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Abstract

Let Γ be a finite subgroup of Sp(V ). In this article we count the number of symplectic

resolutions admitted by the quotient singularity V/Γ. Our approach is to compare

the universal Poisson deformation of the symplectic quotient singularity with the

deformation given by the Calogero–Moser space. In this way, we give a simple formula

for the number of Q-factorial terminalizations admitted by the symplectic quotient

singularity in terms of the dimension of a certain Orlik–Solomon algebra naturally

associated to the Calogero–Moser deformation. This dimension is explicitly calculated

for all groups Γ for which it is known that V/Γ admits a symplectic resolution. As a

consequence of our results, we confirm a conjecture of Ginzburg and Kaledin.

1. Introduction

The goal of this article is to count the number of non-isomorphic symplectic resolutions of a

symplectic quotient singularity V/Γ, where V is a finite-dimensional complex vector space and

Γ ⊂ Sp(V ) a finite group. A Q-factorial terminalization of V/Γ is a projective, crepant, birational

morphism

ρ : Y → V/Γ

such that Y has only Q-factorial, terminal singularities. We say that Y is a symplectic resolution

of V/Γ if Y is smooth. It is not always the case that the quotient admits a symplectic resolution,

in fact such examples are relatively rare. However, it is a consequence of the minimal model

programme that V/Γ always admits a Q-factorial terminalization. Moreover, work by Namikawa

shows that V/Γ admits only finitely many Q-factorial terminalizations up to isomorphism, and if

one of these Q-factorial terminalizations is actually smooth, i.e. is a symplectic resolution, then

all Q-factorial terminalizations are smooth.

The main result of this paper is an explicit formula for the number of Q-factorial

terminalizations admitted by V/Γ. Our approach is to translate the problem into a problem

about the singularities of the Calogero–Moser deformation of V/Γ. Then results about the

representation theory of symplectic reflection algebras can be applied to solve the problem.

Namely, the centre of the symplectic reflection algebra associated to Γ defines a flat Poisson

deformation CM(Γ) → c of V/Γ. Here the base c of the Calogero–Moser deformation is the
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vector space of class functions supported on the symplectic reflections in Γ. Let Y be a Q-factorial
terminalization of CM(Γ) over c:

Y ρ //

��

CM(Γ)

||
c

The set of points c for which the map ρc : Yc → CMc(Γ) is an isomorphism is denoted creg,
and D ⊂ c the complement. In [Nam10], Namikawa shows that there is a finite ‘Weyl group’
associated to any affine symplectic variety equipped with a good C×-action. In particular, we
may associate to V/Γ its Namikawa Weyl group W . Our main result is the following theorem.

Theorem 1.1. The number of pairwise non-isomorphic Q-factorial terminalizations admitted
by V/Γ equals

1

|W | dimCH
∗(crD;C). (1.A)

A consequence of our results is that D is a union of hyperplanes in c. This implies that
H∗(c r D;C) is the Orlik–Solomon algebra associated to this hyperplane arrangement. Thus,
powerful results in algebraic combinatorics can be applied to explicitly calculate the number
(1.A) in examples of interest. When V/Γ admits a symplectic resolution, ρc is an isomorphism
if and only if CMc(Γ) is smooth, i.e. D is precisely the locus of singular fibres.

There is one infinite series of groups for which it is known that the quotient V/Γ admits a
symplectic resolution. These are the wreath product symplectic reflection groups. Let Γ = Sn oG
acting on V = C2n, where G is a finite subgroup of SL(2,C). The Weyl group associated to G
via the McKay correspondence is denoted WG. The exponents of WG are denoted e1, . . . , e`, and
h denotes the Coxeter number of WG.

Proposition 1.2. The number of non-isomorphic symplectic resolutions of V/Γ equals

∏̀
i=1

(n− 1)h+ ei + 1

ei + 1
. (1.B)

Formula (1.B) plays an important role in the theory of generalized Catalan combinatorics
associated to Weyl groups.

In addition to the above infinite series, it is known that there are two exceptional groups that
admit symplectic resolutions. These are Q8 ×Z2 D8 and G4, both acting on a four-dimensional
symplectic vector space; it seems likely that these make up all groups admitting symplectic
resolutions [BS13b]. In the case of G4, Lehn and Sorger explicitly constructed a pair of non-
isomorphic symplectic resolutions of V/Γ. Our results show that these are the only symplectic
resolutions of this quotient. In the case of Q8 ×Z2 D8, a computer calculation shows that
dimCH

∗(crD;C) = 2592, implying that the quotient singularity admits 81 distinct symplectic
resolutions. Recently, these 81 symplectic resolutions have been explicitly constructed by Donten-
Bury and Wísniewski [DW14]. They also show that these 81 resolutions are all possible resolutions
up to isomorphism.

1.1 Universal versus Calogero–Moser deformations
The key to proving Theorem 1.1 is to make a precise comparison between the formally universal
Poisson deformation X of V/Γ and the Calogero–Moser deformation CM(Γ). As noted above,
the base of the Calogero–Moser space is the space c of class functions on Γ supported on the
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subset of symplectic reflections. On the other hand, Namikawa has shown that the base of the
universal deformation X is H2(Y ;C)/W . Thus, there exists a morphism c → H2(Y ;C)/W such
that

CM(Γ) ' X ×H2(Y ;C)/W c.

Our main result, Theorem 1.4, is an explicit description of the morphism c → H2(Y ;C)/W . In
order to precisely state our results, we introduce some additional notation.

A subgroup Γ′ of Γ is parabolic if it is the stabilizer of some vector v ∈ V . The rank of Γ′

is defined to be 1
2(dimV − dimV Γ′), and we say that Γ′ is minimal if it has rank one. In this

case Γ′ is isomorphic to a finite subgroup of SL(2,C). The set of Γ-conjugacy classes of minimal
parabolic subgroups is denoted B. The variety V/Γ is stratified by finitely many symplectic
leaves, and those leaves L whose dimension is dimV − 2 are naturally labeled by the elements
of B. For each B ∈ B, we fix a representative Γ′ in B and write Ξ̃(B) for the normalizer of Γ′

in Γ. The quotient Ξ̃(B)/Γ′ is denoted Ξ(B). Via the McKay correspondence, there is associated
to Γ′ ⊂ SL(2,C) a Weyl group (W (B), hB) of simply laced type. As explained in § 2.1, there is
a natural linear action of Ξ(B) on hB. We fix aB := (h∗B)Ξ(B). The centralizer WB of Ξ(B) in
W (B) acts on aB. We fix a Q-factorial terminalization ρ : Y → V/Γ of V/Γ.

