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Abstract
The present study was conducted to determine the effects of dietary terrestrial oils (TO) supplemented with L-carnitine on growth performance,
biochemical and antioxidant response, lipidmetabolism and inflammation in large yellow croaker (Larimichthys crocea). Three iso-nitrogenous
and iso-lipidic experimental diets were formulatedwith FO (fish oil, the control group), 75 % TO (75 % FOwas substituted by the oil mixturewith
equal amounts of soyabean oil, linseed oil and pork lard) and 75 %TOC (75 %TO supplementedwith 800mg/kg L-carnitine). Comparedwith the
control group, feed efficiency ratio and specific growth rate were significantly increased in fish fed diets with 75 % TO and 75 % TOC. Hepatic
lipid content, serum TAG level, LDL-cholesterol level and the mRNA expression of pro-inflammatory genes (tnfα and ifnγ) were significantly
increased in fish fed the diet with 75 % TO comparedwith the control group. However, the supplementation of 800 mg/kg L-carnitine in the 75 %
TO diet repressed hepatic lipid content, serum LDL-cholesterol level and themRNA expression of tnfα and ifnγ in fish comparedwith fish fed the
diet with 75 % TO. Total antioxidant capacity, the activity of superoxide dismutase, the mRNA expression of cpt-I and the activity of CPT-I were
significantly increased in fish fed the diet with 75 % TOC compared with 75 % TO. In conclusion, these results suggested that the supplemen-
tation of 800mg/kg L-carnitine in the diet with TOmixture could increase growth, antioxidant capacity and fatty acid oxidation and decrease the
expression of inflammatory genes in large yellow croaker.
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The rapidly developing aquaculture industry is accompanied
by a growing demand for fish oil (FO)(1). Due to the high
price and limited supply of FO, terrestrial oils (TO), whichmainly
consist of vegetable oil and animal fat, are commonly used to
replace FO in aquafeed industry(2). Many studies have demon-
strated that TO can partially replace FO without significantly
decreasing growth performance or feed utilisation of European
sea bass (Dicentrarchus labrax L.)(3), gilt-head sea bream (Sparus
aurata)(4), Atlantic salmon (Salmo salar)(5), turbot (Scophthalmus
maximus L.)(6) and silvery-black porgy (Sparidentex hasta)(7).
However, the decrease in growth and non-specific immunity has
also been repeatedly reported in fish when dietary FO is excessively
replaced by TO, probably due to the unbalanced dietary fatty acid
profile(8,9).

All fish species have an essential demand of both n-3 and n-6
PUFA(10). Generally, freshwater and diadromous fish species
require linoleic acid (LNA) and α-linolenic acid (ALA), whereas
marine fish species strictly require long-chain PUFA (LC-PUFA),
such as EPA, DHA and arachidonic acid(11,12). Furthermore, an
appropriate ratio of n-3:n-6 PUFA is important for the growth
and health performance of Malabar grouper (Epinephelus mala-
baricus)(13), salmon(14,15) and yellow catfish (Pelteobagrus fulvi-
draco)(16). In addition to the need for PUFA, fish also need an
appropriate amount of SFA and MUFA, which are good dietary
energy sources for fish(2,17). Animal fat contains a high percent-
age of SFA and MUFA, and it is a cheap alternative lipid resource
for aquafeed industry(18). However, few studies have investi-
gated the effects of a relatively appropriate dietary fatty acid
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profile on growth performance, metabolism and health of fish
when dietary FO is replaced by a high level of TO.

Large yellow croaker (Larimichthys crocea) is an economi-
cally important fish in China. When dietary FO is excessively
replaced by TO, inflammatory response and abnormal lipid
deposition in large yellow croaker often cause huge economic
losses(19,20). Progress is urgently needed to find effective addi-
tives to reduce inflammation and abnormal lipid deposition in
fish fed the diet with a high level of TO. L-Carnitine plays a crucial
role in shuttling long-chain fatty acids into mitochondria(21) and
reduces abnormal lipid deposition(22,23). L-Carnitine can also
increase the immunocompetence of several fish species to better
cope with biotic and abiotic stresses(24–26). However, few studies
have elucidated the effects of a high level of dietary TO supple-
mented with L-carnitine on fish. Therefore, the purpose of this
study was to determine the effects of a high level of dietary
TO supplemented with L-carnitine on growth, lipid deposition
and inflammation of large yellow croaker for the wide usage
of TO in aquafeed industry.

Methods

Animal ethics

The protocols for animal care and handling were conducted in
strict accordance with the Management Rule of Laboratory
Animals (Chinese order no. 676 of the State Council, revised 1
March 2017). The present study was approved by the
Institutional Animal Care and Use Committee of the Ocean
University of China.

