined a.e. by

(𝐷 𝑓𝜉 ⊕ 𝜉)𝑞 (𝑣, 𝑡) = 𝑑𝑞 𝑓𝜉 (𝑣) + 𝑡 𝜉 (𝑞) ∈ 𝑇 𝑓𝜉 (𝑞)N ,

where 𝑞 ∈ M, 𝑣 ∈ 𝑇𝑞M and 𝑡 ∈ R. That is, on the left-hand side we identify 𝜉 (𝑞) ∈ 𝑇 𝑓𝜉 (𝑞)N with
𝜉 (𝑞) ∈ Hom(R, 𝑇 𝑓𝜉 (𝑞)N ).

Definition 3.1. The relaxed energy functional Ẽ𝑝 : 𝑊1, 𝑝 (M;𝑇N ) → [0,∞) is defined by

Ẽ𝑝 (𝜉) =
∫
M

dist𝑝 (𝐷 𝑓𝜉 ⊕ 𝜉, SO(𝐺, 𝔥)) dVol𝔤 +
∫
M

|𝐷 𝑓𝜉 ◦ 𝑆 + 𝐾𝔥 ◦ 𝐷𝜉 |𝑝 dVol𝔤

≡ Ẽ𝑆𝑝 (𝜉) + Ẽ𝐵𝑝 (𝜉).

Proposition 3.2. The functional Ẽ𝑝 is a relaxation of E𝑝 , in the sense that

E𝑝 ( 𝑓 ) = Ẽ𝑝 (𝔫 𝑓 ) for all 𝑓 ∈ Imm𝑝 (M,N ).

Furthermore, Ẽ𝑆𝑝 (𝜉) = 0 if and only if 𝑓𝜉 ∈ Imm𝑝 (M;N ), 𝜉 = 𝔫 𝑓𝜉 and 𝐷 𝑓 ∈ O(𝔤, 𝔥) a.e.
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Proof. We first prove the second claim. Let Ẽ𝑆𝑝 (𝜉) = 0; that is, 𝐷 𝑓𝜉 ⊕ 𝜉 ∈ SO(𝐺, 𝔥) a.e. Let 𝑣 ∈ 𝑇M.
Then,

|𝐷 𝑓𝜉 (𝑣) |𝔥 = | (𝐷 𝑓𝜉 ⊕ 𝜉) (𝑣, 0) |𝔥 = | (𝑣, 0) |𝐺 = |𝑣 |𝔤,

thus proving that 𝐷 𝑓𝜉 ∈ O(𝔤, 𝔥). In particular, 𝐷 𝑓𝜉 has full rank a.e. Moreover, a.e., and for every
𝑣 ∈ 𝑇M,

〈𝐷 𝑓𝜉 (𝑣), 𝜉〉𝔥 = 〈(𝐷 𝑓𝜉 ⊕ 𝜉) (𝑣, 0), (𝐷 𝑓𝜉 ⊕ 𝜉) (0, 1)〉𝔥 = 〈(𝑣, 0), (0, 1)〉𝐺 = 0,

whereas

〈𝜉, 𝜉〉𝔥 = 〈(𝐷 𝑓𝜉 ⊕ 𝜉) (0, 1), (𝐷 𝑓𝜉 ⊕ 𝜉) (0, 1)〉𝔥 = 〈(0, 1), (0, 1)〉𝐺 = 1,

(i.e., 𝜉 = 𝔫 𝑓𝜉 ) and since 𝜉 ∈ 𝑊1, 𝑝 (M;𝑇N ), it follows that 𝑓𝜉 ∈ Imm𝑝 (M;N ). The other direction is
immediate.

The first claim follows from the next lemma. �

Lemma 3.3. For 𝑓 ∈ Imm𝑝 (M,N ), the following identity holds:

dist(𝐷 𝑓 ⊕ 𝔫 𝑓 , SO(𝐺, 𝔥)) = dist(𝐷 𝑓 ,O(𝔤, 𝔥)).

Proof. This is a linear-algebraic statement. Let (𝑉1, 𝔤1), (𝑉2, 𝔤2) and (𝑊, 𝔥) be oriented d-, k- and
(𝑑 + 𝑘)-dimensional inner-product spaces. Let 𝐴 ∈ Hom(𝑉1,𝑊) and 𝐵 ∈ Hom(𝑉2,𝑊) satisfy

(a) 𝐴 ⊕ 𝐵 ∈ Hom(𝑉1 ⊕ 𝑉2,𝑊) is orientation-preserving (with respect with the natural orientation of
𝑉1 ⊕ 𝑉2).

(b) Image(𝐴) = (Image(𝐵))⊥.
(c) 𝐵 ∈ O(𝔤2, 𝔥).

Then,

dist(𝐴 ⊕ 𝐵, SO(𝔤1 ⊕ 𝔤2, 𝔥)) = dist(𝐴,O(𝔤1, 𝔥)).

In the present case, 𝑘 = 1, 𝐴 = 𝐷 𝑓 and 𝐵 = 𝔫 𝑓 . Indeed, by definition,𝐷 𝑓 ⊕𝔫 𝑓 is orientation-preserving,
𝔫 𝑓 is a unit vector, and G is a product metric. �

The fact that E𝑝 ( 𝑓 ) = Ẽ𝑝 (𝔫 𝑓 ) implies that Theorem 1.1 is proved if we prove the following relaxed
version:

Theorem 3.4. Suppose that there exists a sequence 𝜉𝑛 ∈ 𝑊1, 𝑝 (M;𝑇N ) satisfying

lim
𝑛→∞

Ẽ𝑝 (𝜉𝑛) → 0.

Then there exists a subsequence of 𝜉𝑛 converging strongly in 𝑊1, 𝑝 (M;𝑇N ) to a smooth limit 𝜉.
Furthermore, Ẽ𝑝 (𝜉) = 0, implying that 𝑓𝜉 ∈ Imm𝑝 (M;N ) is a smooth isometric immersion, satisfying
𝐾𝔥 ◦ 𝐷𝔫 𝑓𝜉 = −𝐷 𝑓𝜉 ◦ 𝑆 (i.e., S is the shape operator of the limit).

3.2. Basic compactness considerations

Lemma 3.5. Let 𝑝 > 1, and assume Ẽ𝑝 (𝜉𝑛) → 0. Then 𝜉𝑛 has a weakly converging subsequence
𝜉𝑛 ⇀ 𝜉 in 𝑊1, 𝑝 (M;𝑇N ). In particular, if 𝑝 > 𝑑, then 𝜉𝑛 → 𝜉 uniformly. The same (weak/uniform
convergence) holds for 𝑓𝜉𝑛 → 𝑓𝜉 .
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Proof. Let Ẽ𝑝 (𝜉𝑛) → 0. The uniform boundedness of the stretching energy Ẽ𝑆𝑝 (𝜉𝑛) and the compactness
of N imply that 𝜉𝑛 is a bounded sequence in 𝐿 𝑝 (M, 𝑇N ) and that 𝐷 𝑓𝜉𝑛 is a bounded sequence in
𝐿 𝑝 (M;𝑇∗M ⊗ 𝑇N ). Indeed,

|𝐷 𝑓𝜉 ⊕ 𝜉 | ≥ max{|𝐷 𝑓𝜉 |, |𝜉 |},

and

dist(𝐷 𝑓𝜉 ⊕ 𝜉, SO(𝐺, 𝔥)) ≥ |𝐷 𝑓𝜉 ⊕ 𝜉 | −
√
𝑑 + 1,

since every element of SO(𝐺, 𝔥) is of norm
√
𝑑 + 1. The boundedness of the bending energy Ẽ𝐵𝑝 (𝜉𝑛)

implies in turn that 𝐾𝔥 ◦ 𝐷𝜉𝑛 is a bounded sequence in 𝐿 𝑝 (M;𝑇∗M ⊗ 𝑇N ). By the definition (2.1)
of the Sasaki metric, this implies that 𝐷𝜉𝑛 is a bounded sequence in 𝐿 𝑝 (M;𝑇∗M ⊗ 𝑇𝑇N ) (i.e., 𝜉𝑛 is
bounded in 𝑊1, 𝑝 (M;𝑇N )). The claim on 𝜉𝑛 follows immediately, and the claim on 𝑓𝜉𝑛 follows from
Lemma 2.1. �

3.3. The case 𝑝 > 𝑑

We first prove Theorem 3.4 for 𝑝 > 𝑑; this restriction is relaxed further below. The analysis for 𝑝 > 𝑑
can also be applied directly to the functional E𝑝 : Imm𝑝 (M;N ) → [0,∞); the extension to 𝑝 ≤ 𝑑 in
the next part, however, cannot.