Theorem 1.3. The Namikawa Weyl group associated to V/Γ is W :=
∏
B∈BWB acting on

H2(Y ;C) '
∏
B∈B

aB.

As noted above, the Calogero–Moser deformation plays a key role in our results. Associated
to the pair (V,Γ) is the symplectic reflection algebra H(Γ) at t = 0, as introduced by Etingof
and Ginzburg [EG02]. This is a non-commutative C[c]-algebra, free over C[c], such that the
quotient H(Γ)/〈C[c]+〉 is isomorphic to the skew-group algebra C[V ]oΓ. Let e denote the trivial
idempotent in CΓ, so that e(C[V ]oΓ)e ' C[V ]Γ. The algebra eH(Γ)e is a commutative Poisson
algebra, again free over C[c], such that

eH(Γ)e/〈C[c]+〉 ' C[V ]Γ,

as Poisson algebras. Thus, ϑ : CM(Γ) := Spec eHe → c is a flat Poisson deformation of V/Γ. We
call CM(Γ) the Calogero–Moser deformation of V/Γ. The key result at the heart of this paper is
the following theorem, which makes explicit the relation between the deformations X and CM(Γ)
of V/Γ.

Theorem 1.4. The McKay correspondence defines a W -equivariant isomorphism c ' H2(Y ;C)
such that the Calogero–Moser deformation CM(Γ) → c is isomorphic to the pull-back along the
quotient map H2(Y ;C) → H2(Y ;C)/W of the formally universal Poisson deformation X →

H2(Y ;C)/W .

In particular, Theorem 1.4 implies that [GK04, Conjecture 1.9] is true. Results of
Namikawa [Nam15] on the birational geometry of Y show that the number of Q-factorial
terminalizations of V/Γ can be computed by counting the number of connected components in
the complement to a (finite) real hyperplane arrangement in H2(Y ;R). Theorem 1.4 allows
us to identify the complexification of this hyperplane arrangement with the set D. Then
Theorem 1.1 can be deduced from Theorem 1.4 using standard results from the theory of
hyperplane arrangements. We note an immediate corollary of Theorem 1.4.
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Corollary 1.5. Let Γ0 be the normal subgroup of Γ generated by all symplectic reflections.

Then the number of Q-factorial terminalizations of V/Γ equals the number of Q-factorial

terminalizations admitted by V/Γ0.

Thus, if Γ0 = {1}, then V/Γ is the unique Q-factorial terminalization of V/Γ. Let Y be the

formally universal Poisson deformation of the terminalization Y . Then Y is projective over its

affinization Yaff := Spec Γ(Y,O).

Corollary 1.6. Then there exists an isomorphism of Poisson H2(Y ;C)-schemes Yaff ' CM(Γ).

The birational geometry of Q-factorial terminalizations of V/Γ can also be used to deduce

results about the Calogero–Moser deformation. Namely, the following is a partial answer to

Question 9.8.4 by Bonnafé and Rouquier [BR13].

Corollary 1.7. LetD′ ⊂ c be the locus over which the fibres of the Calogero–Moser deformation

CM(Γ) are singular. Then D′ is either a finite union of hyperplanes, or the whole of c.

1.2 Outline of paper

In § 2 we give a proof of Theorem 1.3. Section 3 is devoted to the proof of Theorem 1.4. The

proof of Corollary 1.7 is given in § 3.8. Then our main result, Theorem 1.1, is proven in § 4.1.

Finally, we consider specific examples in §§ 4.2 and 4.3, where formula (1.B) of Proposition 1.2

is derived.

Remark 1.8. Throughout, the cohomology group H i(Y ;C) stands for the singular cohomology

of underlying reduced variety, equipped with the analytic topology.

2. Namikawa’s Weyl group

In this section we describe Namikawa’s Weyl group associated to V/Γ, thus confirming

Theorem 1.3.

2.1 The symplectic leaves in V/Γ are labelled by Γ-conjugacy classes of parabolic subgroups

of Γ. Let Γ be a parabolic subgroup. Then the leaf L labelled by Γ is the image under π : V → V/Γ

of the set {v ∈ V | Γv = Γ}. If (V/Γ)61 is the open subset consisting of the open symplectic leaf

and all leaves L of dimension dimV − 2, then we write Y61 := ρ−1((V/Γ)61). The open subset

Y61 is contained in the smooth locus of Y .

As in § 1.1, we fix B ∈ B, Γ′ the corresponding minimal parabolic in Γ etc. Let V0 denote

the complementary Γ′-module to V Γ′ in V ; V0 is a two-dimensional symplectic subspace. The

open subset of V Γ′ consisting of all points whose stabilizer under Γ equals Γ′ is denoted U .

The group Ξ(B) acts freely on U × V0/Γ
′, and the quotient map π induces a Galois covering

σ : U × V0/Γ
′
→ V/Γ onto its image, with Galois group Ξ(B).

We choose b ∈ U and set p = π(b). Then π({b} × V0) ' V0/Γ
′ is a closed subvariety of V/Γ.

