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Discrete Curvature and Abelian Groups

Bo’az Klartag, Gady Kozma, Peter Ralli, and Prasad Tetali

Abstract. We study a natural discrete Bochner-type inequality on graphs, and explore its merit as a
notion of “curvature” in discrete spaces. An appealing feature of this discrete version of the so-called
Γ2-calculus (of Bakry-Émery) seems to be that it is fairly straightforward to compute this notion of
curvature parameter for several speciûc graphs of interest, particularly, abelian groups, slices of
the hypercube, and the symmetric group under various sets of generators. We further develop this
notion by deriving Buser-type inequalities (à la Ledoux), relating functional and isoperimetric con-
stants associated with a graph. Our derivations provide a tight bound on the Cheeger constant (i.e.,
the edge-isoperimetric constant) in terms of the spectral gap, for graphs with nonnegative curvature,
particularly, the class of abelian Cayley graphs, a result of independent interest.

1 Introduction

For several decades it has been a fruitful endeavour to translate notions from Rie-
mannian geometry to graph theory. It is now clear what are the graph analogs of the
Laplacian, Poincaré inequality, Harnack inequality, and many related notions. _e
graph point of view led to generalizations that would have been less natural in Rie-
mannian geometry, such as β-parabolic Harnack inequalities (see, e.g., [5]) and to
some counterexamples [4, 13, 22].
Despite this progress, the graph analog of the notion of curvature remains elusive.

In their 1985 paper, Bakry and Émery [2] suggested a notion analogous to curvature
that would work in the very general framework of a Markov semigroup (which, of
course, incorporates both continuous diòusions and random walks on graphs). _e
condition was based on the Bochner formula and was denoted by CD(K ,∞) (for
curvature-dimension), where K is a curvature parameter. A semigroup satisfying
CD(K ,∞) is a generalization of Brownianmotion on amanifoldwith Ricci curvature
≥ K, and hence the condition CD(K ,∞) is o�en called simply “Ric ≥ K”, and we will
stick to this convention here. _is notion as a possible deûnition of Ricci curvature in
Markov chains was in fact considered and discussed in [32] in 1999, but seems to have
largely been neglected ever since. For additional and more recent approaches to dis-
crete Ricci curvature and related inequalities, see [6, 16, 19,26,30,33,34]. _e fact that
one can conclude from positive (or negative) curvature, a local property, global facts
about the manifold, has inspired similar “local-to-global” principles in group theory;
see e.g., [18, 31].
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Beyond lower bounds on curvature, the proofs in [2] (and in the recent book [3])
rely on two additional assumptions on the semigroup. _e ûrst was the existence of
an appropriate algebra of smooth functions. _e second was a chain-rule formula
for the generator of the semigroup. A generator satisfying the latter assumption is
called a diòusion operator; see [3, Deûnition 1.11.1, p. 43]. In a continuous setting it
is actually the existence of the required algebra of smooth functions that is the most
diõcult condition to verify, but in graph settings, this condition holds immediately.
Nevertheless, the diòusion condition can never hold in the discrete setting.

However, the diòusion condition is not always necessary. Denote the Cheeger con-
stant (sometimes known as the isoperimetric constant) by h, the spectral gap by λ and
recall the inequality of Buser [8] that states that for amanifoldwith non-negative Ricci
curvature λ ≤ 9h2 (exact deûnitions will be given in the next section). In 2006, the
ûrst two authors noted that the arguments of Ledoux [23] allow us to derive a discrete
Buser-type inequality just by assuming non-negative Ricci curvature.

_eorem 1.1 A graph satisfying Ric ≥ 0 satisûes that λ ≤ 16h2.

_egraph version of Cheeger’s inequality (e.g., [1,10]), which does not require pos-
itive curvature, states that λ ≥ h2/(2d), where d is the maximum degree of the graph.
_us, for graphs with non-negative Ricci and bounded degree, we get that λ ≈ h2. As
the results from 2006 were never published, we include them in Section 4. A preprint
of these results did circulate and a number of papers built on it [6, 24]. Particularly
relevant for us is the paper [24], which shows that the eigenvalues of the Laplacian on
a graph with positive curvature satisfy λk ≤ Ck2λ1. In a similar spirit, we use the tech-
niques of [23] to show a Gaussian type isoperimetric inequality for graphs satisfying
Ric ≥ 0 (see Section 4.3).

In light of _eorem 1.1, an intriguing and challenging open problem is to charac-
terize the class of graphs with non-negative Ricci curvature. _e main new results
of this paper are examples of such graphs that satisfy Ric ≥ 0. _ese include Cayley
graphs of abelian groups, the complete graph, the group Sn with all transpositions,
and slices of the hypercube.

In particular, we get Buser’s inequality for any Cayley graph of a ûnite abelian
group. We remark that this is not true for a general group. For example, the Cay-
ley graph of the group Sn with the generators being {(12), (12 ⋅ ⋅ ⋅ n)±1} has h of order
1/n2 and λ ≥ 1/n3, up to an absolute constant (we give some details about these well-
known facts in Subsection 2.3). _is should be compared against the fact that any
compact Lie group has positive Ricci curvature; see [9, Corollary 3.19, page 65].

Note that our results above translate to λ(M) ≤ 16d h2(M) for a simple random
walk M on an abelian Cayley graph, regular of degree d, with h(M) and λ(M) being
deûned for the Markov chain version.
A result of the above type was also recently derived independently by Erbar and

by Oveis-Gharan and Trevisan (private communications). An earlier, weaker result,
λ(M) = O(d2 h2(M)) follows from the work in [6], which uses a diòerent notion
of curvature (and a diòerent argument of Ledoux), starting from a ûnite-dimensional
curvature-dimension CD(K , n) inequality for graphs.
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Recently there have been several attempts to modify the CD(K , n) criterion in
order to allow certain results involving the heat equation [6,21,29]. A recent result of
Münch [29] is that theCDE′(K , n) criterion of [21] implies theCD(K , n) criterion of
Bakry-Émery. _ese criteria are o�en useful; for example, it is known that Ricci-�at
graphs satisfy both the CDE(0,∞) criterion of [6] and the CDE′(0,∞) criterion.

