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Abstract

The problem of scattering of surface water waves by a horizontal circular cylinder totally
submerged in deep water is well studied in the literature within the framework of linearised
theory with the remarkable conclusion that a normally incident wave train experiences no
reflection. However, if the cross-section of the cylinder is not circular then it experiences
reflection in general. The present paper studies the case when the cylinder is not quite
circular and derives expressions for reflection and transmission coefficients correct to
order e, where e is a measure of small departure of the cylinder cross-section from circularity.
A simplified perturbation analysis is employed to derive two independent boundary value
problems (BVP) up to first order in e. The first BVP corresponds to the problem of water
wave scattering by a submerged circular cylinder. The reflection coefficient up to first order
and the first order correction to the transmission coefficient arise in the second BVP in a
natural way and are obtained by a suitable use of Green's integral theorem without solving
the second BVP. Assuming a Fourier expansion of the shape function, these are evaluated
approximately. It is noticed that for some particular shapes of the cylinder, these vanish.
Also, the numerical results for the transmission coefficients up to first order for a nearly
circular cylinder for which the reflection coefficients up to first order vanish, are given in
tabular form. It is observed that for many other smooth cylinders, the result for a circular
cylinder that the reflection coefficient vanishes, is also approximately valid.

1. Introduction

Assuming linear theory, the two-dimensional problems of water wave scattering by
an obstacle present in water admit exact solutions only for a limited few cases, for
example, when the obstacle is in the form of a thin vertical barrier. However, an integral
equation formulation is always possible for obstacles of any geometrical shape by a
judicious use of Green's integral theorem. The resulting integral equation can be
solved approximately by analytical methods in some cases and numerically in most
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cases. There are other procedures available in the literature for tackling these problems
which essentially depend on the geometry of the obstacle. For example, when the
obstacle is in the form of an infinitely long submerged cylinder with horizontal axis,
Dean [1] used the technique of complex variables and Ursell [9] used the method of
multipoles wherein a system of multipoles are placed at the centre of the cylinder and
the strength of the multipoles satisfy an infinite linear system which always possesses
an unique solution. Ogilvie [8] considered some more general situations in which
Ursell's case was included, and used a similar technique to solve it. Levine [4] later
used an integral equation formulation as mentioned above and considered obliquely
incident wave trains also. They obtained the remarkable conclusion that a normally
incident wave train experiences no reflection by the circular cylinder. However if the
obstacle is not in the form of a circular cylinder, the wave train in general experiences
reflection and in principle can be tackled by an integral equation formulation. For an
obstacle in the form of a nearly circular cylinder, a simplified perturbation analysis
can be utilized to handle the problem. A somewhat similar idea of perturbation
analysis was used in some recent works involving scattering or radiation of water
waves by nearly vertical barrier or plates (see Mandal and Chakrabarti [6], Mandal
and Kundu [7] and Mandal and Banerjea [5]).

In the present paper, we consider water-wave scattering by a submerged nearly
circular cylinder whose axis is horizontal. The aforesaid simplified perturbation
technique is employed to reduce the problem up to first order to two independent
BVPs. The first BVP corresponds to the problem of scattering of a normally incident
wave train by a submerged circular cylinder, and it is studied by Dean [1], Ursell [9],
Ogilvie [8], Levine [4] by various mathematical methods as mentioned earlier.

Using a tailored version of Green's integral theorem, based on an idea of Evans [2],
the reflection coefficient up to first order and first order correction to transmission
coefficient are obtained from the second BVP without actually solving it. Approximate
expressions for these quantities are obtained by assuming a general Fourier expansion
of the shape function representing the cross-section of the cylinder. It is found that for
some special shapes, these quantities vanish. Also, when only a three-term Fourier
expansion of the shape function is taken, the reflection coefficient up to first order is
found to vanish. Thus if a nearly circular cylinder has sufficient continuity, then the
Fourier coefficients in the Fourier expansion of the shape function will decay quickly,
and a three-term series might be an excellent approximation to many fairly smooth
cylinders. This implies that for many other smooth cylinders, the result that the
reflection coefficient vanishes for a circular cylinder, also holds good approximately.

https://doi.org/10.1017/S0334270000010481 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010481


374 B. N. Mandal and Sudeshna Banerjea [3]

2. Formulation of the problem

A rectangular cartesian coordinate system is used in which the y-axis is directed
vertically downwards, and the origin lies on the axis of an infinitely long nearly
circular cylinder submerged in deep water with its generators parallel to the z-axis
and / is the depth of its axis below the mean free surface. It is represented by
r = a{\ + ec(9)}, (0 < 0 < 2n with x = r sin#, y = r cos#) where e is a small
nondimensional parameter and is a measure of small departure of the cylinder cross-
section from circularity, and c(9) is a smooth function of 0. A time-harmonic surface
water wave train is normally incident on the cylinder from negative x-direction. The
problem is two-dimensional and is independent of z. The motion is assumed to be
irrotational and can be described by a velocity potential. Let the incident wave field
be represented by Re{<f>inc(x, y)e~'<") where <j>'"c(x, y) is given below and a is the
angular frequency. Assuming linear theory, the motion in the fluid can be described
by the velocity potential Re[(j>(x, y)e~'a'}, where (j> satisfies