Diets formulation

Three iso-nitrogenous (42 % crude protein) and iso-lipidic (12 %
crude lipid) experimental diets were formulated, which included
FO (the control group), 75 % TO (75 % FO was substituted by
TO, dietary lipid source consisted of equal amounts of FO,
soyabean oil, linseed oil and pork lard) and 75 % TOC (75 %
TO supplementedwith 800mg/kg L-carnitine). 75 % FOwas sub-
stituted by TO to preserve an appropriate fatty acid profile in the
75 % TO diet. The addition of L-carnitine was based on Sang’s(27)

study. Ingredients were purchased from Qingdao Great Seven
Biotechnology Co. Ltd. Each diet was supplemented with vita-
min and mineral premixes, an attractant mixture and a mold
inhibitor. Procedures for making diets and storage of experimen-
tal diets were in accordance with the protocol described by Ai
et al.(28). Ingredients of the three experimental diets (Table 1)
and fatty acid profile of oil sources and diets (Table 2) were given
in detail.

Fish and experimental procedures

Large yellow croaker juveniles were obtained from Ningde
Fufa Fishery Co. Ltd. Before the formal experiment, experimental
fishwere hand-fed twice daily (05.30 and 17.30 hours) to acclima-
tise the fish to the diet and environment for 2 weeks. Fish of dis-
ease-free and homogenous sizes (initial body weight 15·84 (SEM
0·12) g) were fasted for 24 h. Then, 720 fish were randomly allo-
cated to twelve floating net cages (1·0m× 1·0m× 2·0m).

Fish were hand-fed to apparent satiation, twice daily for 70 d.
Each diet was randomly allocated to four replicate cages (sixty fish
per cage). During the rearing period, the dissolved oxygen con-
tent was approximately 7·0mg/l. Salinity ranged from 25·0 to
32·0 g/l and water temperature from 21·5 to 31·0°C.

Sample collection and analysis of growth data

At the termination of the experiment, fish were starved for 24 h
and anaesthetised with MS222 (1:10 000; Sigma). Then, the num-
ber and weight of fish were determined for analyses of survival
rate and final body weight. The wet weight of the liver, visceral
and body and the length of six fish per cage were determined for
analyses of morphometric parameters. The muscle and liver
samples of the above six fish per cage were collected into
5 ml centrifuge tubes and stored at –80°C for compositional
and fatty acid profile analyses. Blood samples of six fish per cage
were collected from the caudal vein with a 1ml syringe and clot-
ted at room temperature to obtain serum samples for biochemi-
cal analyses. Liver samples were collected from twelve fish per
cage, which contained six fish after serum collection. Samples
were immediately frozen in liquid N2 and stored at –80°C for
analyses of antioxidant capacity, enzyme activity and gene
expression.

Proximate composition and fatty acid profile analyses

DM was analysed by drying whole fish samples to a constant
weight at 105°C. Crude protein and crude lipid contents of ingre-
dients, diets and fish bodies were measured in accordance with
the standard methods of the Association of Official Analytical
Chemists (AOAC, 1995)(30). Fish tissue and diet samples were
freeze-dried in a lyophilised chamber (Alpha 1-4 LDplus;

Table 1. Formulation and chemical proximate analysis of the experimental
diets (% dry weight)

Ingredients

Experimental diets

FO 75% TO 75% TOC

White fishmeal 35 35 35
Soyabean meal 28 28 28
Wheat meal 23·8 23·8 23·72
Soyabean lecithin 1·5 1·5 1·5
Vitamin premix 2 2 2
Mineral premix* 2 2 2
Attractant mixture† 0·1 0·1 0·1
Mold inhibitor‡ 0·1 0·1 0·1
Fish oil 7·5 1·875 1·875
Soyabean oil 0 1·875 1·875
Linseed oil 0 1·875 1·875
Pork lard 0 1·875 1·875
L-Carnitine 0 0 0·08
Total 100 100 100
Proximate analysis (DM %, mean values)
Crude protein 42·29 42·49 42·07
Crude lipid 12·23 12·34 11·98

FO, fish oil; 75% TO, 75% fish oil substituted by terrestrial oils; 75% TOC, 75% TO
supplemented with 800mg/kg L-carnitine.
* The mixture of mineral mixture and vitamin mixture was purchased from Qingdao
Master Biotechnology Co. Ltd.

† Attractant: mixture of 50% glycine acid and 50% betaine by weight.
‡Mold inhibitor: mixture of 50% calcium propionic acid and 50% fumaric acid by
weight.
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Christ) to analyse the moisture content. Lipid contents of freeze-
dried liver andmuscle samples were determined by chloroform/
methanol (v/v, 2:1) following the procedures described by
Folch et al.(31). Fatty acid profile of oils and freeze-dried samples
was measured according to procedures described by Metcalfe
et al.(32) with minor modifications(33). Fatty acid profile was sep-
arated and determined by a HP6890 gas chromatograph (Agilent

Technologies Inc.). Results were shown as the percentage of
each fatty acid to total fatty acid content.