Let YB = ρ−1(V0/Γ
′) in Y , so that YB ⊂ Y61 and ρ : YB → V0/Γ

′ is a minimal resolution of

singularities. Let F be the exceptional locus of this minimal resolution and Irr(F ) the set of

exceptional divisors. Recall that W (B) is the Weyl group associated to Γ′. Let ∆B ⊂ h∗B be a set

of simple roots. The set of isomorphism classes of non-trivial irreducible Γ′-modules is denoted

Irr(Γ′). By [GV83, Theorem 2.2(i)], the McKay correspondence is the pair of bijections

∆B
∼−→ Irr(Γ′)

∼−→ Irr(F ), α 7→ ρ(α) 7→ Dρ(α), (2.A)
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uniquely defined by the condition

(Dρ(α), Dρ(β)) = dim HomΓ′(V0 ⊗ ρ(α), ρ(β)) = −〈α, β〉, (2.B)

where (−,−) is the intersection pairing and 〈−,−〉 the Killing form. There is a natural

representation-theoretic action of Ξ(B) on the set Irr(Γ′). For λ ∈ Irr(Γ′) and x ∈ Ξ(B), we

have x · λ = xλ, where xλ is the Γ′-module, which as a vector space equals λ, with action

g · v = xgx−1v for all v ∈ λ. The identity (2.B) implies that the induced action of Ξ(B) on ∆B

is via Dynkin diagram automorphism.

2.2 The group Ξ(B) also acts naturally on H2(YB;C) as follows. Since the decomposition V =

V Γ′ ⊕ V0 is as Ξ̃(B)-modules, Ξ(B) acts on V0/Γ
′ ⊂ V/Γ′. There is a unique lift of this action

to the resolution YB, as can be seen from the explicit construction of YB as HilbΓ′(C2), the

dominant component of Γ′-Hilb(C2); see [Cra00]. Thus, there is an induced action of Ξ(B) on

H2(YB;C).

Recall that each divisor D ∈ Irr(F ) is a rational curve with self-intersection −2. For D ∈
Irr(F ), let LD denote the corresponding line bundle on YB such that LD|D ' OD(−1) and

LD|D′ = OD′ for D′ 6= D. The following is a well-known part of the McKay correspondence, but

we sketch a proof since we were unable to find a suitable reference.

Lemma 2.1. For L ∈ Pic(YB), let c1(L) denote its Chern character in H2(YB;C).

(i) The Chern characters c1(LD), for D ∈ Irr(F ), are a basis of H2(YB;C).

(ii) The induced isomorphism

h∗B
∼−→ H2(YB;C), α 7→ c1(LDρ(α)

)

is Ξ(B)-equivariant.

Proof. Both statements will be proven simultaneously. We have defined the action of Ξ(B) on

∆B such that the bijection ∆B
∼−→ Irr(Γ′) is equivariant. Since the action of Ξ(B) on V0/Γ

′

fixes the singular point, Ξ(B) acts on F , permuting its irreducible components. Thus, there is a

geometric action of Ξ(B) on Irr(F ). It follows from the beautiful interpretation of the bijection

Irr(Γ′)
∼−→ Irr(F ) given in [Cra00] that this bijection is Ξ(B)-equivariant; see also [BS13b, § 6.2].

Thus, it suffices to check that the Chern characters c1(LD), for D ∈ Irr(F ), are a basis of

H2(YB;C) such that x · c1(LD) = c1(Lx·D) for all x ∈ Ξ(B).

The action of Ξ(B) on YB commutes with the natural conic C×-action. Therefore, [Slo80,

Proposition 4.3.1] shows that the embedding F ↪→ YB induces, by restriction, a Ξ(B)-equivariant

isomorphism H2(YB,C)
∼−→ H2(F,C). Now, by the Mayer–Vietoris long exact sequence, the

embeddings D ↪→ F identify H2(F ;C) with
⊕

D∈Irr(F )H
2(D;C). Under the identification

H2(YB,C)
∼−→

⊕
D∈Irr(F )

H2(D;C)

the group Ξ(B) acts by permuting the (one-dimensional) summands of the right-hand side. On

the other hand, the image of c1(LD) in H2(D′;C) is either a basis element if D = D′, or zero if

D 6= D′, since c1(OP1) = 0 in H2(P1;C). The claims of the lemma follow. 2
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Define Z to be the fibre product

Z
σ′ //

��

Y

��
U × V0/Γ

′ σ // V/Γ

Since σ is étale, σ′ is also étale by base change. The following is based on [Kal99, Proposition
5.2].

Proposition 2.2. There is a Ξ(B)-equivariant isomorphism U × YB ∼−→ Z.

Proof. Set U0 = U × V0/Γ
′. Since σ is étale, and U0 ×V/Γ Y = U0 ×V/Γ Y61, the fibre product

Z is a smooth variety. Projective base change implies that it is projective over U0. If (V0/Γ
′)reg

is the smooth locus of V0/Γ
′ then U × (V0/Γ

′)reg is an open subset of V Γ′ × (V0/Γ
′)reg with

compliment of codimension at least two. Hence Pic(U × (V0/Γ
′)reg) ' Pic((V0/Γ

′)reg) is torsion.
Therefore, the proof of [Kal99, Lemma 5.1] implies that there is a sheaf of ideals E ⊂ OU0 and
an isomorphism

Z
∼−→ Bl(U0, E)

of varieties projective over U0, where Bl(U0, E) is the blow-up of U0 along E . Since the line bundle
on Z, ample relative to U0, used to embed Z in PNU0

is the pull-back of a line bundle on Y , ample
relative to V/Γ, the identification Z ' Bl(U0, E) is Ξ(B)-equivariant, i.e. E is Ξ(B)-stable. To
show that Bl(U0, E) ' U × YB, we follow the proof of [Kal99, Proposition 5.2]. Based on the
argument given there, it is clear that it suffices to show that all the vector fields tv on U0 coming
from the constant coefficient vector fields v ∈ V Γ′ admit lifts to Z.

The projective morphism ρ : Y61 → ρ(Y61) is semi-small since Y61 is a symplectic
manifold [Fu06, Theorem 3.2]. Therefore, since the map σ : U0 → V/Γ is finite onto its image,
the map Z → U0 is also semi-small. Moreover, by étale base change, the fact that the canonical
bundle on Y61 is trivial implies that the canonical bundle on Z is trivial too. Therefore, the
required lifting follows from [GK04, Lemma 5.3]. 2

Lemma 2.3. The fundamental group π1(L) of L equals Ξ.