Analysis of the limiting map
Let U , V and R define trivializations of 𝑇N as in Section 2, and let 𝑈 ∈ U ; note that 𝑇𝑈 = 𝑇M|𝑈 is a
vector bundle over U. Then,

𝛼𝑛 = 𝑅 ◦ (𝐷 𝑓𝜉𝑛 ⊕ 𝜉𝑛) ∈ 𝐿 𝑝Γ((𝑇𝑈 ⊕ R)∗ ⊗ R𝑑+1),

which is a section of a vector bundle over U, is a trivialization of 𝐷 𝑓𝜉𝑛 ⊕ 𝜉𝑛 satisfying

dist(𝐷 𝑓𝜉𝑛 ⊕ 𝜉𝑛, SO(𝐺, 𝔥)) = dist(𝛼𝑛, SO(𝐺,𝔢)).

The fact that Ẽ𝑝 (𝜉𝑛) → 0 implies in particular that

lim
𝑛→∞

∫
𝑈

dist𝑝 (𝛼𝑛, SO(𝐺,𝔢)) dVol𝔤 = 0. (3.1)

It follows from (3.1) that 𝛼𝑛 is an 𝐿 𝑝-bounded sequence of sections of (𝑇𝑈 ⊕ R)∗ ⊗ R𝑑+1. By the
fundamental theorem of Young measures (see [KMS19, Section 3.1] for a version for vector bundles),
there exists an 𝐿𝑝-Young measure 𝜈 ∈ 𝑌 𝑝 (𝑈, (𝑇𝑈 ⊕ R)∗ ⊗ R𝑑+1) such that

𝛼𝑛
𝑌−→ 𝜈.

That is, for every vector bundle 𝐸 → 𝑈 and every (generally nonlinear) bundle map 𝑊 : (𝑇𝑈 ⊕ R)∗ ⊗
R
𝑑+1 → 𝐸 for which𝑊 (𝛼𝑛) : 𝑈 → 𝐸 is 𝐿1-weakly precompact,

𝑊 (𝛼𝑛) ⇀
{
𝑞 →

∫
(𝑇𝑈 ⊕R)∗ ⊗R𝑑+1

𝑊 (𝐴) 𝑑𝜈𝑞 (𝐴)
}

in 𝐿1Γ(𝐸).

Take 𝑊 (𝐴) = dist(𝐴, 𝑆𝑂 (𝐺,𝔢)). Since 𝑊 (𝛼𝑛) is bounded in 𝐿 𝑝 (𝑈) for 𝑝 > 1, it is 𝐿1-weakly
precompact, from which follows that
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0 = lim
𝑛→∞

∫
𝑈

dist(𝛼𝑛, SO(𝐺,𝔢)) dVol𝔤

=
∫
𝑈

∫
(𝑇𝑈 ⊕R)∗ ⊗R𝑑+1

dist(𝐴, SO(𝐺,𝔢)) 𝑑𝜈(𝐴) dVol𝔤

(i.e., 𝜈𝑞 is supported on SO(𝐺,𝔢) for a.e. 𝑞 ∈ 𝑈).
For general oriented inner-product spaces (𝑉, 𝔤) and (𝑊, 𝔥) of equal dimension s, and a linear

map 𝐴 ∈ Hom(𝑉,𝑊), the determinant and the cofactor of A, det 𝐴 ∈ Hom(R;R) � R and cof 𝐴 ∈
Hom(𝑉,𝑊) can be defined in a basis-independent manner by

det 𝐴 = ★𝔥 ◦ (∧𝑠𝐴) ◦★𝔤 and cof 𝐴 = (−1)𝑠+1 ★𝔥 ◦(∧𝑠−1𝐴) ◦★𝔤,

where★𝔤 : Λ𝑘𝑉 → Λ𝑠−𝑘𝑉 and★𝔥 : Λ𝑘𝑊 → Λ𝑠−𝑘𝑊 are the hodge-dual isomorphisms of the respective
spaces, and ∧𝑘𝐴 is the k-minor of A, defined by

∧𝑘𝐴(𝑣1, . . . , 𝑣𝑘 ) = 𝐴(𝑣1) ∧ · · · ∧ 𝐴(𝑣𝑘 ).

These definitions can be equivalently obtained by choosing positive orthonormal bases for V and W and
evaluating the determinant and cofactor of their matrix representations in these bases. It is well known
that

𝐴 ∈ SO(𝔤, 𝔥) if and only if cof 𝐴 = 𝐴 and det 𝐴 = 1.

With that, consider next the test functions 𝑊 (𝐴) = 𝐴, 𝑊 (𝐴) = cof 𝐴 and 𝑊 (𝐴) = det 𝐴. By
definition, they are compositions of minors of A of ranks 1, d and (𝑑 + 1), respectively, and hodge-dual
isometries. Since 𝔥 and 𝔥−1 are bounded uniformly (in coordinates) and 𝐷 𝑓𝜉𝑛 is bounded in 𝐿 𝑝 , both the
cofactor and the determinant of 𝛼𝑛 are uniformly bounded in 𝐿 𝑝/𝑑 , and therefore,𝑊 (𝛼𝑛) are 𝐿1-weakly
precompact for all above choices of W. It follows from the definition of the Young measure limit that

𝛼𝑛 ⇀

{
𝑞 →

∫
(𝑇𝑈 ⊕R)∗ ⊗R𝑑+1

𝐴 𝑑𝜈𝑞 (𝐴)
}

in 𝐿1Γ((𝑇𝑈 ⊕ R)∗ ⊗ R𝑑+1)

cof (𝛼𝑛) ⇀
{
𝑞 →

∫
(𝑇𝑈 ⊕R)∗ ⊗R𝑑+1

cof 𝐴 𝑑𝜈𝑞 (𝐴)
}

in 𝐿1Γ((𝑇𝑈 ⊕ R)∗ ⊗ R𝑑+1)

det(𝛼𝑛) ⇀
{
𝑞 →

∫
(𝑇𝑈 ⊕R)∗ ⊗R𝑑+1

det 𝐴 𝑑𝜈𝑞 (𝐴)
}

in 𝐿1 (𝑈).

Since 𝜈𝑞 is supported on SO(𝐺,𝔢) for a.e. 𝑞 ∈ 𝑈, and on that set cof 𝐴 = 𝐴 and det 𝐴 = 1, it follows
that

𝛼𝑛 ⇀

{
𝑞 →

∫
SO(𝐺,𝔢)

𝐴 𝑑𝜈𝑞 (𝐴)
}

in 𝐿1Γ((𝑇𝑈 ⊕ R)∗ ⊗ R𝑑+1)

cof (𝛼𝑛) ⇀
{
𝑞 →

∫
SO(𝐺,𝔢)

𝐴 𝑑𝜈𝑞 (𝐴)
}

in 𝐿1Γ((𝑇𝑈 ⊕ R)∗ ⊗ R𝑑+1) (3.2)

det(𝛼𝑛) ⇀ 1 in 𝐿1 (𝑈).