Serum parameters and antioxidant capacity analysis

Contents of serum total cholesterol, total TAG, LDL-cholesterol
and HDL-cholesterol and activities of serum alanine

Table 2. Fatty acid profile of oil sources and the experimental diets (% total fatty acids)*
(Mean values)

Fatty acid (% total fatty acids) Fish oil† Soyabean oil† Linseed oil† Pork lard

Experimental diets

FO 75% TO 75% TOC

14 : 0 8·77 0·08 0·07 1·23 6·84 2·38 2·31
16 : 0 19·15 10·32 5·39 22·41 22·92 14·63 14·41
18 : 0 4·26 3·95 3·76 15·53 5·61 5·39 5·44
20 : 0 1·18 0·27 0·17 0·83 1·45 0·98 1·28
∑SFA 33·36 14·62 9·39 40·01 36·82 23·38 23·44
16 : 1n-7 11·85 0·09 0·10 1·33 8·92 3·54 3·59
18 : 1n-9 9·75 26·10 20·45 34·40 13·80 19·17 19·40
∑MUFA 21·60 26·19 20·55 35·73 22·72 22·71 22·99
18 : 2n-6 1·54 49·65 15·52 18·37 11·62 23·23 23·65
20 : 4n-6 1·30 0·00 0·00 0·24 1·25 0·53 0·59
∑n-6 PUFA 2·84 49·65 15·52 18·61 12·87 23·76 24·24
18 : 3n-3 0·76 4·92 53·02 0·84 1·50 10·88 10·97
20 : 5n-3 12·34 0·00 0·00 0·00 7·22 3·55 3·23
22 : 6n-3 7·30 0·00 0·00 0·00 5·36 3·23 3·07
∑n-3 PUFA 20·41 4·92 53·02 0·84 14·08 17·66 17·26
n-3:n-6 PUFA 7·18 0·10 3·42 0·05 1·09 0·74 0·71
∑n-3 LC-PUFA 19·64 0·00 0·00 0·00 12·58 6·77 6·30

FO, fish oil; 75% TO, 75% fish oil substituted by terrestrial oils; 75% TOC, 75% TO supplemented with 800mg/kg L-carnitine; LC-PUFA, long-chain PUFA.
* The contents of some fatty acids are minor and not detected, such as C20 : 0, C22 : 0, C24 : 0, C14 : 1, C20 : 1n-9, C22 : 1n-11, C20 : 2n-6, C18 : 3n-6, C20 : 3n-6, C18 : 4n-3 and
C22 : 5n-3.

† Fatty acid profile of fish oil, soyabean oil and linseed oil is according to Li et al.(29) supplemental data.

Table 3. Sequences of the PCR primers used in this study

Target gene Forward primers (5 0-3 0) Reverse primers (5 0-3 0) Accession number

acc1 GACTTGGCGGAATACCTACTGG GCTTGCTGGATGATCTTTGCTT XM027273319
aco AGTGCCCAGATGATCTTGAAGC CTGCCAGAGGTAACCATTTCCT JX456348
apoB100 AGAGTGTTGTCCAGGATAAAGATGC CAGGGCTCAGGGTCTCAGTC KM593126
arg1 AACCACCCGCAGGATTACG AAACTCACTGGCATCACCTCA XM019269015
β-Actin GACCTGACAGACTACCTCATG AGTTGAAGGTGGTCTCGTGGA GU584189
cd36 GAGCATGATGGAAAATGGTTCAAAG CTCCAGAAACTCCCTTTCACCTTAG KM593122
cox-2 CTGGAAAGGCAACACAAGC CGGTGAGAGTCAGGGACAT KP259877
cpt-I GCTGAGCCTGGTGAAGATGTTC TCCATTTGGTTGAATTGTTTACTGTCC JX434612
dgat2 TTCGGTGCTTTCTGCAACTTCG AAGGATGGGGAAGCGGAAGT MG013506
elovl4 GGGCTCTTATTGGCTATGCT TGCTTCTTCCCGTTATCCTC XM010739301
elovl5 ATCACCTTCCTTCACATCTATCACC GAGGCACCGAAGTACGAATGG JQ320377
fad6 TTCGCTTCCTCTGCTGCTATG CCAGTCACGGTGCTTCTCG JX434611
fas CAGCCACAGTGAGGTCATCC TGAGGACATTGAGCCAGACAC JX456351
fatp1 CAACCAGCAGGACCCATTACG CATCCATCACCAGCACATCACC KM593124
gapdh GACAACGAGTTCGGATACAGC CAGTTGATTGGCTTGTTTGG XM010743420
hl TCCGTCCATCTATTCATTGACTCTC GCCACTGTGAACCTTCTTGATATTG JX456350
ifnγ TCAGACCTCCGCACCATCA GCAACCATTGTAACGCCACTTA KM501500
il-1β CATAGGGATGGGGACAACGA AGGGGACGGACACAAGGGTA KJ459927
il-10 AGTCGGTTACTTTCTGTGGTG TGTATGACGCAATATGGTCTG XM010738826
il-6 CGACACACCCACTATTTACAAC TCCCATTTTCTGAACTGCCTCT KU140675
mtp ATGTCCAAAATGTTCTCCATGTCTG ATGTCAATAGCCAACCCTCCTTG KP027412
scd1 AAAGGACGCAAGCTGGAACT CTGGGACGAAGTACGACACC KP202156
srebp1 TCTCCTTGCAGTCTGAGCCAAC TCAGCCCTTGGATATGAGCCT KP342262
tnfα ACACCTCTCAGCCACAGGAT CCGTGTCCCACTCCATAGTT EF165623