Proof. The leaf L is the image under σ of U×{0} ⊂ U×V0/Γ
′. Thus, L ' U/Ξ. Since Ξ acts freely

on U , this implies that we have a short exact sequence 1 → π1(U) → π1(L) → Ξ → 1. Hence,
it suffices to show that π1(U) is trivial. The complement of U in V Γ′ is the union of subspaces
V Γ′ ∩ V Λ, where Λ is a parabolic subgroup of Γ such that V Γ′ ∩ V Λ is a proper subspace of
V Γ′ . We may assume that Γ′ ( Λ so that V Λ ( V Γ′ . But V Λ is a symplectic subspace of V .
Thus, dimV Λ < dimV Γ′ − 1. Hence, the compliment of U in V Γ′ has codimension at least two,
implying that π1(U) is trivial. 2

If (V/Γ)0 is the open leaf in V/Γ, then we denote by Y0 the preimage of (V/Γ)0 under ρ. The
map ρ is an isomorphism over Y0.

Lemma 2.4. For 0 < i < 4, the cohomology groups H i(U ;C) and H i(Y0;C) are zero.

Proof. As shown in the proof of Lemma 2.3, the compliment C to U in V Γ′ has complex
codimension at least two. Therefore,

HBM
j (C;C) = H2 dimC V

Γ′−i(V Γ′
R , V Γ′

R r C;C) = 0, ∀j > 2 dimCC,
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where BM indicates Borel–Moore homology. This implies that H i(V Γ′
R , V Γ′

R rC;C) = 0 for i < 4.
Since H i(V Γ′

R ;C) = 0 for i > 0, the first claim follows from the long exact sequence in relative
cohomology. For the second claim, we note first that if Vreg is the open subset of V on which Γ

acts freely, then ρ restricts to an isomorphism Y0
∼−→ π(Vreg). On Vreg, the map π is a covering with

Galois group Γ. Therefore, by [Hat02, Proposition 3.G.1], it suffices to show that H i(Vreg;C) = 0
for 0 < i < 4. Again, this follows from the fact that the compliment to Vreg in V has complex
codimension at least two. 2

Lemma 2.5. Fix a Q-factorial terminalization ρ : Y → V/Γ. Then H2(Y61;R) = H2(Y ;R).

Proof. Let Y o denote the smooth locus of Y and Xo its image under ρ. Since Y has terminal
singularities, the compliment of Y o in Y has codimension at least four [Nam01]. Then [Fu06,
Theorem 3.2] says that ρ restricted to Y o is a semi-small map. Therefore Y rY61 has codimension
at least four in Y . The lemma follows from the argument given in the proof of Lemma 2.4
above. 2

Proposition 2.6. The restriction maps H2(Y ;C) → H2(YB;C) induce an isomorphism

H2(Y ;C)
∼−→
⊕
B∈B

H2(YB;C)Ξ(B).

Proof. By Lemma 2.5, it suffices to show that the restriction maps H2(Y61;C) → H2(YB;C)
induce an isomorphism

H2(Y61;C)
∼−→
⊕
B∈B

H2(YB;C)Ξ(B).

Let Y (B)⊂ Y be the open set ρ−1(σ(U×V0/Γ
′)). Then for B 6= B′ in B, we have Y (B) ∩ Y (B′) =

Y0 and Y61 =
⋃
B Y (B). We claim that restriction defines an isomorphism

H2(Y61;C)
∼−→
⊕
B∈B

H2(Y (B);C).

This follows from the Mayer–Vietoris sequence by induction on |B|, using the fact that
H i(Y0;C) = 0 for 0 < i < 4 by Lemma 2.4. Therefore, we are reduced to showing that restriction
H2(Y (B);C) → H2(YB;C) is injective with image H2(YB;C)Ξ(B).

Recall that we identified YB with a closed subset of Y by first fixing b ∈ U and identifying

V0/Γ
′ with σ({b}×V0/Γ

′) in V/Γ. Therefore, the closed embedding YB ↪→ Y factors as YB
j

→ Z
σ
→

Y , where j is the closed embedding u 7→ (b, u) in Z ' U×YB of Proposition 2.2. Then Lemma 2.4
and the Künneth formula imply that j induces an identification H2(Z;C) = H2(YB;C).

The image of Z in Y under the natural map σ′ : Z → Y equals Y (B). Recall that this map is
just the quotient map for the free action of Ξ(B) on Z. Therefore, by [Hat02, Proposition 3.G.1],

pull-back along σ′ is injective with image H2(Z;C)Ξ(B) = H2(YB;C)Ξ(B). 2

Theorem 1.3 is now a direct consequence of Proposition 2.6 and Namikawa’s proof of [Nam10,
Theorem 1.1]. In particular, the identification W '∏B∈BWB follows from [Nam10, Lemma 1.2].

Remark 2.7. Let L be the leaf in V/Γ labelled by B ∈ B. The restriction of ρ to ρ−1(L) is (in
the analytic topology) a fibre bundle with fibre F . Therefore, by Lemma 2.3, the action of Ξ(B)
on H2(YB;C) ' H2(F ;C) is the monodromy action of π1(L) = Ξ(B).
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3. Calogero–Moser deformations

Our approach to the proof of Theorem 1.4 will be by analogy with the proof of [Nam10, Theorem
1.1]. As above, we fix a Q-factorial terminalization ρ : Y → V/Γ.

3.1 Formally universal Poisson deformations
Recall from Lemma 2.5 that the cohomology group H2(Y61;C) equals H2(Y ;C). By [Nam11,
Theorem 5.5] and [Nam11, Theorem 1.1], there are flat Poisson deformations ν : X →

H2(Y ;C)/W and ν : Y → H2(Y ;C), of V/Γ and Y respectively, such that the diagram

Y //

ν

��

X
ν

��
H2(Y ;C) // H2(Y ;C)/W

(3.A)

is commutative. Moreover, the natural conic action of the torus C× on V/Γ lifts to the flat families
X → H2(Y ;C)/W and Y → H2(Y ;C) in such a way that λ · h = λ2h for all h ∈ H2(Y ;C)∗ ⊂
C[H2(Y ;C)] and λ ∈ C×. The maps in (3.A) are equivariant for this action.