Recall that 𝜉𝑛 ⇀ 𝜉 (hence also 𝑓𝜉𝑛 ⇀ 𝑓𝜉 ) in𝑊1, 𝑝 . It follows from the second clause of Proposition
2.4 that

𝛼𝑛 ⇀ 𝛼 = 𝑅 ◦ (𝐷 𝑓𝜉 ⊕ 𝜉) in 𝐿 𝑝Γ((𝑇𝑈 ⊕ R)∗ ⊗ R𝑑+1). (3.3)
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Lemma 3.6. The weak 𝐿𝑝-convergence 𝛼𝑛 ⇀ 𝛼 implies that

cof (𝛼𝑛) ⇀ cof (𝛼) in 𝐿 𝑝/𝑑Γ((𝑇𝑈 ⊕ R)∗ ⊗ R𝑑+1)
det(𝛼𝑛) ⇀ det(𝛼) in 𝐿 𝑝/𝑑 (𝑈). (3.4)

Proof. Since the hodge-dual operator is a linear isometry and 𝜉𝑛 → 𝜉 uniformly, it suffices to show that

∧𝑘𝛼𝑛 ⇀ ∧𝑘𝛼 in 𝐿 𝑝/𝑑Γ(Λ𝑘 (𝑇𝑈 ⊕ R)∗ ⊗ Λ𝑘
R
𝑑+1)

for 𝑘 = 𝑑, 𝑑 + 1. We show more generally that for every 𝑘 = 1, . . . , 𝑑 + 1,

∧𝑘𝛼𝑛 ⇀ ∧𝑘𝛼 in 𝐿 𝑝/min(𝑘,𝑑)Γ(Λ𝑘 (𝑇𝑈 ⊕ R)∗ ⊗ Λ𝑘
R
𝑑+1).

We start by noting that for 𝑣1, . . . , 𝑣𝑘 ∈ 𝑇𝑞𝑈 and 𝑡1, . . . , 𝑡𝑘 ∈ R,

∧𝑘𝛼𝑛 ((𝑣1, 𝑡1), . . . , (𝑣𝑘 , 𝑡𝑘 )) = ∧𝑘𝑗=1 (𝑅 𝑓𝜉𝑛 (𝑞) ◦ 𝐷𝑞 𝑓𝜉𝑛 (𝑣 𝑗 ) + 𝑡 𝑗𝑅 𝑓𝜉𝑛 (𝑞) ◦ 𝜉𝑛 (𝑞))

= ∧𝑘𝑗=1𝑅 𝑓𝜉𝑛 (𝑞) ◦ 𝐷𝑞 𝑓𝜉𝑛 (𝑣 𝑗 )

+
𝑘∑
ℓ=1

(−1)ℓ 𝑡ℓ ∧ 𝑗≠ℓ

(
𝑅 𝑓𝜉𝑛 (𝑞) ◦ 𝐷𝑞 𝑓𝜉𝑛 (𝑣 𝑗 )

)
∧ (𝑅 𝑓𝜉𝑛 (𝑞) ◦ 𝜉𝑛 (𝑞)).

That is,

∧𝑘𝛼𝑛 = ∧𝑘 (𝑅 ◦ 𝐷 𝑓𝜉𝑛 ⊕ 0) + ∧𝑘−1(𝑅 ◦ 𝐷 𝑓𝜉𝑛 ⊕ 0) ∧ (0 ⊕ 𝑅 ◦ 𝜉𝑛).

Since 𝜉𝑛 → 𝜉 uniformly, and since the product of a weakly 𝐿𝑝-convergent sequence and a uniformly
convergence sequence is weakly 𝐿𝑝-convergent, it suffices to show that

∧𝑘 (𝑅 ◦ 𝐷 𝑓𝑛) ⇀ ∧𝑘 (𝑅 ◦ 𝐷 𝑓 ) in 𝐿 𝑝/min(𝑘,𝑑)Ω𝑘 (𝑈;Λ𝑘
R
𝑑+1).

Since M and N are compact, the orthonormal frame R can be replaced by any other smooth frame
– for example, 𝑅 = 𝑑ℎ, where ℎ : 𝑉 → R

𝑑+1 is a local coordinate system. The claim reduces then
to the standard weak-continuity of minors, proved inductively on k (see, for example, [Rin18, Lemma
5.10]). �

Since cof (𝐴𝐵) = cof (𝐴) cof(𝐵) and det(𝐴𝐵) = det(𝐴) det(𝐵), and since R is an orientation-
preserving isometry,

cof (𝑅 ◦ 𝐴) = 𝑅 ◦ cof(𝐴)
det(𝑅 ◦ 𝐴) = det(𝐴),

we obtain by combining (3.4) with (3.2) that

cof (𝐷 𝑓𝜉 ⊕ 𝜉) = 𝐷 𝑓𝜉 ⊕ 𝜉 and det(𝐷 𝑓𝜉 ⊕ 𝜉) = 1 a.e.,

which implies that

𝐷 𝑓𝜉 ⊕ 𝜉 ∈ SO(𝐺, 𝔥) a.e.

Thus, Ẽ𝑆𝑝 (𝜉) = 0. By Proposition 3.2, 𝑓𝜉 ∈ Imm𝑝 (M;N ) with 𝐷 𝑓𝜉 ∈ O(𝔤, 𝔥), and 𝜉 = 𝔫 𝑓𝜉 .
Thus, we have obtained at this stage that 𝜉𝑛 ⇀ 𝜉 in 𝑊1, 𝑝 where, 𝜉 = 𝔫 𝑓𝜉 . In order to complete the

proof for the case 𝑝 > 𝑑, we need to show that the convergence is in fact strong and that the shape
operator of 𝔫 𝑓𝜉 is S, and deduce from Theorem 1.2 that the limit is smooth.
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Strong convergence and second fundamental form of the limit
From the uniqueness of the limit, combining (3.2) and (3.3),

∫
SO(𝐺𝑥 ,𝔢)

𝐴 𝑑𝜈𝑥 (𝐴) = 𝛼𝑥 for a.e. 𝑥 ∈ 𝑈.

The left-hand side is a convex combination of elements in SO(𝐺𝑥 ,𝔢), and the right-hand side is
in SO(𝐺𝑥 ,𝔢) (𝛼 is the composition of an element of SO(𝐺, 𝔥) and an element of SO(𝔥,𝔢)). Since
SO(𝐺𝑥 ,𝔢) is strictly convex, this convex combination must be trivial; namely,

𝜈𝑥 = 𝛿𝛼𝑥 for a.e. 𝑥 ∈ 𝑈.

As a consequence, for every𝑊 : (𝑇𝑈 ⊗ R)∗ ⊗ R𝑑+1 → R for which𝑊 (𝛼𝑛) is 𝐿1-weakly precompact,

lim
𝑛→∞

∫
𝑈
𝑊 (𝛼𝑛) dVol𝔤 =

∫
𝑈
𝑊 (𝛼) dVol𝔤 . (3.5)

We now show that 𝑓𝜉𝑛 → 𝑓𝜉 strongly in 𝑊1, 𝑝 (M;N ) (for the moment, we have only established
weak convergence, and hence in particular strong 𝐿𝑝 convergence). By the first clause of Proposition 2.4,
it suffices to prove that 𝛼𝑛 → 𝛼 in 𝐿 𝑝Γ((𝑇𝑈 ⊗R)∗ ⊗R𝑑+1). We would be done if we could use (3.5) for

𝑊 (𝐴) = |𝐴 − 𝛼 |𝑝 .

However,𝑊 (𝛼𝑛) is only bounded in 𝐿1 (𝑈), which does not guarantee sequential weak precompactness.
Instead, let

𝑊 (𝐴) = |𝐴 − 𝛼 |𝑝 𝜑
(

|𝐴|
3
√
𝑑 + 1

)
,

where 𝜑 : [0,∞) → R is continuous, nonnegative, compactly supported, and satisfies 𝜑(𝑡) = 1 for 𝑡 ≤ 1
and 𝜑(𝑡) < 1 for 𝑡 > 1. Clearly,𝑊 (𝛼𝑛) is uniformly bounded, and hence 𝐿1-weakly precompact, which
since𝑊 (𝛼) = 0 implies that

lim
𝑛→∞

∫
𝑈
𝑊 (𝛼𝑛) dVol𝔤 = 0.