acc1, acetyl-CoA carboxylase 1; aco, acyl-CoA oxidase; arg-1, arginase-1; cd36, cluster of differentiation 36; cox-2, cyclo-oxygenase-2; cpt-I, carnitine palmitoyltransferase 1; dgat2,
diacylglycerol acyltransferase 2; elovl4, long-chain fatty acid protein 4; elovl5, elongation of very long-chain fatty acid protein 5; fad6, fatty acyl desaturase 6; fas, fatty acid synthase;
fatp1, fatty acid transport protein 1; gapdh, glyceraldehyde-3-phosphate dehydrogenase;hl, hepatic lipase; ifnγ, interferon γ;mtp, microsomal TAG transfer protein; scd1, stearoyl-CoA
desaturase 1; srebp1, sterol-regulatory element binding protein 1.

734 X. Li et al.

https://doi.org/10.1017/S0007114520003244  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114520003244


transaminase and aspartate aminotransferase were analysed
with matching commercial reagent kits (Mindray Bio Medical
Co. Ltd) by an automatic biochemical analyzer (BS180;
Mindray). Activities of catalase, superoxide dismutase, total anti-
oxidant capacity (T-AOC) and the content of malondialdehyde
in the liver of fish were determined by commercial kits
(Nanjing Jiancheng Bioengineering Institute).

Activities of carnitine palmitoyltransferase-I and acyl-CoA
oxidase

Mitochondria was extracted, and its integrity was assessed
according to procedures described by Suarez & Hochachka(34)

and Aprille & Asimakis(35), respectively. CPT-I activity was deter-
mined according to the method of Bieber & Fiol(36) with some
modifications(37,38). Briefly, CPT-I activity was determined by
the CoA-SH formation in the 5’,5’-dithio-bis-(2-nitrobenzoic
acid) (Sigma) reaction from palmitoyl-CoA (Sigma) at 412 nm.
Results were expressed as 1 μmol of product formed per min
per mg of mitochondrial protein at 25°C. Protein concentration
of extracted samples was determined according to procedures of
Bradford Protein Assay Kit (Beyotime Biotechnology).

Peroxisomal ACO activity was determined by the H2O2-
dependent oxidation of 2’,7’-dichlorofluorescine (Sigma)
according to the method of Small et al.(39). The reaction medium
consisted of 11 mM potassium phosphate buffer (pH 7·4)
(Sangon biotech), 50 μM horseradish peroxidase type II
(Sigma), 0·05 mM 2’,7’-dichlorofluorescine (Sigma), 40 mM

3-Amino-1,2,4-triazole (Sigma) and 0·02 % Triton-X 100
(Sangon biotech), and the reaction was initiated by the addition
of 30 μM palmitoyl-CoA (Sigma). The assay medium contained
10–40 mg of protein in a total volume of 1 ml.

Total RNA extraction, cDNA synthesis and real-time
quantitative PCR

Total RNAwas extracted from the liver of experimental fish using
TRIzol reagent (Takara), and the quality and quantity of RNA

were detected by a 1·2 % denaturing agarose gel and a
NanoDrop spectrophotometer (Thermo Scientific), respectively.
The extracted RNA was reversely transcribed to cDNA by
PrimeScript™ RT reagent Kit (Takara). β-Actin and glyceralde-
hyde-3-phosphate dehydrogenase (gapdh) were used as refer-
ence genes to normalise the expression levels of genes(40).
The real-time quantitative PCR primers (Table 3) of candidate
genes were designed based on nucleotide sequences of large
yellow croaker. The real-time quantitative PCR was performed
in a quantitative thermal cycler (Mastercycler ep realplex;
Eppendorf). The volume and procedure of real-time quantitative
PCR were carried out as described previously(41). Only one PCR
product in these reactions was confirmed by melting curve
analysis at the end of each reaction. Standard curves were gen-
erated with 4-fold serial dilutions (in triplicate) of cDNA sample,
and the amplification efficiency was analysed by the equation:
E= 10(–1/slope)− 1(42). The amplification efficiencies of all
detected genes ranged between 0·95 and 1·04. The expression
levels of all genes were calculated using the comparative Ct
method (2–ΔΔCt method) as described by Livak & Schmittgen(43).

Statistical analyses

All data analyses were processed by SPSS 19.0 (IBM). Results
were shown as mean values with their standard errors.
Statistics were performed to a one-way ANOVA and followed
by Tukey’s test. Statistics with P< 0·05 were considered to be
significant.