In the remainder of this section, we introduce Bochner’s Γ2-type curvature for
graphs along with various notations and deûnitions. In Section 2, we bound the cur-
vature for several examples, including slices of the discrete cube, symmetric group
with adjacent as well as all transpositions as the generating sets; and nonnegativity of
curvature for Cayley graphs of abelian groups. In Section 3, we show that the spectral
gap can be bounded from below by curvature. In Section 4, we derive the above-
mentioned Buser-type inequalities.

1.1 Preliminaries

We ûrst recall some basic deûnitions and fairly standard notions. Let G = (V , E)
be an undirected and locally ûnite graph. _roughout, we will assume that G has no
isolated vertices. We have that the graph Laplacian ∆ = ∆(G) = −(D(G) − A(G)),
where D(G) is the diagonal matrix of the degrees of the vertices, and A(G) is the
adjacency matrix of G. As an operator, its action on an f ∶V → R can be described as:

∆ f (x) = ∑
y∼x

( f (y) − f (x)) ,

where here and below the notation y ∼ x means that y is a neighbour of x in the
graph. _e sum is, of course, only over the y. Note that ∆ is a negative semi-deûnite
matrix.

_e spectral gap λ(G) is the least non-zero eigenvalue of −∆. We deûne the Chee-
ger constant

h(G) = min
0<∣A∣≤∣V ∣/2

∣∂A∣
∣A∣ ,

where ∣∂A∣ denotes the number of edges from A to V − A.
Given functions f , g∶V → R, we also deûne:

Γ( f , g)(x) = 1
2
∑
y∼x

( f (x) − f (y))( g(x) − g(y)) .

When f = g, the above becomes the more commonly denoted (square of the l2-type)
discrete gradient. For each x ∈ V ,

Γ( f )(x) ∶= Γ( f , f )(x) = 1
2
∑
y∼x

( f (x) − f (y)) 2 =∶ ∣∇ f (x)∣2 .

It becomes useful to deûne the iterated gradient

2Γ2( f , g) = ∆Γ( f , g) − Γ( f , ∆g) − Γ(∆ f , g).
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By convention,

Γ2( f ) ∶= Γ2( f , f ) = 1
2∆Γ( f ) − Γ( f , ∆ f ).

Note that, given a measure π∶V → [0,∞), one can consider the expectation (with
respect to π) of the above quantity, which gives us the more familiar Dirichlet form
associated with a graph:

E( f , g) ∶= 1
2
∑
x
∑
y∼x

( f (x) − f (y))( g(x) − g(y))π(x).

It is useful to note an identity:

(1.1) ∑
x∈V

Γ( f , g)(x) = − ∑
x∈V

f (x)∆g(x) = − ∑
x∈V

g(x)∆ f (x).

An additional useful local identity is

(1.2) △( f g) = f △ g + 2Γ( f , g) + g △ f .

Deûnition 1.1 _e (Bochner) curvature Ric(G) of a graph G is deûned as the max-
imum value K such that for any function f and vertex x, we have

(1.3) Γ2( f )(x) ≥ KΓ( f )(x).

Let x ∈ V , and let f ∶V → R be a function. Observe that (1.3) is unchanged on
adding a constant to f , so we may assume that f (x) = 0. We expand Γ2( f )(x):

2Γ2( f )(x)
= ∆Γ( f )(x) − 2Γ( f , ∆ f )(x)
= ∑

v∼x
Γ( f )(v) − d(x)Γ( f )(x) − ∑

v∼x
f (v)(∆ f (v) − ∆ f (x))

= 1
2
∑

u∼v∼x
( f (u) − f (v)) 2 − d(x)

2
∑
v∼x

f 2(v)

+ ∑
v∼x

f (v) ∑
u∼x

f (u) − ∑
u∼v∼x

f (v)( f (u) − f (v))

= (∑
v∼x

f (v))
2
− d(x)

2
∑
v∼x

f 2(v) + ∑
u∼v∼x

f 2(u) − 4 f (u) f (v) + 3 f 2(v)
2

= (∑
v∼x

f (v))
2
− ∑

v∼x

d(x) + d(v)
2

f 2(v) + 1
2
∑

u∼v∼x
( f (u) − 2 f (v)) 2

.

(1.4)

Now, we break the latter term into the cases where u = x, u ∼ x and d(x , u) = 2. In
the second case, we denote by ∆(x , v , u) the set of all unordered pairs (u, v) satisfying
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x ∼ u ∼ v ∼ x. _e above is equal to

2Γ2( f ) =
1
2
∑

u∼v∼x
d(x ,u)=2

( f (u) − 2 f (v)) 2 + (∑
v∼x

f (v))
2
+ ∑

v∼x
(2 − d(x) + d(v)

2
) f 2(v)

+ ∑
∆(x ,v ,u)

( f (v) − 2 f (u))2 + ( f (u) − 2 f (v))2

2

= 1
2
∑

u∼v∼x
d(x ,u)=2

( f (u) − 2 f (v)) 2 + (∑
v∼x

f (v))
2
+ ∑

v∼x

4 − d(x) − d(v)
2

f 2(v)

+ ∑
∆(x ,v ,u)

[2( f (v) − f (u)) 2 + 1
2
( f 2(v) + f 2(u))] .

(1.5)

Fixing f (v) for all vertices v ∼ x, we may ask what choice of f (u) (for d(x , u) = 2)
minimizes the above expression. We wish to minimize

1
2
∑
v∶

x∼v∼u

( f (u) − 2 f (v)) 2
;

it is simple to see that the minimizer is

(1.6) f (u) = 2 ⋅ 1
r(u) ∑x∼v∼u

f (v),

where r(u) is the number of common neighbors of u and x.
We ûrst prove a general upper bound on the above notion of curvature, which will

be used in the next section to show tightness of our bounds on curvature for several
example graphs.

_eorem 1.2 Let G = (V , E) be a graph. If e ∈ E, let t(e) denote the number of
triangles containing e. Deûne T ∶= maxe t(e). _en Ric(G) ≤ 2 + T

2 .

Proof Let x ∈ V be any vertex with the minimum degree d, and consider the dis-
tance (to x) function f (v) = dist(v , x). It is simple to calculate that

2Γ2( f )(x)
(1.5)= d2 + ∑

v∼x
(2 − d + deg(v)

2
) + ∑

∆(x ,v ,u)
1 ≤ 2d + dT

2
,

observing that

∣∆(x , v , u)∣ = 1
2
∑
v∼x

t(x , v) ≤ dT
2

and that Γ( f )(x) = 1
2d. Any value of K > 2 + T

2 will not satisfy (1.3) for the function
f at vertex x, thus Ric(G) ≤ 2 + T

2 .