On the set

𝐵𝑛 = {𝑥 ∈ 𝑈 : |𝛼𝑛 | < 3
√
𝑑 + 1},

we have𝑊 (𝛼𝑛) = |𝛼𝑛 − 𝛼 |𝑝 , whereas on its complement𝑈 \ 𝐵𝑛,

|𝛼𝑛 − 𝛼 | ≤ 2(|𝛼𝑛 | − |𝛼 |) ≤ 2 dist(𝛼𝑛, SO(𝐺,𝔢)),

where the first inequalities follow from the fact that |𝛼 | =
√
𝑑 + 1 and |𝛼𝑛 | ≥ 3

√
𝑑 + 1, and the second

inequality follows from the reverse triangle inequality. Thus, in𝑈 \ 𝐵𝑛,

|𝛼𝑛 − 𝛼 |𝑝 ≤ 2𝑝 dist𝑝 (𝛼𝑛, SO(𝐺,𝔢)).
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Combining the two sets,
∫
𝑈
|𝛼𝑛 − 𝛼 |𝑝 dVol𝔤 =

∫
𝐵𝑛

|𝛼𝑛 − 𝛼 |𝑝 dVol𝔤 +
∫
𝑈\𝐵𝑛

|𝛼𝑛 − 𝛼 |𝑝 dVol𝔤

≤
∫
𝑈
𝑊 (𝛼𝑛) dVol𝔤 + 2𝑝

∫
𝑈

dist𝑝 (𝛼𝑛, SO(𝐺,𝔢)) dVol𝔤,

and both terms tend to zero as 𝑛 → ∞. We conclude that 𝐷 𝑓𝜉𝑛 → 𝐷 𝑓𝜉 in 𝐿 𝑝 and therefore obtain
that 𝑓𝜉𝑛 → 𝑓𝜉 in 𝑊1, 𝑝 (M;N ). It remains to show that S is the shape operator of 𝑓𝜉 (i.e., that
𝐾ℎ ◦ 𝐷𝜉 = −𝐷 𝑓𝜉 ◦ 𝑆) and that 𝜉𝑛 → 𝜉 strongly in𝑊1, 𝑝 (M;𝑇N ). We observe that

𝑑 𝚥 ◦ 𝐾𝔥 ◦ 𝐷𝜉𝑛 = 𝑑 𝚥 ◦ (𝐾𝔥 ◦ 𝐷𝜉𝑛 + 𝐷 𝑓𝜉𝑛 ◦ 𝑆)
+ (𝑑 𝚥 ◦ 𝐷 𝑓𝜉 − 𝑑 𝚥 ◦ 𝐷 𝑓𝜉𝑛 ) ◦ 𝑆
− 𝑑 𝚥 ◦ 𝐷 𝑓𝜉 ◦ 𝑆

(the composition with 𝑑 𝚥 is necessary in order to be able to add and subtract the various terms). The
first term on the right-hand side tends to zero in 𝐿𝑝 since the bending energy Ẽ𝐵𝑝 (𝜉𝑛) tends to zero; the
second term tends to zero in 𝐿𝑝 since 𝑓𝜉𝑛 → 𝑓𝜉 strongly in 𝑊1, 𝑝 . Thus, the left-hand side converges
strongly to −𝑑 𝚥 ◦ 𝐷 𝑓 ◦ 𝑆.

It follows from Lemma 2.2 that 𝐾𝔥◦𝐷𝜉𝑛 → 𝐾𝔥◦𝐷𝜉 in 𝐿 𝑝 and that 𝐾ℎ ◦𝐷𝜉 = −𝐷 𝑓 ◦𝑆, thus proving
that S is the shape operator of 𝑓𝜉 . Since 𝜉𝑛 ⇀ 𝜉 in𝑊1, 𝑝 , 𝑓𝜉𝑛 → 𝑓𝜉 in𝑊1, 𝑝 and 𝐾𝔥 ◦ 𝐷𝜉𝑛 → 𝐾𝔥 ◦ 𝐷𝜉
in 𝐿𝑝 , we obtain from Proposition 2.3 that 𝜉𝑛 → 𝜉 strongly, as needed.

Lastly, 𝑓𝜉 satisfies the assumptions of Theorem 1.2 (which is proved in Section 4 below), and thus
𝑓𝜉 is smooth, and by extension so is 𝜉 = 𝔫 𝑓𝜉 .

3.4. The case 𝑝 ≤ 𝑑 via Sobolev truncation

If 𝑝 ≤ 𝑑, we first need to regularize 𝜉𝑛 ∈ 𝑊1, 𝑝 (M;𝑇N ) by replacing them with 𝜉𝑛 ∈ 𝑊1,∞(M;𝑇N ),
which are close to 𝜉𝑛 in 𝑊1, 𝑝 and also uniformly Lipschitz. This is where the relaxation of the energy
comes into play, since even if 𝜉𝑛 = 𝔫 𝑓𝜉𝑛 project onto immersions 𝑓𝜉𝑛 ∈ Imm𝑝 (M;N ), we do not
know how to approximate them with more regular functions within the space Imm𝑝 (M;N ). This
construction follows a similar path as in other manifold-valued elasticity results – namely, [KMS19,
KM21] – with some technical complications due to the structure of the energy in codimension-1 and
the non-compactness of 𝑇N .

First, we need the following pointwise estimate:

Lemma 3.7. Let 𝜉 ∈ 𝑊1, 𝑝 (M;𝑇N ). Denote 𝑀 = ‖𝑆‖∞, where S is the shape operator in E𝑝 . If at a
point in M, |𝐷𝜉 | ≥ (3 + 2𝑀)

√
𝑑 + 1, then at that point,

|𝐷𝜉 | ≤ (3 + 2𝑀)
(
dist(𝐷 𝑓𝜉 ⊕ 𝜉, SO(𝐺, 𝔥)) + |𝐷 𝑓𝜉 ◦ 𝑆 + 𝐾𝔥 ◦ 𝐷𝜉 |

)
. (3.6)

Proof. By the definition of the Sasaki metric,

|𝐷𝜉 | ≤ |𝐷 𝑓𝜉 | + |𝐾𝔥 ◦ 𝐷𝜉 |.

Consider first the case where |𝐷 𝑓𝜉 | ≥ 2
√
𝑑 + 1. Then, by the triangle inequality and the fact that all the

elements in SO(𝐺, 𝔥) are of norm
√
𝑑 + 1,

dist(𝐷 𝑓𝜉 ⊕ 𝜉, SO(𝐺, 𝔥)) ≥ |𝐷 𝑓𝜉 | −
√
𝑑 + 1 ≥

√
𝑑 + 1. (3.7)
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Thus,

|𝐷𝜉 | ≤ |𝐷 𝑓𝜉 | + |𝐾𝔥 ◦ 𝐷𝜉 |
≤ |𝐷 𝑓𝜉 | + |𝐷 𝑓𝜉 ◦ 𝑆 | + |𝐷 𝑓𝜉 ◦ 𝑆 + 𝐾𝔥 ◦ 𝐷𝜉 |
≤ (1 + 𝑀) |𝐷 𝑓𝜉 | + |𝐷 𝑓𝜉 ◦ 𝑆 + 𝐾𝔥 ◦ 𝐷𝜉 | (3.8)

≤ (1 + 𝑀) dist(𝐷 𝑓𝜉 ⊕ 𝜉, SO(𝐺, 𝔥)) + (1 + 𝑀)
√
𝑑 + 1 + |𝐷 𝑓𝜉 ◦ 𝑆 + 𝐾𝔥 ◦ 𝐷𝜉 |

≤ 2(1 + 𝑀) dist(𝐷 𝑓𝜉 ⊕ 𝜉, SO(𝐺, 𝔥)) + |𝐷 𝑓𝜉 ◦ 𝑆 + 𝐾𝔥 ◦ 𝐷𝜉 |,

which implies (3.6).
Otherwise, if |𝐷 𝑓𝜉 | < 2

√
𝑑 + 1 and |𝐷𝜉 | ≥ (3 + 2𝑀)