The flat Poisson deformation X →H2(Y ;C)/W is universal in the following sense. If X ′ → T
is a flat Poisson deformation of V/Γ over a local Artinian C-scheme, then there exists a unique
morphism T → H2(Y ;C)/W such that X ′ ' X ×H2(Y ;C)/W T as Poisson schemes over T . Notice

that the map T → H2(Y ;C)/W necessarily factors through the completion of H2(Y ;C)/W at
zero. Thus, X → H2(Y ;C)/W is said to be the formally universal Poisson deformation of V/Γ.
Similarly, the deformation Y → H2(Y ;C) of Y is formally universal.

As written, formally universal Poisson deformations of V/Γ are clearly not unique, since
the definition only involves the completion of the base of the deformation at the special fibre.
However, the torus C× acts naturally on the ring of functions on this formal neighbourhood
of the special fibre (see [Nam11, § 5.4]), and H2(Y ;C)/W is unique in the sense that it is the
globalization, as explained in § 3.3 below, of the formal neighbourhood.

3.2 Symplectic reflection algebras
The set of symplectic reflections S in Γ is the set of all elements s such that rkV (1− s) = 2. Let
S1, . . . , Sr be the Γ-conjugacy classes in S and c1, . . . , cr the characteristic functions on S such
that ci(s) = 1 if s ∈ Si, and zero otherwise. The linear span of c1, . . . , cr is denoted c. Since we
do not require the explicit definition of the symplectic reflection algebras H(Γ), and will only
use results from [Los12a] about them, we refer the reader to [Los12a] for their definition. Recall
that Γ′B is a representative in the conjugacy class B of minimal parabolic subgroups of Γ.

Lemma 3.1. The natural map ζ :
⊔
B∈B(Γ′B r {1})/Ξ̃(B) −→ S/Γ is a bijection.

Let cB be the subspace of c spanned by all ci such that Si ∩ Γ′B 6= ∅. Lemma 3.1 implies
that c =

⊕
B∈B cB. Choose B ∈ B. Via the McKay correspondence (2.A), an element h ∈ h∗B

can be considered as a linear combination of the non-trivial characters of Γ′B. In other words,

it is a class function on Γ′B. Hence an element of aB = (h∗B)Ξ(B) is a Ξ̃(B)-equivariant function

Γ′B → C, where Ξ̃(B) acts trivially on C. Thus, we may define an isomorphism

$ : c =
⊕
B∈B

cB
∼−→
⊕
B∈B

aB, cB 3 c 7→ (g 7→ c(ζ(g))). (3.B)

As explained in § 1.1, the spherical subalgebra eH(Γ)e is a commutative C[c]-subalgebra,
equipped with a natural Poisson structure, such that the flat family ϑ : CM(Γ) → c is a Poisson
deformation of V/Γ.
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3.3 Globalization
Suppose we have two conic affine varieties X and Y , i.e. C[X] and C[Y ] are positively graded
algebras with degree-zero part equal to C, and an equivariant morphism γ : X → Y . Let X∧ and
Y ∧ denote the completions of X and Y respectively at the C×-fixed point. As shown in [Nam08,
Lemma (A.2)], C[X] is the ring of C×-locally finite (= rational) vectors in C[X∧]. We say that
γ is the globalization of γ̂ : X∧ → Y ∧ if, under the identification of C[X] with rational vectors
in C[X∧] and similarly for C[Y ] ⊂ C[Y ∧], γ is just the restriction of γ̂; see [Nam08, Appendix].

If X∧ is the completion of X along the closed subvariety V/Γ and (H2(Y ;C)/W )∧ the
completion of H2(Y ;C)/W at o, then ν is the globalization of the induced map of formal schemes
X∧ → (H2(Y ;C)/W )∧. The latter is the universal Poisson deformation of V/Γ in the category
of pro-Artinian local C-algebras. The analogous statement holds for Y → H2(Y ;C); see [Nam11,
§ 5].

The Calogero–Moser deformation ϑ : CM(Γ) → c of V/Γ is also C×-equivariant, where C×
acts on c∗ ⊂ C[c] by λ · c = λ2c. This is a consequence of the fact that the symplectic reflection
algebra H(Γ) is naturally N-graded, such that c∗ ⊂ H(Γ) has degree two, V ∗ has degree one
and Γ sits in degree zero. Moreover, if H(Γ)∧ is the completion of H(Γ) along the two-sided
ideal generated by c∗, then one can identify H(Γ) with the subalgebra of H(Γ)∧ of rational
vectors. This implies that CM(Γ) → c is the globalization of CM(Γ)∧ → ĉ, where CM(Γ)∧ is the
completion of CM(Γ) along V/Γ and ĉ the completion of c at zero. Hence, there exists a unique
C×-equivariant morphism α̂ : ĉ → (H2(Y ;C)/W )∧ such that CM(Γ)∧ ' ĉ ×(H2(Y ;C)/W )∧ X∧.
This implies the following lemma.

Lemma 3.2. There exists a unique C×-equivariant map α : c → H2(Y ;C)/W such that

CM(Γ) ' c×H2(Y ;C)/W X .

On the other hand, the linear isomorphism (3.B) together with the quotient map H2(Y ;C) →

H2(Y ;C)/W defines a map β : c → H2(Y ;C)/W which is clearly also the globalization of
β̂ : ĉ → (H2(Y ;C)/W )∧. Theorem 1.4 is claiming that α = β. It suffices instead to show that

α̂ = β̂ : ĉ → (H2(Y ;C)/W )∧.

This will be our goal for the remainder of the section.

3.4 Kleinian singularities
In this section we consider the case dimV = 2, and hence Γ is a Kleinian group. As noted in § 1.1,
associated to Γ via the McKay correspondence is a Weyl group (W, h). Let Y be the minimal
resolution of V/Γ. As in Lemma 2.1, we have a natural identification h∗ → H2(Y ;C). Therefore,
the formally universal Poisson deformation is a flat family X → h∗/W .