2 Examples

In this section we provide bounds on the curvature for several graphs of general in-
terest.
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2.1 The Hypercube Hn

Let Hn represent the n-dimensional hypercube, where vertices are adjacent if their
Hamming distance is one. While the following result also follows from the tensoriza-
tion result of [24], we provide a direct proof.

_eorem 2.1 Ric(Hn) = 2 if n ≥ 1.

Proof For any vertex x ∈ Hn , and for any f with f (x) = 0, we get from (1.5)

2Γ2( f )(x) =
1
2
∑
u∶

d(x ,u)=2

∑
v∶

x∼v∼u

( f (u) − 2 f (v)) 2 + (∑
v∼x

f (v))
2
+ (2 − n) ∑

v∼x
f 2(v).

Let u be a vertex of distance 2 from x, and let v and w be the two distinct vertices
such that u ∼ v ∼ x ∼ w ∼ u. _en for ûxed values of f (v) where v ∼ x, according to
(1.6), Γ2( f )(x) is minimized by f (u) = f (v) + f (w). With this value,

∑
v∶u∼v∼x

( f (u) − 2 f (v)) 2 = 2( f (v) − f (w)) 2
.

As for every pair v ,w ∼ x, there is a unique vertex u with u ∼ v ,w and d(x , u) = 2,

2Γ2( f )(x) ≥ ∑
v≠w
v ,w∼x

( f (v) − f (w)) 2 + (∑
v∼x

f (v))
2
+ (2 − n) ∑

v∼x
f 2(v),

where the ûrst sum is over all unordered pairs (v ,w) of distinct neighbors of x. We
use this convention throughout the paper. Expanding the above gives

∑
v≠w
v ,w∼x

( f 2(v) + f 2(w)) − ∑
v≠w
v ,w∼x

2 f (v) f (w) + ∑
v∼x

f 2(v)

+ ∑
v≠w
v ,w∼x

2 f (v) f (w) + (2 − n) ∑
v∼x

f 2(v) = 2∑
v∼x

f 2(v) = 4Γ( f )(x).

So Ric ≥ 2, and by _eorem 1.2, we may conclude that Ric = 2.

In the sequel, we compute the curvature of the complete graph. With the ten-
sorization result of [24], this provides another proof of the fact that the hypercube
has curvature 2.

2.2 The Complete Graph Kn

_eorem 2.2 Ric(Kn) = 1 + n
2 if n ≥ 2.

Proof For the complete graph on n vertices, we have from (1.5), for every x ∈ V and
every f ∶V → R such that f (x) = 0,

2Γ2( f )(x) = ( ∑
v∼x

f (v))
2

+ (3 − n) ∑
v∼x

f 2(v) + ∑
u ,v∼x
u≠v

(2 ( f (v) − f (u))2 + 1
2
( f (u)2 + f (v)2) ) .
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Expanding the above gives

∑
v∼x

f 2(v) + ∑
u ,v∼x
u≠v

2 f (u) f (v) + (3 − n) ∑
v∼x

f 2(v) + 5
2
∑

u ,v∼x
u≠v

( f 2(v) + f 2(u))

− ∑
u ,v∼x
u≠v

4 f (u) f (v)

= (4 − n) ∑
v∼x

f 2(v) + 5
2
(n − 2) ∑

v∼x
f 2(v) − 2 ∑

u ,v∼x
u≠v

f (u) f (v)

= ( 3n
2
− 1) ∑

v∼x
f 2(v) − 2 ∑

u ,v∼x
u≠v

f (u) f (v) = 3n
2
∑
v∼x

f 2(v) − ( ∑
v∼x

f (v))
2
.

By the Cauchy–Schwarz inequality,

(∑
v∼x

f (v))
2
≤ ∣{ v ∶ v ∼ x }∣ ∑

v∼x
f 2(v) = (n − 1) ∑

v∼x
f 2(v),

so
3n
2
∑
v∼x

f 2(v) − (∑
v∼x

f (v))
2
≥ ( 1 + n

2
) ∑

v∼x
f 2(v).

_us, Ric ≥ 1 + n
2 , and once again by _eorem 1.2, we conclude that Ric = 1 + n

2 .

2.3 Finite Abelian Cayley Graphs

A ûnite abelian group is, of course, a product of cyclic groups, and hence one might
think that the curvature of the graph can be deduced from the tensorization result of
[24]. However, a Cayley graph is determined by an underlying group and a generating
set for that group. Here we show that a ûnitely generated abelian group with any set
of generators has positive Ricci curvature, not only with the generating set inherited
from a decomposition into cyclic groups. _is result was implicit in the literature,
since abelian Cayley graphs are “Ricci �at” [12], and this property, in turn, gives Ric ≥
0 [27]. We give here a direct proof.

Let us remark that the problem of graphs locally identical to an abelian group
has also been attacked successfully using combinatorial tools. See [7] and references
within.

_eorem 2.3 Let X be a ûnitely generated abelian group, and let S be a ûnite set of
generators for X. Let G be the Cayley graph corresponding to X and S. _enRic(G) ≥ 0.

Recall that the Cayley graph of a group G with respect to a given set S that gen-
erates G is the graph whose vertices are the elements of G and whose edges are
{(g , gs)}g∈G ,s∈S . Sincewe are interested in undirected graphs, S should be symmetric,
i.e., s ∈ S ⇒ s−1 ∈ S.

Proof Without loss of generality, we may set x to be the identity element of X. De-
note the degree of every vertex by d. As usual, let f ∶G → R with f (x) = 0.
For this calculation, we prefer not to distinguish between u according to their dis-

tance from x, so we start the calculation from (1.4), and using the constant degree we
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get

(2.1) 2Γ2( f )(x) = d∑
v∼x

f 2(v) + ( ∑
v∼x

f (v))
2
+ ∑

v∼x
∑
u∼v

( f
2(u)
2

− 2 f (u) f (v)) .