√
𝑑 + 1, then

|𝐷𝜉 | ≤ |𝐷 𝑓𝜉 | + |𝐾𝔥 ◦ 𝐷𝜉 |
≤ |𝐷 𝑓𝜉 | + |𝐷 𝑓𝜉 ◦ 𝑆 | + |𝐷 𝑓𝜉 ◦ 𝑆 + 𝐾𝔥 ◦ 𝐷𝜉 |
≤ (1 + 𝑀) |𝐷 𝑓𝜉 | + |𝐷 𝑓𝜉 ◦ 𝑆 + 𝐾𝔥 ◦ 𝐷𝜉 |

≤ 2(1 + 𝑀)
√
𝑑 + 1 + |𝐷 𝑓𝜉 ◦ 𝑆 + 𝐾𝔥 ◦ 𝐷𝜉 |

≤ 2(1 + 𝑀)
3 + 2𝑀

|𝐷𝜉 | + |𝐷 𝑓𝜉 ◦ 𝑆 + 𝐾𝔥 ◦ 𝐷𝜉 |,

from which follows that

|𝐷𝜉 | ≤ (3 + 2𝑀) |𝐷 𝑓𝜉 ◦ 𝑆 + 𝐾𝔥 ◦ 𝐷𝜉 |,

which implies (3.6). �

For a given 𝜌 > 2
√
𝑑 + 1, denote 𝑇𝜌N := {𝑣 ∈ 𝑇N : |𝑣 | ≤ 𝜌}, which is a compact submanifold of

𝑇N . Denote by 𝜑 : [0,∞) → [0, 1] a continuous, nonnegative, compactly supported function satisfying
𝜑(𝑡) = 1 for 𝑡 ≤ 2

√
𝑑 + 1 and 𝜑(𝑡) = 0 for 𝑡 ≥ 𝜌, and let 𝜉𝑛 = 𝜑(|𝜉𝑛 |)𝜉𝑛. Note that 𝜉𝑛 : M → 𝑇𝜌N is

uniformly bounded, and |𝐷𝜉𝑛 | ≤ 𝐶 |𝐷𝜉𝑛 | for some C depending only on 𝜑. Furthermore,

{𝑥 ∈ M : 𝜉𝑛 (𝑥) ≠ 𝜉𝑛 (𝑥)} ⊂ {|𝜉𝑛 | > 2
√
𝑑 + 1}

⊂ {dist(𝐷 𝑓𝜉𝑛 ⊕ 𝜉𝑛, SO(𝐺, 𝔥)) >
√
𝑑 + 1},

where the last inclusion follows from the same argument as in (3.7). Since Ẽ𝑝 (𝜉𝑛) → 0, it follows that

dist(𝐷 𝑓𝜉𝑛 ⊕ 𝜉𝑛, SO(𝐺, 𝔥)) → 0 in measure.

Hence, the volumes of all the sets above tend to zero. On the one hand,∫
M

|𝜉𝑛 − 𝜉𝑛 |𝑝 dVol𝔤 =
∫
{𝜉𝑛≠𝜉𝑛 }

|𝜉𝑛 − 𝜉𝑛 |𝑝 dVol𝔤

�
∫
{𝜉𝑛≠𝜉𝑛 }

|𝜉𝑛 |𝑝 dVol𝔤 +
∫
{𝜉𝑛≠𝜉𝑛 }

|𝜉𝑛 |𝑝 dVol𝔤 .

The first term tends to zero as 𝑛 → ∞ because |𝜉𝑛 |𝑝 is equi-integrable (it is bounded in 𝑊1, 𝑝); the
second term tends to zero because |𝜉 | is uniformly bounded. Moreover,∫

M
|𝑑𝜄 ◦ 𝐷𝜉𝑛 − 𝑑𝜄 ◦ 𝐷𝜉𝑛 |𝑝 dVol𝔤 �

∫
{dist(𝐷 𝑓𝜉𝑛 ⊕𝜉𝑛 ,SO(𝐺,𝔥))>

√
𝑑+1}

|𝐷𝜉𝑛 |𝑝 dVol𝔤 � Ẽ𝑝 (𝜉𝑛) → 0,

https://doi.org/10.1017/fms.2024.30 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.30


Forum of Mathematics, Sigma 21

where the last inequality follows from (3.8). Thus,

‖𝜄 ◦ 𝜉𝑛 − 𝜄 ◦ 𝜉𝑛‖𝑊 1, 𝑝 → 0.

Denote 𝑢𝑛 = 𝜄 ◦ 𝜉𝑛 ∈ 𝑊1, 𝑝 (M;R𝐷). By [FJM02, Proposition A.1], there exists a constant 𝐶 > 0,
depending on M, 𝔤, 𝑝 and ‖𝑆‖∞, and there exists a sequence of Lipschitz maps 𝑢̄𝑛 ∈ 𝑊1,∞(M;R𝐷)
having uniform Lipschitz constant C such that

Vol𝔤 ({𝑥 ∈ M : 𝑢̄(𝑥) ≠ 𝑢(𝑥)}) ≤ 𝐶
∫
{ |𝐷𝑢𝑛 |> (3+2𝑀 )

√
𝑑+1}

|𝐷𝑢𝑛 |𝑝 dVol𝔤,

and

‖𝑢̄𝑛 − 𝑢𝑛‖ 𝑝𝑊 1, 𝑝 ≤ 𝐶
∫
{ |𝐷𝑢𝑛 |> (3+2𝑀 )

√
𝑑+1}

|𝐷𝑢𝑛 |𝑝dVol𝔤 .

Using Lemma 3.7, and the fact that |𝐷𝑢𝑛 | = |𝐷𝜉𝑛 | (since 𝜄 is an isometric immersion), we obtain that

Vol𝔤 ({𝑥 ∈ M : 𝑢̄(𝑥) ≠ 𝑢(𝑥)}) ≤ 𝐶 ′Ẽ𝑝 (𝜉𝑛), (3.9)

and

‖𝑢̄𝑛 − 𝑢𝑛‖ 𝑝𝑊 1, 𝑝 ≤ 𝐶 ′Ẽ𝑝 (𝜉𝑛), (3.10)

for some 𝐶 ′ > 0. Note that the image of 𝑢̄𝑛 is not in 𝜄(𝑇N ), which means that we cannot identify
𝑢̄𝑛 : M → R𝐷 with a function 𝜉𝑛 : M → 𝑇N ; to rectify this problem, we resort to a projection. Since
Ẽ𝑝 (𝜉𝑛) → 0, it follows from (3.9) that for every 𝜀 > 0, and 𝑛 ∈ N large enough (depending on 𝜀), every
ball of radius 𝜀 in M contains a point x for which 𝑢̄𝑛 (𝑥) = 𝑢𝑛 (𝑥) ∈ 𝜄(𝑇𝜌N ). Since 𝑢̄𝑛 are uniformly
Lipschitz, we obtain that

max
𝑥∈M

dist(𝑢̄𝑛 (𝑥), 𝜄(𝑇𝜌N )) → 0.

Thus, for n large enough, 𝑢̄𝑛 (𝑥) lies in a tubular neighborhood of 𝜄(𝑇N ) on which the orthogonal
projection operator P is well defined and smooth (this is where we use the compactness of 𝑇𝜌N and
the reason we had to truncate 𝜉𝑛 to 𝜉𝑛 – we had to ensure that the image of 𝑢̄𝑛 is uniformly close to a
compact subset of 𝜄(𝑇N )). Define 𝑢̃𝑛 = 𝑃 ◦ 𝑢̄𝑛, and 𝜉𝑛 = 𝜄−1 ◦ 𝑢̃𝑛. A direct calculation, as in [KMS19,
pp. 391–2], shows that 𝑢̃𝑛 and 𝜉𝑛 are uniformly Lipschitz and satisfy (3.9) and (3.10), and furthermore,
that Ẽ𝑞 (𝜉𝑛) → 0 for any 𝑞 ∈ (1,∞).