Results

Survival and growth performance

The survival rate of fish ranged from 87·92 to 90·83 %, but no
significant differences were found among dietary treatments
(P> 0·05). The dietary oil source markedly affected specific
growth rate and feed efficiency ratio of fish in the present study,
with specific growth rate and feed efficiency ratio significantly

Table 4. Growth and somatic parameters of large yellow croakers
(Mean values with their standard errors; n 4)

FO 75% TO 75% TOC

Mean SEM Mean SEM Mean SEM

Initial body weight (g) 15·82 0·25 15·84 0·24 15·85 0·16
Final body weight (g) 35·60b 0·32 38·22a 0·46 37·93a 0·35
Specific growth rate (%/d)* 1·16b 0·01 1·26a 0·03 1·25a 0·00
Survival rate (%)† 87·92 1·97 90·83 0·83 89·17 1·60
Feed intake (%/d)‡ 2·13 0·02 2·12 0·02 2·10 0·02
Feed efficiency ratio§ 0·52b 0·00 0·56a 0·01 0·56a 0·01
Viscerosomatic index (%)|| 6·92 0·23 7·18 0·21 7·05 0·30
Hepatosomatic index (%)¶ 1·98b 0·04 2·14a 0·03 2·07a,b 0·05
Condition factor (%)** 1·02 0·03 1·05 0·02 1·00 0·04

FO, fish oil; 75% TO, 75% fish oil substituted by terrestrial oils; 75% TOC, 75% TO supplemented with 800mg/kg L-carnitine.
a,b Mean values in a row sharing the same superscript letter or absence of letters are not significantly different determined by Tukey’s test (P> 0·05).
* Specific growth rate (%/d)= (Ln (final body weight) – Ln (initial body weight)) × 100/duration of experimental days.
† Survival rate (%)= 100 × final fish number/initial fish number.
‡ Feed intake (%/d)= 100 × dry feed fed in g/((final body weightþ initial body weight)/2)/duration of experimental days.
§ Feed efficiency ratio=wet weight gain in g/dry feed fed in g.
|| Viscerosomatic index (%)= 100 × visceral wet weight/final body weight.
¶ Hepatosomatic index (%)= 100 × liver wet weight/final body weight.
** Condition factor (%)= 100 × final body weight/(final body length3).

Terrestrial oils supplemented with L-carnitine 735

https://doi.org/10.1017/S0007114520003244  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114520003244


increased in fish fed diets with 75 % TO and 75 % TOC compared
with the control group (P< 0·05). Hepatosomatic index was
dramatically increased in fish fed the diet with 75 % TO com-
pared with the control group (P< 0·05). When the 75 % TO diet
was supplemented with 800mg/kg L-carnitine, a decreasing
trend (from 2·14 to 2·07) was observed in hepatosomatic index
of fish compared with fish fed the diet with 75 % TO. There was
no significant difference in feed intake, viscerosomatic index or
condition factor of fish among dietary treatments (P> 0·05)
(Table 4).

Body composition analysis

There was no significant difference in the moisture, lipid or
protein contents of whole fish body among dietary treatments
(P> 0·05). Fish fed the diet with 75 % TO had markedly higher
lipid content of the liver than the control group (P< 0·05).
However, the lipid content of the liver was decreased in fish
fed the diet with 75 % TOC compared with 75 % TO (P< 0·05).
No significant difference was found in lipid content of the liver in
fish fed the diet with 75 % TOC and the control group. The mois-
ture was markedly decreased in the liver of fish fed the diet with
75 % TO compared with the control group (P< 0·05). However,
the moisture was dramatically increased in the muscle of fish fed
the diet with 75 % TOC compared with 75 % TO and the control
group (P< 0·05) (Table 5).

Fatty acid profile in the liver

The contents of C14 : 0, C16 : 0, C16 : 1n-7, C20 : 4n-6 (arachi-
donic acid), C20 : 5n-3 (EPA), C22 : 6n-3 (DHA), SFA, n-3 LC-
PUFA and the ratio ofn-3:n-6 PUFAwere dramatically decreased
in the liver of fish fed diets with 75 % TO and 75 % TOC com-
pared with the control group (P< 0·05). Furthermore, the con-
tents of C18 : 1n-9, C18 : 2n-6, C18 : 3n-3 and n-6 PUFA were
significantly increased in the liver of fish fed diets with 75 %
TO and 75 % TOC compared with the control group
(P< 0·05). The supplementation of 800mg/kg L-carnitine in
the 75 % TO diet significantly decreased the content of
C18 : 3n-3, DHA and n-3 LC-PUFA in the liver of fish compared
with fish fed the diet with 75 % TO (Table 6).

Serum biochemical indexes

The content of TAG was dramatically increased in fish fed the
diet with 75 % TO compared with the control group (P< 0·05).
The content of HDL-cholesterol was significantly decreased in
fish fed the diet with 75 % TO compared with the control group
(P< 0·05). The content of LDL-cholesterol was significantly
decreased, but the content of HDL-cholesterol was significantly
increased in fish fed the diet with 75 % TOC compared with 75 %
TO (P< 0·05). No significant difference was found in activities of
serum aspartate aminotransferase or alanine transaminase in fish
among dietary treatments (P> 0·05) (Table 7).