Fix a finite group Γ ⊂ Ξ̃ ⊂NSL(2,C)(Γ). Lemma 2.1 implies that the quotient Ξ := Ξ̃/Γ acts on
h∗ via Dynkin diagram automorphisms. In this case, c is the space of all Γ-equivariant functions
Γr {1}→ C, the action of Γ on C being trivial. The group Ξ acts on c by (x ·χ)(s) = χ(x̃sx̃−1),

where x̃ is some lift of x to Ξ̃. This action extends uniquely to an action of Ξ̃ on H(Γ) by
algebra automorphisms such that the restriction of this action to Γ is just conjugation. The
action preserves the spherical subalgebra eH(Γ)e, the action of Ξ̃ on this subalgebra factoring
through Ξ. Thus, Ξ acts on CM(Γ) such that the map CM(Γ) → c is equivariant. Since the action
of Ξ on eH(Γ)e can be extended to the case where t = 1 (or more generally a formal variable t), Ξ
acts on CM(Γ) via Poisson automorphisms. Recall that we have defined in (3.B) an isomorphism
$ : c

∼−→ h∗; this is an Ξ-equivariant isomorphism, where Ξ acts on h∗ as defined in § 2.1.
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Lemma 3.3. The map $ extends to a C×-equivariant isomorphism CM(Γ) ' c×h∗/W X .

Proof. Let g be the simple Lie algebra associated to Γ under the McKay correspondence. It is
well known (e.g. [Nam11, Proposition 3.1(1)]) that a Slodowy slice S → h∗/W to the subregular
nilpotent orbit in g is the formally universal Poisson deformation of the Kleinian singularity V/Γ.
Let S̃ → h∗ be the resolution of the formally universal deformation S → h∗/W of V/Γ coming
from taking the preimage of S in Grothendieck’s simultaneous resolution of g∗. By [LNS12,
Proposition 6.2], S̃ → h∗ is the formally universal Poisson deformation of the minimal resolution
of V/Γ.

It is implied by [Los12b, Theorems 6.2.2 and 5.3.1] that there is an isomorphism CM(Γ)
∼−→

S̃aff such that the diagram

CM(Γ)
∼ //

��

S̃aff

��
c

$ // h∗

commutes. This implies the statement of the lemma. 2

3.5 Factorization of the Calogero–Moser space
Fix B ∈ B, Γ′ the corresponding minimal parabolic subgroup and L the symplectic leaf in V/Γ
labelled by B. Let d ' h∗B be the base of the Calogero–Moser deformation of Γ′ so that H(Γ′) is
a C[d]-algebra. For clarity, we write Hd(Γ

′) := H(Γ′) to show the dependence on d. As explained
in § 3.2, the space cB = dΞ(B) is a subspace, and projection followed by inclusion defines a linear
map c → d. Let Hc(Γ

′) := C[c] ⊗C[d] Hd(Γ
′) denote the symplectic reflection algebra obtained

from H(Γ′) by base change from d to c. Choose p ∈ L ⊂ V/Γ. We may think of p as a Γ-orbit in
V . If Ip is the ideal of functions in C[V ] vanishing on this orbit, then IpoΓ is a two-sided ideal in
C[V ]oΓ. Recall that C[V ]oΓ is the quotient of H(Γ) by the ideal generated by C[c]+. Following
Losev, we denote by H(Γ)∧p the completion of H(Γ) by the preimage of the Ip o Γ under the
quotient map. Since the preimage of Ip o Γ in H(Γ) contains C[c]+, the completion H(Γ)∧p is a
topological C[[c]]-algebra. Similarly, Hc(Γ

′)∧0 is the completion of Hc(Γ
′) corresponding to the

ideal C[V0]+ o Γ′ of C[V0] o Γ′. The key result [Los12a, Theorem 2.5.3] is as follows.

Theorem 3.4. There is an isomorphism

θ∗ : H(Γ)∧p → Mat|Γ/Γ′|(Hc(Γ
′)∧0 ⊗̂C[V Γ′ ])

of topological C[[c]]-algebras.

Let e and e′ denote the trivial idempotents in the group algebras of Γ and Γ′ respectively,
so that CMc(Γ

′) = Spec e′Hc(Γ
′)e′ is a Poisson variety over c. Applying the idempotent e

to both sides of the isomorphism θ∗ of Theorem 3.4 gives an isomorphism e(H(Γ)∧p)e →

e′(Hc(Γ
′)∧0)e′ ⊗̂C[V Γ′ ]; see [Los12a, § 2.3]. The isomorphism θ∗ of Theorem 3.4 is actually

valid for any t. This implies that the isomorphism e(H(Γ)∧p)e → e′(Hc(Γ
′)∧0)e′ ⊗̂C[V Γ′ ] is

an isomorphism of Poisson algebras.

Corollary 3.5. There is an isomorphism of formal Poisson schemes

θ : CM(Γ)∧p → CMc(Γ
′)∧0 × V Γ′

over ĉ.
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3.6 Recall that Lemma 3.2 says that there is a C×-equivariant morphism α : c → H2(Y ;C)/W
such that CM(Γ) ' c ×H2(Y ;C)/W X . Completing at 0 ∈ c and o ∈ H2(Y,C)/W , we have a
Cartesian square

CM(Γ)∧ //

��

X∧

��
ĉ

α̂ // (H2(Y ;C)/W )∧

such that α is the algebraization of α̂. Here CM(Γ)∧ and X∧ are the completions of CM(Γ) and X
respectively along the special fibre V/Γ. Choose some B ∈ B and consider Γ′ := ΓB, LB etc. Fix
p ∈ LB. Completing CM(Γ)∧ at p, the above diagram becomes the following Cartesian square.