We can now apply the previous step for 𝜉𝑛, for some 𝑞 > 𝑑 ≥ 𝑝, and obtain that 𝜉𝑛 → 𝜉 = 𝔫 𝑓 in
𝑊1,𝑞 (M;𝑇N ) for some isometric immersion 𝑓 ∈ Imm∞(M;N ) whose shape operator is S. Since ‖𝑢𝑛−
𝑢𝑛‖𝑊 1, 𝑝 → 0, it follows by definition that dist𝑊 1, 𝑝 (𝜉𝑛, 𝜉𝑛) → 0, and thus also dist𝑊 1, 𝑝 (𝜉𝑛, 𝜉𝑛) → 0.
It therefore follows that 𝜉𝑛 → 𝔫 𝑓 in𝑊1, 𝑝 (M;𝑇N ).

4. Proof of Theorem 1.2

In this section, we prove Theorem 1.2. First, we prove that 𝑓 ∈ 𝑊2,2, in the sense that any coordinate
representation of f is in 𝑊2,2. Then, in order to prove that f is smooth, we prove an analog version of
[MS19, Lemma 3.1], where the range is a Riemannian manifold instead of R𝑛 (for our purpose, we are
only interested in codimension-1). This is achieved by the following two propositions.

Proposition 4.1. Let 𝑓 ∈ Imm𝑝 (M;N ), 𝑝 > 𝑑. Suppose that 𝑓 ∗𝔥 (which is a priori only defined
almost-everywhere) is a smooth metric on M. Then 𝑓 ∈ 𝑊2,2 (M;N ) (in coordinates).
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In fact, the smoothness of 𝑓 ∗𝔥 is not needed here; 𝐶1 would suffice, and possibly even Sobolev
regularity.

Proof. Assume 𝑑 ≥ 2; hence, 𝑝 > 2. Let 𝜄 : (N , 𝔥) → R𝐷 be an isometric embedding (i.e., 𝜄(N ) is
a smooth submanifold of R𝐷 of codimension 𝐷 − 𝑑 − 1). We thicken M into M̃ = M × (−ℎ, ℎ)𝐷−𝑑 ,
with h small enough, and endow it with the product metric

𝐺 =

(
𝑓 ∗𝔥 0
0 𝐼𝐷−𝑑

)
.

Let {𝜈𝑖}𝐷−𝑑
𝑖=2 be a smooth orthonormal frame along the submanifold 𝜄(N ) ⊂ R𝐷 , orthogonally comple-

menting the image of 𝑑𝜄 on 𝜄(N ). We extend f into a function 𝐹 : M̃ ↦→ R𝐷 by

𝐹 (𝑞, 𝑡1, ..., 𝑡𝐷−𝑑) = 𝜄 ◦ 𝑓 (𝑞) + 𝑡1𝑑𝜄 𝑓 (𝑞) (𝔫 𝑓 (𝑞)) +
𝐷−𝑑∑
𝑖=2

𝑡𝑖𝜈𝑖 (𝜄 ◦ 𝑓 (𝑞)),

which we may also write in the form

𝐹 = 𝜄 ◦ 𝑓 ◦ 𝜋 + 𝜋1 · (𝑑𝜄 ◦ 𝔫 𝑓 ◦ 𝜋) +
𝐷−𝑑∑
𝑖=2

𝜋𝑖 · (𝜈𝑖 ◦ 𝜄 ◦ 𝑓 ◦ 𝜋),

where 𝜋 : M̃ → M and 𝜋𝑖 : M̃ → R are the natural projections, 𝜋(𝑞, 𝑡1, ..., 𝑡𝐷−𝑑) = 𝑞 and
𝜋𝑖 (𝑞, 𝑡1, ..., 𝑡𝐷−𝑑) = 𝑡𝑖 , and in the second term, we view 𝔫 𝑓 as a map M → 𝑇N .

Differentiating, 𝑑𝐹 : 𝑇M̃ → R𝐷 is given by

𝑑𝐹 = 𝑑𝜄 ◦ 𝐷 𝑓 ◦ 𝐷𝜋 + 𝑑𝜋1 ⊗ (𝑑𝜄 ◦ 𝔫 𝑓 ◦ 𝜋) + 𝜋1 · (𝑑2𝜄 ◦ 𝐷𝔫 𝑓 ◦ 𝐷𝜋)

+
𝐷−𝑑∑
𝑖=2

𝑑𝜋𝑖 ⊗ (𝜈𝑖 ◦ 𝜄 ◦ 𝑓 ◦ 𝜋) +
𝐷−𝑑∑
𝑖=2

𝜋𝑖 · (𝑑𝜈𝑖 ◦ 𝐷𝜄 ◦ 𝐷 𝑓 ◦ 𝐷𝜋).

Consider

𝐴 𝑓 = 𝑑𝜄 ◦ 𝐷 𝑓 ◦ 𝐷𝜋 + 𝑑𝜋1 ⊗ (𝑑𝜄 ◦ 𝔫 𝑓 ◦ 𝜋) +
𝐷−𝑑∑
𝑖=2

𝑑𝜋𝑖 ⊗ (𝜈𝑖 ◦ 𝜄 ◦ 𝑓 ◦ 𝜋).

Since f is an isometric immersion by the definition of 𝑓 ∗𝔥, 𝜄 is an isometric embedding and {𝜈𝑖}𝐷−𝑑
𝑖=2 is

an orthonormal frame along the submanifold 𝜄(N ) ⊂ R𝐷 , and 𝐷𝜋, 𝑑𝜋𝑖 are pairwise orthogonal by the
choice of G, we obtain that 𝐴 𝑓 ∈ 𝑆𝑂 (𝐺,𝔢). Therefore,

−
∫
M̃

dist2 (𝑑𝐹, 𝑆𝑂 (𝐺,𝔢))Vol𝐺 ≤ −
∫
M

−
∫
(−ℎ𝑛 ,ℎ𝑛)𝐾−𝑑

|𝑑𝐹 − 𝐴 𝑓 |2 𝑑𝑡 dVol 𝑓 ∗𝔥

≤ 𝐶−
∫
M

−
∫
(−ℎ𝑛 ,ℎ𝑛)𝐷−𝑑

(
|𝑡1 |2 |𝑑2𝜄 ◦ 𝐷𝔫 𝑓 ◦ 𝐷𝜋 |2 +

𝐷−𝑑∑
𝑖=2

|𝑡𝑖 |2 |𝑑𝜈𝑖 ◦ 𝐷𝜄 ◦ 𝐷 𝑓 ◦ 𝐷𝜋 |2
)
𝑑𝑡 dVol 𝑓 ∗𝔥

≤ 𝐶
(
−
∫
(−ℎ𝑛 ,ℎ𝑛)𝐷−𝑑

𝐷−𝑑∑
𝑖=1

|𝑡𝑖 |2𝑑𝑡
)

≤ 𝐶ℎ2,

where in the passage to the fourth line, we used the facts that 𝑑𝔫 𝑓 and 𝑑𝑓 are bounded in 𝐿2 (M), and
that 𝑑𝜄, 𝑑2𝜄 and 𝑑𝜈𝑖 are bounded in 𝐿∞ as smooth functions on compact domains.
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We have thus proved that F satisfies the finite bending property defined in [KS14, Eq. (2.3)], where
F in the present work corresponds to 𝑓ℎ in [KS14]. It follows from [KS14, Thm. 5.1] that f (which
unfortunately corresponds to F in [KS14]) is in𝑊2,2. �

Proposition 4.2. Let 𝑓 ∈ Imm𝑝 (M;N ), 𝑝 > 𝑑. Suppose that 𝔤 = 𝑓 ∗𝔥 is a smooth metric on M and
that the shape operator S of 𝑓 (M) in N is smooth. Then, f is smooth.

The proof below works, with minor adjustments, also for a smooth second fundamental form instead
of a smooth shape operator.