Antioxidant capacity

Adecreasing trend (from 1·16 to 1·03)was found in the activity of
T-AOC (Fig. 1(C)) in fish fed the diet with 75 % TO compared
with the control group, but no significant difference was found
between the two treatments (P> 0·05). The supplementation of
800mg/kg L-carnitine in the 75 % TO diet significantly increased
the activity of superoxide dismutase (Fig. 1(B)) and T-AOC
(Fig. 1(C)) in fish compared with fish fed the diet with 75 %
TO (P< 0·05). No significant differences were found in the con-
tent of malondialdehyde (Fig. 1(A)) or the activity of catalase
(Fig. 1(D)) in fish among dietary treatments (P> 0·05).

Enzyme activities of CPT-I and ACO

The activity of CPT-I was dramatically increased in fish fed the
diet with 75 % TOC compared with fish fed the diet with 75 %
TO and the control group (P< 0·05). However, no significant dif-
ference was found in the activity of ACO among dietary treat-
ments (P> 0·05) (Fig. 2).

Expression of genes related to lipid metabolism

The mRNA expression of diacylglycerol acyltransferase 2
(dgat2) and acetyl-CoA carboxylase 1 (acc1) was dramatically
increased in fish fed the diet with 75 % TO compared with fish
fed the diet with 75 % TOC and the control group (P< 0·05)
(Fig. 3(C)). Expression of genes related to fatty acid synthesis
(elongation of very long-chain fatty acid protein 4 (elovl4), elon-
gation of very long-chain fatty acid protein 5 (elovl5) and fatty

Table 5. Body composition analysis of large yellow croakers
(Mean values with their standard errors; n 4)

FO 75% TO 75% TOC

Mean SEM Mean SEM Mean SEM

Whole body (% wet weight)
Moisture 74·99 0·40 75·06 0·73 75·96 0·80
Lipid 7·16 0·19 6·91 0·37 6·54 0·17
Protein 14·74 0·15 14·86 0·28 14·32 0·17

Liver (% wet weight)
Moisture 59·64a 1·08 53·10b 1·11 56·80a,b 1·53
Lipid 22·10b 0·66 27·13a 0·63 23·32b 0·94

Muscle (% wet weight)
Moisture 73·31b 0·61 72·53b 0·48 74·48a 0·64
Lipid 7·95 0·37 8·53 0·34 8·60 0·38

FO, fish oil; 75% TO, 75% fish oil substituted by terrestrial oils; 75% TOC, 75% TO supplemented with 800mg/kg L-carnitine.
a,b Mean values in a row sharing the same superscript letter or absence of letters are not significantly different determined by Tukey’s test (P> 0·05).
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acyl desaturase 6 (fad6)) was dramatically increased in fish fed
diets with 75 % TO and 75 % TOC compared with the control
group (P< 0·05) (Fig. 3(D)). The mRNA expression of cpt-I
and cluster of differentiation 36 (cd36) was significantly
increased in fish fed the diet with 75 % TOC compared with fish
fed the diet with 75 % TO and the control group (P< 0·05) (Fig.
3(A) and (B)). The mRNA expression of stearoyl-CoA desaturase
1 (scd1) and hepatic lipase (hl) was significantly increased in fish
fed the diet with 75 % TOC compared with the control group
(P< 0·05) (Fig. 3(A) and (D)). There was no significant differ-
ence in the mRNA expression of sterol-regulatory element bind-
ing protein 1 (srebp1), fatty acid synthase (fas), aco, fatty acid
transport protein 1 (fatp1), microsomal TAG transfer
protein (mtp) or apob100 among dietary treatments (P> 0·05)
(Fig. 3(A)–(C)).

Expression of genes related to inflammation

The mRNA expression of pro-inflammatory genes (tnfα and
interferon γ (ifnγ)) was significantly increased in fish fed the diet
with 75 % TO compared with the control group (P< 0·05), while

they both were repressed in fish fed the diet with 75 % TOC com-
paredwith 75 % TO (P< 0·05) (Fig. 4(B)). ThemRNA expression
of anti-inflammatory genes (il-10 and arginase-1 (arg1)) was
significantly increased in fish fed the diet with 75 % TOC com-
pared with fish fed the diet with 75 % TO and the control group
(P< 0·05) (Fig. 4(A) and (B)). Therewas no significant difference
in the mRNA expression of il-1β, il-6 or cyclo-oxygenase-2
(cox-2) of fish among dietary treatments (P> 0·05) (Fig. 4(A)
and (B)).

Discussion

In the present study, specific growth rate significantly increased
in fish fed diets with 75 % TO and 75 % TOC compared with the
control group. The growth-promoting effect was possibly due to
the balance of fatty acids with the supplementation of various
TO. In the present study, the content of n-3 LC-PUFA in 75 %
TO and 75 % TOC diets was approximately 0·83 %, which was
supplied in an appropriate level for large yellow croaker. A
previous study has reported that large yellow croaker fed

Table 6. Fatty acid profile (% total fatty acids) in the liver of large yellow croakers
(Mean values with their standard errors; n 4)*