Because x is the identity, we observe that if u ∼ v ∼ x, there is a unique w ∼ x so that
u = vw. We can express the last term of (2.1) as

∑
v∼x
∑
u∼v

( f
2(u)
2

− 2 f (u) f (v))

= ∑
v∼x
∑
w∼x

( f
2(vw)
2

− 2 f (vw) f (v))

= ∑
v∼x

( f
2(v2)
2

− 2 f (v2) f (v)) + ∑
v ,w∼x
v≠w

( f 2(vw) − 2 f (vw)( f (v) + f (w)))

≥ −2∑
v∼x

f 2(v) − ∑
v ,w∼x
v≠w

( f (v) + f (w))2 = (−d − 1) ∑
v∼x

f 2(v) − 2 ∑
v ,w∼x
v≠w

f (v) f (w).

In the last passage we used the elementary inequalities a2/2 − 2ab ≥ −2b2 and
a2 − 2ab ≥ −b2

Plugging this bound into (2.1), we ûnd that

2Γ2( f )(x) ≥ (∑
v∼x

f (v))
2
− ∑

v∼x
f 2(v) − 2 ∑

v ,w∼x
v≠w

f (v) f (w) = 0.

_is completes the proof.

Now, the assumption that the group is abelian is necessary. An inûnite example
demonstrating this is the d-ary tree, which is the Cayley graph of the group

⟨s1 , . . . , sd ∶ s2i = id for i = 1, . . . , d⟩
with the generating set s1 , . . . , sd . _is graph has Ric = 2−d, which is achieved when-
ever ∑y∼x f (y) = 0 and f (z) = 2 f (y) whenever z ∼ y ∼ x. _is is optimal; it is not
diõcult to see that no d-regular graph has Ric(G) < 2 − d.
A little more surprising, perhaps, is that the Heisenberg group also has negative

curvature. We mean here the group of upper triangular matrices with 1 on the diago-
nal and integer entries, equipped with the set of generators

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

1 ±1 0
1 0

1

⎞
⎟
⎠
,
⎛
⎜
⎝

1 0 0
1 ±1

1

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

It is straightforward to check that these generators do not satisfy any relation of
length 4, so the environment within distance 2 (which is the only relevant distance
for calculation of the curvature) is tree-like, and the curvature would be −2.

Switching to ûnite Cayley graphs, it is well known that there exist ûnite Cayley
graphs that are locally tree-like, and hence would have negative curvature. What
is perhaps more interesting is that even Buser’s inequality (the conclusion of _eo-
rem 4.2) may fail.
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_eorem 2.4 For the group Sn and the (le�) Cayley graph generated by
{(12), (12 ⋅ ⋅ ⋅ n)±1}, the Cheeger constant is ≤ c1n−2, while the spectral gap is ≥ c2n−3,
with c1 , c2 > 0, independent of n.

Proof sketch To show an upper bound on the Cheeger constant, we consider the set

A = {ϕ ∈ Sn ∶ dist(ϕ(1), ϕ(2)) ≤ 1
4n}

(there is no connection between the 1 and 2 in the deûnition of A and the fact that
we took (12) as a generator). Here dist is the cyclic distance between two numbers in
{1, . . . , n}, i.e.,min(∣x − y∣, n − ∣x − y∣). Clearly, ∣A∣ = ( 1

2 + o(1))n!. To calculate the
size of the boundary we ûrst note that the generators (12 . . . n)±1 keep A invariant, so
the boundary of A is composed of edges between ϕ ∈ A and (12)ϕ /∈ A. _is makes
two requirements on ϕ: ûrst it must satisfy that dist(ϕ(1), ϕ(2)) = ⌊ 1

4n⌋, and second
it must satisfy that one of ϕ(1), ϕ(2) is in the set {1, 2}; otherwise, the application of
(12) does nothing to ϕ(1) and ϕ(2) and (12)ϕ would still be in A. _us, ∂A ≈ n!/n2

and h ≥ c/n2 (this argument gives c = 2 + o(1)).
_e estimate of the spectral gap (from below) for the random walk on this Cayley

graph was done by Diaconis and Saloò-Coste (see [15, Section 5.3]), as an example of
the comparison argument; comparing with the random transposition chain, which
has a spectral gap of order 1/n, gives a lower bound of (1/10)n−3 for this chain. Since
the graph has a bounded degree, the spectral gap of the graph Laplacian is only a
constant factor oò that of the random walk on the graph.
For the convenience of the reader, and for completeness, we now sketch a proof of

a lower bound of 1/(n3 log n), which serves to justify the point of the theorem. We
construct a coupling between two lazy randomwalkers on our group Sn that succeeds
by time n3 log n. It is well known (see e.g., [25]) that this bounds the mixing time, and
hence the relaxation time, which is the inverse of the spectral gap. _e coupling is as
follows: assume ϕn and ψn are our two walkers. We apply exactly the same random
walks steps to ϕn except in one case: when for some i ϕn(i) = 1 and ψn(i) = 2. In this
case when we apply a (12) step for ϕn , we apply a lazy step to toψn , and vice versa (the
(12 . . . n)±1 are still applied together). It is easy to check that for each i, ϕn(i)−ψn(i)
is doing a random walk on {1, . . . , n}, slowed down by a factor of n, with gluing at 0.
_erefore, it glues with positive probability by time n3 and with probability > 1− 1/2n
by time Cn3 log n. _us, by this time, with probability > 1

2 we have ϕ(i) = ψ(i) for
all i, or in other words, the coupling succeeded. _is shows that the mixing time is
≤ Cn3 log n and in turn gives a lower bound on the spectral gap.

2.4 Cycles and Infinite Path

We consider the cycle Cn for n ≥ 3. We extend the notation by letting C∞ denote
the inûnite path. From previous results, it is simple to observe that Ric(C3) = 5

2 , as
C3 = K3, and that Ric(C4) = 2, because C4 = H2.

_eorem 2.5 If n ≥ 5, then Ric(Cn) = 0.
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Proof We note that the calculation of Ric(G) at x requires us to consider only the
subgraph consisting of those vertices v with d(x , v) ≤ 2 and those edges incident to
at least one neighbor of x.

If n ≥ 5, this subgraph will always be a path of length 4 centered at x, so we only
need calculate the curvature for this graph. Since Cn is an abelian Cayley graph,
Ric ≥ 0.

_en Ric = 0 is achieved by the function f that takes values −2,−1, 0, 1, 2 in order
along the path.