Proof. Since f is continuous and since smoothness is a local property, we can consider the claim in
coordinates; henceforth, 𝑓 : Ω ⊂ R𝑑 → R

𝑑+1 and 𝔫 𝑓 : Ω → R
𝑑+1, satisfying the following set of

equations,

𝔤𝑖 𝑗 (𝑥) = 𝔥𝛼𝛽 ( 𝑓 (𝑥)) 𝜕𝑖 𝑓 𝛼 (𝑥) 𝜕 𝑗 𝑓 𝛽 (𝑥), (4.1)

𝜕𝑖𝔫
𝛼
𝑓 (𝑥) − 𝜕𝑖 𝑓

𝛽 (𝑥) Γ𝛼𝛽𝛾 ( 𝑓 (𝑥))𝔫
𝛾
𝑓 (𝑥) = −𝜕 𝑗 𝑓 𝛼 (𝑥) 𝑆 𝑗𝑖 (𝑥), (4.2)

and

𝔥𝛼𝛽 ( 𝑓 (𝑥)) 𝜕𝑖 𝑓 𝛼 (𝑥) 𝔫𝛽𝑓 (𝑥) = 0. (4.3)

Here and below, we use Latin indexes for coordinates in M and Greek indexes for coordinates in N .
The Einstein summation rule is assumed; Γ𝛼𝛽𝛾 are the Christoffel symbols of the Levi-Civita connection
in N . It is given that 𝔤𝑖 𝑗 and 𝑆 𝑗𝑖 are smooth.

It follows from the previous proposition that 𝑓 𝛼 ∈ 𝑊2,2 (Ω), which together with (4.1) implies that

𝜕𝑖 𝑓
𝛼 ∈ 𝑊1,2(Ω) ∩ 𝐿∞(Ω).

It then follows from (4.2) that

𝔫𝛼𝑓 ∈ 𝑊2,2 (Ω) ∩𝑊1,∞(Ω).

The rest of the proof follows a standard bootstrapping procedure, differentiating (4.1) and (4.3)
and substituting (4.2), using the fact that {𝜕𝑖 𝑓 (𝑥)} ∪ {𝔫 𝑓 (𝑥)} forms an 𝑓 ∗𝔥-orthonormal basis for
R
𝑑+1. The bootstrapping uses the following product rule for Sobolev spaces [Bre11, Prop. 9.4]: let

𝑢, 𝑣 ∈ 𝑊1, 𝑝 (Ω) ∩ 𝐿∞(Ω) with 1 ≤ 𝑝 ≤ ∞. Then 𝑢𝑣 ∈ 𝑊1, 𝑝 (Ω) ∩ 𝐿∞(Ω) and

𝜕𝑖 (𝑢𝑣) = 𝜕𝑖𝑢 𝑣 + 𝑢 𝜕𝑖𝑣.

The fact that the application of the Leibniz rule requires to the very least functions in𝑊1, 𝑝 (Ω) ∩ 𝐿∞(Ω)
is the reason we had to first establish that 𝜕𝑖 𝑓 𝛼 and 𝑛𝛼𝑓 are in this space. �

A. Quantitative stability in codimension-1

In this appendix, we prove a quantitative version of Theorem 1.1 for the case N = R𝑑+1, under the
assumption that the metric 𝔤 and the shape operator S are compatible with the geometry of R𝑑+1.

Theorem A.1. Let (M, 𝔤) be an oriented, connected, simply connected, compact d-dimensional Rie-
mannian manifold with Lipschitz boundary, and let 𝑝 ∈ (1,∞). Let S be a smooth symmetric (1, 1)
tensor field on M. If 𝔤 and S satisfy the Gauss-Codazzi compatibility conditions, then there exists a con-
stant C depending on (M, 𝔤), S and p, such that there exists for every 𝑓 ∈ Imm𝑝 (M;R𝑑+1) a smooth
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isometric immersion 𝑓0 : M → R𝑑+1 having shape operator S, satisfying

‖ 𝑓 − 𝑓0‖𝑊 1, 𝑝 (M;R𝑑+1) + ‖𝔫 𝑓 − 𝔫 𝑓0 ‖𝑊 1, 𝑝 (M;R𝑑+1) ≤
𝐶

(
‖ dist(𝑑𝑓 ,O(𝔤,𝔢))‖𝐿𝑝 (M) + ‖∇𝔫 𝑓 + 𝑑𝑓 ◦ 𝑆‖𝐿𝑝 (M)

)
,

where 𝔫 𝑓 and 𝔫 𝑓0 are the unit normals to 𝑓 (M) and 𝑓0(M).

Note that the right-hand side in the equality is essentially E1/𝑝
𝑝 ( 𝑓 ). If M is not simply connected,

one can rather assume that 𝔤 and S are compatible in the sense that there exists an isometric immersion
M → R𝑑+1 whose shape operator is S.

Proof. Since 𝔤 and S are compatible, there exists, modulo a rigid transformation, a unique smooth
immersion 𝜄 : M → R𝑑+1, such that 𝔤 = 𝜄∗𝔢 and 𝑑𝔫 𝜄 = −𝑑𝜄 ◦ 𝑆, where 𝔫 𝜄 is the unit-normal to 𝜄(M).

Consider the following diagram:

(M, 𝔤) (Mℎ , 𝐺)

(R𝑑+1,𝔢)

𝜁
��

𝜄

���������������������

Φ

��

where Mℎ = M × (−ℎ, ℎ), with h to be specified below, 𝜁 (𝑞) = (𝑞, 0), and

Φ(𝑞, 𝑡) = 𝜄(𝑞) + 𝑡 𝔫 𝜄 (𝑞).

The metric G on Mℎ is defined by

〈(𝑣, 𝑠), (𝑤, 𝑟)〉𝐺(𝑞,𝑡 = 〈𝑣 − 𝑡 𝑆𝑞 (𝑣), 𝑤 − 𝑡 𝑆𝑞 (𝑤)〉𝔤𝑞 + 𝑠𝑟,

where 𝑣, 𝑤 ∈ 𝑇𝑞M and 𝑠, 𝑟 ∈ R. For G to be a metric, h has to be restricted; the choice of ℎ = 2/‖𝑆‖∞
guarantees that h is metric. Furthermore, G is equivalent to the product metric 𝐺̃ = 𝔤 + 𝑑𝑡 ⊗ 𝑑𝑡; namely,

𝑐
(
|𝑣 |2𝔤 + 𝑠2

)
≤ |(𝑣, 𝑠) |2𝐺 ≤ 𝐶

(
|𝑣 |2𝔤 + 𝑠2

)
for some constants c and C, depending only on 𝔤 and S. Finally, it follows that 𝜄, 𝜁 and Φ are all isometric
immersions.

Let 𝑓 ∈ Imm𝑝 (M;R𝑑+1), which we extend into a map 𝐹 : Mℎ → R𝑑+1, given by

𝐹 (𝑞, 𝑡) = 𝑓 (𝑞) + 𝑡 𝔫 𝑓 (𝑞),

where 𝔫 𝑓 : M → R𝑑+1 is the unit-normal to 𝑓 (M). Denote by 𝑆 𝑓 the shape operator of 𝑓 (M).
Consider the map

𝐹 ◦Φ−1 : Φ(Mℎ) ⊂ R𝑑+1 → R𝑑+1.

By the FJM inequality, there exists an isometry 𝑄 ∈ SO(𝑑 + 1) such that

‖𝑑 (𝐹 ◦Φ−1) −𝑄‖𝐿𝑝 (Φ(Mℎ);R𝑑+1) ≤ 𝐶 ‖ dist(𝑑 (𝐹 ◦Φ−1), SO(𝑑 + 1))‖𝐿𝑝 (Φ(Mℎ);R𝑑+1) ,

where C only depends on M, h and p. Since Φ is an isometric immersion, changing variables,

‖𝑑𝐹 −𝑄 ◦ 𝑑Φ‖𝐿𝑝 (Mℎ ;R𝑑+1) ≤ 𝐶 ‖ dist(𝑑𝐹, SO(𝐺,𝔢))‖𝐿𝑝 (Mℎ ;R𝑑+1) . (A.1)
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The goal is to obtain an inequality involving only f. We start with the right-hand side of (A.1). First,

𝑑𝐹 = 𝑑𝑓 ⊕ 𝔫 𝑓 − 𝑡 (𝑑𝑓 ◦ 𝑆 𝑓 ⊕ 0).