V20 = 0 in the fluid region, (2.1)

K<p + <py = O ony = -f (2.2)

where K = o2/g, g being the gravity;

deb
— =0 on r = a{l+ec(0)}, 0<9<2TT (2.3)
dn

where n is normal to the surface of the cylinder;

V0 -> 0 as y -> oo; (2.4)

4>inc(x, y) + R^i-x, y) as x -*• -oo,
T(pinc(x, y) as x -> oo, ^ ' }

where <t>inc{x, y) = e-
K^y+fy+iKx

i and R and T denote reflection and transmission
coefficients respectively and are to be determined.

3. Method of solution

The condition (2.3) can be approximated to the first order of e as (see Appendix)
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This form of boundary condition suggests that we may assume the following perturb-
ation expansion for (p(x,y), R and T in terms of e as

R =
T =

i + O(e2),
+O(e2).

(3.2)

Substituting (3.2) in (3.1) and following the usual procedure for straightforward per-
turbation technique, we find (po(x, y) and <pi (x, y) to be the solutions of the following
two independent BVPs.

BVPI. (x, y) satisfies

V20O = 0

dy

in y > —/, r > a,

on y = - / ,

90o
9r

= 0 on r = i

as y

0o

BVPII. <t>t(x,y) satisfies

co,

- /?o0 i n c(-*, y)

'""(Jt, y)

as A: -*• - co ,

as J : - > co.

where

with

V20, =

30i

9y
90, _
9r

A (5) =

00(6) =

V 0 , ^

0

(j

h{6)

1 d

0o (a
0

f /?,

in

on

r

l c (

y > -f, r > a,

v ~~ — /

on r = a,

90 1

sin 6, acosS),

as

i0i n c

> -*• co>

(-JC.J) as J

r,0inc(x, as co.

(3.3)

( 3 - 4 )

(3.5)

(3.6)

(3.7)

(3.8)

We note that the B VPI corresponds to the two-dimensional problem of water wave
scattering by an infinitely long horizontal circular cylinder submerged in deep water.
As stated in the introduction this problem is well studied in the literature. In the
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condition (3.5) of BVP II we require the knowledge of (j>0(6). It is given by [4]

ne~in\ 0<9 <2n. (3.9)
n=0

In (3.9) an's (n > 1) satisfy the linear system

Kmn - (-1) - ^—J n-l)\

(m - \)\{n - 1)!

(m - 1)!(« - 1)! ^f
Kon=O forall«>l,
„ _ nn , n ( a ̂  (In - 1)! n{Kaf" \ d2"
K""~ 2 +2\2f) {(n-iy.V {(n-\)\?W»

with
-dz (3.11)

z - 1

where the path of integration is indented below the pole at z = 1. It is also known that

#o = O, (3.12)

while

^p(=^f (3.13)
and the results are independent of a0- The an 's in (3.13) are determined approximately
by truncating the linear system (3.10).

In order to obtain R,, we utilize Evans' [2] idea of the application of Green's integral
theorem to the harmonic functions <t>\(x, y) and 4>o(x, y) in the region bounded by
the lines y = -f, -X < x < X; x = X, -f < y < Y; y = Y, -X < x < X;
x = —X, —f < y <Y and the circle r =a, and ultimately make X, Y -*• oo so that
we find

p2n

R\ = ia I i
Jo

After integrating by parts and noting that 6 = 0, 2n correspond to the same point on
the circle, we see that

^(0)1 c(6)de. (3.14)
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Similarly to obtain Tx we apply Green's integral theorem to the functions 0i (x, v)
and 0o (—x, y) in the same region and obtain

T, =ia / (po(-O)h(6) d6
Jo

Jo da ou

With the knowledge of <po(6) given in (3.9), we find

Ri =i f c(6>)| (/i:a)2exp(-2/i:/)exp{-2/6>-2/i:aexp(-/6')}

"I

eKp{-i(jn+n)O) \d6 (3.16)

m—\ n=\ -I

and

r2" r
7, = i / C(0) (Ka)2exp(-2Kf-2Kacos6)

Jo L
00

-2^Ta exp(-/<:/) ^ «an exp(-Ka cos0) costA'a sin6 + (n -1)9}
71 = 1

OO OO

p \ (3.17)
m = l n = l I

-I

MaIIexp{-i(TO-ii)0} \dO.
-I

We now assume a general Fourier expansion of c(0) as

c(9) = ^ +2_^[sp sin p9 + tp cos p9], 0<9<2n. (3.18)
P=\

Substituting (3.18) in (3.16) and (3.17) and evaluating the various integrals (see [9],
page 488) we find Rx and 7̂  as

- loo i- (rJfCn\P p~

Rx=n Y\(.sp + itp)\ — exp(-2AT/) + V « ( p - n)anap-n

7^2 L2(p-2)! j ^
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and

= 2ni > f, (Kaf exp(-2Kf)Ip(2Ka)