Corollary 2.6 Let Zd represent the inûnite d-dimensional lattice. Ric(Zd) = 0.

We simply note that Zd is the product of d copies of C∞.

2.5 Slices of the Hypercube

2.5.1 k-slice with Transpositions

For some ûxed value k with 1 ≤ k < n, let G = (V , E) be the graph with

V = {x ∈ {0, 1}n ∶ ∑
i
x i = k},

and x ∼ y whenever ∣supp(x − y)∣ = 2.

_eorem 2.7 _is graph has curvature Ric = 1 + n
2 .

Proof Let x ∈ V . Deûne s i jx to be the vertex obtained by exchanging coordinates
i and j in x. A vertex u with d(x , u) = 2 will be u = s i js lmx for some distinct co-
ordinates i , j, l ,m with x i = x l = 1, x j = xm = 0. Vertices v with x ∼ v ∼ u are
s i jx , s imx , s l jx , s lmx. Observe that

∑
v∶x∼v∼u

( f (u) − 2 f (v)) 2 ≥ 2( f (s i jx) − f (s lmx))
2 + 2( f (s imx) − f (s l jx))

2
.

Summing over all vertices u with d(x , u) = 2 gives

1
2
∑

x∼v∼u
d(x ,u)=2

( f (u) − 2 f (v)) 2 ≥ ∑
v ,w∼x
/∆(x ,v ,w)

( f (v) − f (w)) 2
,

as for each pair v ,w ∼ x with v /∼ w, there is exactly one u with v ,w ∼ u and
d(x , u) = 2. (Here we use the notation /∆ (x , v ,w) to denote the set of unordered
pairs (v ,w) of distinct neighbors of x for which v /∼ w.)
Also notice that any v ∼ x has t({x , v}) = n − 2: if v = s i jx, the vertices that make

a triangle with x and v are s l jx when l ≠ i and x l = x i , and s imx when m ≠ j and
xm = x j .
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Now we can compute

2Γ2( f )(x)

≥ ∑
v ,w∼x
/∆(xvw)

( f (v) − f (w)) 2 + (∑
v∼x

f (v))
2
+ (2 − d + n − 2

2
) ∑

v∼x
f (v)2

+ 2 ∑
∆(vwx)

( f (v) − f (w)) 2

≥ ∑
v ,w∼x

( f (v) − f (w)) 2 + (∑
v∼x

f (v))
2
+ ( 1 − d + n

2
) ∑

v∼x
f (v)2

= (d − 1) ∑
v∼x

f (v)2 − 2 ∑
v ,w∼x

f (v) f (w) + ∑
v∼x

f (v)2 + 2 ∑
v ,w∼x

f (v) f (w)

+ ( 1 − d + n
2
) ∑

v∼x
f (v)2

= ( 1 + n
2
) ∑

v∼x
f (v)2 .

So Ric(G) ≥ 1 + n
2 . Together with _eorem 1.2, we get that Ric = 1 + n

2 .

2.5.2 Middle Slice with Adjacent Transpositions

WenowconsiderGwithV = {x ∈ {−1, 1}2n ∶ ∑i x i = 0}, where x ∼ y⇔ supp(x − y)
consists of 2 consecutive elements. Alternately, V is the set of paths in Z2 that move
from (0, 0) to (2n, 0)with steps of (+1,+1) and (+1,−1), and paths x and y are neigh-
bors if y can be achieved by transposing an adjacent (+1,+1) and (+1,−1) in x.

_eorem 2.8 Ric(G) ≥ −1. Further, lim
n→∞

Ric(G) = −1.

Proof Let x ∈ V . Let I(x) = {i ∈ {1, . . . , 2n − 1} ∶ x i ≠ x i+1}, so i ∈ I if and only
if we are allowed to switch segments i and i + 1. If i ∈ I(x), denote by a ix the vertex
obtained by making this switch. Observe ∣I(x)∣ = deg(x).

_e neighbors of a ix are: a i(a ix) = x, a j(a ix) for any j ∈ I(x) with ∣i − j∣ > 1,
and a j(a ix) for any j ∉ I(x) with ∣i − j∣ = 1 and j ≠ 0, 2n. We calculate that

deg(a ix) = deg(x) + 2 − 2#{ j ∈ I(x) ∶ ∣i − j∣ = 1} − 1i=1 − 1i=2n−1 .

We observe that a neighbor of the form a j(a ix) if j ∈ I(x) and ∣i − j∣ > 1 will be
identical to a i(a jx) and have d(x , a ja ix) = 2.

Now, for any function f ,

1
2
∑

u∼v∼x
d(x ,u)=2

( f (u) − 2 f (v)) 2

≥ 1
2
∑
i , j∈I
∣i− j∣>1

( f (a ia jx) − 2 f (a ix))
2 + ( f (a ia jx) − 2 f (a jx))

2
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≥ ∑
i , j∈I
∣i− j∣>1

( f (a ix) − f (a jx))
2

= ∑
i∈I(x)

#{ j ∈ I(x) ∶ ∣ j − i∣ > 1} f 2(a ix) − 2 ∑
i , j∈I
∣i− j∣>1

f (a ix) f (a jx).

Observe that G is triangle-free. We have that

2Γ2( f )(x)
≥ ∑

i∈I(x)
#{ j ∈ I(x) ∶ ∣ j − i∣ > 1} f 2(a ix) − 2 ∑

i , j∈I
∣i− j∣>1

f (a ix) f (a jx)

+ ∑
i∈I(x)

f 2(a ix) + 2 ∑
i , j∈I

f (a ix) f (a jx)

+ ∑
i∈I(x)

(2 − 2 ⋅ deg(x) + 2 − 2#{ j ∈ I(x) ∶ ∣i − j∣ = 1} − 1i=1 − 1i=2n−1

2
) f 2(a ix)

≥ ∑
i∈I(x)

(#{ j ∈ I(x) ∶ i ≠ j} + 2 − deg(x)) f 2(a ix) + 2 ∑
i , j∈I
∣i− j∣=1

f (a ix) f (a jx)

= ∑
i∈I(x)

f 2(a ix) + 2 ∑
i , j∈I
∣i− j∣=1

f (a ix) f (a jx) > − ∑
i∈I(x)

f 2(a ix)

+ ∑
i , j∈I
∣i− j∣=1

( f (a ix) + f (a jx))
2

≥ −2Γ( f )(x).
So Ric(G) > −1, where we ignore a slight dependence on n in the lower order term.
Deûne a function with f (+1,−1,+1,−1, . . . ) = 0 and f (a ix) = f (x) − x i ; that is, if

the switch lowers the path, f decreases by 1; a switch that raises the path will increase
f by 1.