CM(Γ)∧p //

��

X∧p

��
ĉ

α̂ // (H2(Y ;C)/W )∧

(3.C)

Recall that Theorem 1.3 says that H2(Y ;C)/W is isomorphic to
∏
B∈B cB/WB. The

projection map H2(Y ;C)/W → cB/WB followed by the canonical morphism cB/WB →

h∗B/W (B) is denoted rB, and its completion at 0 is r̂B. Let X0(Γ′) denote the formally universal
Poisson deformation of V0/Γ

′. The completion of X0(Γ′) at o ∈ V0/Γ
′ ⊂ X0(Γ′) is denoted

X0(Γ′)∧0.

Lemma 3.6. Let p ∈ LB and X∧p be the completion of X at p. Then the commutative diagram

X∧p //

��

X0(Γ′)∧0 × (V Γ′)∧0

��
(H2(Y ;C)/W )∧

r̂B // (h∗B/W (B))∧

(3.D)

is Cartesian.

Proof. The analytic germ of 0 in H2(Y,C)/W (respectively, in h∗B/W (B)) is denoted PDef(V/Γ)
(respectively, PDef(V/Γ′)). They are the Poisson Kuranishi spaces of the corresponding analytic
symplectic varieties. Passing to the analytic topology, the formally universal deformation X →

H2(Y ;C)/W induces a flat Poisson deformation X an
→ (H2(Y ;C)/W )an. Restricting to the

germ of o in H2(Y ;C)/W , we have a flat Poisson deformation X an
→ PDef(V/Γ).

Passing to the germ of p ∈ (V/Γ)an ⊂ X an gives a flat family (X an, p) → PDef(V/Γ). This
is a deformation of ((V/Γ)an, p). By the generalized Darboux theorem [Nam11, Lemma 1.3], we
have an isomorphism of symplectic varieties

((V/Γ)an, p) ' ((V0/Γ
′ × V Γ′)an, 0).

Moreover, by [Nam11, Proposition 3.1], the universal Poisson deformation of ((V0/Γ
′)an, 0) ×

((V Γ′)an, 0) is ((X0(Γ′)× V Γ′)an, 0) → PDef(V0/Γ
′). Hence there exists a holomorphic map φB :

PDef(V/Γ) → PDef(V0/Γ
′) such that the following diagram is Cartesian.

(X an, p) //

��

((X0(Γ′)× V Γ′)an, 0)

��
PDef(V/Γ)

φB // PDef(V0/Γ
′)
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The map φB is precisely the map constructed in the proof of [Nam10, Theorem 1.1, § 4(i)]. As

explained in the proof of [Nam10, Theorem 1.1, § 4], the completion of φB equals r̂B. Passing to

the formal neighbourhood of p in (X an, p) and 0 in ((X0(Γ′) × V Γ′)an, 0), we get the Cartesian

square stated in the lemma. 2

3.7 The proof of Theorem 1.4

By Corollary 3.5, we have an isomorphism of Poisson varieties CM(Γ)∧p ' CMc(Γ
′)∧0 × V Γ′

over ĉ. Under the identification (3.B), we have a natural decomposition c =
⊕

B∈B cB. Therefore,

if we write qB for projection from c onto cB, the square

CMc(Γ
′)∧0 × V Γ′

��

CM(Γ)∧poo

��
ĉB ĉ

q̂Boo

(3.E)

is also (trivially) Cartesian. Recall from § 3.5 that d is the natural parameter space associated

to the symplectic reflection algebra Hd(Γ
′) and cB = dΞ(B). Let αB be the composite cB ↪→ d

∼−→
h∗B → h∗B/W (B) and α̂B will be its completion at zero. Lemma 3.3 implies that the following

diagram is Cartesian.

X0(Γ′)∧0 × V Γ′

��

CMc(Γ
′)∧0 × V Γ′oo

��
(hB/W (B))∧ ĉB

α̂Boo

(3.F)

The composite of the two bottom horizontal arrows is denoted α̂B. By Lemma 3.3, α̂B = β̂B.

Combining diagrams (3.C), (3.D), (3.E) and (3.F), we get the following diagram, where each

square is Cartesian.

X0(Γ′)∧ × V Γ′

��

CMc(Γ
′)∧0 × V Γ′oo

��

CM(Γ)∧poo

��

// X∧p //

��

X0(Γ′)∧0 × V Γ′

��
(hB/W (B))∧ ĉB

α̂Boo ĉ
q̂Boo α̂ // (H2(Y,C)/W )∧

r̂B // (h∗B/W (B))∧

The universality of the formal Poisson deformation X0(Γ′)∧ × V Γ′
→ (h∗B/W (B))∧ of V/Γ′ =

V0/Γ
′ × V Γ′ implies that α̂B ◦ q̂B = p̂B ◦ α̂; cf. [GK04, § 1.3]. Hence,⊕

B∈B
α̂B ◦ q̂B =

⊕
B∈B

r̂B ◦ α̂ = α̂

since
⊕

B∈B r̂B = id. On the other hand, it is clear from the explicit definition of β̂ that β̂ =⊕
B∈B α̂B ◦ q̂B. This completes the proof of Theorem 1.4.

3.8 We turn to the proof of Corollary 1.7. If the quotient V/Γ admits a smooth projective,

symplectic resolution then, by Theorem 1.4 and the main theorem of [Nam15], the set of points

in c for which CMc(Γ) is singular is a union of hyperplanes. If V/Γ does not admit a symplectic

resolution then, by [GK04, Corollary 1.21], the space CMc(Γ) is always singular.
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4. Counting resolutions

In this section we deduce Theorem 1.1 from Theorem 1.4, using the main theorem from [Nam15].

4.1 We recall the main result from [Nam15]. As explained there, the birational geometry of Y
is controlled by the real space H2(Y ;R). In particular, a key role is played by the movable cone
Mov(ρ) ⊂ H2(Y ;R) of ρ : Y → V/Γ; see [Nam15] for the definition. The ample cone of ρ in
H2(Y ;C) is denoted Amp(ρ). By Theorem 1.4, we have a projective morphism Y → CM(Γ) over
c ' H2(Y ;C). As explained in [Nam15], the set D ⊂ c defined in the introduction corresponds
to the closed subset D′ ⊂ H2(Y ;C) consisting of all points t such that the fibre Yt := ν−1(t) is
not affine.