Denote

𝐴 = (O(𝑑𝑓 ) ⊕ 𝔫 𝑓 ) − 𝑡 (O(𝑑𝑓 ) ◦ 𝑆 ⊕ 0),

where O(𝑑𝑓 ) is the projection of 𝑑𝑓 on𝑂 (𝔤,𝔢) (for immersions, the projection is unique). We show that
𝐴 ∈ SO(𝐺,𝔢). Indeed, For (𝑞, 𝑡) ∈ Mℎ and (𝑣, 𝑠) ∈ 𝑇(𝑞,𝑡)Mℎ ,

𝐴(𝑣, 𝑠) = O(𝑑𝑓 ) (𝑣) + 𝑠 𝔫 𝑓 − 𝑡 𝑂 (𝑑𝑓 ) ◦ 𝑆(𝑣).

Since O(𝑑𝑓 ) (𝑣) ⊥ 𝔫 𝑓 and since O(𝑑𝑓 ) ∈ O(𝔤,𝔢),

|𝐴(𝑣, 𝑠) |2 = | O(𝑑𝑓 ) (𝑣) − 𝑡 𝑂 (𝑑𝑓 ) ◦ 𝑆(𝑣) |2 + 𝑠2 = |𝑣 − 𝑡 𝑆(𝑣) |2 + 𝑠2 = | (𝑣, 𝑠) |2.

The condition on the orientation holds by the very definition of 𝔫 𝑓 .
Thus,

dist(𝑑𝐹, SO(𝐺,𝔢)) ≤ |𝑑𝐹 − 𝐴|
≤ |(𝑑𝑓 − O(𝑑𝑓 )) ⊕ 𝔫 𝑓 − 𝑡 ((𝑑𝑓 ◦ 𝑆 𝑓 − O(𝑑𝑓 ) ◦ 𝑆) ⊕ 0) |
≤ |(𝑑𝑓 − O(𝑑𝑓 )) ⊕ 𝔫 𝑓 | + 𝑡 | (𝑑𝑓 ◦ 𝑆 𝑓 − O(𝑑𝑓 ) ◦ 𝑆) ⊕ 0|,

where all the norms are with respect to G and 𝔢. By the equivalence between G and the product metric
𝐺̃ = 𝔤 + 𝑑𝑡 ⊗ 𝑑𝑡, the right-hand side can be bounded by

𝐶
(
|𝑑𝑓 − O(𝑑𝑓 ) | + |𝑑𝑓 ◦ 𝑆 𝑓 − O(𝑑𝑓 ) ◦ 𝑆 |

)
,

where C depends only on 𝔤, S and h. Using once again the equivalence of the metrics on Mℎ ,

‖ dist(𝑑𝐹, SO(𝐺,𝔢))‖𝐿𝑝 (Mℎ) ≤ 𝐶
(
‖ dist(𝑑𝑓 ,O(𝔤,𝔢))‖𝐿𝑝 (M) + ‖𝑑𝑓 ◦ 𝑆 𝑓 − O(𝑑𝑓 ) ◦ 𝑆‖𝐿𝑝 (M)

)
,

(A.2)

for some constant C depending only on (M, 𝔤) and p.
We proceed with the left-hand side of (A.1). We have

𝑄 ◦ 𝑑Φ = 𝑄 ◦ (𝑑𝜄 ⊕ 𝔫 𝜄) − 𝑡 𝑄 ◦ (𝑑𝜄 ◦ 𝑆 ⊕ 0)
= 𝑑 (𝑄 ◦ 𝜄) ⊕ 𝔫𝑄◦ 𝜄 − 𝑡 (𝑑 (𝑄 ◦ 𝜄) ◦ 𝑆 ⊕ 0).

Hence,

𝑑𝐹 −𝑄 ◦ 𝑑Φ = 𝑑𝑓 ⊕ 𝔫 𝑓 − 𝑑𝑓0 ⊕ 𝔫 𝑓0 − 𝑡
(
(𝑑𝑓 ◦ 𝑆 𝑓 − 𝑑𝑓0 ◦ 𝑆 𝑓0) ⊕ 0

)
= 𝑑𝑓 ⊕ 𝔫 𝑓 − 𝑑𝑓0 ⊕ 𝔫 𝑓0 − 𝑡

(
(𝑑𝔫 𝑓 − 𝑑𝔫 𝑓0) ⊕ 0

)
,

where 𝑓0 = 𝑄 ◦ 𝜄, which is an isometric immersion of (M, 𝔤) having shape operator 𝑆 𝑓0 = 𝑆.
Therefore,

|𝑑𝐹 −𝑄 ◦ 𝑑Φ|2 � |𝑑𝑓 − 𝑑𝑓0 |2 + |𝔫 𝑓 − 𝔫 𝑓0 |2 + 𝑡2 |𝑑𝔫 𝑓 − 𝑑𝔫 𝑓0 |2

+ 2𝑡 (𝑑𝑓 − 𝑑𝑓0, 𝑑𝔫 𝑓 − 𝑑𝔫 𝑓0)𝔤 .
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Define the set

𝐴+ = {𝑞 ∈ M : ((𝑑𝑓 )𝑞 − (𝑑𝑓0)𝑞 , (𝑑𝔫 𝑓 )𝑞 − (𝑑𝔫 𝑓0)𝑞)𝔤 ≥ 0} ⊂ M,

and let

𝐷 = {(𝑞, 𝑡) ∈ M𝔥 : 𝑞 ∈ 𝐴+ 𝑡 ≥ 0} ∪ {(𝑞, 𝑡) ∈ M𝔥 : 𝑞 ∉ 𝐴+ 𝑡 ≤ 0} ⊂ Mℎ .

On the set D,

|𝑑𝐹 −𝑄 ◦ 𝑑Φ|2 � |𝑑𝑓 − 𝑑𝑓0 |2 + |𝔫 𝑓 − 𝔫 𝑓0 |2 + 𝑡2 |𝑑𝔫 𝑓 − 𝑑𝔫 𝑓0 |2,

and thus,∫
Mℎ

|𝑑𝐹 −𝑄 ◦ 𝑑Φ|𝑝 dVol𝐺 ≥
∫
𝐷
|𝑑𝐹 −𝑄 ◦ 𝑑Φ|𝑝 dVol𝐺

�
∫
𝐷

(
|𝑑𝑓 − 𝑑𝑓0 |𝑝 + |𝔫 𝑓 − 𝔫 𝑓0 |𝑝 + |𝑡 |𝑝 |𝑑𝔫 𝑓 − 𝑑𝔫 𝑓0 |𝑝

)
dVol𝐺

�
∫
𝐷

(
|𝑑𝑓 − 𝑑𝑓0 |𝑝 + |𝔫 𝑓 − 𝔫 𝑓0 |𝑝 + |𝑡 |𝑝 |𝑑𝔫 𝑓 − 𝑑𝔫 𝑓0 |𝑝

)
dVol𝐺̃

=
∫
M

(
ℎ|𝑑𝑓 − 𝑑𝑓0 |𝑝 + ℎ|𝔫 𝑓 − 𝔫 𝑓0 |𝑝 +

ℎ𝑝+1

𝑝 + 1
|𝑑𝔫 𝑓 − 𝑑𝔫 𝑓0 |2

)
dVol𝔤,

where in the passage to the third line, we used the equivalence of G and the product metric 𝐺̃, and in
the passage to the last line, we used Fubini’s theorem. From this and the Poincaré inequality (possibly
by translating 𝑓0), we obtain

‖𝑑𝐹 −𝑄 ◦ 𝑑Φ‖𝐿𝑝 (Mℎ ;R𝑑+1) ≥ 𝑐
(
‖ 𝑓 − 𝑓0‖𝑊 1, 𝑝 (M;R𝑑+1) + ‖𝔫 𝑓 − 𝔫 𝑓0 ‖𝑊 1, 𝑝 (M;R𝑑+1)

)
, (A.3)

where 𝑐 > 0 depends only on (M, 𝔤), p and h. Combining (A.1), (A.2) and (A.3), we obtain the desired
result. �
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