Using this f and x = (+1,−1,+1,−1, . . . ), we ûnd that Ric→ −1 as n →∞.

We now calculate the curvature for the subgraph G+ that is induced on the Dyck
paths, i.e., those paths that are always on or above the x-axis, alternately, sequences
in {±1}2n with∑2n

i=1 x i = 0 and∑ j
i=1 x i ≥ 0 for all j = 0, . . . , 2n. It is well known that

the number of Dyck paths is the Catalan number Cn .

Corollary 2.9 For this subgraph G+, Ric(G+) ≥ −1. Further, lim
n→∞

Ric(G+) = −1.

Proof sketch Let x ∈ V and let

I(x) = { i ∈ [2n − 1] ∶ a possible move is to transpose x i , x i+1} .

If i ∈ I, let a ix be the sequence obtained by transposing x i , x i+1.
Observe that deg(a ix) ≤ deg(x) + 2 − 2#{ j ∈ I(x) ∶ ∣i − j∣ = 1} − 1i=1 − 1i=2n−1.

Using the same analysis as in the unrestricted problem, we can conclude that

2Γ2( f )(x) ≥ −2Γ( f )(x).
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A similar test-function as above will prove that Ric ≤ −1 + o(1). We can use the
same function f and take x identical to the above example but with the ûrst −1 and
last +1 transposed. _is will give a similar upper bound on Ric. (Observe that the
neighbors and second-neighbors of x in the unrestricted graph are all Dyck paths, so
the curvature at x will be unchanged from the original.)

2.6 The Symmetric Group Sn with all Transpositions

_eorem 2.10 Let G be the Cayley graph on the symmetric group Sn with all trans-
positions as generators. _en Ric(G) = 2.

Let us remark that in recent work [17] the authors also provided a lower bound
for the Ricci curvature of the (Cayley) graph on the symmetric group with the edge
set given by transpositions, but with a diòerent notion of Ricci curvature, one devel-
oped by Erbar and Maas [16]. It is easy to see that the Ricci curvature developed by
Ollivier [30] gives a value of κ = 2/(n

2) for this problem in the setting of a Markov
chain. A simple coupling argument shows that this agrees with our result, modulo
the normalizing factor between the graph setting and the Markov chain setting.

Proof Let x ∈ Sn . A vertex u with d(u, x) = 2 will either be (i jk)x for some distinct
i , j, k ∈ [n] or (i j)(kl)x for distinct i , j, k, l ∈ [n].

In the ûrst case, the vertices v s.t. (i jk)x ∼ v ∼ x are v = (i j)x , (ik)x , ( jk)x. For
u = (i jk)(x),

∑
v∶u∼v∼x

( f (u) − 2 f (v)) 2

= ( f (u) − 2 f ((i j)x)) 2 + ( f (u) − 2 f ((ik)x)) 2 + ( f (u) − 2 f (( jk)x)) 2

≥ 4
3
[( f ((i j)x) − f ((ik)x)) 2 + ( f ((i j)x) − f (( jk)x)) 2

+ ( f ((ik)x) − f (( jk)x)) 2] .

In the second case, a v such that (i j)(kl)x ∼ v ∼ x is either v = (i j)x or v = (kl)x. If
u = (i j)(kl)(x),

∑
v∶u∼v∼x

( f (u) − 2 f (v)) 2 ≥ 2( f ((i j)x) − f ((kl)x)) 2
.

Taking a sum over all values of u gives

1
2
∑

u∼v∼x
d(u ,x)=2

( f (u) − 2 f (v)) 2 ≥ ∑
v ,w∼x

( f (v) − f (w)) 2
.

Indeed, if v ,w are v = (i j)x and w = (ik)x for some i , j, k, the term ( f (v) − f (w))
is counted twice in the sum: for u = (i jk)x and u = (ik j)x. If v ,w are v = (i j)x
and w = (kl)x for some i , j, k, l , the term 2 ( f (v) − f (w)) is counted once: for u =
(i j)(kl)x.
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Observe that G is triangle-free and regular with degree d = (n
2). Using this bound,

we see that

2Γ2( f )(x) ≥ ∑
v ,w∼x

( f (v) − f (w))2 + ( ∑
v∼x

f (v))
2
+ (2 − d) ∑

v∼x
f 2(v)

= 2∑
v∼x

f 2(v) = 4Γ( f )(x).

_erefore, Ric ≥ 2, as G is triangle-free, Ric = 2 by _eorem 1.2.

3 Spectral Gap and Curvature

Let λ(G) denote the spectral gap of G, i.e., the least nonzero eigenvalue of −∆.

_eorem 3.1 Let G be a graph with curvature Ric ≥ K ≥ 0. _en λ ≥ K.

A diòerent proof of this result was given in [11].

Proof We may use the 2nd derivative versus the ûrst derivative (of variance of the
heat kernel) characterization of the spectral gap

λ = min
f

E(−∆ f , f )
E( f , f ) ,

(see e.g., [28]) so that α ≤ λ if and only if, for any function f , we have α ⋅ E( f , f ) ≤
E(−∆ f , f ).
By assumption, G satisûes (1.3) with parameter K, i.e., that

∆Γ( f )(x) − 2Γ( f , ∆ f )(x) − 2KΓ( f )(x) ≥ 0,

for all functions f ∶V → R and all x ∈ V . Summing the above inequality over all
vertices gives

∑
x
∆Γ( f )(x) − 2∑

x
Γ(∆ f , f )(x) − 2K∑

x
Γ( f )(x)

= 2∑
x
(∆ f (x)) 2 − K∑

x
∑
y∼x

( f (y) − f (x)) 2

= 2∑
x
(∆ f (x))2 − 2K∑

x∼y
( f (y) − f (x))2 ≥ 0

where in the ûrst equality, we used identity (1.1) and the fact that for any g,∑∆g = 0.
Now let ∣V ∣ = n, and recall the Dirichlet form (with respect to the measure π ≡ 1),

E( f , f ) = ∑
x∼y

( f (y) − f (x)) 2

and that

E(−∆ f , f ) = ∑
x
−∆ f (x)( ∑

y∼x
( f (x) − f (y))) = ∑

x
(∆ f (x))2 .