[ oo oo

n = \ m=n
[

^ ^ 2mnamantm_n

+ i exP(-2KfKKa)2I0(2Ka)t0 - 2cxp(-Kf)t0 f^ ^ " ^ l (3.20)
n=l

where Ip (z) denotes the modified Bessel function of first kind.
The constants, an, are obtained from the solution of the linear system (3.10) by

truncation and the tp and sp's are known once the shape function c(9) is given. We
note that R\ is independent of tQ, s{ and tx while T{ is independent of sp. This states
that the nearly circular cylinder does not experience any reflection (up to first order)
if it has the shape r = a{\ + ec(6)}, where

c{9) = y +s l s in0 + f,cos6>. (3.21)

Again T\ is independent of the sp's so that if the shape function c(0) is of the form
c(0) = Ylp^i SP sinp^, then T{ vanishes. These observations give some interesting
physical results discussed below.

4. Discussion

Taking <? = 0.001 and 0.0001 we have computed \T\ = |T0 + e7, | for the cylinders

r = a{\+ec{6))

with
c{6) = A sin6> + B cos 9, (4.1)

for B = 0.1 (A being arbitrary), a/f = 0.5 and for various values of Ka between 0.1
and 1.7. A set of representative values is given in Tables 1 and 2.

It is observed from (3.19) that for a sequence of cylinders with cross-sections given
in (4.1), Rx = 0, that is, the reflection coefficient up to first order of e, vanishes. This
implies that \T\ = \T0 + eTx\ is nearly equal to unity. This is also reflected in the
numerical results for \T\ in Tables 1 and 2.
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TABLE 1. e = 0.001, a/f = 0.5. TABLE 2. e = 0.0001, a/f = 0.5.
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Ka
0.1
0.3
0.5
0.7
1.0
1.3
1.5
1.7

\T0\
1.000012
1.000549
1.000775
1.000421
1.000077
1.000009
1.000002
1.000000

\T\
1.000012
1.000549
1.000775
1.000421
.000080
1.000065
.000229
1.000800

Ka
0.1
0.3
0.5
0.7
1.0
1.3
1.5
1.7

\T0\
1.000012
1.000549
L .000775
1.000421
1.000077
1.000009
1.000002
1.000000

\T\
1.000012
1.000549
L .000775
1.000421
.000076
1.000009
1.000003
1.000008

Also, it is observed from (3.20) that \T\ for these cylinders is independent of A.
More generally if c(6) = ££1 , sp s m P#>t n e n fr°m (3-19) and (3.20) it is found that
R\ = 0, Tx = 0 (of course Ro = 0). This implies that for the nearly circular cylinders
with the shape function c{6) mentioned above, the transmissivity is totally unaffected
by its noncircularity.

Again from Table 1, it is found that for e = 0.001, \T\ does not differ from \T0\ (up
to six decimal places) for Ka < 0.9 where To is the transmission coefficient for the
circular cylinder r = a. Again |T| differs from \T0\ beyond the fourth decimal place
for Ka lying between 1.0 and 1.3. However for Ka < 1.4 the said difference occurs
at the fourth decimal place.

Also from Table 2, it is found that for e = 0.0001, |T| does not differ from \T0\
(up to six decimal places) for Ka < 0.9, but for Ka > 1.0, this difference occurs
beyond the fifth decimal places. This shows that the effect of e on \T\ is not of much
significance for various values of the parameter Ka and Kf. Thus for a sequence
of nearly circular cylinders whose cross-sections are given in (4.1), the reflection
coefficient up to first order vanishes and the transmission coefficient up to first order
does not differ significantly from that of the circular cylinder. It may also be observed
that if a nearly circular cylinder r = a{\ + ec(9)} has sufficient continuity, then the
Fourier coefficients Sj and r, in (3.18) will decay rapidly with j and a three-term series
as given in (3.21) is a good approximation to many fairly smooth cylinders. This
implies that for many smooth nearly circular cylinders, the result that for the circular
cylinder the reflection coefficient vanishes, is approximately valid.

Appendix: Derivation of the condition (3.1)

The condition (2.3) is

an
on r = a[l +ec{6)}, 0<9<2n. (A.1)
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Let a be the angle between the radius vector and a tangent to the curve r = r(9) at
(r, 9), then

d<p 3 0 1 d(f>
—— = —— sin a cos a.
dn dr r d6

Noting that cote* = r'{9)/r on r = a[\ + ec(9)}, we find sine* = 1 + O(e2) and
cos a = ec'(9) + O(e2) so that

3d) 3d) € o(b 7

— = c(9)-—h O(e ) on r = a{\ + ec(9)}. (A.2)
dn dr a od

Expanding d(p/dr(r,9), d<p/d9(r,9) on r = a{\ + €c(9)} about r = a by Taylor
series expansion and using the harmonic property of </>, we find from (A.2) that
condition (A.I) is approximately equivalent to

= 0 on r = a.
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