FO 75% TO 75% TOC

Mean SEM Mean SEM Mean SEM

14 : 0 4·31a 0·26 1·77b 0·04 1·85b 0·02
16 : 0 22·88a 0·57 17·69b 0·44 18·13b 0·14
18 : 0 6·41 0·49 6·50 0·48 6·64 0·51
20 : 0 1·30 0·11 1·44 0·05 1·50 0·13
∑SFA 34·90a 0·66 27·40b 0·67 28·12b 0·56
16 : 1n-7 12·93a 0·36 6·84b 0·16 7·12b 0·09
18 : 1n-9 22·16b 1·16 27·85a 0·64 29·46a 0·54
∑MUFA 35·09 0·94 34·69 0·57 36·58 0·47
18 : 2n-6 7·90b 0·54 18·21a 0·67 15·46a 1·03
20 : 4n-6 0·50a 0·03 0·25b 0·00 0·22b 0·01
∑n-6 PUFA 8·41b 0·53 18·46a 0·67 15·69a 1·03
18 : 3n-3 1·48c 0·23 7·46a 0·35 6·09b 0·08
20 : 5n-3 (EPA) 3·34a 0·15 0·78b 0·02 0·48b 0·04
22 : 6n-3 (DHA) 2·08a 0·10 0·83b 0·01 0·54c 0·04
∑n-3 PUFA 6·90b 0·26 9·07a 0·32 7·11a 0·07
n-3:n-6 PUFA 0·83a 0·07 0·49b 0·02 0·46b 0·03
∑n-3 LC-PUFA 5·42a 0·23 1·61b 0·04 1·02c 0·08

FO, fish oil; 75% TO, 75% fish oil substituted by terrestrial oils; 75% TOC, 75% TO supplemented with 800mg/kg L-carnitine; LC-PUFA, long-chain PUFA.
a,b,c Mean values in a row sharing the same superscript letter or absence of letters are not significantly different determined by Tukey’s test (P> 0·05).
* Some fatty acids, of which the contents are minor, trace amount or not detected, such as C20 : 0, C22 : 0, C24 : 0, C14 : 1, C20 : 1n-9, C22 : 1n-11, C20 : 2n-6, C18 : 3n-6, C20 : 3n-6,
C18 : 4n-3, C22 : 5n-3, are not listed in the table.

Table 7. Serum biochemical indexes and enzyme activities of large yellow croakers
(Mean values with their standard errors; n 4)

FO 75% TO 75% TOC

Mean SEM Mean SEM Mean SEM

TC (mmol/l) 2·79 0·29 3·45 0·29 2·89 0·30
TAG (mmol/l) 3·71b 0·44 5·09a 0·40 3·80a,b 0·32
HDL-cholesterol (mmol/l) 0·79a 0·03 0·56b 0·01 0·77a 0·06
LDL-cholesterol (mmol/l) 0·75a,b 0·07 0·93a 0·11 0·63b 0·03
ALT (U/l) 55·76 2·21 60·40 2·63 57·86 3·09
AST (U/l) 5·33 0·47 6·12 0·60 5·65 0·50

FO, fish oil; 75% TO, 75% fish oil substituted by terrestrial oils; 75% TOC, 75%TO supplemented with 800mg/kg L-carnitine; TC, total cholesterol; ALT, alanine transaminase; AST,
aspartate aminotransferase.
a,b Mean values in a row sharing the same superscript letter or absence of letters are not significantly different determined by Tukey’s test (P> 0·05).
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0·60–0·98 % dietary n-3 LC-PUFA have better growth perfor-
mance, nonspecific immune responses and disease resistance
than the control group (0·15 % n-3 LC-PUFA)(33). Also, the ratio
of ALA:LNA in 75 %TO and 75 %TOCdiets was kept in an appro-
priate value (0·47) for large yellow croaker, while the corre-
sponding ratio in the FO diet (0·13) was lower than the
aforementioned ratio in TO diet. A previous study has shown
that the ratio of dietary ALA:LNA in 0·5 is beneficial for the
growth of large yellow croaker(44).

Previously, Turchini et al.(2) found that 60–75 % of dietary FO
could be replaced by alternative TO in almost all finfish species

when the requirement of essential fatty acid was met. However,
a high level of TO might increase abnormal lipid deposition of
fish(45). In this experiment, significantly higher contents of
LDL-cholesterol and TAG as well as hepatic lipid content were
found in fish fed the diet with 75 % TO than the control group.
Similar results were also observed in Malaysian mahseer (Tor
tambroides)(46), rainbow trout (Oncorhynchus mykiss)(47) and
turbot(6). Previous studies have demonstrated that oleic acid is
more likely to increase steatosis and plasma lipid concentrations
than palmitic acid(48,49) and PUFA(50,51). Accordingly, the
increased lipid deposition of experimental fish could be due
to the increase of dietary oleic acid in the 75 % TO diet compared
with the FO diet. However, hepatic lipid deposition and the con-
tent of LDL-cholesterol were decreased in fish fed the diet with
75 % TOC compared with 75 % TO. Sang et al.(27) reported that
the supplementation of 800mg/kg L-carnitine significantly
improved growth performance and reduced serum TAG and
total cholesterol levels in large yellow croaker compared with
the control group (P< 0·05). The hypolipidemic effect was prob-
ably due to the role of L-carnitine in facilitating the transport of
long-chain fatty acids into mitochondria for β-oxidation(52,53), as
contents of C18 : 3n-3, DHA and total n-3 LC-PUFA were dra-
matically decreased, and the content of n-6 PUFA was also
numerically lower in the liver of fish fed the diet with 75 %
TOC compared with 75 % TO.