Plugging into the above inequality gives

2E(−∆ f , f ) − 2KE( f , f ) ≥ 0,

and so KE( f , f ) ≤ E(−∆ f , f ), resulting in λ ≥ K.
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4 Buser-type Inequalities

_e proofs in this section are a straightforward discrete version of Ledoux’s paper
[23, § 5]. First we derive a key gradient estimate on the heat kernel associated with a
graph, whichwill then be used in to derive a Buser inequality for graphs, asmentioned
in the introduction.

4.1 Gradient Estimates

For t ≥ 0, we write Pt = exp(t∆) for the heat kernel associated with the graph G.
_en Pt is a positive deûnite matrix on RV , with P0 being the identity matrix. Note
that Pt commutes with ∆ and with Ps , and that ∂Pt/∂t = Pt∆ = ∆Pt . Finally, the
matrix Pt has non-negative entries. So if f has non-negative entries, then Pt( f ) also
has non-negative entries. For a vector f ∶V → R, we write ∥ f ∥p = (∑v ∣ f (v)∣p)1/p .

Lemma 4.1 Suppose G has Ric(G) ≥ K for some K ∈ R. _en for any f ∶V → R and
any 0 ≤ t ≤ 1/∣2K∣,

∥ f − Pt f ∥1 ≤ 2
√

t∥
√

Γ( f )∥1 .

Note that the restriction on t applies only when K is negative. If K > 0, then
Ric ≥ K implies Ric ≥ 0, and the lemma holds with no restriction on t.

Proof _e proof is in three steps.

Step 1. We ûrst prove that

Γ(Pt f ) ≤ e−2KtPt(Γ( f )),
where the inequality holds pointwise on V (recalling that these are real-valued func-
tions on V ). To that end, deûne the auxiliary function gs = e−2KsPs(Γ(Pt−s f )), a
function on V . It is enough to show that ∂gs/∂s is pointwise non-negative on (0, t).
We compute

∂gs

∂s
= e−2KsPs[2Γ2(Pt−s f ) − 2KΓ(Pt−s f )] .

Since Ps preserves non-negativity, it is enough to prove that

Γ2(Pt−s f ) − KΓ(Pt−s f ) ≥ 0,

which is true by our assumption that Ric(G) ≥ K.

Step 2. Next we prove that

(4.1) Pt( f 2) − (Pt f )2 ≥ (∫
t

0
2e2Ksds)Γ(Pt f ).

To that end, deûne the auxiliary function gs = Ps[(Pt−s f )2]. It is enough to show that
∂gs/∂s ≥ 2e2KsΓ(Pt f ), for any 0 ≤ s ≤ t. Using the local identity (1.2) mentioned
earlier, we compute

∂gs

∂s
= Ps[2Pt−s f ⋅ ∆Pt−s f + 2Γ(Pt−s f )] + Ps[2Pt−s f ⋅ (−∆Pt−s f )] .
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Hence, by Step 1, for any 0 ≤ s ≤ t,

∂gs

∂s
= 2Ps(Γ(Pt−s f )) ≥ 2e2KsΓ(Pt f ),

which gives (4.1).
Denote cK(t) = ∫

t
0 2e2Ksds. _en cK(t) = (e2Kt − 1)/K, for non-zero K, and

cK(t) = 2t for K = 0. In both cases, cK(t) ≈ 2t for small t > 0. For instance, cK(t) ≥ t
for 0 ≤ t ≤ 1/(2∣K∣). Hence, for 0 ≤ t ≤ 1/(2∣K∣), (4.1) gives,

(4.2) max
√

Γ(Pt f ) ≤
1√
t
max

√
Pt( f 2) ≤

1√
t
max ∣ f ∣.

Step 3. As can be guessed by now, we begin by writing

Pt f − f = ∫
t

0

∂Ps f
∂s

ds = ∫
t

0
Ps∆ f ds.

To prove the lemma, it suõces to show that ∥Ps(∆ f )∥1 ≤ s−1/2∥
√

Γ( f )∥1 (since we
have ∫

t
0 s−1/2ds = 2

√
t). Let ψ = sgn(Ps(∆ f )). _en

∥Ps(∆ f )∥1 = ∑
x∈V

Ps(∆ f )(x) ⋅ ψ = ∑
x∈V

∆ f (x) ⋅ Ps(ψ)(x) = ∑
x∈V

−Γ( f , Ps(ψ))(x)

≤ ∑
x∈V

√
Γ( f )(x) ⋅ Γ(Ps(ψ))(x) ≤ ∥

√
Γ( f )∥1 ⋅max

x∈V

√
Γ(Ps(ψ))(x),

and the desired inequality follows from (4.2), as max ∣ψ∣ = 1.

4.2 Spectral Gap and Isoperimetry

_eorem 4.2 Suppose G has Ric(G) ≥ K for some K ∈ R. Denote by λ > 0 the
minimal non-zero eigenvalue of −∆. _en, for any subset A ⊂ V,

∣∂A∣ ≥ 1
2
min{

√
λ,

λ√
2∣K∣

} ∣A∣( 1 − ∣A∣
∣V ∣ ) .

Here, by ∂A, we mean the collection of all edges connecting A to its complement.

As noted in the previous lemma, the term λ/
√

2∣K∣ is relevant only in the case
K < 0.

Proof Apply the previous lemma to f = 1A. _en Γ(1A) is the function that asso-
ciates with each v ∈ V , the number of edges in ∂A that are incident with v. Conse-
quently, for any 0 < t < 1/(2∣K∣),

∥1A − Pt(1A)∥1 ≤ 2
√

t ⋅ ∣∂A∣.
Note that 0 ≤ Pt(1A) ≤ 1, hence the le�-hand side can be written as follows:

∥1A − Pt(1A)∥1 = ∣A∣ −∑
A

Pt(1A) +∑
Ac

Pt(1A) = 2[ ∣A∣ −∑
V
1A ⋅ Pt(1A)] .