Theorem 4.1 (Main theorem, [Nam15]). (i) There are finitely many hyperplanes {Hi}i∈I in
H2(Y ;Q) such that D′ = ⋃i∈I(Hi)C.

(ii) There are only finitely many Q-factorial terminalizations {ρk : Yk → V/Γ}k∈K of V/Γ.

(iii) The set of open chambers determined by the real hyperplanes {(Hi)R}i∈I coincides with
the set {w(Amp(ρk))}, where w ∈W and k ∈ K.

For a topological space X, we abuse notation and let π0(X) denote the number of connected
components of X. Let Mov(ρ)◦ = Mov(ρ) r

⋃
i∈I(Hi)R. By Theorem 4.1(3) and [Nam15,

Lemma 6], Mov(ρ)◦ equals
⊔
k∈K Amp(ρk). Hence, the number |K| of pairwise non-isomorphic

Q-factorial terminalizations of V/Γ equals π0(Mov(ρ)◦). [BPW12, Proposition 2.19] implies that

H2(Y ;R) r
⋃
i∈I

(Hi)R =
⊔
w∈W

w(Mov(ρ)◦).

Thus,

π0

(
H2(Y ;R) r

⋃
i

Hi

)
= |W | · |K|. (4.A)

Zaslavsky’s theorem [OT92, Theorem 2.68] says that the number of connected components of
the complement H2(Y ;R) r

⋃
i(Hi)R to the real hyperplane arrangement

⋃
i(Hi)R equals the

dimension of the cohomology ring of the complement H2(Y ;C) rD′ to the complexification D′
of the real hyperplane arrangement. As explained above, Theorems 1.4 and 4.1(1) imply that
H2(Y ;C) rD′ ' crD. Hence,

π0

(
H2(Y ;R) r

⋃
i

Hi

)
= dimCH

∗(crD;C). (4.B)

Thus, the claim of Theorem 1.1 follows from equations (4.A) and (4.B).

4.2 The wreath product Sn oG
In this section we deduce Proposition 1.2 from Theorem 1.1. The proposition is trivially true
for n = 1 due the uniqueness of minimal resolutions. Therefore we assume that n > 1. In this
case, the Namikawa Weyl group W of V/Γ equals Z2 ×WG. Let h be the Cartan algebra on
which WG acts. By [Mar08, Theorem 1.4], there is an isomorphism of vector spaces c ' C × h,
lifting to an identification of CM(Γ) with a certain moduli space of representations of a deformed
preprojective algebra; see [Mar08] for details. The proof of [Gor08, Lemmas 4.3 and 4.4] shows
that the set D over which the fibres CMc(Γ) are singular is the union of hyperplanes in C × h
given by

Hλ,m := {(α, x) ∈ C× h | λ(x) +mα = 0} and α = 0,
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where λ ∈ R, the root system of the Weyl group WG, and 1 − n 6 m 6 n − 1. In the language
of [OT92, ch. 1], this hyperplane arrangement is the cone over the affine hyperplane arrangement

A = {Hλ,m = {x ∈ h | λ(x) +m = 0} | λ ∈ R, 1− n 6 m 6 n− 1}.
Therefore [OT92, Proposition 2.51] implies that

dimCH
∗(crD;C) = 2 dimCH

∗
(
hr

⋃
H∈A

H;C
)
.

Since |W | = 2|WG|, the result follows from the above equality, together with equation (1) [Ath04,
Theorem 1.2] and the fact that |WG| =

∏`
i=1(ei + 1).

4.3 Exceptional groups
Other than the infinite series Sn o G, there are only two exceptional groups that are known to
admit symplectic resolutions. These are Q8 ×Z2 D8 and G4, and their explicit descriptions as
subgroups of Sp(C4) can be found in [BS13a] and [Bel09], respectively.

First we consider the group Q8 ×Z2 D8. As shown in [BS13a], we have c = C{c1, . . . , c5}
and B consists of five elements B1, . . . , B5. Each minimal parabolic ΓBi is isomorphic to Z2

and the corresponding quotients Ξ(B) are always trivial. Thus, WBi = S2 for all i, and if ai is
the generator of WBi then ai · cj = (−1)δijcj . There are 21 hyperplanes in c given by the 16
of the form c1 ± c2 ± c3 ± c4 ± c5 = 0 and the five of the form ci = 0. Using1 the computer
algebra program MAGMA [BCP97], it is possible to calculate that the Poincaré polynomial of
the Orlik–Solomon algebra equals 1 + 21t+ 170t2 + 650t3 + 1125t4 + 625t5. This implies that the
quotient V/Γ admits 81 distinct symplectic resolutions.

For the group G4, the proof of [BM13, Theorem 1.4] shows that D = H1 ∪H2 ∪H3, where

H1 = {c1 + c2 = 0}, H2 = {ωc1 + ω2c2 = 0}, H3 = {ω2c1 + ωc2 = 0},
with ω a primitive third root of unity. Since dimHi ∩ Hj = 0 for i 6= j, the only dependent
subset of {H1, H2, H3} is {H1, H2, H3} itself. Therefore, [OT92, Definition 3.5] says that the
Orlik–Solomon algebra associated to the arrangement D is the quotient of the exterior algebra
∧ q

(x1, x2, x3) by the two-sided ideal generated by

∂(x1 ∧ x2 ∧ x3) = x2 ∧ x3 − x1 ∧ x3 + x1 ∧ x2.

Hence, the Orlik–Solomon theorem [OT92, Theorem 5.90] says that

H
q
(crD,C) ' ∧ q

(x1, x2, x3)

〈x2 ∧ x3 − x1 ∧ x3 + x1 ∧ x2〉
.

The Orlik–Solomon algebra has basis {1, x1, x2, x3, x1 ∧ x3, x1 ∧ x2}; this can be seen directly,
or by applying [OT92, Theorem 3.43]. The Weyl group for G4 is Z3. Hence Theorem 1.1 implies
that there are two non-isomorphic symplectic resolutions of C4/G4. This implies that the two
symplectic resolutions constructed in [LS10] exhaust all symplectic resolutions.
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