The decreased content of PUFA could be attributed to
changes of fatty acid oxidation and synthesis in fish fed the diet
with 75 % TOC compared with 75 % TO. As for fatty acid utilisa-
tion and oxidation, CPT-I is a rate-limiting enzyme that controls
the mitochondrial uptake of long-chain acyl-CoA and facilitates
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long-chain fatty acids for β-oxidation(54). CD36 is a key NEFA
uptake transporter that involves transferring fatty acids into
cells(55) or mitochondria(56,57) for utilisation. HL is a pivotal
TAG lipase that contributes to vascular lipoprotein degradation,
TAG hydrolysis and the uptake of lipoprotein into the liver(58). In
the present study, the mRNA expression of cpt-I, cd36 and hl as
well as the activity of CPT-I was significantly increased in fish fed
the diet with 75 % TOC compared with 75 % TO. These results
showed that L-carnitine facilitated the utilisation of lipid in the
diet and promoted fatty acid oxidation. As for fatty acid synthesis,
elovl4, elovl5 and fad6 were key genes for the biosynthesis of
arachidonic acid, EPA and DHA from LNA and ALA in fish(12).
No significant difference was observed in the mRNA expression
of elovl4, elovl5 or fad6 in fish fed diets with 75 % TOC and 75 %
TO, which meant that the supplementation of L-carnitine had no
significant effect on the capacity of LC-PUFA biosynthesis.
Further, vertebrates cannot synthesise C18 : 2n-6 and C18 : 3n-
3 from C16 : 1n-7 and C18 : 1 n-9(12), and the capacity of biosyn-
thesis of C20 and C22 LC-PUFA from C18 PUFA is very limited in
most marine fish species(59). Above all, the unchanged PUFA
synthesis and increased PUFA oxidation could be attributed to
the decreased content of PUFA in fish fed the diet with 75 %
TOC compared with 75 % TO. Similarly, dietary L-carnitine pro-
moted the utilisation of fatty acid and decreased the content of
PUFA in red porgy (Pagrus pagrus, L.)(60), cobia (Rachycentron
canadum)(61) and beluga sturgeon (Huso huso)(62).

Antioxidant capacity is one of the most commonly used
indexes to evaluate the physical condition of fish(63). In this
study, the activity of T-AOC showed a decreasing trend (from
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1·16 to 1·03) in fish fed the diet with 75 % TO compared with the
control group. When the 75 % TO diet was supplemented with
800mg/kg L-carnitine, the activity of superoxide dismutase and
T-AOCwas dramatically increased in fish comparedwith fish fed
the diet with 75 % TO. A previous study has reported that
L-carnitine induces Nrf2/Keap1 pathway activation in vivo and
in vitro and increases the antioxidant enzyme activities (catalase,
T-superoxide dismutase, GSH-PX) in Rhynchocypris lagowski(64).
Further, L-carnitine played some crucial physiological roles in the
inhibition of superoxide radical formation(65). The increased anti-
oxidant capacity could be attributed to the modulatory effects of
L-carnitine on critical antioxidant enzymes in fish fed the diet with
75% TOC compared with 75 % TO.

In addition to antioxidant capacity, the inflammation in fish
was also an important indicator to evaluate the health status.
In the present study, the mRNA expression of pro-inflammatory
genes (tnfα and ifnγ) was significantly higher in fish fed the diet
with 75 % TO than the control group. However, the mRNA
expression of the pro-inflammatory genes was decreased in fish
fed the diet with the 75 % TOC compared with 75 % TO. The
mRNA expression of anti-inflammatory genes (il-10 and
arg-1) was increased in fish fed the diet with the 75 % TOC com-
pared with 75 % TO. Previous studies have demonstrated that
dietary L-carnitine can improve the immunity and disease resis-
tance of juvenile narrow clawed crayfish (Astacus leptodactylus
leptodactylus)(66), black carp (Mylopharyngodon piceus)(67) and
common carp (Cyprinus carpio L.)(68). L-Carnitine exerted pro-
tective effects by inhibiting the generation of ammonia and
xenobiotics in rat hepatocytes(69). Future research is required
to explore the specific mechanism how L-carnitine decreased
the inflammation of fish fed the diet with 75 % TOC compared
with 75 % TO.

In conclusion, dietary TO mixture (75 % TO and 75 % TOC
diets) increased the growth of large yellow croaker compared
with the control group, which was probably due to the appropri-
ate level of n-3 LC-PUFA and the appropriate ratio of ALA:LNA.
Although the growth was not significantly different, the supple-
mentation of 800mg/kg L-carnitine in the 75 % TO diet (75 %
TOC) could increase antioxidant capacity, fatty acid oxidation
and decrease lipid abnormal deposition and the expression of
inflammatory genes compared with 75 % TO.
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