Since Pt is self-adjoint and Pt/2Pt/2 = Pt ,

(1/2)∥1A − Pt(1A)∥1 = ∣A∣ − ∥Pt/2(1A)∥2
2 = ∥1A∥2

2 − ∥Pt/2(1A)∥2
2 .
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Let ϕ i ∶ 1 ≤ i ≤ n be the orthonormal eigenvectors of ∆, and let λ i be the cor-
responding eigenvalues. Let 1A = ∑ a iϕ i be the spectral decomposition of A, with
ϕ0 ≡ 1/

√
∣V ∣ and a0 = ∣A∣ /

√
∣V ∣. _en Pt/2(1A) = ∑i a i e−λ i t/2ϕ i , and hence

(1/2)∥1A − Pt(1A)∥1 = ∑
i
(1 − e−λ i t)a2

i ≥ (1 − e−λt)∑
i≥1
a2
i = (1 − e−λt)( ∣A∣ − ∣A∣2

∣V ∣ ) .

To summarize, for any 0 < t ≤ 1/(2∣K∣),

∣∂A∣ ≥ 1 − e−λt
√

t
∣A∣ ( 1 − ∣A∣

∣V ∣ ) .

If λ ≥ 2∣K∣, we select t = 1/λ ≤ 1/2∣K∣ and deduce the theorem (use (1 − 1/e) > 1/2).
If λ ≤ 2∣K∣, we take the maximal possible value, t = 1/(2∣K∣). _en 1 − e−λ/2∣K∣ ≥
λ/(4∣K∣), and the theorem follows.

Corollary 4.3 Suppose a graph G has Ric(G) ≥ K, for some K ≥ 0. _en h ≥ 1
4

√
λ.

Proof As already explained, when K ≥ 0, we can ignore the term λ/
√

2∣K∣ in the
minimum in _eorem 3.1, and then the theorem gives

∣∂A∣ ⋅ ∣V ∣
∣A∣ ⋅ ∣A∣

≥ 1
2

√
λ,

and so we have h ≥ 1
4

√
λ.

4.3 Logarithmic Sobolev Constant and Isoperimetry

We now prove an analogue of [23, _eorem 5.3], relating the log-Sobolev constant ρ
to an isoperimetric quantity. Consider the hypercontractive formulation of the log-
Sobolev constant (see e.g., [20],[14]): namely, deûne ρ to be the greatest value so that
whenever 1 < r < q < ∞ and

√
(q − 1)/(r − 1) ≤ eρt , then

n−1/q ∥Pt f ∥q ≤ n−1/r ∥ f ∥r .

_eorem 4.4 Suppose G has Ric(G) ≥ K for some value K ∈ R. _en for any subset
A ⊂ V with ∣A∣ ≤ ∣V ∣/2 = n/2,

∣∂A∣ ≥ 1
16

min(√
ρ,

ρ√
2 ∣K∣

) ∣A∣ log n
∣A∣ .

Proof As in the proof of _eorem 4.2, we can observe that

√
t
∣∂A∣
n

≥ ∣A∣
n
−

∥Pt/2(1A)∥
2
2

n
if 0 < t < 1/(2 ∣K∣).

Using the hypercontractivity property with q = 2 and r = 1 + e−2ρt gives that

∥Pt/2(1A)∥
2
2

n
≤ ∥1A∥2

r

n2/r = ( ∣A∣
n

)
2/r

.
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Hence,

√
t
∣∂A∣
n

≥ ∣A∣
n
−

∥Pt/2(1A)∥
2
2

n
≥ ∣A∣

n
− ( ∣A∣

n
)

2/r

.

As 2/r ≥ 1 + ρt/4, whenever 0 ≤ ρt ≤ 1 and ∣A∣/n ≤ 1,

√
t
∣∂A∣
n

≥ ∣A∣
n
− ( ∣A∣

n
)

1+ρt/4

= ∣A∣
n

( 1 − ( ∣A∣
n

)
ρt/4

) .(4.3)

Let t0 = min (1/2 ∣K∣ , 1/ρ). If ∣A∣/n < e−4, set t = 4t0
log(n/∣A∣) .

Using this value of t in (4.3), we ûnd

∣∂A∣
n

≥ 1√
t
∣A∣
n

(1 − e−ρt0) ≥ 1
2
√

t0
∣A∣
n

(1 − e−ρt0) log( n
∣A∣ )

1/2

≥ 1
4
ρ
√

t0
∣A∣
n

( log
n
∣A∣ )

1/2

.

On the other hand, if e−4 ≤ ∣A∣/n ≤ 1
2 , use t = t0 in (4.3) to ûnd

∣∂A∣
n

≥ 1√
t0

∣A∣
n

(1 − 2−ρt0/4) ≥ 1
8
ρ
√

t0 .
∣A∣
n

≥ 1
16

ρ
√

t0
∣A∣
n

( log
n
∣A∣ )

1/2

,

where, for the second inequality, we use 1 − 2−x ≥ x/2, if 0 ≤ x ≤ 1. Hence,

∣∂A∣
n

≥ 1
16

ρ

¿
ÁÁÀmin( 1

2∣K∣ ,
1
ρ
) ∣A∣

n
(log n

∣A∣ )
1/2

≥ 1
16

min(√
ρ,

ρ√
2∣K∣

) ∣A∣
n

( log
n
∣A∣ )

1/2

,

proving the theorem.

_e optimality of the above theorem (in terms of the dependence on the parame-
ters involved) remains open at this time; in particular, we do not have tight examples.
It is also natural to ask if the bound ρ ≥ K holds when Ric ≥ K ≥ 0, similar to the
bound on λ in _eorem 3.1. In general, this is not true; consider the complete graph
on n vertices. We have seen that Ric = 1 + n

2 , and it is easy to see (by considering
the characteristic function of a set as a test function), and it is also well known that
ρ = O( n

log n ) (see e.g., [28]).
It is true, however, that under a diòerent notion of discrete curvature for reversible

Markov chains, one developed by Erbar andMaas, the so-calledmodiûed logarithmic
Sobolev constant, ρ0, can be lower bounded by the curvature; see [16]. _us, it is cer-
tainly interesting to explore whether an analog of_eorem 3.1 is true with ρ0 in place
of λ. Recall here that ρ0 captures the rate of decay of relative entropy of the Markov
chain, relative to the equilibrium distribution, while ρ captures the hypercontractivity
property of the Markov kernel (see [28] for additional information).
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